2,551 research outputs found

    Quadratic metric-affine gravity

    Full text link
    We consider spacetime to be a connected real 4-manifold equipped with a Lorentzian metric and an affine connection. The 10 independent components of the (symmetric) metric tensor and the 64 connection coefficients are the unknowns of our theory. We introduce an action which is quadratic in curvature and study the resulting system of Euler-Lagrange equations. In the first part of the paper we look for Riemannian solutions, i.e. solutions whose connection is Levi-Civita. We find two classes of Riemannian solutions: 1) Einstein spaces, and 2) spacetimes with metric of a pp-wave and parallel Ricci curvature. We prove that for a generic quadratic action these are the only Riemannian solutions. In the second part of the paper we look for non-Riemannian solutions. We define the notion of a "Weyl pseudoinstanton" (metric compatible spacetime whose curvature is purely Weyl) and prove that a Weyl pseudoinstanton is a solution of our field equations. Using the pseudoinstanton approach we construct explicitly a non-Riemannian solution which is a wave of torsion in Minkowski space. We discuss the possibility of using this non-Riemannian solution as a mathematical model for the graviton or the neutrino.Comment: 25 pages, LaTeX2

    Geometric Nonlinearities in Field Theory, Condensed Matter and Analytical Mechanics

    Get PDF
    There are two very important subjects in physics: Symmetry of dynamical models and nonlinearity. All really fundamental models are invariant under some particular symmetry groups. There is also no true physics, no our Universe and life at all, without nonlinearity. Particularly interesting are essential, non-perturbative nonlinearities which are not described by correction terms imposed on some well-defined linear background. Our idea in this paper is that there exists some mysterious, not yet understood link between essential, physically relevant nonlinearity and dynamical symmetry, first of all, large symmetry groups. In some sense the problem is known even in soliton theory, where the essential nonlinearity is often accompanied by the infinite system of integrals of motion, thus, by infinite-dimensional symmetry groups. Here we discuss some more familiar problems from the realm of field theory, condensed matter physics, and analytical mechanics, where the link between essential nonlinearity and high symmetry is obvious, even if not yet fully understood.Comment: 26 page

    An original and additional mathematical model characterizing a Bayesian approach to decision theory

    Get PDF
    We propose an original mathematical model according to a Bayesian approach explaining uncertainty from a point of view connected with vector spaces. A parameter space can be represented by means of random quantities by accepting the principles of the theory of concordance into the domain of subjective probability. We observe that metric properties of the notion of -product mathematically fulfill the ones of a coherent prevision of a bivariate random quantity. We introduce fundamental metric expressions connected with transformed random quantities representing changes of origin. We obtain a posterior probability law by applying the Bayes’ theorem into a geometric context connected with a two-dimensional parameter space

    Lognormal Distributions and Geometric Averages of Positive Definite Matrices

    Full text link
    This article gives a formal definition of a lognormal family of probability distributions on the set of symmetric positive definite (PD) matrices, seen as a matrix-variate extension of the univariate lognormal family of distributions. Two forms of this distribution are obtained as the large sample limiting distribution via the central limit theorem of two types of geometric averages of i.i.d. PD matrices: the log-Euclidean average and the canonical geometric average. These averages correspond to two different geometries imposed on the set of PD matrices. The limiting distributions of these averages are used to provide large-sample confidence regions for the corresponding population means. The methods are illustrated on a voxelwise analysis of diffusion tensor imaging data, permitting a comparison between the various average types from the point of view of their sampling variability.Comment: 28 pages, 8 figure

    Two-Connection Renormalization and Nonholonomic Gauge Models of Einstein Gravity

    Full text link
    A new framework to perturbative quantum gravity is proposed following the geometry of nonholonomic distributions on (pseudo) Riemannian manifolds. There are considered such distributions and adapted connections, also completely defined by a metric structure, when gravitational models with infinite many couplings reduce to two--loop renormalizable effective actions. We use a key result from our partner work arXiv:0902.0911 that the classical Einstein gravity theory can be reformulated equivalently as a nonholonomic gauge model in the bundle of affine/de Sitter frames on pseudo-Riemannian spacetime. It is proven that (for a class of nonholonomic constraints and splitting of the Levi-Civita connection into a "renormalizable" distinguished connection, on a base background manifold, and a gauge like distortion tensor, in total space) a nonholonomic differential renormalization procedure for quantum gravitational fields can be elaborated. Calculation labor is reduced to one- and two-loop levels and renormalization group equations for nonholonomic configurations.Comment: latex2e, 40 pages, v4, accepted for Int. J. Geom. Meth. Mod. Phys. 7 (2010

    Thermodynamic Field Theory with the Iso-Entropic Formalism

    Full text link
    A new formulation of the thermodynamic field theory (TFT) is presented. In this new version, one of the basic restriction in the old theory, namely a closed-form solution for the thermodynamic field strength, has been removed. In addition, the general covariance principle is replaced by Prigogine's thermodynamic covariance principle (TCP). The introduction of TCP required the application of an appropriate mathematical formalism, which has been referred to as the iso-entropic formalism. The validity of the Glansdorff-Prigogine Universal Criterion of Evolution, via geometrical arguments, is proven. A new set of thermodynamic field equations, able to determine the nonlinear corrections to the linear ("Onsager") transport coefficients, is also derived. The geometry of the thermodynamic space is non-Riemannian tending to be Riemannian for hight values of the entropy production. In this limit, we obtain again the same thermodynamic field equations found by the old theory. Applications of the theory, such as transport in magnetically confined plasmas, materials submitted to temperature and electric potential gradients or to unimolecular triangular chemical reactions can be found at references cited herein.Comment: 35 page
    corecore