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Abstract We propose an original mathematical model according to a Bayesian approach explaining uncertainty from a
point of view connected with vector spaces. A parameter space can be represented by means of random quantities by
accepting the principles of the theory of concordance into the domain of subjective probability. We observe that metric
properties of the notion of α-product mathematically fulfill the ones of a coherent prevision of a bivariate random quantity.
We introduce fundamental metric expressions connected with transformed random quantities representing changes of
origin. We obtain a posterior probability law by applying the Bayes’ theorem into a geometric context connected with a
two-dimensional parameter space.
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1. Introduction

We make clear some essential points in order to found our geometric model. A quantity is random for a given individual
at a certain instant when he does not know its true value. Therefore, he is in doubt between two or more than two possible
values. One and only one of these possible values will be true “a posteriori” (Pompilj, 1957). Each possible value of
a random quantity is an event. Thus, every finite partition of incompatible and exhaustive events represents a random
quantity. It follows that every event is a particular random quantity because it admits only two possible values, 1 and 0.
We show a model where random quantities are studied by using the logic of certainty and the logic of the probable. The
logic of certainty does not use the notion of probability (Jeffreys, 1961), (de Finetti, 1982a). The logic of certainty is
characterized by two different and extreme aspects. The first aspect deals with situations of non-knowledge or ignorance
or uncertainty. These situations determine a set of possible alternatives of a random quantity with respect to a given set of
information. The second aspect deals with definitive certainty expressed in the form of what is certainly true or certainly
false. Thus, every possible numerical value of a random quantity definitively becomes 0 or 1. Conversely, the notion of
probability is of interest to an intermediate aspect which is included between the two extreme aspects characterizing the
logic of certainty (Good, 1962), (Koopman, 1940). Indeed, probability is distributed as a mass by a given individual over
the domain of possible alternatives before knowing which is the true alternative to be verified “a posteriori”. Probability
is an extralogical notion in the sense that it is outside of the logic of certainty (Ramsey, 1960), (Savage, 1954). Probability
must subjectively be distributed in a coherent way. Conditions of coherence are objective (de Finetti, 2011).

2. The Point Under Discussion

When we deal with a decision-maker choosing an action under conditions of uncertainty we use a mathematical model
coinciding with a quadruple of elements given by

(Ω, A, L(θ, a),K), (1)

where Ω is a parameter space, A is a space of possible actions, L(θ, a) is a loss function, K is a functional which must be
minimized. It is essential to note that we deal with a mathematical model characterizing a Bayesian approach when we
introduce a probability law P with respect to Ω, so we consider a probability space given by

(Ω,AΩ,P) (2)

instead of Ω, where AΩ is a σ-algebra on Ω. In general, possible elements of Ω are known while it is not known which
is the true parameter of Ω among all possible parameters. It is denoted by θ∗ ∈ Ω and it represents the real explanation
of the phenomenon under consideration. A generic element of Ω is denoted by θ. When a decision-maker chooses an
action a ∈ A we observe an outcome denoted by L(θ, a) depending on two elements, θ ∈ Ω and a ∈ A. Thus, we obtain
a space of possible outcomes when θ ∈ Ω and a ∈ A vary into Ω and A. Such outcomes are uncertain and they must
be compared because any decision-maker always tries to get the best possible outcome (Barlow, Claroti & Spizzichino,
1993). In general, it turns out to be

L(θ, a) > 0, if θ , a, (3)
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while we have
L(θ, a) = 0, if θ = a. (4)

Thus, an optimal choice is theoretically given by

K(L(θ, a)) = minimum for a ∈ A. (5)

On the other hand, a given phenomenon can be studied by means of a statistical experiment whose mathematical repre-
sentation is expressed by

e = (Z,Pθ, θ ∈ Ω), (6)

whereZ is a set of possible experimental outcomes, Pθ is a probability law with respect to (Z,AZ) and θ is a parameter
of Ω. We have that AZ is a σ-algebra on Z. If a statistical experiment is carried out, then it is denoted by z ∈ Z. A
mathematical model of a statistical decision is obtained by considering (1) and (6) in a jointly fashion, so it turns out to be

(Ω, A, L(θ, a),K), e = (Z,Pθ, θ ∈ Ω), (7)

where the set Ω characterizing e is the same of the one characterizing (1). Problems of statistical inference are problems
that can be represented by means of mathematical models of statistical decisions (Forcina, 1982). In particular, we are
interested in structural or hypothetical problems according to which it is essential to get information about θ∗ ∈ Ω by
using a conditional probability law of Θ given that an experimental outcome z ∈ Z has occurred. Therefore, if (Θ,Z) is
a continuous random quantity, π(·) is a probability density function of Θ and pθ(·) is a probability density function of Z
corresponding to Pθ for each θ ∈ Ω, then we have

π(θ; z) =
π(θ)pθ(z)∫

Ω
π(θ)pθ(z) dθ

(8)

according to the Bayes’ theorem, where π(θ; z) is a conditional probability density function of Θ given that Z = z has
occurred. We note that pθ(z) is a likelihood function (Basu, 1975). An experimental outcome z ∈ Z changes an “a
priori” probability law given by π(θ) into an “a posteriori” probability law given by π(θ; z). This “a posteriori” probability
law is meaningful but we are also interested in one or more than one parameter, so we have to summarize it. By leaving
problems of statistical inference in order to consider more general problems of statistical decisions according to a Bayesian
approach we note that a decision-maker chooses an action a ∈ A when a statistical experiment z ∈ Z is carried out. Thus,
our variable is a ∈ A while z ∈ Z is known. If an optimal decision exists, then it is given by

K(L(·, a)) = minimum for a ∈ A. (9)

If K coincides with the criterion of the expected value, then a decision-maker has to minimize a final expected loss. Thus,
given

ρ(a; z) = E(L(Θ, a)|Z = z) =
∫
Ω

L(θ, a)π(θ; z) dθ, (10)

it turns out to be
ρ(a; z) = minimum for a ∈ A. (11)

Having said that, it is possible to show a geometric and original Bayesian approach connected with decision theory under
conditions of uncertainty. We propose an additional mathematical model explaining uncertainty from another point of
view (deGroot, 1962), (Piccinato, 1986). On the other hand, every Bayesian criterion properly claims a possibility of
formalizing uncertainty in all its aspects. Nevertheless, it is not certainly appropriate to incorporate within uncertainty all
its components in an indistinct fashion. It is then necessary to separate an analysis depending on experimental information
from an analysis that does not depend on experimental information. When we say that one and only one point of Ω
represents the real explanation of the phenomenon under consideration, we mean that every point of Ω is a single random
event that could occur or not. Every single random event belongs to a given random quantity. Thus, it is possible to
know two different ways in order to deal with uncertainty of a random event. Firstly, every random event can be viewed
as a single random element, so we can directly assign to it a subjective probability. This means that a random event is
not a measurable set characterized by a conventional notion of a mathematical nature. Secondly, every random event
can be interpreted as a basic random element contained in a greater random element coinciding with a random variable
(measurable function). We are interested in knowing only this greater random element. In particular, we are interested in
knowing which is the probability distribution of this greater random element into a probability space characterized by a
σ-algebra. We consequently believe that a complete Bayesian approach to decision theory must not only be based on a
probability distribution with respect to Ω. It must also consider Ω from a geometric point of view. Indeed, it is possible to
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get useful information about points of Ω by considering both experimental outcomes and subjective degrees of belief. On
the other hand, it is not in general possible to deduce with certainty the true value of θ∗ ∈ Ω from an experimental outcome.
These two different ways characterizing uncertainty are evidently complementary. The former is more satisfactory from
a conceptual point of view connected with the notion of subjective probability. Anyway, Ω is provided with a geometric
structure introduced after taking under consideration all possible alternatives of a random quantity representing it. All
alternatives are logically possible for a given individual at a certain instant with a given set of information.

3. Vector Representation of an One-Dimensional Parameter Space

An one-dimensional parameter space Ω ⊆ R can be represented by means of a univariate random quantity. We can
consider different univariate random quantities that are elements of a set of univariate random quantities denoted by (1)S .
We denote by Ω ∈ (1)S one of these univariate random quantities. Every random quantity belonging to the set (1)S is
represented by a vector belonging to Em, where Em is an m-dimensional vector space over the field R of real numbers. An
orthonormal basis of Em is denoted by {e j}, j = 1, . . . ,m. The different possible values of every random quantity of (1)S
are m in number. It turns out to be (1)S ⊂ Em. A univariate quantity Ω is really random for a given decision-maker when
he is in doubt between two or more than two possible values of Ω belonging to the set I(Ω) = {θ1, . . . , θm}. Each possible
value of Ω is an event. Only one of them will occur “a posteriori”. It is not at all a logical restriction to consider a random
quantity as a finite partition of incompatible and exhaustive events. Hence, it must be possible to consider every single
event of a finite partition of events as a statement such that, by betting on it, we can establish whether the bet has been won
or lost (de Finetti, 1981). Nevertheless, if we wonder which is the event that will occur among an infinite number of them
we can never verify if each statement representing a single event is true or false. These statements are infinite in number.
Therefore, they are conceptually meaningless. Thus, the same symbol P is used in order to denote both a prevision of a
random quantity and a probability of an event (de Finetti, 1982b). It is essential to note that each θi, i = 1, . . . ,m, can
also represent a cell midpoint when Ω is a bounded (from above and below) continuous parameter space. On the other
hand, it is possible to dichotomize a bounded (from above and below) continuous random quantity by giving origin to
different dichotomic random quantities. The different possible values of Ω belonging to the set I(Ω) coincide with the
different components of a vector ω ∈ Em and they can indifferently be denoted by a covariant or contravariant notation
after choosing an orthonormal basis of Em. We should exactly speak of components of ω having upper or lower indices
because we deal with an orthonormal basis of Em. Indeed, to use the terms covariant and contravariant is geometrically
meaningless because the covariant components of ω coincide with the contravariant ones. Nevertheless, it is appropriate
to use this notation because a particular meaning connected with these components will be introduced. Having said that,
we will continue to use these terms. Thus, we choose a contravariant notation with respect to the components of ω so it
is possible to write ω = (θi). We choose a covariant notation with respect to the components of p so it is possible to write
p = (pi), where pi represents a subjective probability assigned to θi, i = 1, . . . ,m, by a given decision-maker. Hence,
different decision-makers whose state of knowledge is hypothetically identical may choose different pi. Indeed, each of
them may subjectively give greater attention to certain circumstances than to others (Kyburg jr. & Smokler, 1964). A
given decision-maker is into the domain of the logic of certainty when he considers only ω ∈ Em, while he is into the
domain of the logic of the probable when he considers an ordered pair of vectors given by (ω,p). Thus, a prevision of Ω
is given by

P(Ω) = Ω̄ = θi pi, (12)

where we imply the Einstein summation convention. This prevision is coherent when we have 0 ≤ pi ≤ 1, i = 1, . . . ,m,
as well as

∑m
i=1 pi = 1 (Coletti & Scozzafava, 2002). This implies that a coherent prevision of Ω always satisfies the

inequality in f I(Ω) ≤ P(Ω) ≤ sup I(Ω) and it is also linear. A coherent prevision of Ω can be expressed by means of the
vector ω̄ = (ω̄i) that allows us of defining a transformed random quantity denoted by

Ω
t: it is represented by the vector

ωt = ω − ω̄ whose contravariant components are given by

ωti = θi − ω̄i. (13)

This linear transformation of Ω is a change of origin. A coherent prevision of the transformed random quantity
Ω

t is given
by

P(Ωt) = (θi − ω̄i)pi = 0. (14)

The α-norm of the vector ω is expressed by
∥ω∥2α = (θi)2 pi. (15)

It is the square of the quadratic mean of Ω. It turns out to be ∥ω∥2α ≥ 0. In particular, when the possible values of Ω are
all null one writes ∥ω∥2α = 0: this is a degenerate case that we exclude. Hence, it is possible to say that the α-norm of the
vector ω is strictly positive. The α-norm of the vector representing

Ω
t is given by

∥ωt∥2α = (ωti)2 pi = σ
2
Ω. (16)
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It represents the variance ofΩ in a vectorial fashion (Castellano, 1989). We will later explain why we use the term α-norm.

4. Invariance Under Translation of a Transformed Random Quantity

It is possible to prove a very important property connected with a vector representing a univariate transformed random
quantity. This property is intrinsic because it does not depend on the choice of a particular orthonormal basis of Em. Thus,
it is at first possible to introduce the vector

ω′ = ω − g(ω), (17)

where g is a linear transformation from Em to Em whose associated matrix is non-singular. Given a generic vector τ ∈ Em,
with respect to the vector ω, the translation Tτ is expressed by

Tτ(ω) : ω⇒ ω + τ. (18)

Given τ ∈ Em, with respect to the vector ω′, the translation Tτ is expressed by

Tτ(ω′) : ω′ ⇒ ω′ + τ. (19)

Given (17), with respect to the vector ω′, the translation Tτ can be expressed by

Tτ(ω′) = Tτ[ω − g(ω)] = Tτ(ω) − Tτ[g(ω)]. (20)

Since g is a linear transformation, it is possible to write

Tτ(ω′) = Tτ(ω) − g[Tτ(ω)]. (21)

The translation that appears as a minuend into (21) is given by (18). When one defines the translation that appears as a
subtrahend into (21) one writes

g[Tτ(ω)] : g(ω)⇒ g(ω + τ). (22)

After considering (17), (18) and (22) into (19), where (19) is made clear by means of (21), it is possible to obtain

Tτ(ω′) : ω − g(ω)⇒ ω + τ − g(ω + τ). (23)

It is necessary to establish which is the condition according to which ω′ = ω − g(ω) is invariant under translation. It is
expressed by

ω − g(ω) = ω + τ − g(ω + τ). (24)

From linearity of g it follows that it is possible to write

ω − g(ω) = ω + τ − g(ω) − g(τ). (25)

Therefore, when it turns out to be
τ = g(τ) (26)

it is possible to say that ω′ is invariant under translation. The equality expressed by (26) exists when g is a linear
operator viewed as an identity transformation applied to Em. It exists when τ is a zero vector. Nevertheless, they are two
degenerate cases. It exactly exists when τ is a constant, that is to say, when τ represents a coherent prevision of Ω in a
vectorial fashion. Hence, all contravariant components of τ are equal. From the vector ω′ = ω− g(ω) it follows the vector

ωt′ = ωt − g(ωt). (27)

It represents a univariate transformed random quantity. Given ωt = ω − ω̄, it is possible to write

ωt′ = (ω − ω̄) − g(ω − ω̄) = ω − ω̄ − g(ω) + g(ω̄). (28)

Since we have g(ω̄) = ω̄, it turns out to be
ωt′ = ω − g(ω), (29)

that is to say, the vector representing a univariate transformed random quantity coincides with the vector ω′. It is possible
to prove that ωt′ is invariant under translation. With regard to ωt we have

Tϵ(ωt) : ωt ⇒ ωt + ϵ = ω − ω̄ + ϵ, (30)
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where ϵ ∈ Em is a generic vector. With regard to ωt′ we have

Tϵ(ωt′ ) : ωt′ ⇒ ωt′ + ϵ = ω − g(ω) + ϵ, (31)

with ϵ ∈ Em. By writing
ω − ω̄ + ϵ = ω − g(ω) + ϵ (32)

one obtains g(ω) = ω̄ = (ω̄i). Therefore, the vector representing a univariate transformed random quantity is invariant
under translation. It is finally possible to write

Tϵ(ωt) = Tϵ(ωt′ ) = ωt. (33)

The true parameter of a parameter space representing the real explanation of the phenomenon under consideration is
always the same. Therefore, it does not depend on a particular parameterization or formulation of the problem under
consideration. Different parameterizations are equivalent, so a given decision-maker can choose one of them. The true
parameter is consequently invariant.

5. Tensor Representation of a Two-Dimensional Parameter Space

A two-dimensional parameter space Ω ⊆ R2 can be represented by means of a bivariate random quantity. We denote
by (2)S

(2) a set of bivariate random quantities and by Ω12 ≡ {1Ω, 2Ω} a generic bivariate random quantity of this set. A
pair of univariate random quantities (1Ω, 2Ω) evidently represents an ordered pair of univariate random quantities that are
the components of Ω12. Each element of (2)S

(2) can be represented by an affine tensor of order 2 denoted by T ∈ (2)S
(2).

Moreover, it turns out to be (2)S
(2) ⊂ E(2)

m , where we have E(2)
m = Em ⊗ Em. An orthonormal basis of Em is denoted by {e j},

j = 1, . . . ,m. Therefore, the possible values of Ω12 coincide with the numerical values of the components of T . A vector
space denoted by Em has a dimension equal to m. The number of the different possible values of every univariate random
quantity of Ω12 is equal to m. Thus, T is an element of an m2-dimensional vector space. We can represent the possible
values of Ω12 by means of an orthonormal basis of Em. These values coincide with the contravariant components of T so
it is possible to write

T = (1)ω ⊗ (2)ω = (1)θ
i1

(2)θ
i2 ei1 ⊗ ei2 . (34)

The tensor representation of Ω12 expressed by (34) depends on (1Ω, 2Ω). Indeed, if one considers a different ordered pair
(2Ω, 1Ω) of univariate random quantities one obtains a different tensor representation of Ω12. It is expressed by

T = (2)ω ⊗ (1)ω = (2)θ
i2

(1)θ
i1 ei2 ⊗ ei1 (35)

because the tensor product is not commutative (McCullagh, 1987). Therefore, the components of T expressed by (35) are
not the same of the ones expressed by (34). Both these formulas express an affine tensor of order 2 whose components
are different. In particular, we could consider two vectors of E3

(1)ω = (1)θ
1e1 + (1)θ

2e2 + (1)θ
3e3

and
(2)ω = (2)θ

1e1 + (2)θ
2e2 + (2)θ

3e3

in order to realize that it turns out to be (1)ω ⊗ (2)ω , (2)ω ⊗ (1)ω by summing over all values of the indices. Then, we
must consider (34) and (35) in a jointly fashion in order to release a tensor representation of Ω12 from any ordered pair
of univariate random quantities that can be considered, (1Ω, 2Ω) or (2Ω, 1Ω). In fact, when m = 3 and we express T by
means of (34) and (35) we observe that three of nine summands are equal. It is consequently possible to say that the
possible values of a bivariate random quantity must be expressed by the components of an antisymmetric tensor of order
2. It is expressed by

T =
∑
i1<i2

((1)θ
i1

(2)θ
i2 − (1)θ

i2
(2)θ

i1 )ei1 ⊗ ei2 . (36)

The number of the components of an antisymmetric tensor of order 2 is evidently different from the one of the components
of an affine tensor of the same order. Thus, a tensor representation based on an antisymmetric tensor of order 2 does not
depend either on (1Ω, 2Ω) or (2Ω, 1Ω). We choose it in order to represent a generic bivariate random quantity Ω12 in a
geometrical fashion. Therefore, 12 f is an antisymmetric tensor of order 2 called the tensor of possible values of Ω12. The
contravariant components of 12 f expressed by

12 f (i1i2) =

∣∣∣∣∣∣∣∣(1)θ
i1

(1)θ
i2

(2)θ
i1

(2)θ
i2

∣∣∣∣∣∣∣∣ (37)
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represent the possible values of Ω12 in a tensorial fashion. When these components have equal indices it follows that
they are equal to 0. It is evident that a vector space of the antisymmetric tensors of order 2 is not m2-dimensional but
it is
(

m
2

)
-dimensional. Now, we must introduce probability into this geometric representation of Ω12. This means that a

given decision-maker must distribute a mass over the possible alternatives coinciding with the possible values of Ω12.
Therefore, he leaves the domain of the logic of certainty in order to go into the domain of the logic of the probable. We
say that the tensor of the joint probabilities p = (pi1i2 ) is an affine tensor of order 2 whose covariant components represent
those probabilities connected with ordered pairs of components of vectors representing the marginal univariate random
quantities 1Ω and 2Ω of Ω12. Then, a coherent prevision of Ω12 is expressed by

P(Ω12) = Ω̄12 = (1)θ
i1

(2)θ
i2 pi1i2 , (38)

so it is also possible to consider an affine tensor of order 2 denoted by 12ω̄ whose contravariant components are expressed
by 12θ̄

i1i2 . They are all equal. In order to define the covariant components of 12 f we must consider those vector homo-
graphies that allow us of passing from the contravariant components of a type of vector to the covariant components of
another type of vector by means of the tensor of the joint probabilities under consideration. Indeed, the covariant compo-
nents of 12 f represent those probabilities connected with the possible values of each marginal univariate random quantity
of Ω12. These components are obtained by summing the probabilities connected with the ordered pairs of components of

(1)ω and (2)ω: putting the joint probabilities into a two-way table we consider the totals of each row and the totals of each
column of the table as covariant components of 12 f . In analytic terms we have (1)θ

i1 pi1i2 = (1)θi2 and (2)θ
i2 pi1i2 = (2)θi1

by virtue of a particular convention that we introduce: when the covariant indices to right-hand side vary over all their
possible values we obtain two sequences of values representing those probabilities connected with the possible values of
each marginal univariate random quantity of Ω12. They are the covariant components of 12 f . It turns out to be

12 f(i1i2) =

∣∣∣∣∣∣∣∣(1)θi1 (1)θi2

(2)θi1 (2)θi2

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣(1)θ

i2 pi2i1 (1)θ
i1 pi1i2

(2)θ
i2 pi2i1 (2)θ

i1 pi1i2

∣∣∣∣∣∣∣∣ . (39)

The covariant indices of the tensor p can be interchanged when it is necessary so we have, for instance, (1)θ
i1 pi1i2 =

(1)θ
i1 pi2i1 . Each ordered pair of vectors ((1)ω, (2)ω) mathematically determines an affine tensor of order 2 when a given

decision-maker is into the subjective domain of the logic of the probable. Each ordered pair of vectors ((1)ω, (2)ω) repre-
sents two univariate random quantities, 1Ω and 2Ω, into Em (Pistone, Riccomagno & Wynn, 2001). Both these univariate
random quantities belong to the set denoted by (2)S

(1) so it turns out to be (2)S
(1) ⊂ Em. On the other hand, it is possible to

write (2)S
(1)⊗(2)S

(1) = (2)S
(2), so we reach a vector space of the antisymmetric tensors of order 2 by anti-symmetrization. It

is denoted by (2)S
(2)∧. We have evidently (2)S

(2)∧ ⊂ E(2)∧
m . We will show that a metric defined on (2)S

(2)∧ is a consequence
of a metric defined on (2)S

(1). When we observe that the number of the components of an antisymmetric tensor of order 2
decreases by passing from an affine tensor of order 2 to an antisymmetric tensor of the same order we say that this thing is
useful in order to satisfy simplification and compression needs. Nevertheless, it is essential to note a very important point:
this does not mean that the original structure of the random quantity under consideration changes. It remains unchanged.
Only the number of elements that we consider by means of a tensorial representation decreases. The original elements of
the random quantity under consideration do not disappear. Indeed, we will show that they are fully considered in order to
establish quantitative relationships between random quantities. Therefore, it is possible to compress elements of a random
quantity without changing conceptual terms of the problem under consideration.

6. A Metric on an One-Dimensional Parameter Space

A set of univariate random quantities that are the components of bivariate random quantities is denoted by (2)S
(1) ⊂ Em. It

is a vector space smaller than Em because each m-tuple of real numbers is always a sequence of m different numbers. Thus,
even when a given m-tuple is a result of the addition of two m-tuples we must obtain a sequence of m different numbers
because (2)S

(1) is closed under addition of two elements of it. If this thing does not happen, then a random quantity
evidently changes its structure. Univariate random quantities are represented by two vectors, (1)ω and (2)ω, belonging to
Em. A given decision-maker deals with two ordered m-tuples when he is into the objective domain of the logic of certainty.
An affine tensor p of order 2 must be added to the two vectors under consideration when it is necessary to pass from the
domain of the logic of certainty to the one of the logic of the probable. Therefore, it is always necessary to consider a
triple of elements. We transform (2)ω into (2)ω

′ by means of the tensor p. Hence, it is possible to write the following dot
product

(1)ω · (2)ω
′ = (1)θ

i1
(2)θ

i2 pi1i2 = (1)θ
i1

(2)θi1 . (40)

We note that
(2)θi1 = (2)θ

i2 pi1i2 = (2)ω
′ (41)
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is a vector homography whose expressions are obtained by applying the Einstein summation convention. Then, the α-
product of two vectors, (1)ω and (2)ω, is defined as a dot product of two vectors, (1)ω and (2)ω

′, so we write

(1)ω ⊙ (2)ω = (1)ω · (2)ω
′. (42)

In particular, the α-norm of the vector (1)ω is given by

∥(1)ω∥2α = (1)θ
i1

(1)θ
i1 pi1i1 = (1)θ

i1
(1)θi1 . (43)

Now, we can explain why we use this term: we use it because we refer to the α-criterion of concordance introduced
by Gini (Gini, 1926, 1966). There actually exist different criteria of concordance shown by Gini in addition to the α-
criterion. Nevertheless, by considering quadratic measures of concordance it always suffices to use the α-criterion (Gili &
Bettuzzi, 1986). When we pass from the notion of α-product to the one of α-norm we say that the corresponding possible
values of the two univariate random quantities under consideration are equal. Moreover, we say that the corresponding
probabilities are equal. Therefore, the covariant components of the tensor p = (pi1i2 ) having different numerical values
as indices are null. Thus, we say that the absolute maximum of concordance is realized. Hence, it is evidently possible
to elaborate a geometric, original and extensive theory of multiple random quantities by accepting the principles of the
theory of concordance into the domain of subjective probability. This acceptance is well-founded because the definition
of concordance is implicit as well as the one of prevision of a random quantity, and in particular, of probability of an
event. Indeed, these definitions are based on criteria which permit to measure them. Given the vector ϵ = (1)ω + b(2)ω, its
α-norm is expressed by

∥ϵ∥2α = ∥(1)ω∥2α + 2b((1)ω ⊙ (2)ω) + b2∥(2)ω∥2α. (44)

It is always possible to write ∥ϵ∥2α ≥ 0. Moreover, the right-hand side of (44) is a quadratic trinomial whose variable is
b ∈ R, so we must consider a quadratic inequation. All real numbers fulfill the condition stated in the form ∥ϵ∥2α ≥ 0. This
means that the discriminant of the associated quadratic equation is non-positive. We write

∆b = 4[((1)ω ⊙ (2)ω)2 − ∥(1)ω∥2α∥(2)ω∥2α].

Given ∆b ≤ 0, it turns out to be
((1)ω ⊙ (2)ω)2 ≤ ∥(1)ω∥2α∥(2)ω∥2α,

so we obtain
|(1)ω ⊙ (2)ω| ≤ ∥(1)ω∥α∥(2)ω∥α. (45)

The expression (45) is called the Schwarz’s α-generalized inequality. When b = 1 we have ϵ = (1)ω + (2)ω. By replacing
((1)ω ⊙ (2)ω) with ∥(1)ω∥α∥(2)ω∥α into (44) we have the square of a binomial given by

∥(1)ω + (2)ω∥2α = ∥(1)ω∥2α + 2∥(1)ω∥α∥(2)ω∥α + ∥(2)ω∥2α,

so we obtain
∥(1)ω + (2)ω∥α ≤ ∥(1)ω∥α + ∥(2)ω∥α. (46)

The expression (46) is called the α-triangle inequality. Dividing by ∥(1)ω∥α∥(2)ω∥α both sides of (45) we have∣∣∣∣∣∣∣ (1)ω ⊙ (2)ω

∥(1)ω∥α∥(2)ω∥α

∣∣∣∣∣∣∣ ≤ 1,

that is to say,

−1 ≤ (1)ω ⊙ (2)ω

∥(1)ω∥α∥(2)ω∥α
≤ 1,

so there exists a unique angle γ such that 0 ≤ γ ≤ π and such that

cos γ = (1)ω ⊙ (2)ω

∥(1)ω∥α∥(2)ω∥α
. (47)

It is possible to define this angle to be the angle between (1)ω and (2)ω. By considering the expression (42) it is also
possible to define it to be the angle between (1)ω and (2)ω

′. The two vectors (1)t and (2)t represent the two transformed
random quantities

1Ω
t and

2Ω
t defined on 1Ω and 2Ω. Then, their α-product is given by

(1)t ⊙ (2)t = (1)t
i1

(2)ti1 = (1)t
i1

(2)t
i2 pi2i1 . (48)
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It represents the covariance of 1Ω and 2Ω in a vectorial fashion. When one considers the expression (47) connected with

(1)t and (2)t it becomes

cos γ = (1)t ⊙ (2)t
∥(1)t∥α∥(2)t∥α

. (49)

It expresses the Pearson α-generalized correlation coefficient.

7. A Metric on a Two-Dimensional Parameter Space

We deal with a set denoted by (2)S
(2)∧ whose elements are antisymmetric tensors of order 2. Nevertheless, by introducing

the notion of α-product of two antisymmetric tensors of order 2 we must underline a very important point: it is not
necessary to refer to the bivariate random quantity Ω12 in order to introduce that antisymmetric tensor whose covariant
components are represented like into the expression (39). Therefore, it is also possible to consider a bivariate random
quantity denoted by Ω34 as well as an antisymmetric tensor of order 2 denoted by 34 f whose covariant components are
expressed by

34 f(i1i2) =

∣∣∣∣∣∣∣∣(3)θi1 (3)θi2

(4)θi1 (4)θi2

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣(3)θ

i2 pi2i1 (3)θ
i1 pi1i2

(4)θ
i2 pi2i1 (4)θ

i1 pi1i2

∣∣∣∣∣∣∣∣ . (50)

Thus, it is possible to extend to the antisymmetric tensors 12 f and 34 f the notion of α-product. We are evidently able to
point out another very important point: the domain of possible alternatives depends on information of a given individual
at a certain instant even if it is always objective (de Finetti, 1989). This means that he does not express his subjective
opinion in terms of probability on what is uncertain for him but he makes explicit what he knows or what he does not
know at a certain instant with a given set of information. The knowledge and the ignorance of a given individual at a
certain instant determine the extent of the range of the possible, so this range could also become smaller at a later time
when the knowledge increases or it could otherwise become larger. With regard to the problem that we consider, there
exists a more or less large number of possible alternatives. Such a number increases at a later time. If current information
and knowledge of a given decision-maker do not allow him of excluding some of them as impossible, then all alternatives
that can logically be considered at present remain possible for him in the sense that they are not either certainly true or
certainly false. Moreover, we must suppose that Ω12 and Ω34 have at least a possible value that is the same. This common
value is the true value to be verified “a posteriori”. Then, we have

12 f (i1i2) ⊙ 34 f(i1i2) =
1
2

∣∣∣∣∣∣∣∣(1)θ
i1

(1)θ
i2

(2)θ
i1

(2)θ
i2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣(3)θi1 (3)θi2

(4)θi1 (4)θi2

∣∣∣∣∣∣∣∣ , (51)

where it appears 1
2 because we have always two permutations into the two determinants: one of these permutations is

“good” when it turns out to be i1 < i2 with respect to (1)θ
i1

(2)θ
i2 and (3)θi1 (4)θi2 , while the other is “bad” because it turns out

to be i2 > i1 with respect to (1)θ
i2

(2)θ
i1 and (3)θi2 (4)θi1 . Hence, we are in need of returning to normality by means of 1

2 . Such
a normality is evidently represented by i1 < i2. We can also say that it appears 1

2!=2 because we deal with antisymmetric
tensors of order 2 for which it turns out to be 2! = 2. We need different affine tensors of order 2 in order to make that
calculation expressed by (51). These tensors of the joint probabilities allow us of defining the bivariate random quantities
Ω13, Ω14, Ω23 and Ω24 having at least a possible value that is the same. This common value is the true value to be verified
“a posteriori”. Thus, we have

12 f ⊙ 34 f =

∣∣∣∣∣∣∣∣(1)θ
i1

(3)θ
i2 p(13)

i2i1 (1)θ
i2

(4)θ
i1 p(14)

i1i2

(2)θ
i1

(3)θ
i2 p(23)

i2i1 (2)θ
i2

(4)θ
i1 p(24)

i1i2

∣∣∣∣∣∣∣∣ . (52)

In particular, the α-norm of the tensor 12 f is given by

∥12 f ∥2α = 12 f ⊙ 12 f = 12 f (i1i2)
12 f(i1i2), (53)

so it turns out to be

∥12 f ∥2α =
1
2

∣∣∣∣∣∣∣∣(1)θ
i1

(1)θ
i2

(2)θ
i1

(2)θ
i2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣(1)θi1 (1)θi2

(2)θi1 (2)θi2

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣(1)θ

i1
(1)θ

i1 p(11)
i1i1 (1)θ

i2
(2)θ

i1 p(12)
i1i2

(2)θ
i1

(1)θ
i2 p(21)

i2i1 (2)θ
i2

(2)θ
i2 p(22)

i2i2

∣∣∣∣∣∣∣∣ . (54)

Anyway, it is always possible to write

12 f ⊙ 34 f =

∣∣∣∣∣∣∣∣(1)ω ⊙ (3)ω (1)ω ⊙ (4)ω

(2)ω ⊙ (3)ω (2)ω ⊙ (4)ω

∣∣∣∣∣∣∣∣ (55)
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as well as

∥12 f ∥2α =

∣∣∣∣∣∣∣∣ ∥(1)ω∥2α (1)ω ⊙ (2)ω

(2)ω ⊙ (1)ω ∥(2)ω∥2α

∣∣∣∣∣∣∣∣ . (56)

The α-norm of the tensor 12 f is again strictly positive. It is equal to 0 when the components of 12 f are null. Nevertheless,
this does not mean that the components of the two vectors founding the tensor are null. Indeed, it suffices that one writes

(1)ω = b(2)ω, with b ∈ R, in order to obtain

∥12 fb∥2α =
1
2

∣∣∣∣∣∣∣∣b(2)θ
i1 b(2)θ

i2

(2)θ
i1

(2)θ
i2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣b(2)θi1 b(2)θi2

(2)θi1 (2)θi2

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣b

2∥(2)ω∥2α b∥(2)ω∥2α
b∥(2)ω∥2α ∥(2)ω∥2α

∣∣∣∣∣∣∣∣ = 0. (57)

The α-norm of the tensor 12 f evidently implies that Ω12 and Ω12 have all possible values that are the same. One and only
one of these possible values will be the true value to be verified “a posteriori”. We define a tensor f as a linear combination
of 12 f and 34 f such that we can write f = 12 f + b34 f , with b ∈ R. Then, the Schwarz’s α-generalized inequality becomes

|12 f ⊙ 34 f | ≤ ∥12 f ∥α∥34 f ∥α, (58)

the α-triangle inequality becomes
∥12 f + 34 f ∥α ≤ ∥12 f ∥α + ∥34 f ∥α, (59)

while the cosine of the angle γ becomes

cos γ = 12 f ⊙ 34 f
∥12 f ∥α∥34 f ∥α

. (60)

It is possible to consider two univariate transformed random quantities that are respectively
1Ω

t and
2Ω

t. They are repre-
sented by (1)t and (2)t whose contravariant components are given by (1)t

i = (1)θ
i − (1)ω̄

i and (2)t
i = (2)θ

i − (2)ω̄
i. Therefore, it

is possible to introduce an antisymmetric tensor of order 2 denoted by 12t characterizing a bivariate transformed random
quantity denoted by

Ω12
t. Then, the contravariant components of this tensor are given by

12t(i1i2) =

∣∣∣∣∣∣∣∣(1)t
i1

(1)t
i2

(2)t
i1

(2)t
i2

∣∣∣∣∣∣∣∣ . (61)

Its covariant components are given by

12t(i1i2) =

∣∣∣∣∣∣∣∣(1)ti1 (1)ti2

(2)ti1 (2)ti2

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣(1)t

i2 pi2i1 (1)t
i1 pi1i2

(2)t
i2 pi2i1 (2)t

i1 pi1i2

∣∣∣∣∣∣∣∣ . (62)

The α-product of the two tensors 12t and 34t is given by

12t ⊙ 34t =

∣∣∣∣∣∣∣∣(1)t ⊙ (3)t (1)t ⊙ (4)t

(2)t ⊙ (3)t (2)t ⊙ (4)t

∣∣∣∣∣∣∣∣ . (63)

The α-norm of the tensor 12t is given by

∥12t∥2α =

∣∣∣∣∣∣∣∣ ∥(1)t∥2α (1)t ⊙ (2)t

(2)t ⊙ (1)t ∥(2)t∥2α

∣∣∣∣∣∣∣∣ . (64)

The cosine of the angle γ is given by

cos γ = 12t ⊙ 34t
∥12t∥α∥34t∥α

. (65)

All these expressions are useful in order to characterize meaningful quantitative relationships between multiple random
quantities. We always need them when we study a parameter space whose unknown parameter is not a real number but it
is an m-tuple of real numbers, with m ≥ 2.
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8. Metric Properties of the Expected Value Into a Two-Dimensional Parameter Space

The criterion of the expected value considered into decision theory under conditions of uncertainty is connected with a loss
function. It always depends on a parameter belonging to a parameter space denoted by Ω. Such a summarizing criterion
evidently coincides with the notion of prevision of a bivariate random quantity when we deal with a two-dimensional
parameter space. Hence, we study metric properties of the expected value into a two-dimensional parameter space. The
notion of α-product depends on three elements that are two vectors of Em, (1)ω and (2)ω, and one affine tensor p = (pi1i2 )
of order 2 belonging to E(2)

m = Em ⊗ Em. Given any ordered pair of vectors, p is uniquely determined as a geometric
object. This implies that each covariant component of p is always a subjective probability intrinsically coherent (de
Finetti, 1980). It is possible that all reasonable people share each covariant component of p with regard to some problem
of decision theory that may be considered. Nevertheless, an opinion in terms of probability shared by many people always
remains a subjective opinion. It is meaningless to say that it is objectively exact. Indeed, a sum of many subjective
opinions in terms of probability can never lead to an objectively correct conclusion (de Finetti, 1972). Thus, given a
bivariate random quantity Ω12 ≡ {1Ω, 2Ω}, its coherent prevision P(Ω12) is an α-product whose metric properties remain
unchanged by extending them to P. Therefore, P is an α-commutative prevision because it is possible to write

P(1Ω 2Ω) = P(2Ω 1Ω), (66)

P is an α-associative prevision because it is possible to write

P[(b 1Ω)2Ω] = P[1Ω(b 2Ω)] = bP(1Ω 2Ω), ∀b ∈ R, (67)

P is an α-distributive prevision because it is possible to write

P[(1Ω+2Ω)3Ω] = P(1Ω 3Ω) + P(2Ω 3Ω). (68)

Moreover, when one writes
P(1Ω 2Ω) = P(2Ω 1Ω) = 0, (69)

one says that 1Ω and 2Ω are α-orthogonal univariate random quantities. We exclude that all possible values of 1Ω and

2Ω are null. In particular, one observes that the α-distributive property of prevision implies that the covariant components
of the affine tensor p(13) are equal to the ones of the affine tensor p(23). Moreover, the covariant components of the affine
tensor connected with the two univariate random quantities 1Ω+2Ω and 3Ω are the same of the ones of p(13) and p(23).
By considering a bivariate random quantity one finally says that its prevision P is bilinear. If the possible values of the
two univariate random quantities of Ω12 ≡ {1Ω, 2Ω} are correspondingly equal and the covariant components of the tensor
p = (pi1i2 ) having different numerical values as indices are null, then P(Ω12) = P(1Ω 2Ω) = P(2Ω 1Ω) coincides with
the α-norm of (1)ω = (2)ω. When P(Ω12) is a coherent prevision of Ω12 ≡ {1Ω, 2Ω} it follows that its marginal univariate
random quantities, 1Ω and 2Ω, represent two separate and finite partitions of incompatible and exhaustive events whose
non-negative probabilities sum to 1. Thus, conditions of coherence coincide with non-negativity and finite additivity (de
Finetti, 1975), (Coletti, Scozzafava & Vantaggi, 2015), (Coletti, Petturiti & Vantaggi, 2014). We note a very important
point: metric properties of the expected value allow us of rewriting some fundamental metric expressions. Thus, when we
rewrite (55) and (56) it turns out to be

12 f ⊙ 34 f =

∣∣∣∣∣∣∣∣P(1Ω 3Ω) P(1Ω 4Ω)

P(2Ω 3Ω) P(2Ω 4Ω)

∣∣∣∣∣∣∣∣ (70)

and

∥12 f ∥2α =

∣∣∣∣∣∣∣∣P(1Ω 1Ω) P(1Ω 2Ω)

P(2Ω 1Ω) P(2Ω 2Ω)

∣∣∣∣∣∣∣∣ . (71)

Thus, it is evidently possible to realize that fundamental metric expressions involving antisymmetric tensors of order 2
are based on the notion of coherent prevision of a bivariate random quantity. This means that we are able to divide a given
metric element into its basic components. Given a bivariate transformed random quantity

Ω12
t ≡ {

1Ω
t,

2Ω
t}, its coherent

prevision P(
Ω12

t) is again an α-product whose metric properties remain unchanged by extending them to P. In particular,
when it turns out to be pi1i2 = pi1 pi2 , ∀i1, i2 ∈ Im, with Im ≡ {1, 2, . . . ,m}, one observes that a stochastic independence
exists. Hence, one obtains P(

Ω12
t) = 0, that is to say, (1)t and (2)t are α-orthogonal. One equivalently says that the

covariance of 1Ω and 2Ω is equal to 0.
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9. The Bayes’ Theorem Connected With a Two-Dimensional Parameter Space

Given a bivariate random quantity denoted by Ω12 ≡ {1Ω, 2Ω}, its univariate elements are 1Ω and 2Ω. Each covariant
component of p = (pi1i2 ) represents a probability of the joint of two events. This probability includes a conditional
probability of an event given the other. Hence, by denoting by Ei, i = 1, . . . ,m, the possible values of 1Ω and by C j,
j = 1, . . . ,m, the possible values of 2Ω, where the possible values of the two univariate random quantities are expressed
by means of the same scale of measurement, it turns out to be, for instance, P(E1 ∧C1) = P(C1)P(E1|C1), where E1 ∧C1
is a logical product of two events and P(E1∧C1) is a probability of their joint. The same thing evidently goes with respect
to each covariant component of p (Coletti, Petturiti & Vantaggi, 2016a), (Coletti, Petturiti & Vantaggi, 2016b), (Gilio
& Sanfilippo, 2014). We note that (E1|C1) is a tri-event whose values are 1|1 = 1, 0|1 = 0, 0|0 = 1|0 = ∅ according
to the logic of certainty. Any tri-event can always be expressed by means of two events. Thus, any tri-event represents
only a formal variation with respect to the starting delimitation because ∅ = void is added to the two starting values 1 =
true and 0 = false. From the notion of conditional probability it follows that the notion of probability is relative to the
current state of information of a given decision-maker. Thus, by considering P(E1|C1), the current state of information of
a given decision-maker is represented by C1. Any bivariate random quantity representing a two-dimensional parameter
space allows us of partitioning a random element coinciding with one of the two unknown parameters under consideration.
Therefore, we consider the possible values of 1Ω as a partition of this random element. A prior probability law coincides
with vector homographies obtained by means of the covariant components of p that we can consider into a two-way table.
We denote this probability law by P(C j), j = 1, . . . ,m, where P(C1), . . . ,P(Cm) are marginal probabilities connected with
the possible values of 2Ω. We can know P(Ei|C j), i = j = 1, . . . ,m, because we obtain

P(Ei|C j) =
P(Ei ∧C j)

P(C j)
(72)

by using the covariant components of p contained into the two-way table under consideration. Now, we can obtain a
posterior probability law by applying the Bayes’ theorem. Thus, we have

P(C j|Ei) =
P(C j ∧ Ei)

P(E1 ∧C1) + . . . + P(Em ∧Cm)
, (73)

where it turns out to be i = j = 1, . . . ,m. It is essential to note that we can observe a posterior probability law because we
use a geometric approach that allows us of dividing a given random element into its essential and simpler components.
The number of these components is equal to m.

10. Conclusions

We have proposed an original mathematical model according to a Bayesian approach to decision theory explaining uncer-
tainty from a point of view connected with vector spaces. An one-dimensional parameter space has been represented by
means of a univariate random quantity. A two-dimensional parameter space has been represented by means of a bivariate
random quantity. We have supposed that every univariate random quantity is bounded from above and below. This thing is
not a loss of generality. Indeed, a given individual may always establish which is the lowest possible value of a parameter
space as well as the greatest possible value of it at a certain instant with a given set of information. We have accepted the
principles of the theory of concordance into the domain of subjective probability. This thing has never been made before.
We have considered the range of possibility of a given individual at a certain instant with a given set of information. Such
a range is not a σ-algebra. We have consequently distributed probabilities as masses over it. Thus, a parameter space has
been provided with a geometric structure. We have introduced coherent probability laws characterizing random quanti-
ties after considering ranges of possibility. These probability laws can always be summarized by means of the notion of
prevision of a univariate or bivariate random quantity. We have observed that metric properties of the notion of α-product
mathematically fulfill the ones of a coherent prevision of a bivariate random quantity. We have shown fundamental metric
expressions connected with transformed random quantities representing changes of origin. We have obtained a posterior
probability law by applying the Bayes’ theorem into a geometric context connected with a two-dimensional parameter
space.
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