30,232 research outputs found

    Does public transit improvement affect commuting behavior in Beijing, China? : A spatial multilevel approach

    Get PDF
    Developing countries like China have experienced substantial city transformations over the past decade. City transformations are characterized by transportation innovations that allow individuals to access to speedy commuting modes for work activities and offer potential influences on commuting behavior. This paper examines the potential effects of subway system expansion in Beijing on commuting behavior. Our methodological design controls for spatial effects by employing Bayesian multilevel binary logistic models with spatial random effects. Using cross-sectional individual surveys in Beijing, the results suggest that there is a significant rise in subway commuting trips while non-motorized and bus commuting trips are reduced with the new subway expansion. Model comparison results show evidence about the presence of spatial effects in influencing the role of built environment characteristics to play in the commuting behavior analysis

    Perverse incentives and invisible tradeoffs in subway construction in China: a case study of Hangzhou subway collapse

    Get PDF
    Abstract—Hangzhou subway collapse is the most serious subway construction disaster to date in China. In this article, the management and regulatory questions the collapse raised are focused and a case study of Hangzhou subway collapse is given. By regarding the contractual arrangement as an outcome of a power game of principal-agent, the social causes and the perverse incentives to strategic behaviors of the key players are investigated to explain the particular project outcomes. In the end, some policy suggestions are given for improving the safety performance of subway construction

    Assessing Safety Risk Management Performance in Chinese Subway Construction Projects: A Multistakeholder Perspective

    Full text link
    The rapid development of subway projects in China presents significant safety risks to those involved. Building on the previous empirical research that identified and classified the safety risks of these projects, the aim of this paper is to assess the safety risk management performance in Chinese subway construction projects from a multistakeholder perspective. Questionnaire surveys and semistructured interviews were conducted with three hundred and ninety-nine and eight construction professionals, respectively, who worked on subway construction projects in southeast China. The results indicate that the top five areas of safety risk management performance are related to construction plan development, management of high-risk construction works, hazard identification and communication, government-related factors, and client-related factors. In contrast, the bottom five areas of safety risk management performance are related to engineering consultant-related factors, the site's natural environment and weather conditions, regular tests, machine calibration and maintenance, site construction schedule, and construction preparedness. The relationship between this safety risk management performance and the perceived importance of each risk factor is also reported, identifying priority areas for improvements on these projects. These findings contribute new conceptual insights to the paucity of research on the safety risk management performance of Chinese subway construction projects from a multistakeholder perspective. The results also provide new practical insights for policymakers and project managers to help them develop more effective and focused strategies to further improve the safety performance of these major projects

    Spatiotemporal Analysis of Competition Between Subways and Taxis Based on Multi-Source Data

    Get PDF
    Excessive competition between taxis and subways has eroded the advantages of public transit systems such as worsening road traffic congestion and environment. This study aims to improve the appeal of subways by a comprehensive understating of competition between taxis and subways. We investigate competitive relationship between these two transportation modes by using empirical multi-source data. First, non-negative matrix factorization (NMF) algorithm is used to discover the spatiotemporal travel patterns of subway-competing taxi users (SCTUs). Second, we propose a new index to quantify the competitiveness of subways based on the actual mode choices results. Then, we reveal the spatiotemporal heterogeneity of competitiveness from perspective of subway network. Taking Beijing, China, for a case study, we extract a week's worth of GPS records on taxi trajectory and smartcard data of subways. Subway-competing taxi trips (SCTTs) account for the largest proportion of the total taxi trips. As a result, three basic patterns are found in SCTTs. Subway station pairs with high and less competition are divided according to competitiveness index. Among low competition station pairs, three spatial structures are observed, including low-competition collinearity corridors, radial communities, and links between paralleled subway lines. Combining the distribution results of travel pattern and competitiveness degree, short-term and long-term planning suggestions are recommended respectively for station pairs with high demand but low competitiveness and those with low demand and low competitiveness. These findings provide useful insights into promoting more effective and sensitive policies to balance the competition and attract more taxi passengers to the subway system

    Integrated evaluation of air flow and gas dispersion for underground station safety strategies based on subway climatology

    Get PDF
    PhD ThesisRail underground systems are seen as a way to overcome traffic congestion in city environments. Many new subways are being built in China and developing countries. Recent studies have however shown that the ventilation of subway systems is poorly understood. There is significant danger to life if a fire occurs or toxins such as chemical or biological agents are released in a subway. Understanding the air flow inside a subway and how this is affected by the local environment is key in establishing effective evacuation strategies. A series of tracer gas experiments conducted as part of this research have been carried out. To expand the subway climatology from an experimental framework into a virtual and simulation environment, 3D Computational Fluid Dynamic models have been developed, which include the simulation of local microclimate and air movement inside the station respectively. The station CFD model has allowed the analysis of the air flow inside the station under the prevailing external weather condition. Results show promising links between external climatic factors, the subway climatology and the ability to predict the dispersal of smoke/toxins. The local weather pattern has a large influence on the background airflow inside a station and dominated the flow direction at station exits which is been used to evaluate the efficiency of pedestrian evacuation and also determine the safer evacuation route and exit. The possibilities of integrating these findings will allow for a more holistic safety assessment to be carried out that could reduce the loss of life or mitigate harmful effects on public health. It also fills a knowledge gap in design guidelines from a safety perspective underground station construction and ventilation

    Avoiding Pandemic Fears in the Subway and Conquering the Platypus.

    Get PDF
    Metagenomics is increasingly used not just to show patterns of microbial diversity but also as a culture-independent method to detect individual organisms of intense clinical, epidemiological, conservation, forensic, or regulatory interest. A widely reported metagenomic study of the New York subway suggested that the pathogens Yersinia pestis and Bacillus anthracis were part of the "normal subway microbiome." In their article in mSystems, Hsu and collaborators (mSystems 1(3):e00018-16, 2016, http://dx.doi.org/10.1128/mSystems.00018-16) showed that microbial communities on transit surfaces in the Boston subway system are maintained from a metapopulation of human skin commensals and environmental generalists and that reanalysis of the New York subway data with appropriate methods did not detect the pathogens. We note that commonly used software pipelines can produce results that lack prima facie validity (e.g., reporting widespread distribution of notorious endemic species such as the platypus or the presence of pathogens) but that appropriate use of inclusion and exclusion sets can avoid this issue
    • …
    corecore