4 research outputs found

    Model checking polygonal differential inclusions using invariance kernels

    Get PDF
    Polygonal hybrid systems are a subclass of planar hybrid automata which can be represented by piecewise constant differential inclusions. Here, we identify and compute an important object of such systems’ phase portrait, namely invariance kernels. An invariant set is a set of initial points of trajectories which keep rotating in a cycle forever and the invariance kernel is the largest of such sets. We show that this kernel is a non-convex polygon and we give a non-iterative algorithm for computing the coordinates of its vertices and edges. Moreover, we present a breadth-first search algorithm for solving the reachability problem for such systems. Invariance kernels play an important role in the algorithm.peer-reviewe

    Improving polygonal hybrid systems reachability analysis through the use of the phase portrait

    Get PDF
    Polygonal hybrid systems (SPDI) are a subclass of planar hybrid automata which can be represented by piecewise constant dierential inclusions. The computation of certain objects of the phase portrait of an SPDI, namely the viability, controllability, invariance kernels and semi-separatrix curves have been shown to be eciently decidable. On the other hand, although the reachability problem for SPDIs is known to be decidable, its complexity makes it unfeasible on large systems. We summarise our recent results on the use of the SPDI phase portraits for improving reachability analysis by (i) state-space reduction and (ii) decomposition techniques of the state space, enabling compositional parallelisation of the analysis. Both techniques contribute to increasing the feasability of reachability analysis on large SPDI systems.peer-reviewe

    Static analysis of SPDIs for state-space reduction

    Get PDF
    Polygonal hybrid systems (SPDI) are a subclass of planar hybrid automata which can be represented by piecewise constant differential inclusions. The reachability problem as well as the computation of certain objects of the phase portrait, namely the viability, controllability and invariance kernels, for such systems is decidable. In this paper we show how to compute another object of an SPDI phase portrait, namely semi-separatrix curves and show how the phase portrait can be used for reducing the state-space for optimizing the reachability analysis.peer-reviewe

    The substratum of impulse and hybrid control systems

    No full text
    The behavior of the run of an impulse differential inclusion, and, in particular, of a hybrid control system, is “summarized ” by the “ initialization map ” associating with each initial condition the set of new initialized conditions and more generally, by its “substratum”, that is a set-valued map associating with a cadence and a state the next reinitialized state. These maps are characterized in several ways, and in particular, as “set-valued” solutions of a system of Hamilton-Jacobi partial differential inclusions, that play the same role than usual Hamilton-Jacobi-Bellman equations in optimal control
    corecore