
UNIVERSITY OF OSLO

Department of Informatics

Static Analysis of

SPDIs for State-Space

Reduction

Research Report No.

336

Gordon Pace

Gerardo Schneider

Isbn 82-7368-291-9

Issn 0806-3036

April 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/141678114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Static Analysis of SPDIs for State-Space

Reduction

Gordon Pace∗ Gerardo Schneider†

April 2006

Abstract

Polygonal hybrid systems (SPDI) are a subclass of planar hybrid
automata which can be represented by piecewise constant differential
inclusions. The reachability problem as well as the computation of cer-
tain objects of the phase portrait, namely the viability, controllability
and invariance kernels, for such systems is decidable. In this paper
we show how to compute another object of an SPDI phase portrait,
namely semi-separatrix curves and show how the phase portrait can
be used for reducing the state-space for optimizing the reachability
analysis.

1 Introduction

Hybrid systems combining discrete and continuous dynamics arise as math-
ematical models of various artificial and natural systems, and as approxima-
tions to complex continuous systems. They have been used in various do-
mains, including avionics, robotics and bioinformatics. Reachability analysis
has been the principal research question in the verification of hybrid systems,
even if it is a well-known result that for most non-trivial subclasses of hybrid
systems reachability and most verification questions are undecidable. Vari-
ous decidable subclasses have, subsequently, been identified, including timed
[AD94] and rectangular automata [HKPV95], hybrid automata with linear

∗Dept. of Computer Science and AI, University of Malta, Msida, Malta. E-mail:

gordon.pace@um.edu.mt
†Dept. of Informatics – Univ. of Oslo, P.O. Box 1080 Blindern, N-0316 Oslo, Norway.

E-mail: gerardo@ifi.uio.no

1

vector fields [LPY01], piecewise constant derivative systems (PCDs) [MP93]
and polygonal differential inclusion systems (SPDIs) [ASY01].
Compared to reachability verification, qualitative analysis of hybrid sys-
tems is a relatively neglected area [ALQ+01b, DV95, KdB01, MS00, SP02,
SJSL00]. Typical qualitative questions include: “Are there ‘sink’ regions
where a trajectory can never leave once it enters the region?”; “Which are
the basins of attraction of such regions?”; “Are there regions in which every
point in the region is reachable from every other point in the region without
leaving it?”. To answer such questions one usually gives a collection of ob-
jects characterizing these sets, hence providing useful information about the
qualitative behavior of the hybrid system. The set of all such objects for a
given system is called the phase portrait of the system.
Defining and constructing phase portraits of hybrid systems has been directly
addressed for PCDs in [MS00], and for SPDIs in [ASY02]. In this paper we
present a a new element of the phase portrait for SPDIs, and discuss how
the phase portrait can be used to reduce the size of an SPDI, as an aid to
verification.
Roughly speaking, an SPDI (Fig. 1) is a finite partition P of the plane (into
convex polygonal areas), and, for each P ∈ P an associated pair of vectors aP

and bP . The SPDI behaviour is defined by the differential inclusion ẋ ∈ ∠
bP

aP

for x ∈ P , where ∠
b

a
denotes the angle on the plane between the vectors a

and b.
In [ASY01] it has been proved that edge-to-edge and polygon-to-polygon
reachability in SPDIs is decidable by exploiting the topological properties of
the plane. The procedure is not based on the computation of the reach-set
but rather on the exploration of a finite number of types of qualitative be-
haviors obtained from the edge-signatures of trajectories (the sequences of
their intersections with the edges of the polygons). Such types of signatures
may contain loops which can be very expensive (or impossible) to explore
naively. However, it has been shown that loops have structural properties
that are exploited by the algorithm to efficiently compute the effect of such
loops. In summary, the novelty of the approach is the combination of several
techniques, namely, (i) the representation of the two-dimensional continuous
dynamics as a one-dimensional discrete dynamical system, (ii) the character-
ization of the set of qualitative behaviors of the latter as a finite set of types
of signatures, and (iii) the “acceleration” of the iterations in the case of cyclic
signatures.
Given a cycle on a SPDI, we can speak about a number of kernels pertaining
to that cycle. The viability kernel is the largest set of points in the cycle which
may loop forever within the cycle. The controllability kernel is the largest set
of strongly connected points in the cycle (such that any point in the set may

2

R1

R2

R3

R6

R5

R4

e1

e4

e0
I

e2e6

I’
e5 e3

Figure 1: An SPDI and its trajectory segment.

be reached from any other). An invariant set is a set of points such that each
point must keep rotating within the set forever. The invariance kernel is the
largest of such sets. The information gathered for computing reachability
turns out to be useful for computing viability, controllability and invariance
kernels of such systems. Algorithms for computing these kernels have been
presented in [ASY02, Sch04] and implemented in the tool set SPeeDI+[PS06].
The contribution of this paper is threefold. We start by giving an algorithm
to compute semi-separatrix curves (or simply, semi-separatrices) of SPDIs.
Separatrices are convex polygons dissecting the plane into two mutually non-
reachable subsets. The notion of separatrix can be relaxed, obtaining semi-
separatrix curves, such that some points in one set may be reachable from the
other set, but not vice-versa. We then show how the kernels can be used to
answer reachability questions directly. We also show how semi-separatrices
can be used to optimize the reachability algorithm for SPDIs by reducing the
number of states of the SPDI graph. The optimization is based on topological
properties of the plane (and in particular, that of SPDIs).
The paper is structured as follows. In the next section we introduce the
necessary theoretical background, including the definition of SPDI, kernels
and semi-separatrices as well as how to compute such phase portrait objects.
In Section 3 we show how the semi-separatrices can be used for reducing
the state-space of the reachability graph whereas in Section 4 we present the
optimization done by using the kernels.

3

2 Theoretical Background

A (positive) affine function f : R → R is such that f(x) = ax+ b with a > 0.
An affine multivalued function F : R → 2R, denoted F = 〈fl, fu〉, is defined
by F (x) = 〈fl(x), fu(x)〉 where fl and fu are affine and 〈·, ·〉 denotes an inter-
val. For notational convenience, we do not make explicit whether intervals
are open, closed, left-open or right-open, unless required for comprehension.
For an interval I = 〈l, u〉 we have that F (〈l, u〉) = 〈fl(l), fu(u)〉. The inverse
of F is defined by F−1(x) = {y | x ∈ F (y)}. The universal inverse of F is
defined by F̃−1(I) = I ′ if and only if I ′ is the greatest non-empty interval
such that for all x ∈ I ′, F (x) ⊆ I.
It is not difficult to show that F−1 = 〈f−1

u , f−1

l 〉 and similarly that F̃−1 =
〈f−1

l , f−1
u 〉, provided that 〈f−1

l , f−1
u 〉 6= ∅. Notice that if I is a singleton then

F̃−1 is defined only if fl = fu. These classes of functions are closed under
composition.
A truncated affine multivalued function (TAMF) F : R → 2R is defined
by an affine multivalued function F and intervals S ⊆ R

+ and J ⊆ R
+ as

follows: F(x) = F (x) ∩ J if x ∈ S, otherwise F(x) = ∅. For convenience
we write F(x) = F ({x} ∩ S) ∩ J . For an interval I, F(I) = F (I ∩ S) ∩ J

and F−1(I) = F−1(I ∩ J) ∩ S. The universal inverse of F is defined by
F̃−1(I) = I ′ if and only if I ′ is the greatest non-empty interval such that for
all x ∈ I ′, F (x) ⊆ I and F (x) = F(x).
We say that F is normalized if S = DomF = {x | F (x) ∩ J 6= ∅} (thus,
S ⊆ F−1(J)) and J = ImF = F(S).
The following theorem states that TAMFs are closed under composition
[ASY01].

Theorem 1. The composition of two TAMFs F1(I) = F1(I ∩ S1) ∩ J1 and
F2(I) = F2(I ∩ S2) ∩ J2, is the TAMF (F2 ◦ F1)(I) = F(I) = F (I ∩ S) ∩ J ,
where F = F2 ◦ F1, S = S1 ∩ F−1

1 (J1 ∩ S2) and J = J2 ∩ F2(J1 ∩ S2).

2.1 SPDI

An angle ∠
b

a
on the plane, defined by two non-zero vectors a,b is the set of

all positive linear combinations x = α a+β b, with α, β ≥ 0, and α+β > 0.
We can always assume that b is situated in the counter-clockwise direction
from a.
A polygonal hybrid system1 (SPDI) is defined by giving a finite partition P

of the plane into convex polygonal sets, and associating with each P ∈ P a

1In the literature the names polygonal differential inclusion and simple planar differ-

ential inclusion have been used to describe the same systems.

4

couple of vectors aP and bP . Let φ(P) = ∠
bP

aP
. The SPDI is determined by

ẋ ∈ φ(P) for x ∈ P .
Let E(P) be the set of edges of P . We say that e is an entry of P if for
all x ∈ e and for all c ∈ φ(P), x + cε ∈ P for some ε > 0. We say that e

is an exit of P if the same condition holds for some ε < 0. We denote by
in(P) ⊆ E(P) the set of all entries of P and by out(P) ⊆ E(P) the set of all
exits of P .

Assumption 1. All the edges in E(P) are either entries or exits, that is,
E(P) = in(P) ∪ out(P).

A trajectory segment of an SPDI is a continuous function ξ : [0, T] → R
2

which is smooth everywhere except in a discrete set of points, and such that
for all t ∈ [0, T], if ξ(t) ∈ P and ξ̇(t) is defined then ξ̇(t) ∈ φ(P). The
signature, denoted Sig(ξ), is the ordered sequence of edges traversed by the
trajectory segment, that is, e1, e2, . . ., where ξ(ti) ∈ ei and ti < ti+1. If
T = ∞, a trajectory segment is called a trajectory.

Example 1. Consider the SPDI illustrated in Fig. 1. For sake of simplicity
we will only show the dynamics associated to regions R1 to R6 in the picture.
For each region Ri, 1 ≤ i ≤ 6, there is a pair of vectors (ai,bi), where:
a1 = (45, 100),b1 = (1, 4), a2 = b2 = (1, 10), a3 = b3 = (−2, 3), a4 = b4 =
(−2,−3), a5 = b5 = (1,−15), a6 = (1,−2),b6 = (1,−1).
A trajectory segment starting on interval I ⊂ e0 and finishing in interval
I ′ ⊆ e4 is depicted.

Definition 1. We say that a signature σ is feasible if and only if there exists
a trajectory segment ξ with signature σ, i.e., Sig(ξ) = σ.

From this definition, it immediately follows that extending an unfeasible
signature, can never make it feasible:

Proposition 1. If a signature σ is not feasible, then neither is any extension
of the signature — for any signatures σ′ and σ′′, the signature σ′σσ′′ is not
feasible.

Given an SPDI S, let E be the set of edges of S, then we can define a graph
GS where nodes correspond to edges of S and such that there exists an arc
from one node to another if there exists a trajectory segment from the first
edge to the second one without traversing any other edge. More formally:

Definition 2. Given an SPDI S, the underlying graph of S (or simply the
graph of S), is a graph GS = (NG, AG), with NG = E and AG = {(e, e′) |
∃ξ, t . ξ(0) ∈ e ∧ ξ(t) ∈ e′ ∧ Sig(ξ) = ee′}. We say that a sequence e0e1 . . . ek

of nodes in GS is a path whenever (ei, ei+1) ∈ AG for 0 ≤ i ≤ k − 1.

5

The following lemma shows the relation between edge signatures in an SPDI
and paths in its corresponding graph.

Lemma 2. If ξ is a trajectory segment of S with edge signature Sig(ξ) =
σ = e0 . . . ep, it follows that σ is a path in GS .

Remark. Notice that the converse of the above lemma is not true in general.
It is possible to find a counter-example where there exists a path from node
e to e′, but it does not exist a trajectory segment form edge e to edge e′ on
the SPDI.

Lemma 3. If σ = e0 . . . ep is a feasible signature, then σ is a path in GS .

2.2 Successors and predecessors

Given an SPDI, we fix a one-dimensional coordinate system on each edge
to represent points laying on edges [ASY01]. For notational convenience, we
indistinctly use letter e to denote the edge or its one-dimensional representa-
tion. Accordingly, we write x ∈ e or x ∈ e, to mean “point x in edge e with
coordinate x in the one-dimensional coordinate system of e”. The same con-
vention is applied to sets of points of e represented as intervals (e.g., x ∈ I or
x ∈ I, where I ⊆ e) and to trajectories (e.g., “ξ starting in x” or “ξ starting
in x”).
Now, let P ∈ P, e ∈ in(P) and e′ ∈ out(P). For I ⊆ e, Succe,e′(I) is the
set of all points in e′ reachable from some point in I by a trajectory segment
ξ : [0, t] → R

2 in P (i.e., ξ(0) ∈ I ∧ ξ(t) ∈ e′ ∧ Sig(ξ) = ee′). It has been
shown [ASY01] that Succe,e′ is a TAMF.

Example 2. Let e1, . . . , e6 be as in Fig. 1 and I = [l, u]. We assume a
one-dimensional coordinate system. We have:

Fe1e2
(I) =

[
l

4
,

9

20
u

]
, S = [0, 10] , J =

[
0,

9

2

]

Fe2e3
(I) = [l + 1, u + 1] , S = [0, 9] , J = [1, 10]

Fe3e4
(I) =

[
3

2
l,

3

2
u

]
, S =

[
0,

20

3

]
, J = [0, 10]

Fe4e5
(I) =

[
2

3
l,

2

3
u

]
, S = [0, 10] , J =

[
0,

20

3

]

Fe5e6
(I) =

[
l −

2

3
, u −

2

3

]
, S =

[
2

3
, 10

]
, J =

[
0,

28

3

]

Fe6e1
(I) = [l, 2u] , S = [0, 10] , J = [0, 10]

6

with Succeiei+1
(I) = Feiei+1

(I ∩ Si) ∩ Ji+1, for 1 ≤ i ≤ 5, and Succe6e1
(I) =

Fe6e1
(I ∩ S6) ∩ J1.

Given a sequence w = e1, e2, . . . , en, Theorem 1 implies that the successor of
I along w defined as Succw(I) = Succen−1,en

◦ . . . ◦ Succe1,e2
(I) is a TAMF.

Example 3. Let σ = e1 · · · e6e1. It results that Succσ(I) = F (I ∩ S) ∩ J ,
where:

F (I) =

[
l

4
+

1

3
,

9

10
u +

2

3

]
(1)

S = [37
25

e−16, 10] and J = [1
3
, 29

3
] are computed using Theorem 1.

For I ⊆ e′, Pree,e′(I) is the set of points in e that can reach a point in

I by a trajectory segment in P . The ∀-predecessor P̃re(I) is defined in a
similar way to Pre(I) using the universal inverse instead of just the inverse:

For I ⊆ e′, P̃reee′(I) is the set of points in e such that any successor of
such points are in I by a trajectory segment in P . Both definitions can be
extended straightforwardly to signatures σ = e1 · · · en: Preσ(I) and P̃reσ(I).
Therefore, the successor operator has two inverse operators.

Example 4. Let σ = e1 . . . e6e1 be as in Fig. 1 and I = [l, u]. Now,
Preeiei+1

(I) = F−1
eiei+1

(I ∩ Ji+1) ∩ Si, for 1 ≤ i ≤ 5, and Pree6e1
(I) = F−1

e6e1
(I ∩

J1) ∩ S6, where:

F−1

e1e2
(I) =

[
20

9
l, 4u

]
F−1

e2e3
(I) = [l − 1, u − 1]

F−1

e3e4
(I) =

[
2

3
l,

2

3
u

]
F−1

e4e5
(I) =

[
3

2
l,

3

2
u

]

F−1

e5e6
(I) =

[
l +

2

3
, u +

2

3

]
F−1

e6e1
(I) =

[
l

2
, u

]

Besides, Preσ(I) = F−1(I ∩ J) ∩ S, where F−1(I) = [10
9
l − 20

27
, 4u − 4

3
].

Similarly, we compute P̃reσ(I) = F̃−1(I∩J)∩S, where F̃−1(I) =
[
4l − 4

3
, 10

9
u − 20

27

]
.

2.3 Qualitative analysis of simple edge-cycles

Let σ = e1 · · · eke1 be a simple edge-cycle, i.e., ei 6= ej for all 1 ≤ i 6=
j ≤ k. Let Succσ(I) = F (I ∩ S) ∩ J with F = 〈fl, fu〉 (we suppose that
this representation is normalized). We denote by Dσ the one-dimensional
discrete-time dynamical system defined by Succσ, that is xn+1 ∈ Succσ(xn).

7

Assumption 2. None of the two functions fl, fu is the identity.

Let l∗ and u∗ be the fixpoints2 of fl and fu, respectively, and S ∩J = 〈L,U〉.
A simple cycle is of one of the following types [ASY01]:

STAY. The cycle is not abandoned neither by the leftmost nor the rightmost
trajectory, that is, L ≤ l∗ ≤ u∗ ≤ U .

DIE. The rightmost trajectory exits the cycle through the left (consequently
the leftmost one also exits) or the leftmost trajectory exits the cycle
through the right (consequently the rightmost one also exits), that is,
u∗ < L ∨ l∗ > U .

EXIT-BOTH. The leftmost trajectory exits the cycle through the left and
the rightmost one through the right, that is, l∗ < L ∧ u∗ > U .

EXIT-LEFT. The leftmost trajectory exits the cycle (through the left) but
the rightmost one stays inside, that is, l∗ < L ≤ u∗ ≤ U .

EXIT-RIGHT. The rightmost trajectory exits the cycle (through the right)
but the leftmost one stays inside, that is, L ≤ l∗ ≤ U < u∗.

Example 5. Let σ = e1 · · · e6e1. We have S ∩ J = 〈L,U〉 = [1
3
, 29

3
]. The

fixpoints of Eq. (1) are such that 1

3
< l∗ = 11

25
< u∗ = 20

3
< 29

3
. Thus, σ is a

STAY.

The classification above gives us some useful information about the quali-
tative behavior of trajectories. Any trajectory that enters a cycle of type
DIE will eventually quit it after a finite number of turns. If the cycle is of
type STAY, all trajectories that happen to enter it will keep turning inside
it forever. In all other cases, some trajectories will turn for a while and then
exit, and others will continue turning forever. This information is crucial for
proving decidability of the reachability problem.

Example 6. Consider the SPDI of Fig. 1. Fig. 2 shows part of the reach set
of the interval [8, 10] ⊂ e0, answering positively to the reachability question:
Is [1, 2] ⊂ e4 reachable from [8, 10] ⊂ e0? Fig. 2 has been automatically
generated by the SPeeDi toolbox we have developed for reachability analysis
of SPDIs based on the results of [ASY01].

2The fixpoint x∗ is computed by solving the equation f(x∗) = x∗, where f(·) is positive

affine.

8

I’

I

Figure 2: Reachability analysis.

The above result does not allow us to directly answer other questions about
the behavior of the SPDI such as determine for a given point (or set of points)
whether: (a) there exists (at least) one trajectory that remains in the cycle,
and (b) it is possible to control the system to reach any other point. In order
to do this, we need to further study the properties of the system around
simple edge-cycles.

2.4 Kernels

We can now present how to compute the invariance, controllability and via-
bility kernels of an SPDI. Proofs are omitted but for further details, refer to
[ASY02] and [Sch04]. In the following, for K a subset of R

2 and σ a cyclic
signature, we define Kσ as follows:

Kσ =
k⋃

i=1

(int(Pi) ∪ ei) (2)

where Pi is such that ei−1 ∈ in(Pi), ei ∈ out(Pi) and int(Pi) is Pi’s interior.

2.4.1 Viability Kernel

We now recall the definition of viability kernel [Aub01].

Definition 3. A trajectory ξ is viable in K if ξ(t) ∈ K for all t ≥ 0. K

is a viability domain if for every x ∈ K, there exists at least one trajectory

9

(a) (b)

Figure 3: (a) Viability Kernels; (b) Controllability Kernels

ξ, with ξ(0) = x, which is viable in K. The viability kernel of K, denoted
Viab(K), is the largest viability domain contained in K.

For I ⊆ e1 we define Preσ(I) to be the set of all x ∈ R
2 for which there exists

a trajectory segment ξ starting in x, that reaches some point in I, such that
Sig(ξ) is a suffix of e2 . . . eke1. It is easy to see that Preσ(I) is a polygonal
subset of the plane which can be calculated using the following procedure.
We start by defining:

Pree(I) = {x | ∃ξ : [0, t] → R
2, t > 0 . ξ(0) = x ∧ ξ(t) ∈ I ∧ Sig(ξ) = e}

and apply this operation k times: Preσ(I) =
⋃k

i=1
Preei

(Ii) with I1 = I,
Ik = Preek,e1

(I1) and Ii = Preei,ei+1
(Ii+1), for 2 ≤ i ≤ k − 1.

The following result provides a non-iterative algorithmic procedure for com-
puting the viability kernel of Kσ on an SPDI:

Theorem 4. If σ is not DIE, Viab(Kσ) = Preσ(S), otherwise Viab(Kσ) =
∅.

Example 7. Fig. 3-(a) shows all the viability kernels of the SPDI given in
Example 1. There are 4 cycles with viability kernels — in the picture two of
the kernels are overlapping.

10

2.4.2 Controllability Kernel

We say K is controllable if for any two points x and y in K there exists a
trajectory segment ξ starting in x that reaches an arbitrarily small neighbor-
hood of y without leaving K. More formally:

Definition 4. A set K is controllable if ∀x,y ∈ K,∀δ > 0,∃ξ : [0, t] →
R

2, t > 0 . (ξ(0) = x ∧ |ξ(t) − y| < δ ∧ ∀t′ ∈ [0, t] . ξ(t′) ∈ K). The
controllability kernel of K, denoted Cntr(K), is the largest controllable subset
of K.

For a given cyclic signature σ, we define CD(σ) as follows:

CD(σ) =

〈L,U〉 if σ is EXIT-BOTH
〈L, u∗〉 if σ is EXIT-LEFT
〈l∗, U〉 if σ is EXIT-RIGHT
〈l∗, u∗〉 if σ is STAY
∅ if σ is DIE

(3)

For I ⊆ e1 let us define Succσ(I) as the set of all points y ∈ R
2 for which there

exists a trajectory segment ξ starting in some point x ∈ I, that reaches y,
such that Sig(ξ) is a prefix of e1 . . . ek. The successor Succσ(I) is a polygonal
subset of the plane which can be computed similarly to Preσ(I). Define

C(σ) = (Succσ ∩ Preσ)(CD(σ))

We compute the controllability kernel of Kσ as follows:

Theorem 5. Cntr(Kσ) = C(σ).

Example 8. Fig. 3-(b) shows all the controllability kernels of the SPDI
given in Example 1. There are 4 cycles with controllability kernels — in the
picture two of the kernels are overlapping.

The following result which relates controllability and viability kernels, states
that the viability kernel of a given cycle is the local basin of attraction of the
corresponding controllability kernel.

Proposition 2. Any viable trajectory in Kσ converges to Cntr(Kσ).

Let Cntrl(Kσ) be the closed curve obtained by taking the leftmost trajec-
tory and Cntru(Kσ) be the closed curve obtained by taking the rightmost
trajectory which can remain inside the controllability kernel. In other words,
Cntrl(Kσ) and Cntru(Kσ) are the two polygons defining the controllability
kernel.

11

A non-empty controllability kernel Cntr(Kσ) of a given cyclic signature σ

partitions the plane into three disjoint subsets: (1) the controllability kernel
itself, (2) the set of points limited by Cntrl(Kσ) (and not including Cntrl(Kσ))
and (3) the set of points limited by Cntru(Kσ) (and not including Cntru(Kσ)).

Definition 5. We define the inner of Cntr(Kσ) (denoted by Cntrin(Kσ)) to
be the subset defined by (2) above if the cycle is counter-clockwise or to be
the subset defined by (3) if it is clockwise. The outer of Cntr(Kσ) (denoted
by Cntrout(Kσ)) is defined to be the subset which is not the inner nor the
controllability itself.

Remark: Notice that an edge in the SPDI may be split into parts by the
controllability kernel — part inside, part on the kernel and part outside. In
such cases, we can generate a different SPDI, with the same dynamics but
with the edge split into parts, such that each part is completely inside, on or
outside the kernel. Although the signatures will obviously change, it is trivial
to prove that the behaviour of the SPDI remains identical to the original. To
simplify presentation, in the rest of the paper, we will assume that all edges
are either completely inside, on or completely outside the kernels. We note
that in practice splitting is not necessary since we can just consider parts of
edges.

Proposition 3. Given two edges e and e′, one lying completely inside a
controllability kernel, and the other outside or on the same controllability
kernel, such that ee′ is feasible, then there exists a point on the controllability
kernel, which is reachable from e and from which e′ is reachable.

Proof. Let e ⊆ Cntrin(Kσ). Let us assume that e′ ⊆ Cntr(Kσ); since ee′

is feasible, by the Jordan curve theorem [Hen79], the trajectory must cross
Cntrl(Kσ) or Cntru(Kσ) at least once. Assume the first holds, then there
exists x ∈ Cntrl(Kσ) such that exe′ is feasible. If e′ ⊆ Cntrout(Kσ) the proof
is conducted in a similar way as the previous case by using the definition
of controllability kernel: every point inside the kernel is reachable from any
other point in the kernel.

2.4.3 Invariance Kernel

In general, an invariant set is a set of points such that for any point in the
set, every trajectory starting in such point remains in the set forever and the
invariance kernel is the largest of such sets. In particular, for SPDI, given
a cyclic signature, an invariant set is a set of points which keep rotating in
the cycle forever and the invariance kernel is the largest of such sets. More
formally:

12

Definition 6. A set K is said to be invariant if for any x ∈ K there exists at
least one trajectory starting in it and every trajectory starting in x is viable
in K. Given a set K, its largest invariant subset is called the invariance
kernel of K and is denoted by Inv(Kσ).

We need some preliminary definitions before showing how to compute the
kernel. The extended ∀-predecessor of an output edge e of a region R is the
set of points in R such that every trajectory segment starting in such point
reaches e without traversing any other edge. More formally, let R be a region

and e be an edge in out(R), then the e-extended ∀-predecessor of I, P̃ree(I)
is defined as:

P̃ree(I) = {x | ∀ξ . (ξ(0) = x ⇒ ∃t ≥ 0 . (ξ(t) ∈ I ∧ Sig(ξ[0, t]) = e))}.

It is easy to see that P̃reσ(I) is a polygonal subset of the plane which can

be calculated using the following procedure. First compute P̃reei
(I) for all

1 ≤ i ≤ k and then apply this operation k times: P̃reσ(I) =
⋃k

i=1
P̃reei

(Ii)

with I1 = I, Ik = P̃reeke1
(I1) and Ii = P̃reeiei+1

(Ii+1), for 2 ≤ i ≤ k − 1. We
compute the invariance kernel of Kσ as follows:

Theorem 6. If σ is STAY then Inv(Kσ) = P̃reσ(P̃reσ(J)), otherwise Inv(Kσ) =
∅.

Example 9. Fig. 4-(a) shows the unique invariance kernels of the SPDI
given in Example 1.

An interesting property of invariance kernels is that the limits are included
in the invariance kernel, i.e. [l∗, u∗] ⊆ Inv(Kσ). In other words:

Proposition 4. The set delimited by the polygons defined by the interval
[l∗, u∗] is an invariance set of STAY cycles.

In [ASY02] it has been proved that for σ a STAY cycle, then (1) C(σ) is
invariant and (2) there exists a neighborhood K of C(σ) such that any vi-
able trajectory starting in K converges to C(σ). From this, the definition
of invariance kernel and theorem 6 it follows the following result relating
controllability and invariance kernels.

Proposition 5. If σ = e1 . . . ene1 is STAY then Cntr(Kσ) ⊆ Inv(Kσ).

13

(a) (b)

Figure 4: (a) Invariance Kernel; (b) All the Kernels

Example 10. Fig. 4-(b) shows the viability, controllability and invariance
kernels of the SPDI given in Example 1. For any point in the viability kernel
of a cycle there exists a trajectory which will converge to its controllability
kernel (proposition 2). It is possible to see in the picture that Cntr(·) ⊂ Inv(.)
(proposition 5). All the above pictures has been obtained with the toolbox
SPeeDI+ [PS06].

In a similar way as for the controllability kernel, we define Invl(Kσ), Invu(Kσ),
the inner Invin(Kσ) and outer Invout(Kσ) of an invariance kernel.

2.5 Semi-Separatrix Curves

In this section we define the notion of separatrix curves, which are curves on
R

2 dissecting the plane into two mutually non-reachable subsets. We relax
the notion of separatrix obtaining semi-separatrix curves such that some
points in one set may be reachable from the other set, but not vice-versa.
We define first the above notions for the plane independently of SPDIs.

Definition 7. Let K ⊆ R
2. A separatrix in K is a closed curve γ parti-

tioning K into three sets KA, KB and γ itself, such that KA ∩ KB ∩ γ = ∅,
K = KA ∪ KB ∪ γ and the following conditions hold:

1. For any point x0 ∈ KA and trajectory ξ, with ξ(0) = x0, there is no t

such that ξ(t) ∈ KB; and

14

2. For any point x0 ∈ KB and trajectory ξ, with ξ(0) = x0, there is no t

such that ξ(t) ∈ KA.

If only one of the above conditions holds then we say that the curve is a
semi-separatrix. If only condition 1 holds, then we say that KA is the inner
of γ (written γin) and KB is the outer of γ (written γout). If only condition
2 holds, KB is the inner and KB is the outer of γ.

Remark: Notice that, as in the case of the controllability kernel, an edge of
the SPDI may be split into two by a semi-separatrix — part inside, and part
outside. As before, we can split the edge into parts, such that each part is
completely inside, or completely outside the semi-separatrix.

The set of all the separatrices of R
2 is denoted by Sep(R2), or simply Sep.

The above notions are extended to SPDIs straightforwardly.
Now, let σ = e1 . . . ene1 be a simple cycle, ∠

bi

ai
(1 ≤ i ≤ n) be the dynamics of

the regions for which ei is an entry edge and I = [l, u] and interval on edge e1.
Remember that Succe1e2

(I) = F (I∩S)∩J , where F = [a1l+b1, a2u+b2]. Let
l be the vector corresponding to the point on e1 with local coordinates l and
l′ be the vector corresponding to the point on e2 with local coordinates F (l)

(similarly, we define u and u′ for F (u)). We define first Succ
b1

e1
(I) = {x | l′ =

αx+ l, 0 < α < 1} and Succ
a1

e1
(I) = {x | u′ = αx+u, 0 < α < 1}. We extend

these definitions in a straight way to any (cyclic) signature σ = e1 . . . ene1,

denoting them by Succ
b

σ(I) and Succ
a

σ(I), respectively; we can compute them
similarly as for Pre. Whenever applied to the fix-point I∗ = [l∗, u∗], we denote

Succ
b

σ(I∗) and Succ
a

σ(I∗) by ξl
σ and ξu

σ respectively. Intuitively, ξl
σ (ξu

σ) denotes
the piece-wise affine closed curve defined by the leftmost (rightmost) fix-point
l∗ (u∗).
We show now how to identify semi-separatrices for simple cycles.

Theorem 7. Given an SPDI, let σ be a simple cycle, then the following hold:

1. If σ is EXIT-RIGHT then ξl
σ is a semi-separatrix curve (filtering tra-

jectories from “left” to “right”);

2. If σ is EXIT-LEFT then ξu
σ is a semi-separatrix curve (filtering trajec-

tories from “right” to “left”);

3. If σ is STAY, then the two polygons defining the invariance kernel
(Invl(Kσ) and Invu(Kσ)), are semi-separatrices.

15

Proof. 1. By definition of EXIT-RIGHT, any trajectory is bounded to the
left by ξl

σ, which is a piece-wise affine closed curve, partitioning R
2 into

three disjoint sets: KB, the “right” part of ξl
σ; KA, the “left” part of

ξl
σ; and ξl

σ itself. By Jordan’s theorem, any trajectory may pass from
KB to KA if and only if it cross ξl

σ. However, by definition of EXIT-
RIGHT, this is only possible from KA to KB but not vice-versa. Hence
ξl
σ is a semi-separatrix curve.

2. Symmetric to the previous case.

3. Follows directly from the definition of invariance kernel, since any tra-
jectory with initial point in Inv(Kσ) ∪ Invin(Kσ) cannot leave Inv(Kσ).
If the trajectory cycles clockwise it cannot traverse Invl(Kσ) and if it
cycles counter-clockwise it cannot traverse Invu(Kσ). In both cases no
point on Invout(Kσ) can be reached. Symmetrically, trajectories start-
ing in Inv(Kσ) ∪ Invout(Kσ) cannot reach any point on Invin(Kσ).

Remark: In the case of STAY cycles, ξl
σ and ξu

σ are also semi-separatrices.
Notice that in the above result, computing a semi-separatrix depends only
on one simple cycle, and the corresponding algorithm is then reduced to find
simple cycles in the SPDI and checking whether it is STAY, EXIT-RIGHT
or EXIT-LEFT.

Example 11. Fig. 5 shows all the semi-separatrices of the SPDI given in
Example 1. The small arrows traversing the semi-separatrices show the in-
ner and outer of each semi-separatrix: a trajectory may traverse the semi-
separatrix following the direction of the arrow, but not vice-versa.

The following two results relate feasible signatures and semi-separatrices.

Proposition 6. If, for some semi-separatrix γ, e ∈ γin and e′ ∈ γout, then
the signature ee′ is not feasible.

Proof. Directly from the definition of semi-separatrix.

Proposition 7. If, for some semi-separatrix γ, and signature σ (of at least
length 2), then, if head(σ) ∈ γin and last(σ) ∈ γout, σ is not feasible.

Proof. The proof proceeds by induction on sequence σ. The base case, when
σ is of length 2, reduces to proposition 6. Now, assuming that the proposition
is true for signatures of length n, we are required to prove that it is also true
for signatures of length n + 1. Consider the signature σ′ = ee′σe′′, with
e ∈ γin and e′′ ∈ γout. Clearly, either e′ ∈ γin or e′ ∈ γout.

16

Figure 5: Semi-separatrices

Case 1: e′ ∈ γin. The signature e′σe′′ satisfies the conditions and is of length
n. Therefore, the inductive property applies, and we can conclude that
e′σe′′ is not feasible. However, since any extension of an unfeasible
signature is itself unfeasible, it follows that σ′ is not feasible.

Case 2: e′ ∈ γout. The signature ee′ is unfeasible by proposition 6. There-
fore, being an extension of ee′, σ′ is also unfeasible (proposition 1).

3 State-Space Reduction Using Semi-Separatrices

Semi-separatrices partition the state space into two parts3 – once one crosses
such a border, all states outside the region can be ignored. We present a
technique, which, given an SPDI and a reachability question, enables us to
discard portions of the state space based on this information. The approach
is based on identifying inert states (edges in the SPDI) which cannot play a
role in the reachability analysis.

Definition 8. Given an SPDI S, a set of semi-separatrices Γ ⊆ Sep, a
source edge e0 and a destination edge e1, an edge e is said to be inert if it
lies outside a semi-separatrix inside which lies e0, or it lies inside a semi-
separatrix outside which lies e1:

3We don’t consider the semi-separatrix itself.

17

inertΓe0→e1 = {e : E | ∃γ ∈ Γ · e0 ∈ γin ∧ e ∈ γout}

∪ {e : E | ∃γ ∈ Γ · e1 ∈ γout ∧ e ∈ γin}

We can prove that these inert edges can never appear in a feasible signature:

Lemma 8. Given an SPDI S, a set of semi-separatrices Γ, a source edge
e0 and a destination edge e1, and a feasible signature e0σe1 in S. No inert
edge from inertΓe0→e1 may appear in e0σe1.

Proof. From the definition of inert states, it follows that either both e0 and
e1 are inert, or neither is. If both are inert, then for some γ, e0 ∈ γin and
e1 ∈ γout. But if this were so, then e0σe1 is unfeasible by proposition 7. We
can thus consider only inert edges in σ.
Let e be an inert edge appearing in σ. Therefore, e0σe1 = e0σ1eσ2e1. By
definition of inert edges, e can either be inert because (i) it lies outside a
semi-separatrix inside which lies e0, or (ii) it lies inside a semi-separatrix
outside which lies e1.

Case 1: Let γ ∈ Γ be a semi-separatrix such that e0 ∈ γin and e ∈ γout. But
by proposition 7, e0σ1e is not feasible. Hence, neither is e0σ1eσ2e1.

Case 2: Let γ ∈ Γ be a semi-separatrix such that e ∈ γin and e1 ∈ γout. By
proposition 7, eσ2e1 is not feasible, and hence, neither is e0σ1eσ2e1.

It thus follows that e0σe1 is not feasible.

Given an SPDI, we can reduce the state space by discarding inert edges.

Definition 9. Given an SPDI S, a set of semi-separatrices Γ, a source edge
e0 and a destination edge e1, we define the reduced SPDI SΓ

e0→e1 to be the
same as S but without the inert edges.

Clearly, the resulting SPDI is smaller than the original one.

Proposition 8. For any SPDI S, a set of semi-separatrices Γ, and edges e0
and e1, S does not have less edges than SΓ

e0→e1.

Example 12. The shaded (light blue) areas of Fig. 6 (a) and (b) are the
subsets of the SPDI (edges of the reachability graph) eliminated by the re-
duction presented in this section, when answering the question: Is interval I ′

reachable from I?

18

I’I

(a)

I’

I

(b)

Figure 6: Reduction using Semi-separatrices

Finally, we prove that checking reachability on the reduced SPDI is equivalent
to checking reachability on the original SPDI:

Theorem 9. Given an SPDI S, a set of semi-separatrices Γ, and edges e0
and e1, then, e1 is reachable from e0 in S if and only if e1 is reachable from
e0 in SΓ

e0→e1.

Proof. The proof is split into two parts: that reachability in the reduced
SPDI implies reachability in the original automaton (soundness) and vice-
versa (completeness).

Soundness: Assume that e1 is reachable from e0 in SΓ
e0→e1. Then, there

must exist a feasible signature σ in SΓ
e0→e1 which starts on e0 and ends

at e1. Since every SPDI edge in SΓ
e0→e1 is also in S, and the dynamics

of the two systems are identical, it follows that σ is also a feasible path
in S. Therefore, e1 is also reachable from e0 in S.

Completeness: Now assume that e1 is reachable from e0 in S. By defini-
tion of reachability, there exists a feasible signature e0σe1 in S. By
proposition 8, no inert edge may appear in e0σe1. Therefore, e0σe1
is also a feasible signature in SΓ

e0→e1, which in turn implies that e1 is
reachable from e0 in Se0→e1.

19

We have shown, that once semi-separatrices are identified, given a reachabil-
ity question, we can reduce the size of the SPDI to be verified. This enables
us to verify SPDIs much more efficiently. It is important to note that model-
checking an SPDI requires identification of simple loops, which means that
the calculation of the semi-separatrices is not more expensive than the ini-
tial pass of the model-checking algorithm. Furthermore, we can perform this
analysis only once for an SPDI and store the information to be used in any
reachability analysis on that SPDI. Reduction, however, can only be applied
once we know the source and destination states.

4 State-Space Reduction Using Kernels

4.1 State-space reduction using kernels

We have already shown that any invariant set, is essentially a pair of semi-
separatices. In particular, the invariance kernel is a largest invariant set for
a particular loop, we can use the results presented in section 3 to abstract an
SPDI by using invariance kernels. We now turn our attention to state space
reduction using controllability kernels:

Definition 10. Given an SPDI S, a loop σ, a source edge e0 and a destina-
tion edge e1, an edge e is said to be redundant if it lies on the opposite side
of a controllability kernel as both e0 and e1:

redundantσe0→e1 = {e : E | ∃e0, e1 ∈ Cntrin(σ) ∪ Cntr(σ) ∧ e ∈ Cntrout(σ)}

∪ {e : E | ∃e0, e1 ∈ Cntrout(σ) ∪ Cntr(σ) ∧ e ∈ Cntrin(σ)}

We can prove that we can do without these edges to check feasibility:

Lemma 10. Given an SPDI S, a loop σ, a source edge e0, a destination
edge e1, and a feasible signature e0σe1 then there exists a feasible signature
e0σ′e1 such that σ′ contains no redundant edge from redundantσe0→e1.

Proof. Let e0σe1 be a feasible signature which contains some redundant edge
from the set redundantσ

e0→e1. Without loss of generality, we assume that
e0, e1 ∈ Cntrout(σ) ∪ Cntr(σ). Let f0 and f1 be, respectively, the first and
last redundant edges in σ. By definition of redundant edges, it follows that
f0, f1 ∈ Cntrin(σ). The path we are following is thus:

e0σ1f0σ2f1σ3e1

20

Since f0 (f1) is the first (last) redundant edge, it follows that the last element
of σ1 (the first element of σ3) is inside the controllability kernel. Using
proposition 3, it follows that there exists a point p on the controllability
kernel reachable from the last element of σ1 (a point q on the controllability
kernel from which the first element of σ3 is reachable). Since all points on
the controllability kernel are mutually reachable, it follows that q is reachable
from p along some discrete path σ′

2 completely within the kernel. We have
thus obtained a shorter discrete path e0σ1σ

′
2σ3e1 which is feasible and which

contains no redundant edges.

Given an SPDI, we can reduce the state space by discarding redundant edges.

Definition 11. Given an SPDI S, a loop σ, a source edge e0 and a desti-
nation edge e1, we define the reduced SPDI Sσ

e0→e1 to be the same as S but
without redundant edges.

Clearly, the resulting SPDI is smaller than the original one.

Proposition 9. For any SPDI S, a loop σ, a source edge e0 and a destination
edge e1, S does not have less edges than Sσ

e0→e1.

Finally, we prove that checking reachability on the reduced SPDI is equivalent
to checking reachability on the original SPDI:

Theorem 11. Given an SPDI S, with a set of loops σ, a source edge e0 and
a destination edge e1, then, e1 is reachable from e0 in S if and only if e1 is
reachable from e0 in Sσ

e0→e1.

Proof. The theorem follows immediately from proposition 10.

Given a loop which has a controllability kernel, we can thus reduce the state
space to explore. In practice, we apply this state space reduction for each
controllability kernel in the SPDI. Once a loop in the SPDI is identified, it
is straightforward to apply the reduction algorithm.

4.2 Immediate answers to reachability questions

By definition of the controllability kernel, any two points inside it are mu-
tually reachable. This can be used to answer certain reachability questions
simply by inspecting the controllability kernel: if both the source and des-
tination edge lie (possibly partially) within the same controllability kernel,
then, there exists a trajectory from the source to the destination edge.

21

Proposition 10. Given a source edge esrc and a destination edge edst, if
for some loop σ, esrc ∩ Cntr(Kσ) 6= ∅ and edst ∩ Cntr(Kσ) 6= ∅, then edst is
reachable from esrc.

Furthermore, proposition 2 tells us that any point in the viability kernel of
a loop can eventually reach the controllability kernel of the same loop. This
allows us to relax the condition about the source edge to just check whether
it (partially) lies within the viability kernel. Since the controllability kernel
always lies within the viability kernel of the same loop, this is a generalization
of the first result.

Proposition 11. Given a source edge esrc and a destination edge edst, if
for some loop σ, esrc ∩ Viab(Kσ) 6= ∅ and edst ∩ Cntr(Kσ) 6= ∅, then edst is
reachable from esrc.

Finally, we note that the union of two non-disjoint controllability sets is itself
a controllability set. This means that we can extend the result to work for
a collection of loops whose controllability kernels form a strongly connected
set. To state this result, we will require some additional machinery.

Definition 12. We extend viability and controllability kernels for a set of
loops Σ by taking the union of the kernels of the individual loops:

Viab(KΣ) =
⋃

σ∈Σ

Viab(Kσ)

Cntr(KΣ) =
⋃

σ∈Σ

Cntr(Kσ)

Definition 13. Two loops σ and σ′ are said to be compatible (σ ! σ′) if
their controllability kernels overlap:

σ ! σ′ ⇔ Cntr(Kσ) ∩ Cntr(K ′
σ) 6= ∅

We extend the notion of compatibility to a set of loops Σ to mean that all
loops in the set are transitively compatible:

∀σ, σ′ ∈ Σ · σ !
∗ σ′

Theorem 12. Given a source edge esrc and a destination edge edst, if for
some compatible set of loops Σ, esrc ∩Viab(KΣ) 6= ∅ and edst ∩Cntr(KΣ) 6= ∅,
then edst is reachable from esrc.

22

I

I’

(a)

I

I’

(b)

Figure 7: Answering Reachability using Kernels

Proof. The proof of the theorem follows almost immediately from the defi-
nition of the controllability kernel, and proposition 2.

We note that this theorem is a generalization of the previous two propositions.

Example 13. Fig. 7-(a) shows a viability and a controllability kernel of a
cycle and two intervals I and I ′. The reachability question, is I ′ reachable
from I?, cannot be answered immediately in this case. Fig. 7-(b) shows
overlapping of the viability and controllability kernels depicted in Fig. 7-
(a) with the kernels of an inner cycle. I ′ is shown to lie in a compatible
controllability kernel, thus by theorem 12, I ′ is reachable from I (the positive
answer is given without the need of performing the reachability analysis).

The next theorem provides an immediate answer to edges lying inside and
outside invariance kernels. The proof follows directly from the definition of
invariance kernels.

Theorem 13. If one of the following conditions holds, then then edst is not
reachable from esrc:

1. Source edge esrc ∈ Invin(Kσ) and destination edge edst ∈ Inv(Kσ) ∪
Invout(Kσ)

2. Source edge esrc ∈ Inv(Kσ) ∪ Invout(Kσ) and destination edge edst ∈
Invin(Kσ)

23

We note that, since an invariance kernel induces a pair of semi-separatrices,
this theorem is a specialization of of the reduction using semi-separatrix
information.
In practice, we propose to use these theorems to enable answering certain
reachability questions without having to explore the complete state space. It
can also be used to reduce reachability questions to (possibly) simpler ones
by trying to reach a viability kernel rather than a particular edge (in the case
of theorem 12). As in the case of semi-separatrices, a preliminary analysis
of an SPDI can be done to store all kernels, which information is used in
all subsequent reachability queries. By combining this technique with the
semi-separatrix reduction technique we envisage substantial gains.

5 Concluding Remarks

We have hereby introduced the concept of semi-separatrices for polygonal
hybrid systems, and presented non-iterative algorithms to calculate them.
Using semi-separatrices, and kernels in SPDI phase-portraits introduced in
[ASY02] and in [Sch04], we presented techniques to improve reachability
analysis on SPDIs. In all cases, the techniques require the identification and
analysis of loops in the SPDI. When multiple reachability questions are to
be asked about the same SPDI, this information can be gathered and stored
to avoid repeated analysis. We note that most of this information is still
required when performing reachability analysis, and thus no extra work is
required to perform the optimization presented in this paper. The results
presented in this paper all depend on checking whether an edge lies within
a given polygon. This can be efficiently checked using standard geometrical
techniques frequently used in computer graphics such as using the odd-parity
test [FvDFH96].
In certain cases, using kernel information, we can answer reachability ques-
tions using the information gathered without any further analysis. In other
cases, we use semi-separatrices and controllability kernels to reduce the size
of the SPDI under analysis.
Our work is obviously restricted to planar systems, which enables us to com-
pute these kernels exactly. In higher dimensions and hybrid systems with
higher complexity, calculation of kernels is not computable. Other related
work is thus based on calculations of approximations of these kernels (e.g.,
[ALQ+01b, ALQ+01a, SP02]). We are not aware of any work using kernels
and semi-separatrices to reduce the state-space of the reachability graph as
presented in this paper.
We have built a toolset SPeeDI [APSY02] for the analysis of SPDIs. We have

24

recently extended this toolset to SPeeDI+ [PS06] which calculates kernels of
SPDIs. We are currently exploring the implementation of the optimizations
presented in this paper to improve the efficiency of SPeeDI+. We are also
investigating other applications of these kernels in the model-checking of
SPDIs.

References

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183–235, 1994.

[ALQ+01a] J.-P. Aubin, J. Lygeros, M. Quincampoix, S. Sastry, and
N. Seube. Towards a viability theory for hybrid systems. In
European Control Conference, 2001.

[ALQ+01b] J.-P. Aubin, J. Lygeros, M. Quincampoix, S. Sastry, and
N. Seube. Viability and invariance kernels of impulse differential
inclusions. In Conference on Decision and Control, volume 40 of
IEEE, pages 340–345, December 2001.

[APSY02] E. Asarin, G. Pace, G. Schneider, and S. Yovine. SPeeDI: a
verification tool for polygonal hybrid systems. In CAV’2002,
volume 2404 of LNCS, pages 354–358, Copenhagen, Denmark,
July 2002. Springer-Verlag.

[ASY01] E. Asarin, G. Schneider, and S. Yovine. On the decidability
of the reachability problem for planar differential inclusions. In
HSCC’2001, number 2034 in LNCS, pages 89–104, Rome, Italy,
2001. Springer-Verlag.

[ASY02] E. Asarin, G. Schneider, and S. Yovine. Towards computing
phase portraits of polygonal differential inclusions. In HSCC’02,
pages 49–61. LNCS 2289, Springer, 2002.

[Aub01] J.-P. Aubin. The substratum of impulse and hybrid control
systems. In HSCC’01, volume 2034 of LNCS, pages 105–118.
Springer, 2001.

[DV95] A. Deshpande and P. Varaiya. Viable control of hybrid systems.
In Hybrid Systems II, number 999 in LNCS, pages 128–147, 1995.

25

[FvDFH96] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.
Hughes. Computer graphics (2nd ed. in C): principles and prac-
tice. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1996.

[Hen79] Michael Henle. A combinatorial introduction to topology. Dover
publications, Inc., 1979.

[HKPV95] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s
decidable about hybrid automata? In STOC’95, pages 373–382.
ACM Press, 1995.

[KdB01] P. Kowalczyk and M. di Bernardo. On a novel class of bifurca-
tions in hybrid dynamical systems. In HSCC’01, number 2034
in LNCS, pages 361–374. Springer, 2001.

[LPY01] G. Lafferriere, G. Pappas, and S. Yovine. Symbolic reachabil-
ity computation of families of linear vector fields. Journal of
Symbolic Computation, 32(3):231–253, September 2001.

[MP93] O. Maler and A. Pnueli. Reachability analysis of planar multi-
linear systems. In CAV’93, pages 194–209. LNCS 697, Springer
Verlag, July 1993.

[MS00] A. Matveev and A. Savkin. Qualitative theory of hybrid dynam-
ical systems. Birkhäuser Boston, 2000.

[PS06] G. Pace and G. Schneider. Computation and visualization of
phase portraits for model checking SPDI. 2006. Submitted.

[Sch04] G. Schneider. Computing invariance kernels of polygonal hybrid
systems. Nordic Journal of Computing, 11(2):194–210, 2004.

[SJSL00] S. Simić, K. Johansson, S. Sastry, and J. Lygeros. Towards a
geometric theory of hybrid systems. In HSCC’00, number 1790
in LNCS, pages 421–436. Springer, 2000.

[SP02] P. Saint-Pierre. Hybrid kernels and capture basins for im-
pulse constrained systems. In HSCC’02, volume 2289 of LNCS.
Springer-Verlag, 2002.

26

View publication statsView publication stats

https://www.researchgate.net/publication/228945324

