19 research outputs found

    The Structure of Differential Invariants and Differential Cut Elimination

    Full text link
    The biggest challenge in hybrid systems verification is the handling of differential equations. Because computable closed-form solutions only exist for very simple differential equations, proof certificates have been proposed for more scalable verification. Search procedures for these proof certificates are still rather ad-hoc, though, because the problem structure is only understood poorly. We investigate differential invariants, which define an induction principle for differential equations and which can be checked for invariance along a differential equation just by using their differential structure, without having to solve them. We study the structural properties of differential invariants. To analyze trade-offs for proof search complexity, we identify more than a dozen relations between several classes of differential invariants and compare their deductive power. As our main results, we analyze the deductive power of differential cuts and the deductive power of differential invariants with auxiliary differential variables. We refute the differential cut elimination hypothesis and show that, unlike standard cuts, differential cuts are fundamental proof principles that strictly increase the deductive power. We also prove that the deductive power increases further when adding auxiliary differential variables to the dynamics

    Forward Invariant Cuts to Simplify Proofs of Safety

    Full text link
    The use of deductive techniques, such as theorem provers, has several advantages in safety verification of hybrid sys- tems; however, state-of-the-art theorem provers require ex- tensive manual intervention. Furthermore, there is often a gap between the type of assistance that a theorem prover requires to make progress on a proof task and the assis- tance that a system designer is able to provide. This paper presents an extension to KeYmaera, a deductive verification tool for differential dynamic logic; the new technique allows local reasoning using system designer intuition about per- formance within particular modes as part of a proof task. Our approach allows the theorem prover to leverage for- ward invariants, discovered using numerical techniques, as part of a proof of safety. We introduce a new inference rule into the proof calculus of KeYmaera, the forward invariant cut rule, and we present a methodology to discover useful forward invariants, which are then used with the new cut rule to complete verification tasks. We demonstrate how our new approach can be used to complete verification tasks that lie out of the reach of existing deductive approaches us- ing several examples, including one involving an automotive powertrain control system.Comment: Extended version of EMSOFT pape

    Hybrid Systems Verification with Isabelle/HOL: Simpler Syntax, Better Models, Faster Proofs

    Full text link
    We extend a semantic verification framework for hybrid systems with the Isabelle/HOL proof assistant by an algebraic model for hybrid program stores, a shallow expression model for hybrid programs and their correctness specifications, and domain-specific deductive and calculational support. The new store model yields clean separations and dynamic local views of variables, e.g. discrete/continuous, mutable/immutable, program/logical, and enhanced ways of manipulating them using combinators, projections and framing. This leads to more local inference rules, procedures and tactics for reasoning with invariant sets, certifying solutions of hybrid specifications or calculating derivatives with increased proof automation and scalability. The new expression model provides more user-friendly syntax, better control of name spaces and interfaces connecting the framework with real-world modelling languages.Comment: 18 pages, submitted to FM 202

    A Uniform Substitution Calculus for Differential Dynamic Logic

    Full text link
    This paper introduces a new proof calculus for differential dynamic logic (dL) that is entirely based on uniform substitution, a proof rule that substitutes a formula for a predicate symbol everywhere. Uniform substitutions make it possible to rely on axioms rather than axiom schemata, substantially simplifying implementations. Instead of nontrivial schema variables and soundness-critical side conditions on the occurrence patterns of variables, the resulting calculus adopts only a finite number of ordinary dL formulas as axioms. The static semantics of differential dynamic logic is captured exclusively in uniform substitutions and bound variable renamings as opposed to being spread in delicate ways across the prover implementation. In addition to sound uniform substitutions, this paper introduces differential forms for differential dynamic logic that make it possible to internalize differential invariants, differential substitutions, and derivations as first-class axioms in dL

    Refining Constructive Hybrid Games

    Get PDF

    A Method for Invariant Generation for Polynomial Continuous Systems

    Get PDF
    International audienceThis paper presents a method for generating semi-algebraic invariants for systems governed by non-linear polynomial ordinary differential equations under semi-algebraic evolution constraints. Based on the notion of discrete abstraction , our method eliminates unsoundness and unnecessary coarseness found in existing approaches for computing abstractions for non-linear continuous systems and is able to construct invariants with intricate boolean structure, in contrast to invariants typically generated using template-based methods. In order to tackle the state explosion problem associated with discrete abstraction, we present invariant generation algorithms that exploit sound proof rules for safety verification , such as differential cut (DC), and a new proof rule that we call differential divide-and-conquer (DDC), which splits the verification problem into smaller sub-problems. The resulting invariant generation method is observed to be much more scalable and efficient than the na¨ıvena¨ıve approach, exhibiting orders of magnitude performance improvement on many of the problems
    corecore