27,429 research outputs found

    Integrated quality and enhancement review : summative review : Bishop Auckland College

    Get PDF

    Order within disorder: the atomic structure of ion-beam sputtered amorphous tantala (a-Ta2O5)

    Get PDF
    Amorphous tantala (a-Ta2O5) is a technologically important material often used in high-performance coatings. Understanding this material at the atomic level provides a way to further improve performance. This work details extended X-ray absorption fine structure measurements of a-Ta2O5 coatings, where high-quality experimental data and theoretical fits have allowed a detailed interpretation of the nearest-neighbor distributions. It was found that the tantalum atom is surrounded by four shells of atoms in sequence; oxygen, tantalum, oxygen, and tantalum. A discussion is also included on how these models can be interpreted within the context of published crystalline Ta 2O5 and other a-T2O5 studies

    The atomic structure and chemistry of Fe-rich steps on antiphase boundaries in Ti-doped Bi<sub>0.9</sub>Nd<sub>0.15</sub>FeO3

    Get PDF
    Stepped antiphase boundaries are frequently observed in Ti-doped Bi&lt;sub&gt;0.85&lt;/sub&gt;Nd&lt;sub&gt;0.15&lt;/sub&gt;FeO&lt;sub&gt;3&lt;/sub&gt;, related to the novel planar antiphase boundaries reported recently. The atomic structure and chemistry of these steps are determined by a combination of high angle annular dark field and bright field scanning transmission electron microscopy imaging, together with electron energy loss spectroscopy. The core of these steps is found to consist of 4 edge-sharing FeO&lt;sub&gt;6&lt;/sub&gt; octahedra. The structure is confirmed by image simulations using a frozen phonon multislice approach. The steps are also found to be negatively charged and, like the planar boundaries studied previously, result in polarisation of the surrounding perovskite matrix

    Local stabilisation of polar order at charged antiphase boundaries in antiferroelectric (Bi<sub>0.85</sub>Nd<sub>0.15</sub>)(Ti<sub>0.1</sub>Fe<sub>0.9</sub>)O<sub>3</sub>

    Get PDF
    Observation of an unusual, negatively-charged antiphase boundary in (Bi&lt;sub&gt;0.85&lt;/sub&gt;Nd&lt;sub&gt;0.15&lt;/sub&gt;)(Ti&lt;sub&gt;0.1&lt;/sub&gt;Fe&lt;sub&gt;0.9&lt;/sub&gt;)O&lt;sub&gt;3&lt;/sub&gt; is reported. Aberration corrected scanning transmission electron microscopy is used to establish the full three dimensional structure of this boundary including O-ion positions to ~ ± 10 pm. The charged antiphase boundary stabilises tetragonally distorted regions with a strong polar ordering to either side of the boundary, with a characteristic length scale determined by the excess charge trapped at the boundary. Far away from the boundary the crystal relaxes into the well-known Nd-stabilised antiferroelectric phase

    Giant reversible barocaloric response of (MnNiSi)(1-x)(FeCoGe)(x) (x=0.39, 0.40, 0.41)

    Get PDF
    MnNiSi-based alloys and isostructural systems have traditionally demonstrated impressive magnetocaloric properties near room temperature associated with a highly tunable first-order magnetostructural transition that involves large latent heat. However, these materials are limited by a small field-sensitivity of the transition, preventing significant reversible effects usable for cooling applications. Instead, the concomitant large transition volume changes prompt a high pressure-sensitivity, and therefore, promise substantial barocaloric performances, but they have been sparsely studied in these materials. Here, we study the barocaloric response in a series of composition-related (MnNiSi)1-x(FeCoGe)x (x = 0.39, 0.40, 0.41) alloys that span continuously over a wide temperature range around ambient. We report on giant reversible effects of ~40 J K-1 kg-1 and up to ~4 K upon application of ~2 kbar and find a degradation of the first-order transition properties with pressure that limits the barocaloric effects at high pressures. Our results confirm the potential of this type of alloys for barocaloric applications, where multicaloric and composite possibilities, along with the high density and relatively high thermal conductivity, constructively add to the magnitude of the caloric effects.Peer ReviewedPostprint (published version

    Metallic Coaxial Nanolasers

    Full text link
    The last two decades have witnessed tremendous advancements in the area of nanophotonics and plasmonics. Undoubtedly, the introduction of metallic structures has opened a path towards light confinement and manipulation at the subwavelength scale { a regime that was previously thought to be out of reach in optics. Of central importance is to devise efficient light sources to power up the future nanoscale optical circuits. Coaxial resonators can provide a platform to implement such subwavelength sources. They support ultrasmall cavity modes and offer large mode-emitter overlap as well as multifold scalability. Given their large modulation bandwidth, they hold promise for high speed optical interconnects { where they can be used for light generation and modulation simultaneously. In addition, the possibility of thresholdless operation in such devices may have implications in developing the next generation of efficient lighting systems. In this review article, the physics and applications of coaxial nanolasers will be discussed

    Tunable negative permeability in a three-dimensional superconducting metamaterial

    Get PDF
    We report on highly tunable radio frequency (rf) characteristics of a low-loss and compact three dimensional (3D) metamaterial made of superconducting thin film spiral resonators. The rf transmission spectrum of a single element of the metamaterial shows a fundamental resonance peak at \sim24.95 MHz that shifts to a 25%\% smaller frequency and becomes degenerate when a 3D array of such elements is created. The metamaterial shows an \emph{in-situ} tunable narrow frequency band in which the real part of the effective permeability is negative over a wide range of temperature, which reverts to gradually near-zero and positive values as the superconducting critical temperature is approached. This metamaterial can be used for increasing power transfer efficiency and tunability of electrically small rf-antennas.Comment: 6 pages, 4 figure
    corecore