9,362 research outputs found

    Phase-field modeling of microstructural pattern formation during directional solidification of peritectic alloys without morphological instability

    Full text link
    During the directional solidification of peritectic alloys, two stable solid phases (parent and peritectic) grow competitively into a metastable liquid phase of larger impurity content than either solid phase. When the parent or both solid phases are morphologically unstable, i.e., for a small temperature gradient/growth rate ratio (G/vpG/v_p), one solid phase usually outgrows and covers the other phase, leading to a cellular-dendritic array structure closely analogous to the one formed during monophase solidification of a dilute binary alloy. In contrast, when G/vpG/v_p is large enough for both phases to be morphologically stable, the formation of the microstructurebecomes controlled by a subtle interplay between the nucleation and growth of the two solid phases. The structures that have been observed in this regime (in small samples where convection effect are suppressed) include alternate layers (bands) of the parent and peritectic phases perpendicular to the growth direction, which are formed by alternate nucleation and lateral spreading of one phase onto the other as proposed in a recent model [R. Trivedi, Metall. Mater. Trans. A 26, 1 (1995)], as well as partially filled bands (islands), where the peritectic phase does not fully cover the parent phase which grows continuously. We develop a phase-field model of peritectic solidification that incorporates nucleation processes in order to explore the formation of these structures. Simulations of this model shed light on the morphology transition from islands to bands, the dynamics of spreading of the peritectic phase on the parent phase following nucleation, which turns out to be characterized by a remarkably constant acceleration, and the types of growth morphology that one might expect to observe in large samples under purely diffusive growth conditions.Comment: Final version, minor revisions, 16 pages, 14 EPS figures, RevTe

    Analysis of A Splitting Approach for the Parallel Solution of Linear Systems on GPU Cards

    Full text link
    We discuss an approach for solving sparse or dense banded linear systems Ax=b{\bf A} {\bf x} = {\bf b} on a Graphics Processing Unit (GPU) card. The matrix A∈RN×N{\bf A} \in {\mathbb{R}}^{N \times N} is possibly nonsymmetric and moderately large; i.e., 10000≤N≤50000010000 \leq N \leq 500000. The ${\it split\ and\ parallelize}( ({\tt SaP})approachseekstopartitionthematrix) approach seeks to partition the matrix {\bf A}intodiagonalsub−blocks into diagonal sub-blocks {\bf A}_i,, i=1,\ldots,P,whichareindependentlyfactoredinparallel.Thesolutionmaychoosetoconsiderortoignorethematricesthatcouplethediagonalsub−blocks, which are independently factored in parallel. The solution may choose to consider or to ignore the matrices that couple the diagonal sub-blocks {\bf A}_i.Thisapproach,alongwiththeKrylovsubspace−basediterativemethodthatitpreconditions,areimplementedinasolvercalled. This approach, along with the Krylov subspace-based iterative method that it preconditions, are implemented in a solver called {\tt SaP::GPU},whichiscomparedintermsofefficiencywiththreecommonlyusedsparsedirectsolvers:, which is compared in terms of efficiency with three commonly used sparse direct solvers: {\tt PARDISO},, {\tt SuperLU},and, and {\tt MUMPS}.. {\tt SaP::GPU},whichrunsentirelyontheGPUexceptseveralstagesinvolvedinpreliminaryrow−columnpermutations,isrobustandcompareswellintermsofefficiencywiththeaforementioneddirectsolvers.InacomparisonagainstIntel′s, which runs entirely on the GPU except several stages involved in preliminary row-column permutations, is robust and compares well in terms of efficiency with the aforementioned direct solvers. In a comparison against Intel's {\tt MKL},, {\tt SaP::GPU}alsofareswellwhenusedtosolvedensebandedsystemsthatareclosetobeingdiagonallydominant. also fares well when used to solve dense banded systems that are close to being diagonally dominant. {\tt SaP::GPU}$ is publicly available and distributed as open source under a permissive BSD3 license.Comment: 38 page

    On the transition to turbulence of wall-bounded flows in general, and plane Couette flow in particular

    Full text link
    The main part of this contribution to the special issue of EJM-B/Fluids dedicated to Patrick Huerre outlines the problem of the subcritical transition to turbulence in wall-bounded flows in its historical perspective with emphasis on plane Couette flow, the flow generated between counter-translating parallel planes. Subcritical here means discontinuous and direct, with strong hysteresis. This is due to the existence of nontrivial flow regimes between the global stability threshold Re_g, the upper bound for unconditional return to the base flow, and the linear instability threshold Re_c characterized by unconditional departure from the base flow. The transitional range around Re_g is first discussed from an empirical viewpoint ({\S}1). The recent determination of Re_g for pipe flow by Avila et al. (2011) is recalled. Plane Couette flow is next examined. In laboratory conditions, its transitional range displays an oblique pattern made of alternately laminar and turbulent bands, up to a third threshold Re_t beyond which turbulence is uniform. Our current theoretical understanding of the problem is next reviewed ({\S}2): linear theory and non-normal amplification of perturbations; nonlinear approaches and dynamical systems, basin boundaries and chaotic transients in minimal flow units; spatiotemporal chaos in extended systems and the use of concepts from statistical physics, spatiotemporal intermittency and directed percolation, large deviations and extreme values. Two appendices present some recent personal results obtained in plane Couette flow about patterning from numerical simulations and modeling attempts.Comment: 35 pages, 7 figures, to appear in Eur. J. Mech B/Fluid

    Linearly scaling direct method for accurately inverting sparse banded matrices

    Get PDF
    In many problems in Computational Physics and Chemistry, one finds a special kind of sparse matrices, termed "banded matrices". These matrices, which are defined as having non-zero entries only within a given distance from the main diagonal, need often to be inverted in order to solve the associated linear system of equations. In this work, we introduce a new O(n) algorithm for solving such a system, being n X n the size of the matrix. We produce the analytical recursive expressions that allow to directly obtain the solution, as well as the pseudocode for its computer implementation. Moreover, we review the different options for possibly parallelizing the method, we describe the extension to deal with matrices that are banded plus a small number of non-zero entries outside the band, and we use the same ideas to produce a method for obtaining the full inverse matrix. Finally, we show that the New Algorithm is competitive, both in accuracy and in numerical efficiency, when compared to a standard method based in Gaussian elimination. We do this using sets of large random banded matrices, as well as the ones that appear when one tries to solve the 1D Poisson equation by finite differences.Comment: 24 pages, 5 figures, submitted to J. Comp. Phy

    Phase Coexistence of Complex Fluids in Shear Flow

    Full text link
    We present some results of recent calculations of rigid rod-like particles in shear flow, based on the Doi model. This is an ideal model system for exhibiting the generic behavior of shear-thinning fluids (polymer solutions, wormlike micelles, surfactant solutions, liquid crystals) in shear flow. We present calculations of phase coexistence under shear among weakly-aligned (paranematic) and strongly-aligned phases, including alignment in the shear plane and in the vorticity direction (log-rolling). Phase coexistence is possible, in principle, under conditions of both common shear stress and common strain rate, corresponding to different orientations of the interface between phases. We discuss arguments for resolving this degeneracy. Calculation of phase coexistence relies on the presence of inhomogeneous terms in the dynamical equations of motion, which select the appropriate pair of coexisting states. We cast this condition in terms of an equivalent dynamical system, and explore some aspects of how this differs from equilibrium phase coexistence.Comment: 16 pages, 10 figures, submitted to Faraday Discussion

    Describing the Flow Curve of Shear-Banding Fluids Through a Structural Minimal Model

    Get PDF
    Main characteristics of colloidal systems that develop fluid phases with different mechanical properties, namely shear-banding fluids, are briefly reviewed both from experimental and theoretical (modelling) point of view. A non-monotonic shear stress vs. shear rate constitutive relation is presented. This relation derives from a phenomenological model of a shear ratedependent viscosity describing structural changes and involves the possibility of multivalued shear rates under a given shear stress. In the case of a stress-dependent viscosity, the same model allows one to predict vorticity banding. Predictions of this model under controlled stress are discussed, namely occurrence of a kind of top- and bottom-jumping of the shear rate in response to stress increasing-decreasing. Applying this model to evaluation of the flow curve of such colloidal systems is performed. Particular emphasis is placed on the adequate computation of the shear rate function in cylindrical Couette cells in order to handle the corresponding flow curve which exhibits the well-known shear stress plateau. Indeed, as different fluid phases coexist in the flow domain, measured (torque vs. angular velocity) data cannot be directly converted into rheometric (shear stress vs. shear rate) functions. As the lacking non-local terms in the model prevents the direct determination of the stress-plateau, this value is included as an adjustable parameter. Thus model predictions satisfactorily match up experimental data of wormlike micellar solutions from the literature.Comment: 22 pages, 9 fi

    Phase Separation of Rigid-Rod Suspensions in Shear Flow

    Full text link
    We analyze the behavior of a suspension of rigid rod-like particles in shear flow using a modified version of the Doi model, and construct diagrams for phase coexistence under conditions of constant imposed stress and constant imposed strain rate, among paranematic, flow-aligning nematic, and log-rolling nematic states. We calculate the effective constitutive relations that would be measured through the regime of phase separation into shear bands. We calculate phase coexistence by examining the stability of interfacial steady states and find a wide range of possible ``phase'' behaviors.Comment: 23 pages 19 figures, revised version to be published in Physical Review

    A bibliography on parallel and vector numerical algorithms

    Get PDF
    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also
    • …
    corecore