202 research outputs found

    A new mechanical design for legged robots to reduce energy consumption

    Get PDF
    Many legged robots have been designed and built by universities, research institutes and industry; however, few investigations regard energy consumption as a crucial design criterion. This paper presents a novel configuration for legged robots to reduce the energy consumption. The proposed leg can be either used as a single leg or easily attached to bodies with four, six and eight legs. This mechanism is a parallel four-bar linkage equipped with one active and four passive joints. In fact, the usage of the passive elements leads to simple feed-forward control paradigms. Moreover, another distinctive feature of this design is the arrangement of one-way clutches and flat springs to store the potential energy for utilizing it in the next step. A locomotion prototype of the proposed mechanical structure is built and its simulation is also presented in this paper. Comparing the results with other structures demonstrates the superiority and efficiency of this work regarding energy consumption problem.</p

    Technical Report on: Tripedal Dynamic Gaits for a Quadruped Robot

    Full text link
    A vast number of applications for legged robots entail tasks in complex, dynamic environments. But these environments put legged robots at high risk for limb damage. This paper presents an empirical study of fault tolerant dynamic gaits designed for a quadrupedal robot suffering from a single, known ``missing'' limb. Preliminary data suggests that the featured gait controller successfully anchors a previously developed planar monopedal hopping template in the three-legged spatial machine. This compositional approach offers a useful and generalizable guide to the development of a wider range of tripedal recovery gaits for damaged quadrupedal machines.Comment: Updated *increased font size on figures 2-6 *added a legend, replaced text with colors in figure 5a and 6a *made variables representing vectors boldface in equations 8-10 *expanded on calculations in equations 8-10 by adding additional lines *added a missing "2" to equation 8 (typo) *added mass of the robot to tables II and III *increased the width of figures 1 and

    Development of a quadruped mobile robot and its movement system using geometric-based inverse kinematics

    Get PDF
    As the main testbed platform of Artificial Intelligence, the robot plays an essential role in creating an environment for industrial revolution 4.0. According to their bases, the robot can be categorized into a fixed based robot and a mobile robot. Current robotics research direction is interesting since people strive to create a mobile robot able to move in the land, water, and air. This paper presents development of a quadruped mobile robot and its movement system using geometric-based inverse kinematics. The study is related to the movement of a four-legged (quadruped) mobile robot with three Degrees of Freedom (3 DOF) for each leg. Because it has four legs, the movement of the robot can only be done through coordinating the movements of each leg. In this study, the trot gait pattern method is proposed to coordinate the movement of the robot's legs. The end-effector position of each leg is generated by a simple trajectory generator with half rectified sine wave pattern. Furthermore, to move each robot's leg, it is proposed to use geometric-based inverse kinematic. The experimental results showed that the proposed method succeeded in moving the mobile robot with precision. Movement errors in the translation direction are 1.83% with the average pose error of 1.33 degrees, means the mobile robot has good walking stability

    Bionic Control of Cheetah Bounding with a Segmented Spine

    Get PDF
    A cheetah model is built to mimic real cheetah and its mechanical and dimensional parameters are derived from the real cheetah. In particular, two joints in spine and four joints in a leg are used to realize the motion of segmented spine and segmented legs which are the key properties of the cheetah bounding. For actuating and stabilizing the bounding gait of cheetah, we present a bioinspired controller based on the state-machine. The controller mainly mimics the function of the cerebellum to plan the locomotion and keep the body balance. The haptic sensor and proprioception system are used to detect the trigger of the phase transition. Besides, the vestibular modulation could perceive the pitching angle of the trunk. At last, the cerebellum acts as the CPU to operate the information from the biological sensors. In addition, the calculated results are transmitted to the low-level controller to actuate and stabilize the cheetah bounding. Moreover, the delay feedback control method is employed to plan the motion of the leg joints to stabilize the pitching motion of trunk with the stability criterion. Finally, the cyclic cheetah bounding with biological properties is realized. Meanwhile, the stability and dynamic properties of the cheetah bounding gait are analyzed elaborately

    Design a Fall Recovery Strategy for a Wheel-Legged Quadruped Robot Using Stability Feature Space

    Get PDF
    In this paper, we introduced a conceptual analysis to select stability features when performing predefined and precise motions on robots. By analyzing the different stable poses named features and the possible transitions towards different ones, the introduced concept allows to design more predictable and suitable motions when performing particular tasks. As an example of how the concept can be applied we use it on the fall recovery of the quadruped robot CENTAURO. This robot, which is equipped with a custom hybrid wheel-legged mobility system, have good intrinsic stability as other quadrupeds. However, the characteristics of the rough terrains where it might be deployed require complex maneuvers to cope with possible strong disturbances. To prevent and more importantly recover from falls, realignment of postural responses will not be adequate, and effective recovery procedures should be developed. This paper introduces the details of how the presented conceptual analysis provides and an effective fall recovery routine for CENTAURO based on a state machine. The performance of the proposed approach is evaluated with extensive simulation trials using the dynamic model of the CENTAURO robot showing good effectiveness in recovering the robot after fall on flat and inclined surfaces

    Cam Drive Step Mechanism of a Quadruped Robot

    Get PDF
    Bionic quadruped robots received considerable worldwide research attention. For a quadruped robot walking with steady paces on a flat terrain, using a cam drive control mechanism instead of servomotors provides theoretical and practical benefits as it reduces the system weight, cost, and control complexities; thus it may be more cost beneficial for some recreational or household applications. This study explores the robot step mechanism including the leg and cam drive control systems based on studying the bone structure and the kinematic step sequences of dog. The design requirements for the cam drive robot legs have been raised, and the mechanical principles of the leg operating mechanism as well as the control parameters have been analyzed. A cam drive control system was constructed using three cams to control each leg. Finally, a four-leg demo robot was manufactured for experiments and it showed stable walking patterns on a flat floor

    New insights for the design of bionic robots:adaptive motion adjustment strategies during feline landings

    Get PDF
    Felines have significant advantages in terms of sports energy efficiency and flexibility compared with other animals, especially in terms of jumping and landing. The biomechanical characteristics of a feline (cat) landing from different heights can provide new insights into bionic robot design based on research results and the needs of bionic engineering. The purpose of this work was to investigate the adaptive motion adjustment strategy of the cat landing using a machine learning algorithm and finite element analysis (FEA). In a bionic robot, there are considerations in the design of the mechanical legs. (1) The coordination mechanism of each joint should be adjusted intelligently according to the force at the bottom of each mechanical leg. Specifically, with the increase in force at the bottom of the mechanical leg, the main joint bearing the impact load gradually shifts from the distal joint to the proximal joint; (2) the hardness of the materials located around the center of each joint of the bionic mechanical leg should be strengthened to increase service life; (3) the center of gravity of the robot should be lowered and the robot posture should be kept forward as far as possible to reduce machine wear and improve robot operational accuracy

    Interactive Co-Design of Form and Function for Legged Robots using the Adjoint Method

    Get PDF
    Our goal is to make robotics more accessible to casual users by reducing the domain knowledge required in designing and building robots. Towards this goal, we present an interactive computational design system that enables users to design legged robots with desired morphologies and behaviors by specifying higher level descriptions. The core of our method is a design optimization technique that reasons about the structure, and motion of a robot in coupled manner in order to achieve user-specified robot behavior, and performance. We are inspired by the recent works that also aim to jointly optimize robot's form and function. However, through efficient computation of necessary design changes, our approach enables us to keep user-in-the-loop for interactive applications. We evaluate our system in simulation by automatically improving robot designs for multiple scenarios. Starting with initial user designs that are physically infeasible or inadequate to perform the user-desired task, we show optimized designs that achieve user-specifications, all while ensuring an interactive design flow.Comment: 8 pages; added link of the accompanying vide

    A Novel Lockable Spring-loaded Prismatic Spine to Support Agile Quadrupedal Locomotion

    Full text link
    This paper introduces a way to systematically investigate the effect of compliant prismatic spines in quadrupedal robot locomotion. We develop a novel spring-loaded lockable spine module, together with a new Spinal Compliance-Integrated Quadruped (SCIQ) platform for both empirical and numerical research. Individual spine tests reveal beneficial spinal characteristics like a degressive spring, and validate the efficacy of a proposed compact locking/unlocking mechanism for the spine. Benchmark vertical jumping and landing tests with our robot show comparable jumping performance between the rigid and compliant spines. An observed advantage of the compliant spine module is that it can alleviate more challenging landing conditions by absorbing impact energy and dissipating the remainder via feet slipping through much in cat-like stretching fashion.Comment: To appear in 2023 IEEE IRO
    corecore