11,408 research outputs found

    Angular Power Spectrum of the Microwave Background Anisotropy seen by the COBE Differential Microwave Radiometer

    Full text link
    The angular power spectrum estimator developed by Peebles (1973) and Hauser & Peebles (1973) has been modified and applied to the 2 year maps produced by the COBE DMR. The power spectrum of the real sky has been compared to the power spectra of a large number of simulated random skies produced with noise equal to the observed noise and primordial density fluctuation power spectra of power law form, with P(k)knP(k) \propto k^n. Within the limited range of spatial scales covered by the COBE DMR, corresponding to spherical harmonic indices 3 \leq \ell \lsim 30, the best fitting value of the spectral index is n=1.250.45+0.4n = 1.25^{+0.4}_{-0.45} with the Harrison-Zeldovich value n=1n = 1 approximately 0.5σ\sigma below the best fit. For 3 \leq \ell \lsim 19, the best fit is n=1.460.44+0.39n = 1.46^{+0.39}_{-0.44}. Comparing the COBE DMR ΔT/T\Delta T/T at small \ell to the ΔT/T\Delta T/T at 50\ell \approx 50 from degree scale anisotropy experiments gives a smaller range of acceptable spectral indices which includes n=1n = 1.Comment: 22 pages of LaTex using aaspp.sty and epsf.sty with appended Postscript figures, COBE Preprint 94-0

    The Theory and Practice of Estimating the Accuracy of Dynamic Flight-Determined Coefficients

    Get PDF
    Means of assessing the accuracy of maximum likelihood parameter estimates obtained from dynamic flight data are discussed. The most commonly used analytical predictors of accuracy are derived and compared from both statistical and simplified geometrics standpoints. The accuracy predictions are evaluated with real and simulated data, with an emphasis on practical considerations, such as modeling error. Improved computations of the Cramer-Rao bound to correct large discrepancies due to colored noise and modeling error are presented. The corrected Cramer-Rao bound is shown to be the best available analytical predictor of accuracy, and several practical examples of the use of the Cramer-Rao bound are given. Engineering judgement, aided by such analytical tools, is the final arbiter of accuracy estimation

    Efficient Invariant Features for Sensor Variability Compensation in Speaker Recognition

    Get PDF
    In this paper, we investigate the use of invariant features for speaker recognition. Owing to their characteristics, these features are introduced to cope with the difficult and challenging problem of sensor variability and the source of performance degradation inherent in speaker recognition systems. Our experiments show: (1) the effectiveness of these features in match cases; (2) the benefit of combining these features with the mel frequency cepstral coefficients to exploit their discrimination power under uncontrolled conditions (mismatch cases). Consequently, the proposed invariant features result in a performance improvement as demonstrated by a reduction in the equal error rate and the minimum decision cost function compared to the GMM-UBM speaker recognition systems based on MFCC features

    Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results

    Get PDF
    We present cosmological parameter constraints based on the final nine-year WMAP data, in conjunction with additional cosmological data sets. The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter LCDM model. When WMAP data are combined with measurements of the high-l CMB anisotropy, the BAO scale, and the Hubble constant, the densities, Omegabh2, Omegach2, and Omega_L, are each determined to a precision of ~1.5%. The amplitude of the primordial spectrum is measured to within 3%, and there is now evidence for a tilt in the primordial spectrum at the 5sigma level, confirming the first detection of tilt based on the five-year WMAP data. At the end of the WMAP mission, the nine-year data decrease the allowable volume of the six-dimensional LCDM parameter space by a factor of 68,000 relative to pre-WMAP measurements. We investigate a number of data combinations and show that their LCDM parameter fits are consistent. New limits on deviations from the six-parameter model are presented, for example: the fractional contribution of tensor modes is limited to r<0.13 (95% CL); the spatial curvature parameter is limited to -0.0027 (+0.0039/-0.0038); the summed mass of neutrinos is <0.44 eV (95% CL); and the number of relativistic species is found to be 3.84+/-0.40 when the full data are analyzed. The joint constraint on Neff and the primordial helium abundance agrees with the prediction of standard Big Bang nucleosynthesis. We compare recent PLANCK measurements of the Sunyaev-Zel'dovich effect with our seven-year measurements, and show their mutual agreement. Our analysis of the polarization pattern around temperature extrema is updated. This confirms a fundamental prediction of the standard cosmological model and provides a striking illustration of acoustic oscillations and adiabatic initial conditions in the early universe.Comment: 32 pages, 12 figures, v3: Version accepted to Astrophysical Journal Supplement Series. Includes improvements in response to referee and community; corrected 3 entries in Table 10, (w0 & wa model). See the Legacy Archive for Microwave Background Data Analysis (LAMBDA): http://lambda.gsfc.nasa.gov/product/map/current/ for further detai

    VOICE BIOMETRICS UNDER MISMATCHED NOISE CONDITIONS

    Get PDF
    This thesis describes research into effective voice biometrics (speaker recognition) under mismatched noise conditions. Over the last two decades, this class of biometrics has been the subject of considerable research due to its various applications in such areas as telephone banking, remote access control and surveillance. One of the main challenges associated with the deployment of voice biometrics in practice is that of undesired variations in speech characteristics caused by environmental noise. Such variations can in turn lead to a mismatch between the corresponding test and reference material from the same speaker. This is found to adversely affect the performance of speaker recognition in terms of accuracy. To address the above problem, a novel approach is introduced and investigated. The proposed method is based on minimising the noise mismatch between reference speaker models and the given test utterance, and involves a new form of Test-Normalisation (T-Norm) for further enhancing matching scores under the aforementioned adverse operating conditions. Through experimental investigations, based on the two main classes of speaker recognition (i.e. verification/ open-set identification), it is shown that the proposed approach can significantly improve the performance accuracy under mismatched noise conditions. In order to further improve the recognition accuracy in severe mismatch conditions, an approach to enhancing the above stated method is proposed. This, which involves providing a closer adjustment of the reference speaker models to the noise condition in the test utterance, is shown to considerably increase the accuracy in extreme cases of noisy test data. Moreover, to tackle the computational burden associated with the use of the enhanced approach with open-set identification, an efficient algorithm for its realisation in this context is introduced and evaluated. The thesis presents a detailed description of the research undertaken, describes the experimental investigations and provides a thorough analysis of the outcomes

    Blind Normalization of Speech From Different Channels

    Full text link
    We show how to construct a channel-independent representation of speech that has propagated through a noisy reverberant channel. This is done by blindly rescaling the cepstral time series by a non-linear function, with the form of this scale function being determined by previously encountered cepstra from that channel. The rescaled form of the time series is an invariant property of it in the following sense: it is unaffected if the time series is transformed by any time-independent invertible distortion. Because a linear channel with stationary noise and impulse response transforms cepstra in this way, the new technique can be used to remove the channel dependence of a cepstral time series. In experiments, the method achieved greater channel-independence than cepstral mean normalization, and it was comparable to the combination of cepstral mean normalization and spectral subtraction, despite the fact that no measurements of channel noise or reverberations were required (unlike spectral subtraction).Comment: 25 pages, 7 figure
    corecore