8,983 research outputs found

    The Sliding Window Protocol Revisited

    Get PDF
    We give a correctness proof of the sliding window protocol. Both safety and liveness properties are addressed. We show how faulty channels can be represented as nondeterministic programs. The correctness proof is given as a sequence of correctness-preserving transformations of a sequential program that satisfies the original specification, with the exception that it does not have any faulty channels. We work as long as possible with a sequential program, although the transformation steps are guided by the aim of going to a distributed program. The final transformation steps consist in distributing the actions of the sequential program over a number of processes

    What makes for effective detection proposals?

    Full text link
    Current top performing object detectors employ detection proposals to guide the search for objects, thereby avoiding exhaustive sliding window search across images. Despite the popularity and widespread use of detection proposals, it is unclear which trade-offs are made when using them during object detection. We provide an in-depth analysis of twelve proposal methods along with four baselines regarding proposal repeatability, ground truth annotation recall on PASCAL, ImageNet, and MS COCO, and their impact on DPM, R-CNN, and Fast R-CNN detection performance. Our analysis shows that for object detection improving proposal localisation accuracy is as important as improving recall. We introduce a novel metric, the average recall (AR), which rewards both high recall and good localisation and correlates surprisingly well with detection performance. Our findings show common strengths and weaknesses of existing methods, and provide insights and metrics for selecting and tuning proposal methods.Comment: TPAMI final version, duplicate proposals removed in experiment

    Parameterized Concurrent Multi-Party Session Types

    Full text link
    Session types have been proposed as a means of statically verifying implementations of communication protocols. Although prior work has been successful in verifying some classes of protocols, it does not cope well with parameterized, multi-actor scenarios with inherent asynchrony. For example, the sliding window protocol is inexpressible in previously proposed session type systems. This paper describes System-A, a new typing language which overcomes many of the expressiveness limitations of prior work. System-A explicitly supports asynchrony and parallelism, as well as multiple forms of parameterization. We define System-A and show how it can be used for the static verification of a large class of asynchronous communication protocols.Comment: In Proceedings FOCLASA 2012, arXiv:1208.432

    Network coding meets TCP

    Full text link
    We propose a mechanism that incorporates network coding into TCP with only minor changes to the protocol stack, thereby allowing incremental deployment. In our scheme, the source transmits random linear combinations of packets currently in the congestion window. At the heart of our scheme is a new interpretation of ACKs - the sink acknowledges every degree of freedom (i.e., a linear combination that reveals one unit of new information) even if it does not reveal an original packet immediately. Such ACKs enable a TCP-like sliding-window approach to network coding. Our scheme has the nice property that packet losses are essentially masked from the congestion control algorithm. Our algorithm therefore reacts to packet drops in a smooth manner, resulting in a novel and effective approach for congestion control over networks involving lossy links such as wireless links. Our experiments show that our algorithm achieves higher throughput compared to TCP in the presence of lossy wireless links. We also establish the soundness and fairness properties of our algorithm.Comment: 9 pages, 9 figures, submitted to IEEE INFOCOM 200

    Particular object retrieval with integral max-pooling of CNN activations

    Get PDF
    Recently, image representation built upon Convolutional Neural Network (CNN) has been shown to provide effective descriptors for image search, outperforming pre-CNN features as short-vector representations. Yet such models are not compatible with geometry-aware re-ranking methods and still outperformed, on some particular object retrieval benchmarks, by traditional image search systems relying on precise descriptor matching, geometric re-ranking, or query expansion. This work revisits both retrieval stages, namely initial search and re-ranking, by employing the same primitive information derived from the CNN. We build compact feature vectors that encode several image regions without the need to feed multiple inputs to the network. Furthermore, we extend integral images to handle max-pooling on convolutional layer activations, allowing us to efficiently localize matching objects. The resulting bounding box is finally used for image re-ranking. As a result, this paper significantly improves existing CNN-based recognition pipeline: We report for the first time results competing with traditional methods on the challenging Oxford5k and Paris6k datasets
    • …
    corecore