21,602 research outputs found

    Self-organizing map based adaptive sampling

    Get PDF
    We propose a new adaptive sampling method that uses Self-Organizing Maps (SOM). In SOM, densely sampled regions in the input space is represented by a larger area on the map than that of sparsely sampled regions. We use this property to progressively tune-in on the interesting region of the design space. The method does not rely on parameterized distribution, and can sample from multi-modal and non-convex distributions. In this paper, we minimize several mathematical test functions. We also show its performance in inequality-constrained objective satisfaction problem, in which the objective is to seek diversity in solutions satisfying certain upper-bound constraint in the minimized objective. A new merit function and a measure of space-filling quality were proposed for this purpose

    Efficient Implementations of Molecular Dynamics Simulations for Lennard-Jones Systems

    Full text link
    Efficient implementations of the classical molecular dynamics (MD) method for Lennard-Jones particle systems are considered. Not only general algorithms but also techniques that are efficient for some specific CPU architectures are also explained. A simple spatial-decomposition-based strategy is adopted for parallelization. By utilizing the developed code, benchmark simulations are performed on a HITACHI SR16000/J2 system consisting of IBM POWER6 processors which are 4.7 GHz at the National Institute for Fusion Science (NIFS) and an SGI Altix ICE 8400EX system consisting of Intel Xeon processors which are 2.93 GHz at the Institute for Solid State Physics (ISSP), the University of Tokyo. The parallelization efficiency of the largest run, consisting of 4.1 billion particles with 8192 MPI processes, is about 73% relative to that of the smallest run with 128 MPI processes at NIFS, and it is about 66% relative to that of the smallest run with 4 MPI processes at ISSP. The factors causing the parallel overhead are investigated. It is found that fluctuations of the execution time of each process degrade the parallel efficiency. These fluctuations may be due to the interference of the operating system, which is known as OS Jitter.Comment: 33 pages, 19 figures, add references and figures are revise

    Coherent control of photocurrent in a strongly scattering photoelectrochemical system

    Full text link
    A fundamental issue that limits the efficiency of many photoelectrochemical systems is that the photon absorption length is typically much longer than the electron diffusion length. Various photon management schemes have been developed to enhance light absorption; one simple approach is to use randomly scattering media to enable broadband and wide-angle enhancement. However, such systems are often opaque, making it difficult to probe photo-induced processes. Here we use wave interference effects to modify the spatial distribution of light inside a highly-scattering dye-sensitized solar cell to control photon absorption in a space-dependent manner. By shaping the incident wavefront of a laser beam, we enhance or suppress photocurrent by increasing or decreasing light concentration on the front side of the mesoporous photoanode where the collection efficiency of photoelectrons is maximal. Enhanced light absorption is achieved by reducing reflection through the open boundary of the photoanode via destructive interference, leading to a factor of two increase in photocurrent. This approach opens the door to probing and manipulating photoelectrochemical processes in specific regions inside nominally opaque media.Comment: 21 pages, 4 figures, in submission. The first two authors contributed equally to this paper, and should be regarded as co-first author
    corecore