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Abstract. We propose a new adaptive sampling method that uses Self-Organizing Maps (SOM). In 

SOM, densely sampled regions in the input space is represented by a larger area on the map than that 

of  sparsely sampled regions. We use this property to progressively tune-in on the interesting region of 

the design space. The method does not rely on parameterized  distribution, and can sample from multi-

modal and non-convex distributions. In this paper, we minimize several mathematical test  functions. 

We also show its performance in inequality-constrained objective satisfaction problem, in which the 

objective is to seek diversity in solutions satisfying certain upper-bound constraint in the minimized 

objective. A new merit function and a measure of space-filling quality were proposed for this purpose. 

1 INTRODUCTION 

In today’s engineering endeavor, it is common to run computer simulations to understand the behavior of 

complex systems and optimize their parameters to obtain satisfactory designs before actual physical prototypes 

are built. The objective of the engineer is not only the optimization of the systems but also to understand what 

makes a good design. The question - particularly in the early stage of the design process - is often not about 

finding the best parameter values, but is about what parameter ranges would generate competitive designs or 

solutions. In a more pragmatic simulation level, engineers often want to confine the simulation runs to parameter 

settings for which results are trustworthy. Such information may not be available until one actually runs the 

simulation (e.g. whether it crashes/converges or not). Our research is motivated from engineering design 

situations in which accuracy of optimized result is not of paramount importance, but efficient identification of 

the “good input space” is.  

In this paper, we propose an adaptive sampling algorithm that uses a Self-Organizing Map (SOM) 
[2]

 to 

perform a kind of importance sampling. SOM represents a set of multidimensional vectors and arrays in a low 

dimensional space - typically 2D. The map consists of cells (neurons) and each of them has an associated weight 

vector. These vectors are trained with a set of training samples so that average distances between the training 

samples and the weight vectors are minimized. Two adjacent cells indicate that two associated vectors are 

similar, i.e. their distance (usually Euclidean) is small. In this adaptive sampling method, the cell weight-vectors 

correspond to the potential sampling points. The fundamental idea is to have an algorithm that learns to sample 

in the region of interest in the design (or input) space using the density learning mechanism in SOM. It is similar 

to Monte Carlo Optimization methods such as Probability Collectives 
[6] 

 and Cross-Entropy 
[3] 

Methods. 

However, we do not use parameterized probability density functions to represent solutions. Instead, SOM is used 

to obtain a set of solutions as represented by the weight vectors in each cell of the map. Since SOM represents a 

densely sampled region as having larger area on the map than that of a sparsely sampled region, a weight vector 

can be considered as being analogous to an instance of random vector drawn from a probability density 

distribution. Furthermore, these vectors are “mutated” to improve diversity. The training sample set can be 

iteratively enriched with new samples that exhibit desirable responses (or objective values) and SOM retrained 

on them. At the same time, the training set has a maximum capacity. The less interesting samples can be 

discarded from the set. This leads to SOM eventually showing only good solutions.  
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In the literature, application of Self-Organizing Map (SOM) to optimization problems can be found in 
[8, 1, 5]

. 

Su and Zhao 
[8]

 proposed SOM-based optimization (SOMO), in which the winning weight vector at each 

iteration is the weight vector that gives maximum (or minimum) objective function value. Neighboring weight 

vectors are updated to be closer in Euclidean distance to this winning weight vector. For this method there is no 

sample set to train the weights. It just needs initialization of the weight vectors. A small perturbation is added to 

every update of the vectors to keep diversity.  

Chen and Young’s 
[1]

 SOM-based search algorithm (SOMS) also updates the weight vectors according to 

their corresponding objective values. In their method, the training objective is to align distances represented as 

Gaussian distribution functions in the map (or neuron) with the weight vector (or parameter) space by iteratively 

adjusting its center to the weight vector returning the minimum (or maximum) objective value found so far and 

its standard deviation to the distance between the center of current iteration and the newly found best point. 

Other off-center weight vectors are updated accordingly so that Gaussian distance from center on the map and 

the Gaussian distance from the center in the weight vector space is minimized using a gradient based algorithm. 

Therefore, the map (or neuron space) gives the reference distribution of samples and this distribution is mapped 

in the input space with new center and standard deviation in the input space. The center of the map, standard 

deviation and the weights are updated per dimension. Thus, if the map is rectangular and the input space is two 

dimensional, the weight vectors are distributed in rectangular shape changing its aspect ratio and area as the 

iteration proceeds.  

Milano, Koumoutsakos, and Schmidhuber 
[5]

 proposed Evolutionary Strategy (ES) based methods in which 

mutation is performed using SOM, namely Kohonen SOM ES (KSOM-ES) and Neural-Gas SOM ES (NGSOM-

ES). In KSOM-ES, the weight vectors partition the search space into simplexes and at each iteration a simplex is 

randomly chosen to sample a point uniformly. In NGSOM-ES, a sample is taken from normal distribution 

around one of the SOM weight vectors. If the sample gives better objective value than what is known, the weight 

vector updates take place.  

In all of these, it is the training algorithm of the weight vectors that is modified so as to suit to the task of 

optimization. They do not train from the training sample distribution but from the point giving the best objective 

function value. They also assume the optimal point is unique. In these algorithms, there are no mechanism to 

track multiple interesting points or to identify a solution “set” or input region. Our algorithm does not entail any 

modification of existing SOM. Therefore, different implementation of SOM or other density learning algorithms 

can be used in its place. It provides a convenient functionality to algorithmically focus on a more interesting 

region of the input space by shifting the sample densities. 

 

2 ALGORITHMS 

Algorithm 1 shows a high level description of our Self-Organizing Map Based Adaptive Sampling 

(SOMBAS). In every iteration, the trained Self-Organizing Map (SOM) produces new solution candidates. 

Weight vectors are selected based on its objective or merit value according to a method similar to Simulated 

Annealing. Perturbations are applied to these selected vectors and their objective values are computed. These 

selected samples are included in the training sample set to train the SOM of next iteration. 
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The selection condition as described in Algorithm 2 took hint in the Simulated Annealing literature. The 

probability of a weight vector being selected depends on how close it is from the weight vector with the smallest 

estimated objective value. All the vectors will have estimate of objective values because the training samples are 

concatenated vector of input and output (x
T
 , y). The selection condition is 

 

      (
      

 
)  (1)  

 

where   is a random number drawn from a uniform distribution and is      , ymin be smallest output in the 

training sample. The temperature   defines how selective the condition is and smaller value gives smaller 

number of new samples to be added to the training data set. For our algorithm,          . Unlike SA,   is 

held constant. For design space identification, we consider a case in which we seek to minimize an objective 

value y below certain threshold   . One idea is to use a merit function similar to those described by Torczon et al 
[9]

. One could give better chance of being selected to points (i.e. cell weight vector) that are distant from existing 

training samples regardless of  ’s value. To achieve this, we propose the following formula for the merit 

function. 

 

        (   )      (‖    ‖ )            (2)  

 

where   is the input vector for which   needs to be minimized,    is a set of target samples from which minimum 

distance to the input vector   is calculated,   is the number of such target vectors, and   is a weight constant. To 

minimize this merit function, one needs       and maximize the distance to the nearest target vector    (‖   
   ‖). In our case, target vectors are the training set and the input vector   is the selected weight vector from 

SOM. The algorithm to replace the output with this merit function is described in Algorithm 3. If y is greater 

than the threshold  , both   and the new weight vector’s distance from the training set are taken into account. If 

y is less than  , then the distance to the nearest training vector is the only term affecting the objective value and 

smaller   is obtained when the weight vector’s distance to the nearest neighbor is larger. The   in equation 2 is a 

positive weighing constant.  

 

 
 

Mutation as described in Algorithm 4 is applied to the selected weight vectors. We use the vectors as the 

centers of multi-variate Gaussian distributions. The covariance matrix is obtained from the selected weight 

vectors. we use an idea from CMA-ES to the updating of covariance matrices. Covariance in current iteration is 

combined with the covariance computed in the previous iteration:             . This is to avoid adapting too 

quickly to local minima. On top of that, we multiply a factor which is different whether the previous iteration 

produced a new minimum or not. If the previous iteration achieved a new minimum we apply an expansion 

factor   , which we assign a real value larger than 1. On the other hand, if the previous iteration did not produce 
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a smaller minimum compared to that of  two iterations ago, we multiply a contraction factor   , which we assign 

a real value between 0 and 1. Covariance matrix is the same for all the selected weight vectors. Each weight 

vector is perturbed by sampling from their Gaussian distribution. This can easily be done using numpy module in 

Python. Mutation is very important to avoid premature convergence in SOMBAS. 

 

 
 

After the perturbation, the new set of samples (weight vectors) is supplied to the training set and the training 

set needs to be updated. Algorithm 5 and Algorithm 6 are two such methods. Algorithm 5 has a faster 

convergence but is more prone to loose diversity in training set compared to Algorithm 6. In the next section we 

will use Algorithm 6. 

 

 
 

 

 
3 EXPERIMENTS 

Two kind of experiments were tried out to see the characteristics of the algorithm. One is optimization and 

the other is design space identification. Unlike classification problems in which the training samples contain both 

positive and negative training samples, design space (feasible domain) identification can start from 100 % 

negative (infeasible) training samples. Therefore, the search mechanism (optimization) and space-filling 

characteristics are both important. In the first kind, the objective is to find the input parameters for which the 

objective value is minimum and the second kind is to obtain as diverse set of input parameters as possible 

satisfying the objective value constraint. For these experiments some well known test functions are used. We 

employed Differential Evolution’s result for comparison. Python script of DE was implemented. DE was 

selected for comparison because it also uses distribution of samples (population) during the course of evolution. 

The objective in this section is to illustrate the different characteristics between DE and our SOM Based 

Adaptive Sampling (SOMBAS). In all of the experiments conducted, we used the self organizing map script 

from Marsland’s book 
[4]

. It was treated as black box and its learning parameters were kept to the default value in 
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the script, except for the map size (number of cells in x,y directions) and number of training iterations. 

3.1 Function Minimization 

To investigate optimization functionality of SOMBAS,We tried 5 functions: Rosenbrock, Rasgtrigin, Rotated 

Ellipsoid, Ackley, and Manevich. The result of optimizations are compared against DE. We employed the 

classical DE1 as described in Storn and Price
[7]

. The stopping criteria for these functions were the best solution 

reaching the objective value below 1.0 × 10
−6

, or maximum number of function evaluation is reached, or the 

difference between the worst sample and best sample in the training set in SOMBAS or population in DE 

becomes less than 1.0×10
−6

. We refer this difference as “gap tolerance”. We measured number of function 

evaluation    and the objective values  . Optimization were run multiple times and average value of number of 

function evaluation  ̃  and average minimum objective value reached  ̃ were computed. The parameters of 

SOMBAS and DE were manually tuned, but to the extent that they solve the problem without excessively 

premature convergence or excessively large number of iterations. Therefore, the comparative results shown in 

this section does not indicate any definite superiority or inferiority against the algorithm compared. The global 

minima of the 5 functions are 0 and the corresponding input values are     ,         for Rosenbrock and 

     for the remaining four functions. Here, D is the number of dimensions.  

The results in two dimensional problems are shown in Table 1. They show the average of 20 runs. SOMBAS 

showed a particularly strong performance in an epistatic problem (Rosenbrock) and in an ill-conditioned 

problem (Manevich). Rastrigin and Ackley are highly multimodal function but non-epsitatic, and in these, 

SOMBAS performed less well. 

 

Table 1. Optimization results of 2D functions (average of 20 runs) 

In 30 dimensional problems, number of training samples in SOMBAS was matched to the population sizes of 

DE and they were between 20 and 45 depending on the function to be minimized. These population sizes are 

known to be optimal for DE
[7]

. The number of SOM weight vectors were set slightly larger than the number of 

training samples. Number of function evaluations and objective values were listed at around 2,000, 20,000 and 

200,000 function evaluations in Table 2 Table 3 and Table 4 respectively. For Table 2 and Table 3, the numbers 

are average of 20 runs and for Table 4 they are the average of 5 runs.  

 

Table 2. Optimization results of 30D functions after 2,000 function evaluations (average of 20 runs) 

In Table 3, we observe that Ackley and Manevich function converges prematurely for SOMBAS and 

Manevich converges successfully in about 13,000 function evaluations for DE. Smaller gap tolerance (and larger 

number of SOM weight vectors) may avoid the premature convergences, but we will not delve further on this as 

it is not our objective.  
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Table 3. Optimization results of 30D functions after 20,000 function evaluations (average of 20 runs) 

Table 4 shows that by 200,000 function evaluations DE has minimized the function values below the 

1.0×10
−6

 threshold except for Rosenbrock function. For SOMBAS, Rastrigin converged to a local optima and 

Rotated Ellipsoid has not converged at 200,011 evaluations. DE seems to have an edge in the final accuracy of 

the optimization in this table. One particular aspect observed in these tables showing results at three different 

number of function evaluations is that SOMBAS perform rather fast decrease in function values at early stages 

of the optimization runs. To see this more clearly, we performed an additional optimization campaign with larger 

number of training samples or population.  

 

Table 4. Optimization results of 30D functions after 200,000 function evaluations (average of 5 runs) 

Table 5 shows the results with training sample and population size of 900 and total function evaluation of 

about 2000. In this table, the minimum function values reached by SOMBAS is substantially lower than those 

reached by DE. Also, comparing to the function values attained in Table 2, DE has shown a lot larger increases 

in function values compared to the increases for SOMBAS. The difference between Table 2 and Table 5 is the 

number of samples or population evaluated in each iteration, that of Table 5 being much larger. This indicates 

that for a fixed number of function evaluations, the minimum function values achieved is less sensitive to the 

increase in number of training samples in SOMBAS than to the increase of population in DE.  

3.2 Design Space Identification 

In this subsection, we consider a kind of constraint satisfaction problem in which there is a constraint on the 

objective (to be below certain threshold value) but one would like to know what kind of inputs to the objective 

function would satisfy this condition. Ideally, one would like to have as much variety as possible in the 

collection of inputs that we obtain as solutions. 

Figure 1 shows all the sampled points by SOMBAS in blue crosses during the course of satisfying maximum 

objective value returned from the training samples to be less than 100 on Rosenbrock function. This figure 

demonstrates the effect of having the Merit Function and/or Mutation instead of simply using the objective 

function in the space filling task. In general, Merit function is useful in decreasing large sampling gaps as shown 

in Figure 1 (a) and (b). The number function evaluations until all samples returns objective value below the 

threshold) Trunc = 100 in Algorithm 3 do not increase by its use. On the other hand, Mutation carries some 

penalties in number of function evaluations. However, it has additional space-filling characteristics not attainable 

by use of only the Merit Function. 

 

Table 5. Effect of large training samples or populations (900) in optimization of 30D functions for relatively 

small number of function evaluations (2000) (average of 20 runs) 
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Figure 1. Sampled sites in the process of satisfying the condition that maximum response of the training samples 

be less than 100 

To see the effect of Merit Function and selectivity temperature  , we run 20 times the constraint satisfaction 

problem and summarized in Table 6. It is again Rosenbrock function in 2D and all the training samples (60 of 

them) were driven to be less than 100. In this table, we see four rows with different setting for selectivity 

temperature T and Merit Function. In all four cases, Mutation was applied. If “Trunc” is none, the Rosenbrock 

function output is used in the selection of weight vectors. If Trunc is 100, Merit Function is used ( L = 100 in 

Equation 2). The  s indicate the standard deviation of   ,   , and function value   in the final training samples. 

The larger these  s are the more diverse is the solution set. Here, we see that Merit Function indeed increases the 

standard deviation of the solution set (or the final training samples). 

 

Table 6. Effect of Truncation and Selectivity Parameter “T” on Diversity in Solutions Satisfying Objective 

Constraint (average of 20 runs) 

In Figure 2 through Figure 4, we visualized different types of feasible domains and the sampling (shown in 

cross) inside them. The contour plot show the boundaries of the domains. Except for Rastrigin function, 

SOMBAS was able to produce a fairly uniform space-filling of samples in the 2D input domain for the functions 

tested. Since DE also have distribution learning characteristics, did very well in the feasible domain space-filling 

task.  
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Figure 2. Sample distribution satisfying objective condition       in Rosenbrock function 

 
Figure 3. Sample distribution satisfying objective condition      in Rastrigin function 

 
Figure 4. Sample distribution satisfying constraints in Hollow Beam function 
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To see this in a more statistical ground, we repeated the sampling task for each of the three equation 20 

times. Table 7 to Table 9 show the results. Here,  ̃̃ is the average distance of nearest neighbors. The tilde on top 

of the symbol signifies averaging. The nearest neighbor have two tildes corresponding to the average in the 

feasible domain and average of 20 runs.  ̃  is the average number of function evaluation,  ̃  is the average 

number of samples in the feasible domain,  ̃  is the average standard deviation of distances to the nearest 

neighbors. We also define the feasible rate 
 ̃ 

 ̃ 
 and coverage length  ̃   ̃̃   ̃ . The feasible rate gives the ratio 

of number of feasible samples to the total number of function evaluation. Larger the value the better. The 

coverage length gives efficiency of space-filling quality. The larger its value the better. The coverage length is 

meaningful only when we compare different methods on the same feasible domain identification problem. We 

need further investigation in the measurement of space-filling quality that is scale independent. 

 

Table 7. Average Nearest Neighbor Distances of Sampled Points by SOMBAS and DE - Rosenbrock Function 

 

Table 8. Average Nearest Neighbor Distances of Sampled Points by SOMBAS and DE - Rastrigin Function 

 
Table 9. Average Nearest Neighbor Distances of Sampled Points by SOMBAS and DE - Hollow Beam 

In all three functions tested, we matched the training sample size in SOMBAS with the population size in 

DE.  This was done so that space-filling density becomes more or less comparable between DE and SOMBAS.  

SOMBAS showed very good feasible rates and coverage lengths compared to DE for Hollow Beam and 

Rosenbrock.  On the other hand, DE outperformed SOMBAS  in Rastrigin Function in both feasible rate and 

coverage length.  

4 CONCLUSIONS 

Although, the conducted experiments are on a series of simple mathematical functions, they have helped in 

elucidating the strength and weakness of the new algorithm. In particular, it has shown promises in efficient 

initial reduction in function values in optimization as well as economical identification of input spaces that 

satisfy objective criteria.  

Future work will include application of the algorithm to industrial problems as well as to surrogate model 

construction. A good measure of space-filling quality needs to be investigated.  Since Self-Organizing Maps can 

visually represent high dimensional space in 2D, it can provide a way to include human in the optimization and 

adaptive sampling loop. This feature may be particularly useful when problem definition is not rigorous and 

human experience plays a substantial role in the design process. We would also be interested in further 

investigating the parallel capability and efficiency of the algorithm. 
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