26 research outputs found

    UTP2: Higher-Order Equational Reasoning by Pointing

    Full text link
    We describe a prototype theorem prover, UTP2, developed to match the style of hand-written proof work in the Unifying Theories of Programming semantical framework. This is based on alphabetised predicates in a 2nd-order logic, with a strong emphasis on equational reasoning. We present here an overview of the user-interface of this prover, which was developed from the outset using a point-and-click approach. We contrast this with the command-line paradigm that continues to dominate the mainstream theorem provers, and raises the question: can we have the best of both worlds?Comment: In Proceedings UITP 2014, arXiv:1410.785

    Anselm's God in Isabelle/HOL

    Get PDF
    Paul Oppenheimer and Edward Zalta's formalisation of Anselm's ontological argument for the existence of God is automated by embedding a free logic for definite descriptions within Isabelle/HOL

    A Case Study on Computational Hermeneutics: E. J. Lowe’s Modal Ontological Argument

    Get PDF
    Computers may help us to better understand (not just verify) arguments. In this article we defend this claim by showcasing the application of a new, computer-assisted interpretive method to an exemplary natural-language ar- gument with strong ties to metaphysics and religion: E. J. Lowe’s modern variant of St. Anselm’s ontological argument for the existence of God. Our new method, which we call computational hermeneutics, has been particularly conceived for use in interactive-automated proof assistants. It aims at shedding light on the meanings of words and sentences by framing their inferential role in a given argument. By employing automated theorem reasoning technology within interactive proof assistants, we are able to drastically reduce (by several orders of magnitude) the time needed to test the logical validity of an argu- ment’s formalization. As a result, a new approach to logical analysis, inspired by Donald Davidson’s account of radical interpretation, has been enabled. In computational hermeneutics, the utilization of automated reasoning tools ef- fectively boosts our capacity to expose the assumptions we indirectly commit ourselves to every time we engage in rational argumentation and it fosters the explicitation and revision of our concepts and commitments

    LISA - A Modern Proof System

    Get PDF

    A Synthesis of the Procedural and Declarative Styles of Interactive Theorem Proving

    Get PDF
    We propose a synthesis of the two proof styles of interactive theorem proving: the procedural style (where proofs are scripts of commands, like in Coq) and the declarative style (where proofs are texts in a controlled natural language, like in Isabelle/Isar). Our approach combines the advantages of the declarative style - the possibility to write formal proofs like normal mathematical text - and the procedural style - strong automation and help with shaping the proofs, including determining the statements of intermediate steps. Our approach is new, and differs significantly from the ways in which the procedural and declarative proof styles have been combined before in the Isabelle, Ssreflect and Matita systems. Our approach is generic and can be implemented on top of any procedural interactive theorem prover, regardless of its architecture and logical foundations. To show the viability of our proposed approach, we fully implemented it as a proof interface called miz3, on top of the HOL Light interactive theorem prover. The declarative language that this interface uses is a slight variant of the language of the Mizar system, and can be used for any interactive theorem prover regardless of its logical foundations. The miz3 interface allows easy access to the full set of tactics and formal libraries of HOL Light, and as such has "industrial strength". Our approach gives a way to automatically convert any procedural proof to a declarative counterpart, where the converted proof is similar in size to the original. As all declarative systems have essentially the same proof language, this gives a straightforward way to port proofs between interactive theorem provers

    Implementing HOL in an Higher Order Logic Programming Language

    Get PDF
    International audienceWe present a proof-of-concept prototype of a (constructive variant of an) HOL interactive theorem prover written in a Higher Order Logic Programming (HOLP) language, namely an extension of λProlog. The prototype is meant to support the claim, that we reinforce , that HOLP is the class of languages that provides the right abstraction level and programming primitives to obtain concise implementations of theorem provers. We identify and advocate for a programming technique, that we call semi-shallow embedding, while at the same time identifying the reasons why pure λProlog is not sufficient to support that technique, and it needs to be extended

    A Case Study On Computational Hermeneutics: E. J. Lowe's Modal Ontological Argument

    Get PDF
    Computers may help us to better understand (not just verify) arguments. In this article we defend this claim by showcasing the application of a new, computer-assisted interpretive method to an exemplary natural-language argument with strong ties to metaphysics and religion: E. J. Lowe’s modern variant of St. Anselm’s ontological argument for the existence of God. Our new method, which we call computational hermeneutics, has been particularly conceived for use in interactive-automated proof assistants. It aims at shedding light on the meanings of words and sentences by framing their inferential role in a given argument. By employing automated theorem reasoning technology within interactive proof assistants, we are able to drastically reduce (by several orders of magnitude) the time needed to test the logical validity of an argument’s formalization. As a result, a new approach to logical analysis, inspired by Donald Davidson’s account of radical interpretation, has been enabled. In computational hermeneutics, the utilization of automated reasoning tools effectively boosts our capacity to expose the assumptions we indirectly commit ourselves to every time we engage in rational argumentation and it fosters the explicitation and revision of our concepts and commitments
    corecore