459 research outputs found

    Design and Experimental Validation of a Software-Defined Radio Access Network Testbed with Slicing Support

    Get PDF
    Network slicing is a fundamental feature of 5G systems to partition a single network into a number of segregated logical networks, each optimized for a particular type of service, or dedicated to a particular customer or application. The realization of network slicing is particularly challenging in the Radio Access Network (RAN) part, where multiple slices can be multiplexed over the same radio channel and Radio Resource Management (RRM) functions shall be used to split the cell radio resources and achieve the expected behaviour per slice. In this context, this paper describes the key design and implementation aspects of a Software-Defined RAN (SD-RAN) experimental testbed with slicing support. The testbed has been designed consistently with the slicing capabilities and related management framework established by 3GPP in Release 15. The testbed is used to demonstrate the provisioning of RAN slices (e.g. preparation, commissioning and activation phases) and the operation of the implemented RRM functionality for slice-aware admission control and scheduling

    Design and experimental validation of a software-defined radio access network testbed with slicing support

    Get PDF
    Network slicing is a fundamental feature of 5G systems to partition a single network into a number of segregated logical networks, each optimized for a particular type of service or dedicated to a particular customer or application. The realization of network slicing is particularly challenging in the Radio Access Network (RAN) part, where multiple slices can be multiplexed over the same radio channel and Radio Resource Management (RRM) functions shall be used to split the cell radio resources and achieve the expected behaviour per slice. In this context, this paper describes the key design and implementation aspects of a Software-Defined RAN (SD-RAN) experimental testbed with slicing support. The testbed has been designed consistently with the slicing capabilities and related management framework established by 3GPP in Release 15. The testbed is used to demonstrate the provisioning of RAN slices (e.g., preparation, commissioning, and activation phases) and the operation of the implemented RRM functionality for slice-aware admission control and scheduling.Peer ReviewedPostprint (published version

    Application of the Financial Industry Business Ontology (FIBO) for development of a financial organization ontology

    Get PDF
    The article considers an approach to a formalized description and meaning harmonization for financial terms and means of semantic modeling. Ontologies for the semantic models are described with the help of special languages developed for the Semantic Web. Results of FIBO application to solution of different tasks in the Russian financial sector are given

    Application of the Financial Industry Business Ontology (FIBO) for development of a financial organization ontology

    Get PDF
    The article considers an approach to a formalized description and meaning harmonization for financial terms and means of semantic modeling. Ontologies for the semantic models are described with the help of special languages developed for the Semantic Web. Results of FIBO application to solution of different tasks in the Russian financial sector are given

    Static analysis techniques for the synthesis of efficient asynchronous circuits

    Get PDF
    technical reportIn the context of deriving asynchronous circuits from high-level descriptions, determining whether two actions are potentially concurrent (overlapped execution) or serial (non-overlapped execution) has several advantages. This knowledge can be utilized to efficiently implement shared variables, support speculative guard evaluation, and optimize resources (circuitry) by sharing. In a distributed environment with several concurrent processes, determining whether two actions are potentially concurrent or not, automatically, is often difficult to formulate and computationally expensive. In this paper, we present techniques to overcome these problems. First, we present a tool called parComp which infers the composite behavior of a collection of modules, and then we present an algorithm called conCur to analyze the inferred behavior to detect the seriality of two actions. Simple heuristics are presented for the abstraction of the inferred behavioral descriptions and improving the efficiency of conCur. The algorithms parComp and conCur are illustrated in the hopCP framework and implemented in Standard ML of New Jersey. Execution times of the algorithms are reported on a variety of examples. The results are quite encouraging

    Specification-driven design of custom hardware in HOP

    Get PDF
    technical reportWe present a language "Hardware viewed as Objects and Processes" (HOP) for specifying the structure, behavior, and timing of hardware systems. HOP embodies a simple process model for lock-step synchronous processes. Processes may be described both as a black-box and as a collection of interacting sub-processes. The latter can be statically simplified using an algorithm 'PARCOMP'. PARCOMP symbolically simulates a collection of interacting processes. The advantages claimed for HOP include simple semantics, intuitiveness, high expressive power, and numerous provisions to support easily verifiable designs all the way to VLSI layout. After introducing HOP, and presenting some of the results obtained from experimenting with the HOP design system, we present the design of a large hardware system (the "Utah Simulation Engine") currently being developed to speed-up distributed discrete event simulation using Time Warp. Issues in the specification driven design of this system are discussed and illustrated using HOP

    Object links in the repository

    Get PDF
    Some of the architectural ramifications of extending the Eichmann/Atkins lattice-based classification scheme to encompass the assets of the full life-cycle of software development are explored. In particular, we wish to consider a model which provides explicit links between objects in addition to the edges connecting classification vertices in the standard lattice. The model we consider uses object-oriented terminology. Thus, the lattice is viewed as a data structure which contains class objects which exhibit inheritance. A description of the types of objects in the repository is presented, followed by a discussion of how they interrelate. We discuss features of the object-oriented model which support these objects and their links, and consider behavior which an implementation of the model should exhibit. Finally, we indicate some thoughts on implementing a prototype of this repository architecture

    CFSIM: A concurrent compiled-code functional simulator for hopCP

    Get PDF
    Journal ArticleControl intensive ICs pose a significant challenge to the users of formal methods in designing hardware. These ICs have to support a wide variety of requirements including synchronous and asynchronous operations, polling and interrupt-driven modes of operation, multiple concurrent threads of execution, complex computations, and programmability. In this paper, we illustrate the use of formal methods in the design of a control intensive IC called the "Intel 8251" Universal Synchronous/Asynchronous Receiver/Transmitter (USART), using our formal hardware description language 'hopCP'. A feature of hopCP is that it supports communication via asynchronous ports (distributed shared variables writable by exactly one process), in addition to synchronous message passing. We show the usefulness of this combination of communication constructs. We outline static analysis algorithms to determine safe usages of asynchronous ports, and also to discover other static properties of the specification. We discuss a compiled-code concurrent functional simulator called CFSIM, as well as the use of concurrent testers for driving CFSIM. The use of a semantically well specified and simple language, and the associated analysis/simulation tools helps conquer the complexity of specifying and validating control intensive ICs

    Open predicate path expressions for distributed environments: notation, implementation, and extensions

    Get PDF
    This dissertation introduces open predicate path expressions --a non-procedural, very-high-level language notation for the synchronization of concurrent accesses to shared data in distributed computer systems. The target environment is one in which resource modules (totally encapsulated instances of abstract data types) are the basic building blocks in a network of conventional, von Neumann computers or of functional, highly parallel machines. Each resource module will contain two independent submodules: a synchronization submodule which coordinates requests for access to the resource\u27s data and an access-mechanism submodule which localizes the code for operations on that data;Open predicate path expressions are proposed as a specification language for the synchronization submodule and represent a blend of two existing path notations: open path expressions and predicate path expressions. Motivations for the adoption of this new notation are presented, and an implementation semantics for the notation is presented in the form of dataflow graphs;An algorithm is presented which will automatically synthesize an open predicate path expression into a dataflow graph, which is then implemented by a network of communicating submodules written in either a sequential or an applicative language. Finally, an extended notation for the synchronization submodule is proposed, the purpose of which is to provide greater expressive power for certain synchronization problems which are difficult to specify using path expressions alone
    corecore