82 research outputs found

    Accessing files in an Internet: The Jade file system

    Get PDF
    Jade is a new distribution file system that provides a uniform way to name and access files in an internet environment. It makes two important contributions. First, Jade is a logical system that integrates a heterogeneous collection of existing file systems, where heterogeneous means that the underlying file systems support different file access protocols. Jade is designed under the restriction that the underlying file system may not be modified. Second, rather than providing a global name space, Jade permits each user to define a private name space. These private name spaces support two novel features: they allow multiple file systems to be mounted under one directory, and they allow one logical name space to mount other logical name spaces. A prototype of the Jade File System was implemented on Sun Workstations running Unix. It consists of interfaces to the Unix file system, the Sun Network File System, the Andrew File System, and FTP. This paper motivates Jade's design, highlights several aspects of its implementation, and illustrates applications that can take advantage of its features

    A performance model of speculative prefetching in distributed information systems

    Full text link
    Previous studies in speculative prefetching focus on building and evaluating access models for the purpose of access prediction. This paper investigates a complementary area which has been largely ignored, that of performance modelling. We use improvement in access time as the performance metric, for which we derive a formula in terms of resource parameters (time available and time required for prefetching) and speculative parameters (probabilities for next access). The performance maximization problem is expressed as a stretch knapsack problem. We develop an algorithm to maximize the improvement in access time by solving the stretch knapsack problem, using theoretically proven apparatus to reduce the search space. Integration between speculative prefetching and caching is also investigated, albeit under the assumption of equal item sizes

    WebWave: Globally Load Balanced Fully Distributed Caching of Hot Published Documents

    Full text link
    Document publication service over such a large network as the Internet challenges us to harness available server and network resources to meet fast growing demand. In this paper, we show that large-scale dynamic caching can be employed to globally minimize server idle time, and hence maximize the aggregate server throughput of the whole service. To be efficient, scalable and robust, a successful caching mechanism must have three properties: (1) maximize the global throughput of the system, (2) find cache copies without recourse to a directory service, or to a discovery protocol, and (3) be completely distributed in the sense of operating only on the basis of local information. In this paper, we develop a precise definition, which we call tree load-balance (TLB), of what it means for a mechanism to satisfy these three goals. We present an algorithm that computes TLB off-line, and a distributed protocol that induces a load distribution that converges quickly to a TLB one. Both algorithms place cache copies of immutable documents, on the routing tree that connects the cached document's home server to its clients, thus enabling requests to stumble on cache copies en route to the home server.Harvard University; The Saudi Cultural Mission to the U.S.A

    Effect of speculative prefetching on network load in distributed systems

    Full text link
    Previous studies in speculative prefetching focus on building and evaluating access models for the purpose of access prediction. This paper on the other hand investigates the performance of speculative prefetching. When prefetching is performed speculatively, there is bound to be an increase in the network load. Furthermore, the prefetched items must compete for space with existing cache occupants. These two factors-increased load and eviction of potentially useful cache entries-are considered in the analysis. We obtain the following conclusion: to maximise the improvement in access time, prefetch exclusively all items with access probabilities exceeding a certain threshold.<br /

    Distributed computing environments for future space control systems

    Get PDF
    The aim of this paper is to present the results of a CNES research project on distributed computing systems. The purpose of this research was to study the impact of the use of new computer technologies in the design and development of future space applications. The first part of this study was a state-of-the-art review of distributed computing systems. One of the interesting ideas arising from this review is the concept of a 'virtual computer' allowing the distributed hardware architecture to be hidden from a software application. The 'virtual computer' can improve system performance by adapting the best architecture (addition of computers) to the software application without having to modify its source code. This concept can also decrease the cost and obsolescence of the hardware architecture. In order to verify the feasibility of the 'virtual computer' concept, a prototype representative of a distributed space application is being developed independently of the hardware architecture

    SCALABLE CAPABILITY-BASED AUTHORIZATION FOR HIGH-PERFORMANCE PARALLEL FILE SYSTEMS

    Get PDF
    As the size and scale of supercomputers continues to increase at an exponential rate the number of users on a given supercomputer will only grow larger. A larger number of users on a supercomputer places a greater importance on the strength of information security. Nowhere is this requirement for security more apparent than the file system, as users expect their data to be protected from accidental or deliberate modification. In spite of the ever-increasing demand for more secure file system access the majority of parallel file systems do not implement a robust security protocol for fear it will negatively impact the performance and scalability of the file system. We provide a capability-based security protocol for use in high-performance parallel file systems that is capable of meeting the performance and scalability requirements of current and future supercomputers. We develop a reference implementation for the Parallel Virtual File System and show its performance characteristics using several microbenchmarks. Our test results show that capability-based security is capable of protecting access to parallel file system objects, in some cases with little overhead

    Distributed file systems for Unix

    Get PDF
    With the advent of distributed systems, mechanisms that support efficient resource sharing are necessary to exploit a distributed architecture. One of the key resources UNIX provides is a hierarchical file system. Early efforts supported distributed UNIX systems by copying files and sending mail between individual machines. The desire to provide transparent mechanisms on which distributed systems access resources has propelled the development of distributed file systems. This thesis presents a brief history of the development of distributed systems based on UNIX, and surveys recent implementations of distributed file systems based on UNIX. The IBIS distributed file system is an example of the latter. The original capabilities of IBIS are discussed and modifications that enhance these capabilities described

    Performance optimization problem in speculative prefetching

    Full text link
    Speculative prefetching has been proposed to improve the response time of network access. Previous studies in speculative prefetching focus on building and evaluating access models for the purpose of access prediction. This paper investigates a complementary area which has been largely ignored, that of performance modeling. We analyze the performance of a prefetcher that has uncertain knowledge about future accesses. Our performance metric is the improvement in access time, for which we derive a formula in terms of resource parameters (time available and time required for prefetehing) and speculative parameters (probabilities for next access). We develop a prefetch algorithm to maximize the improvement in access time. The algorithm is based on finding the best solution to a stretch knapsack problem, using theoretically proven apparatus to reduce the search space. An integration between speculative prefetching and caching is also investigated
    corecore