92 research outputs found

    Effects of the passage of Comet C/2013 A1 (Siding Spring) observed by the Shallow Radar (SHARAD) on Mars reconnaissance orbiter

    Get PDF
    The close passage of Comet C/2013 A1 (Siding Spring) to Mars provided a unique opportunity to observe the interaction of cometary materials with the Martian ionosphere and atmosphere using the sounding radar SHARAD (SHAllow RADar) aboard Mars Reconnaissance Orbiter. In two nightside observations, acquired in the 10 h following the closest approach, the SHARAD data reveal a significant increase of the total electron content (TEC). The observed TEC values are typical for daylight hours just after dawn or before sunset but are unprecedented this deep into the night. Results support two predictions indicating that cometary pickup O+ ions, or ions generated from the ablation of cometary dust, are responsible for the creation of an additional ion layer

    Science results from sixteen years of MRO SHARAD operations

    Get PDF
    In operation for >16 years to date, the Mars Reconnaissance Orbiter (MRO) Shallow Radar (SHARAD) sounder has acquired data at its nominal 300–450 m along-track and 3-km cross-track resolution covering >55% of the Martian surface, with nearly 100% overlap in coverage at that scale in the polar regions and in a number of smaller mid-latitude areas. While SHARAD data have opened a new window into understanding the interior structures and properties of Martian ices, volcanics, and sedimentary deposits up to a few kilometers in depth, they have also led to new revelations about the deeper interior and the behavior of the planet’s ionosphere. Here we summarize the data collected by SHARAD over this time period, the methods used in the analysis of that data, and the resulting scientific findings. The polar data are especially rich, revealing complex structures that comprise up to several dozen reflecting interfaces that extend to depths of 3 km, which inform the evolution of Martian climate in the late Amazonian period. SHARAD observations of mid-latitude lobate debris aprons and other glacier-like landforms detect strong basal reflections and low dielectric loss, confirming that they are icerich debris-covered glaciers. In other mid-latitude terrains, SHARAD data demonstrate the presence of widespread ground ices, likely at lower concentrations. SHARAD signals also probe non-icy materials, mapping out stacked lava flows, probing low-density materials thought to be ash-fall deposits, and occasionally penetrating sedimentary deposits, all of which reveal the structures and interior properties diagnostic of emplacement processes. SHARAD signals are impacted by their passage through the Martian ionosphere, revealing variations in time and space of the total electron content linked with the remanent magnetic field. Advanced techniques developed over the course of the mission, which include subband and super-resolution processing, coherent and incoherent summing, and three-dimensional (3D) radar imaging, are enabling new discoveries and extending the utility of the data. For 3D imaging, a cross-track spacing at the nominal 3-km resolution is more than sufficient to achieve good results, but finer spacing of 0.5 km or less significantly improves the spatially interpolated radar images. Recent electromagnetic modeling and a flight test show that SHARAD’s signal-to-noise ratio can be greatly improved with a large (~120◦) roll of the spacecraft to reduce interference with the spacecraft body. Both MRO and SHARAD are in remarkably fine working order, and the teams look forward to many more years in which to pursue improvements in coverage density, temporal variability in the ionosphere, and data quality that promise exciting new discoveries at Mars

    Investigation of Radar Subsurface Sounding through Seasonal Cycles Collected by Mars Shallow Radar (SHARAD) in the South Polar Area

    Get PDF
    Using an orbital-based ground-penetrating radar - SHARAD proves to be an effective method for imaging the Martian surface and subsurface layering at the south polar layered deposit. This investigation focuses on examining whether seasonal variation of CO2 thickness on the surface caused by accumulation during winter and sublimation during summer could be observed for the first time by analyzing SHARAD data. Travel time and amplitude analysis between the Martian surface reflection and a reference reflection in the subsurface were conducted on multiple orbital tracks corresponding to varying seasons. Results from the travel time analysis along all four cross-lines show that the average change in CO2 frost thickness ranged from 6.80 m to 9.58 m assuming a medium dielectric constant between 2.12 and 2.77. The CO2 thickness reaches its maximum during winter and minimum during summer likely because of the CO2 frost accumulation and retreat, respectively. This observation agrees with other studies. However, the magnitude of change in CO2 thickness estimated in this study is greater than values reported previously. This difference is attributed to the different locations of the Martian polar region examined in the various studies. Amplitude analysis does not show any relationship to seasonal variations on the Martian surface

    Combination of MRO SHARAD and deep-learning-based DTM to search for subsurface features in Oxia Planum, Mars

    Get PDF
    Context. Oxia Planum is a mid-latitude region on Mars that attracts a great amount of interest worldwide. An orbiting radar provides an effective way to probe the Martian subsurface and detect buried layers or geomorphological features. The Shallow radar orbital radar system on board the NASA Mars reconnaissance orbiter transmits pulsed signals towards the nadir and receives returned echoes from dielectric boundaries. However, radar clutter can be induced by a higher topography of the off-nadir region than that at the nadir, which is then manifested as subsurface reflectors in the radar image. Aims. This study combines radar observations, terrain models, and surface images to investigate the subsurface features of the ExoMars landing site in Oxia Planum. Methods. Possible subsurface features are observed in radargrams. Radar clutter is simulated using the terrain models, and these are then compared to radar observations to exclude clutter and identify possible subsurface return echoes. Finally, the dielectric constant is estimated with measurements in both radargrams and surface imagery. Results. The resolution and quality of the terrain models greatly influence the clutter simulations. Higher resolution can produce finer cluttergrams, which assists in identifying possible subsurface features. One possible subsurface layering sequence is identified in one radargram. Conclusions. A combination of radar observations, terrain models, and surface images reveals the dielectric constant of the surface deposit in Oxia Planum to be 4.9–8.8, indicating that the surface-covering material is made up of clay-bearing units in this region

    UWB processing applied to multifrequency radar sounders. The case of MARSIS and comparison with SHARAD

    Get PDF
    We readapt ultrawideband (UWB) processing to enhance the range resolution of the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) up to a factor of 6 (25 m). The technique provides for the estimation of radar signature over a wider spectrum via the application of wellknown super-resolution (SR) techniques to adjoining subbands. The measured spectra are first interpolated and then extrapolated outside the original bands. The revised algorithm includes the estimation and removal of ionospheric effects impacting the two signals. Because the processing requires the realignment of the echoes at different frequencies, we derived the maximum tolerable retracking error to obtain reliable super-resolved range profiles. This condition is fulfilled by low-roughness areas compared to MARSIS wavelength, which proves to be suitable for the application of our processing. Examples of super-resolved experimental products over different geological scenarios show the detection of shallow dielectric interfaces not visible from original MARSIS products. Our results are validated by comparison with the Shallow Radar (SHARAD) data acquired at the crossovers, demonstrating the potential of the method to provide enhanced imaging capabilities

    The Holy Grail: A road map for unlocking the climate record stored within Mars' polar layered deposits

    Get PDF
    In its polar layered deposits (PLD), Mars possesses a record of its recent climate, analogous to terrestrial ice sheets containing climate records on Earth. Each PLD is greater than 2 ​km thick and contains thousands of layers, each containing information on the climatic and atmospheric state during its deposition, creating a climate archive. With detailed measurements of layer composition, it may be possible to extract age, accumulation rates, atmospheric conditions, and surface activity at the time of deposition, among other important parameters; gaining the information would allow us to “read” the climate record. Because Mars has fewer complicating factors than Earth (e.g. oceans, biology, and human-modified climate), the planet offers a unique opportunity to study the history of a terrestrial planet’s climate, which in turn can teach us about our own planet and the thousands of terrestrial exoplanets waiting to be discovered. During a two-part workshop, the Keck Institute for Space Studies (KISS) hosted 38 Mars scientists and engineers who focused on determining the measurements needed to extract the climate record contained in the PLD. The group converged on four fundamental questions that must be answered with the goal of interpreting the climate record and finding its history based on the climate drivers. The group then proposed numerous measurements in order to answer these questions and detailed a sequence of missions and architecture to complete the measurements. In all, several missions are required, including an orbiter that can characterize the present climate and volatile reservoirs; a static reconnaissance lander capable of characterizing near surface atmospheric processes, annual accumulation, surface properties, and layer formation mechanism in the upper 50 ​cm of the PLD; a network of SmallSat landers focused on meteorology for ground truth of the low-altitude orbiter data; and finally, a second landed platform to access ~500 ​m of layers to measure layer variability through time. This mission architecture, with two landers, would meet the science goals and is designed to save costs compared to a single very capable landed mission. The rationale for this plan is presented below. In this paper we discuss numerous aspects, including our motivation, background of polar science, the climate science that drives polar layer formation, modeling of the atmosphere and climate to create hypotheses for what the layers mean, and terrestrial analogs to climatological studies. Finally, we present a list of measurements and missions required to answer the four major questions and read the climate record. 1. What are present and past fluxes of volatiles, dust, and other materials into and out of the polar regions? 2. How do orbital forcing and exchange with other reservoirs affect those fluxes? 3. What chemical and physical processes form and modify layers? 4. What is the timespan, completeness, and temporal resolution of the climate history recorded in the PLD

    Subsurface structure of Planum Boreum from Mars Reconnaissance Orbiter Shallow Radar soundings

    Get PDF
    We map the subsurface structure of Planum Boreum using sounding data from the Shallow Radar (SHARAD) instrument onboard the Mars Reconnaissance Orbiter. Radar coverage throughout the 1,000,000- km2 area reveals widespread reflections from basal and internal interfaces of the north polar layered deposits (NPLD). A dome-shaped zone of diffuse reflectivity up to 12 ls (1-km thick) underlies twothirds of the NPLD, predominantly in the main lobe but also extending into the Gemina Lingula lobe across Chasma Boreale. We equate this zone with a basal unit identified in image data as Amazonian sand-rich layered deposits [Byrne, S., Murray, B.C., 2002. J. Geophys. Res. 107, 5044, 12 pp. doi:10.1029/2001JE001615; Fishbaugh, K.E., Head, J.W., 2005. Icarus 174, 444–474; Tanaka, K.L., Rodriguez, J.A.P., Skinner, J.A., Bourke, M.C., Fortezzo, C.M., Herkenhoff, K.E., Kolb, E.J., Okubo, C.H., 2008. Icarus 196, 318–358]. Elsewhere, the NPLD base is remarkably flat-lying and co-planar with the exposed surface of the surrounding Vastitas Borealis materials. Within the NPLD, we delineate and map four units based on the radar-layer packets of Phillips et al. [Phillips, R.J., and 26 colleagues, 2008. Science 320, 1182– 1185] that extend throughout the deposits and a fifth unit confined to eastern Gemina Lingula. We estimate the volume of each internal unit and of the entire NPLD stack (821,000 km3), exclusive of the basal unit. Correlation of these units to models of insolation cycles and polar deposition [Laskar, J., Levrard, B., Mustard, J.F., 2002. Nature 419, 375–377; Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi:10.1029/2006JE002772] is consistent with the 4.2-Ma age of the oldest preserved NPLD obtained by Levrard et al. [Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi:10.1029/2006JE002772]. We suggest a dominant layering mechanism of dust–content variation during accumulation rather than one of lag production during periods of sublimation

    Subsurface Reflectors Detected by SHARAD Reveal Stratigraphy and Buried Channels over Central Elysium Planitia, Mars

    Get PDF
    The Central Elysium Planitia (CEP) is one of the youngest geological units on Mars and displays evidence of volcanic and fluvial activities on the surface. The origin of the CEP material has long been debated with a range of hypotheses from purely fluvial to solely volcanic origins. This study presents a comprehensive investigation of SHARAD (SHAllow RADar) data to reveal subsurface radar reflectors over the CEP region. Distribution of the detected radar reflectors show possible connections between the CEP and outflow channels, such as Athabasca Valles and Marte Vallis. Analysis of the radar reflectors in the CEP region show six subsurface layers implying multiple depositional and erosional episodes. Two of the layers are found to correspond to two exposed layers of one terraced crater. By measuring the depth accurately of these exposed layers in the derived HiRISE (High Resolution Imaging Scientific Experiment) and CTX (Context Camera) DTMs (Digital Terrain Models) and inverting the dielectric constant combining the layers in radargrams, an interpretation that the filling material contains water ice is favoured

    Quantification of Surface Roughness of Lava Flows on Mars

    Get PDF
    Volcanism has played a significant role throughout Mars’ geologic history. Extensive lava flows are widely spread across Mars’ equatorial region, shaping the surface in a very distinct way. In radar images (at the decimeter scale), these flows are bright, which is a typical characteristic of extremely rough, blocky lavas flows seen on Earth. Although the source of the extreme roughness of Martian lava flows is unknown, their surface roughness parameters can be constrained to 1) gain information about Mars’ interior processes, 2) find appropriate analogues on other planetary bodies, and 3) ideally infer the emplacement style of such lavas. Here, we utilized very detailed high-resolution images of Mars to measure the surface roughness parameters of Martian lava flows at a scale never before examined on the Martian surface (meter scale). Our results determined that at the meter scale, Martian lava flows are smoother than blocky flows seen on Earth, somewhat similar to pahoehoe and rubbly flows seen in Hawaii and Iceland (which are smoother at the decimeter scale), and similar to young lunar lava flows (also smoother at the decimeter scale). The differences observed in the surface roughness of Martian lava flows at the decimeter and meter scales compared to analogue lava flows on Earth and the Moon might be the result of: 1) the differences in the emplacement style of the lava flows, 2) the differences in post-emplacement modification processes on the surface of the lava flows, and/or 3) the limitations of the technique used to characterize the lava flows

    Impact of environmental, instrumental and data processing parameters on the performance of the Radar for Icy Moon Exploration

    Get PDF
    Il radar sounding è una tecnica molto promettente per la ricerca di ambienti abitabili sulle lune ghiacciate di Giove, poiché permetterà di osservare direttamente sotto la superficie fino a profondità di diversi chilometri. In questo lavoro si è seguita una metodologia basata sull'utilizzo di dati raccolti su terreni analoghi di altri corpi del sistema solare, per valutare l'impatto di alcuni parametri fondamentali sulle prestazioni di RIME (Radar for Icy Moon Exploration)
    • …
    corecore