3,936 research outputs found

    A Survey of Multi-Robot Motion Planning

    Full text link
    Multi-robot Motion Planning (MRMP) is an active research field which has gained attention over the years. MRMP has significant roles to improve the efficiency and reliability of multi-robot system in a wide range of applications from delivery robots to collaborative assembly lines. This survey provides an overview of MRMP taxonomy, state-of-the-art algorithms, and approaches which have been developed for multi-robot systems. This study also discusses the strengths and limitations of each algorithm and their applications in various scenarios. Moreover, based on this, we can draw out open problems for future research.Comment: This is my Ph.D. comprehensive exam repor

    Asymptotically-optimal path planning for manipulation using incremental sampling-based algorithms

    Get PDF
    A desirable property of path planning for robotic manipulation is the ability to identify solutions in a sufficiently short amount of time to be usable. This is particularly challenging for the manipulation problem due to the need to plan over high-dimensional configuration spaces and to perform computationally expensive collision checking procedures. Consequently, existing planners take steps to achieve desired solution times at the cost of low quality solutions. This paper presents a planning algorithm that overcomes these difficulties by augmenting the asymptotically-optimal RRT* with a sparse sampling procedure. With the addition of a collision checking procedure that leverages memoization, this approach has the benefit that it quickly identifies low-cost feasible trajectories and takes advantage of subsequent computation time to refine the solution towards an optimal one. We evaluate the algorithm through a series of Monte Carlo simulations of seven, twelve, and fourteen degree of freedom manipulation planning problems in a realistic simulation environment. The results indicate that the proposed approach provides significant improvements in the quality of both the initial solution and the final path, while incurring almost no computational overhead compared to the RRT algorithm. We conclude with a demonstration of our algorithm for single-arm and dual-arm planning on Willow Garage's PR2 robot

    On Randomized Path Coverage of Configuration Spaces

    Get PDF
    We present a sampling-based algorithm that generates a set of locally-optimal paths that differ in visibility

    Nonrigid reconstruction of 3D breast surfaces with a low-cost RGBD camera for surgical planning and aesthetic evaluation

    Get PDF
    Accounting for 26% of all new cancer cases worldwide, breast cancer remains the most common form of cancer in women. Although early breast cancer has a favourable long-term prognosis, roughly a third of patients suffer from a suboptimal aesthetic outcome despite breast conserving cancer treatment. Clinical-quality 3D modelling of the breast surface therefore assumes an increasingly important role in advancing treatment planning, prediction and evaluation of breast cosmesis. Yet, existing 3D torso scanners are expensive and either infrastructure-heavy or subject to motion artefacts. In this paper we employ a single consumer-grade RGBD camera with an ICP-based registration approach to jointly align all points from a sequence of depth images non-rigidly. Subtle body deformation due to postural sway and respiration is successfully mitigated leading to a higher geometric accuracy through regularised locally affine transformations. We present results from 6 clinical cases where our method compares well with the gold standard and outperforms a previous approach. We show that our method produces better reconstructions qualitatively by visual assessment and quantitatively by consistently obtaining lower landmark error scores and yielding more accurate breast volume estimates

    Optimal Path Planning for Aerial Robots Using Genetic Algorithm

    Get PDF
    This thesis presents a path optimization solution for a robot in two different constrained 3-dimensional (3D) environments. The robot is required to travel from its current position to a goal position following minimum cost paths (optimal paths). The first environment has 3D obstacles that interfere with the robot’s path. The path cost for this environment accounts for the minimum distance traveled by the robot from the start to the goal position while avoiding obstacles. The second environment is the atmosphere of Venus, specifically a flyable region of this atmosphere with characteristics similar to Earth’s. This environment has strong westward winds that require a more complex cost function. The path cost also accounts for energy expenditure, such as thrust or drag, and energy accumulation, such as charging using the robot’s solar panels and gains of potential energy (e.g., due to upward directional winds). In this case, we can add to the path cost function the localization cost of the robot. Localization is simulated in the environment by the use of cameras pointing to the surface of the planet, with yields lower localization error when the vehicle is close to the surface. The approach proposed in this paper uses genetic algorithms, a heuristic search that, based on a population of initially feasible paths and a set of biologically inspired operations, finds a low-cost path. Path feasibility is assured by computing local reachability regions based on different factors such as wind velocity, obstacles, and the maximum speed of the robot. The method is illustrated through a series of simulations that show our results as a function of the number of iterations and path population sizes. Finally, a comparison with different planners is made in order to show that the genetic algorithms allow for more efficient and easier implementations

    Risk-sensitive Inverse Reinforcement Learning via Semi- and Non-Parametric Methods

    Full text link
    The literature on Inverse Reinforcement Learning (IRL) typically assumes that humans take actions in order to minimize the expected value of a cost function, i.e., that humans are risk neutral. Yet, in practice, humans are often far from being risk neutral. To fill this gap, the objective of this paper is to devise a framework for risk-sensitive IRL in order to explicitly account for a human's risk sensitivity. To this end, we propose a flexible class of models based on coherent risk measures, which allow us to capture an entire spectrum of risk preferences from risk-neutral to worst-case. We propose efficient non-parametric algorithms based on linear programming and semi-parametric algorithms based on maximum likelihood for inferring a human's underlying risk measure and cost function for a rich class of static and dynamic decision-making settings. The resulting approach is demonstrated on a simulated driving game with ten human participants. Our method is able to infer and mimic a wide range of qualitatively different driving styles from highly risk-averse to risk-neutral in a data-efficient manner. Moreover, comparisons of the Risk-Sensitive (RS) IRL approach with a risk-neutral model show that the RS-IRL framework more accurately captures observed participant behavior both qualitatively and quantitatively, especially in scenarios where catastrophic outcomes such as collisions can occur.Comment: Submitted to International Journal of Robotics Research; Revision 1: (i) Clarified minor technical points; (ii) Revised proof for Theorem 3 to hold under weaker assumptions; (iii) Added additional figures and expanded discussions to improve readabilit

    Heterogeneous volumetric data mapping and its medical applications

    Get PDF
    With the advance of data acquisition techniques, massive solid geometries are being collected routinely in scientific tasks, these complex and unstructured data need to be effectively correlated for various processing and analysis. Volumetric mapping solves bijective low-distortion correspondence between/among 3D geometric data, and can serve as an important preprocessing step in many tasks in compute-aided design and analysis, industrial manufacturing, medical image analysis, to name a few. This dissertation studied two important volumetric mapping problems: the mapping of heterogeneous volumes (with nonuniform inner structures/layers) and the mapping of sequential dynamic volumes. To effectively handle heterogeneous volumes, first, we studied the feature-aligned harmonic volumetric mapping. Compared to previous harmonic mapping, it supports the point, curve, and iso-surface alignment, which are important low-dimensional structures in heterogeneous volumetric data. Second, we proposed a biharmonic model for volumetric mapping. Unlike the conventional harmonic volumetric mapping that only supports positional continuity on the boundary, this new model allows us to have higher order continuity C1C^1 along the boundary surface. This suggests a potential model to solve the volumetric mapping of complex and big geometries through divide-and-conquer. We also studied the medical applications of our volumetric mapping in lung tumor respiratory motion modeling. We were building an effective digital platform for lung tumor radiotherapy based on effective volumetric CT/MRI image matching and analysis. We developed and integrated in this platform a set of geometric/image processing techniques including advanced image segmentation, finite element meshing, volumetric registration and interpolation. The lung organ/tumor and surrounding tissues are treated as a heterogeneous region and a dynamic 4D registration framework is developed for lung tumor motion modeling and tracking. Compared to the previous 3D pairwise registration, our new 4D parameterization model leads to a significantly improved registration accuracy. The constructed deforming model can hence approximate the deformation of the tissues and tumor

    Automated sequence and motion planning for robotic spatial extrusion of 3D trusses

    Full text link
    While robotic spatial extrusion has demonstrated a new and efficient means to fabricate 3D truss structures in architectural scale, a major challenge remains in automatically planning extrusion sequence and robotic motion for trusses with unconstrained topologies. This paper presents the first attempt in the field to rigorously formulate the extrusion sequence and motion planning (SAMP) problem, using a CSP encoding. Furthermore, this research proposes a new hierarchical planning framework to solve the extrusion SAMP problems that usually have a long planning horizon and 3D configuration complexity. By decoupling sequence and motion planning, the planning framework is able to efficiently solve the extrusion sequence, end-effector poses, joint configurations, and transition trajectories for spatial trusses with nonstandard topologies. This paper also presents the first detailed computation data to reveal the runtime bottleneck on solving SAMP problems, which provides insight and comparing baseline for future algorithmic development. Together with the algorithmic results, this paper also presents an open-source and modularized software implementation called Choreo that is machine-agnostic. To demonstrate the power of this algorithmic framework, three case studies, including real fabrication and simulation results, are presented.Comment: 24 pages, 16 figure
    • …
    corecore