400 research outputs found

    Towards A Self-calibrating Video Camera Network For Content Analysis And Forensics

    Get PDF
    Due to growing security concerns, video surveillance and monitoring has received an immense attention from both federal agencies and private firms. The main concern is that a single camera, even if allowed to rotate or translate, is not sufficient to cover a large area for video surveillance. A more general solution with wide range of applications is to allow the deployed cameras to have a non-overlapping field of view (FoV) and to, if possible, allow these cameras to move freely in 3D space. This thesis addresses the issue of how cameras in such a network can be calibrated and how the network as a whole can be calibrated, such that each camera as a unit in the network is aware of its orientation with respect to all the other cameras in the network. Different types of cameras might be present in a multiple camera network and novel techniques are presented for efficient calibration of these cameras. Specifically: (i) For a stationary camera, we derive new constraints on the Image of the Absolute Conic (IAC). These new constraints are shown to be intrinsic to IAC; (ii) For a scene where object shadows are cast on a ground plane, we track the shadows on the ground plane cast by at least two unknown stationary points, and utilize the tracked shadow positions to compute the horizon line and hence compute the camera intrinsic and extrinsic parameters; (iii) A novel solution to a scenario where a camera is observing pedestrians is presented. The uniqueness of formulation lies in recognizing two harmonic homologies present in the geometry obtained by observing pedestrians; (iv) For a freely moving camera, a novel practical method is proposed for its self-calibration which even allows it to change its internal parameters by zooming; and (v) due to the increased application of the pan-tilt-zoom (PTZ) cameras, a technique is presented that uses only two images to estimate five camera parameters. For an automatically configurable multi-camera network, having non-overlapping field of view and possibly containing moving cameras, a practical framework is proposed that determines the geometry of such a dynamic camera network. It is shown that only one automatically computed vanishing point and a line lying on any plane orthogonal to the vertical direction is sufficient to infer the geometry of a dynamic network. Our method generalizes previous work which considers restricted camera motions. Using minimal assumptions, we are able to successfully demonstrate promising results on synthetic as well as on real data. Applications to path modeling, GPS coordinate estimation, and configuring mixed-reality environment are explored

    Camera Self-Calibration Using the Kruppa Equations and the SVD of the Fundamental Matrix: The Case of Varying Intrinsic Parameters

    Get PDF
    Estimation of the camera intrinsic calibration parameters is a prerequisite to a wide variety of vision tasks related to motion and stereo analysis. A major breakthrough related to the intrinsic calibration problem was the introduction in the early nineties of the autocalibration paradigm, according to which calibration is achieved not with the aid of a calibration pattern but by observing a number of image features in a set of successive images. Until recently, however, most research efforts have been focused on applying the autocalibration paradigm to estimating constant intrinsic calibration parameters. Therefore, such approaches are inapplicable to cases where the intrinsic parameters undergo continuous changes due to focusing and/or zooming. In this paper, our previous work for autocalibration in the case of constant camera intrinsic parameters is extended and a novel autocalibration method capable of handling variable intrinsic parameters is proposed. The method relies upon the Singular Value Decomposition of the fundamental matrix, which leads to a particularly simple form of the Kruppa equations. In contrast to the classical formulation that yields an over-determined system of constraints, a purely algebraic derivation is proposed here which provides a straightforward answer to the problem of determining which constraints to employ among the set of available ones. Additionally, the new formulation does not employ the epipoles, which are known to be difficult to estimate accurately. The intrinsic calibration parameters are recovered from the developed constraints through a nonlinear minimization scheme that explicitly takes into consideration the uncertainty associated with the estimates of the employed fundamental matrices. Detailed experimental results using both simulated and real image sequences demonstrate the feasibility of the approach

    A Fast and Robust Extrinsic Calibration for RGB-D Camera Networks

    Get PDF
    From object tracking to 3D reconstruction, RGB-Depth (RGB-D) camera networks play an increasingly important role in many vision and graphics applications. Practical applications often use sparsely-placed cameras to maximize visibility, while using as few cameras as possible to minimize cost. In general, it is challenging to calibrate sparse camera networks due to the lack of shared scene features across different camera views. In this paper, we propose a novel algorithm that can accurately and rapidly calibrate the geometric relationships across an arbitrary number of RGB-D cameras on a network. Our work has a number of novel features. First, to cope with the wide separation between different cameras, we establish view correspondences by using a spherical calibration object. We show that this approach outperforms other techniques based on planar calibration objects. Second, instead of modeling camera extrinsic calibration using rigid transformation, which is optimal only for pinhole cameras, we systematically test different view transformation functions including rigid transformation, polynomial transformation and manifold regression to determine the most robust mapping that generalizes well to unseen data. Third, we reformulate the celebrated bundle adjustment procedure to minimize the global 3D reprojection error so as to fine-tune the initial estimates. Finally, our scalable client-server architecture is computationally efficient: the calibration of a five-camera system, including data capture, can be done in minutes using only commodity PCs. Our proposed framework is compared with other state-of-the-arts systems using both quantitative measurements and visual alignment results of the merged point clouds

    Trajectory based video analysis in multi-camera setups

    Get PDF
    PhDThis thesis presents an automated framework for activity analysis in multi-camera setups. We start with the calibration of cameras particularly without overlapping views. An algorithm is presented that exploits trajectory observations in each view and works iteratively on camera pairs. First outliers are identified and removed from observations of each camera. Next, spatio-temporal information derived from the available trajectory is used to estimate unobserved trajectory segments in areas uncovered by the cameras. The unobserved trajectory estimates are used to estimate the relative position of each camera pair, whereas the exit-entrance direction of each object is used to estimate their relative orientation. The process continues and iteratively approximates the configuration of all cameras with respect to each other. Finally, we refi ne the initial configuration estimates with bundle adjustment, based on the observed and estimated trajectory segments. For cameras with overlapping views, state-of-the-art homography based approaches are used for calibration. Next we establish object correspondence across multiple views. Our algorithm consists of three steps, namely association, fusion and linkage. For association, local trajectory pairs corresponding to the same physical object are estimated using multiple spatio-temporal features on a common ground plane. To disambiguate spurious associations, we employ a hybrid approach that utilises the matching results on the image plane and ground plane. The trajectory segments after association are fused by adaptive averaging. Trajectory linkage then integrates segments and generates a single trajectory of an object across the entire observed area. Finally, for activities analysis clustering is applied on complete trajectories. Our clustering algorithm is based on four main steps, namely the extraction of a set of representative trajectory features, non-parametric clustering, cluster merging and information fusion for the identification of normal and rare object motion patterns. First we transform the trajectories into a set of feature spaces on which Meanshift identi es the modes and the corresponding clusters. Furthermore, a merging procedure is devised to re fine these results by combining similar adjacent clusters. The fi nal common patterns are estimated by fusing the clustering results across all feature spaces. Clusters corresponding to reoccurring trajectories are considered as normal, whereas sparse trajectories are associated to abnormal and rare events. The performance of the proposed framework is evaluated on standard data-sets and compared with state-of-the-art techniques. Experimental results show that the proposed framework outperforms state-of-the-art algorithms both in terms of accuracy and robustness
    • …
    corecore