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Abstract

This thesis presents an automated framework for activity analysis in multi-camera

setups. We start with the calibration of cameras particularly without overlapping

views. An algorithm is presented that exploits trajectory observations in each view

and works iteratively on camera pairs. First outliers are identified and removed

from observations of each camera. Next, spatio-temporal information derived from

the available trajectory is used to estimate unobserved trajectory segments in areas

uncovered by the cameras. The unobserved trajectory estimates are used to estimate

the relative position of each camera pair, whereas the exit-entrance direction of

each object is used to estimate their relative orientation. The process continues and

iteratively approximates the configuration of all cameras with respect to each other.

Finally, we refine the initial configuration estimates with bundle adjustment, based

on the observed and estimated trajectory segments. For cameras with overlapping

views, state-of-the-art homography based approaches are used for calibration.

Next we establish object correspondence across multiple views. Our algorithm

consists of three steps, namely association, fusion and linkage. For association,

local trajectory pairs corresponding to the same physical object are estimated using

multiple spatio-temporal features on a common ground plane. To disambiguate

spurious associations, we employ a hybrid approach that utilises the matching results

on the image plane and ground plane. The trajectory segments after association

are fused by adaptive averaging. Trajectory linkage then integrates segments and
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4 Abstract

generates a single trajectory of an object across the entire observed area.

Finally, for activities analysis clustering is applied on complete trajectories. Our

clustering algorithm is based on four main steps, namely the extraction of a set of

representative trajectory features, non-parametric clustering, cluster merging and

information fusion for the identification of normal and rare object motion patterns.

First we transform the trajectories into a set of feature spaces on which Mean-

shift identifies the modes and the corresponding clusters. Furthermore, a merging

procedure is devised to refine these results by combining similar adjacent clusters.

The final common patterns are estimated by fusing the clustering results across all

feature spaces. Clusters corresponding to reoccurring trajectories are considered as

normal, whereas sparse trajectories are associated to abnormal and rare events.

The performance of the proposed framework is evaluated on standard data-sets

and compared with state-of-the-art techniques. Experimental results show that

the proposed framework outperforms state-of-the-art algorithms both in terms of

accuracy and robustness.
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Glossary

C camera network

ck kth camera in a camera network

H homography matrix

S similarity transformation

ς affine transformation

ρ pure projective transformation

l∞ vanishing line of a plane

Z complete set of measurements

zm=(xm, ym) measurement at instance m

Z̃ estimated set of measurements before filtering

(x̃mv,f/b, ỹ
m
v,f/b) velocity of an object in forward/backward direction

km Kalman gain

Ẑ estimated set of measurements after filtering

pi = (xi, yi) position of a camera ci

ri rotation of a camera ci

Di,j displacement vector from ci to cj
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L set of localisation parameters

L∗ refined set of localisation parameters

Ti,n trajectory segment of ith object in cn

v average velocity

~ trajectory directional histogram

m trajectory mean

p PCA components

d directional distance

Ti,G trajectory segment of ith object on ground plane (G)

T̂i,j,G fused trajectory of ith and jth objects on ground plane

Ωn,m overlapping region between cameras cm and cn

AΩ association matrix in overlapping region (Ω)

Fm(.) feature extraction function

Ψdm
m dm-dimensional feature space representation

Ξj covariance of jth trajectory

f̂(.) multivariate density estimator

∇f̂(x) multivariate density gradient estimator

hdmm bandwidth of Mean-shift kernel

K Mean-shift kernel

εt translation error

εr rotation error

Pa precision measure for trajectory association

Ra recall measure for trajectory association

Pc precision measure for trajectory clustering

Rc recall measure for trajectory clustering



Chapter 1

Introduction

1.1 Motivation

Camera networks help in monitoring large scale areas for applications such as

traffic-flow analysis on a highway, monitoring of sensitive buildings or patrolling na-

tional borders and content production for sporting events. These camera networks

commonly provide live video streams to a common location (or control room) where

all of the video data is normally analysed manually. The nature of this work (moni-

toring multiple simultaneous videos), however, can be monotonous for humans, since

it is mostly uneventful. This boredom can make the observer prone to error. It is

therefore desirable to automate this process using an intelligent system. The system

should monitor the video feeds and use the information from multiple streams to

summarise results in a compact form. For example, this summary could contain in-

formation about common motion patterns and instances of abnormal activities. To

develop such a system, typical operational steps include: camera calibration, object

correspondence across multiple views to reconstruct complete trajectories and scene

understanding by identifying normal and abnormal activities [1]. A block diagram

11



12 Chapter 1: Introduction

Figure 1.1: Block diagram of my video analysis system.

of a video analysis system is shown in Fig. 1.1.

The development of video based activity analysis system is a challenging task

and it may be encountered with several issues related to calibration and tracking.

For example, it is common that cameras monitoring scenes are installed before cali-

bration is undertaken. If the field of view of a camera is too limited; it can affect the

reliability of calibration based on parallel lines. Also, with the increase of cameras,

manual and GPS based solutions become impractical especially when cameras are

installed in underground e.g., subways and tube stations [2]. Furthermore, track-

ing an object in a network of cameras is also a challenging task due to change in

appearance and view, non-rigid structures and occlusions [3, 4]. This can result

in trajectory breaks and identity switches; thus makes the activity analysis more

complex.

This thesis addresses the following important research questions for activity anal-

ysis in a multi-camera setup:

• Can we learn the configuration of a camera network using object trajectories?

• Can we establish object’s correspondence across multiple views using its tra-

jectory?

• Can we distinguish normal and abnormal activities in a scene using accumu-
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lated raw trajectories?

1.2 Main contributions

The main contributions of this thesis are as follows:

1. Our first contribution is to propose an automated localisation or extrinsic cali-

bration algorithm that does not require any prior calibration information. The

algorithm uses trajectories to estimate the configuration of a camera network

and is applicable also when cameras have non-overlapping fields of view [J1].

The algorithm initially removes outliers using RANSAC from the observations

of each camera view. Next, unlike other approaches [5, 6, 7], it iteratively uses

spatio-temporal information derived from the available trajectory information

to estimate the unobserved trajectory segment that is then used to position the

cameras on a common plane. The exit-entrance direction of the object is used

to estimate the relative orientation of the cameras. After this initial estimation,

the configuration results are refined using bundle adjustment. Major novelties

of this algorithm include: (a) the relaxation on the linearity constraint on the

object motion in unobserved regions (the object can take a sharp turn); (b) no

prior information about the environment or the motion model is required; and

(c) the initial configuration can be refined when batch processing is viable.

2. Our second contribution is to establish target’s correspondence across multi-

ple cameras using its trajectory [B2,C2]. Existing works perform association

either on image plane [8] or on ground plane [9]. As image plane trajectories

are heavily affected by the perspective deformations, which cause inaccurate
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associations especially if the trajectories are far from cameras. On the other

hand, accurate associations on ground plane are hampered by the image to

ground plane projections, which do not ensure unique association of an object

trajectories observed in multiple cameras. The major novelty of this algorithm

is that we use hybrid approach that combines the strength of both image and

ground plane associations. Initial correspondence among trajectories is estab-

lished on ground plane using multiple spatio-temporal features and then image

plane reprojections of the matched trajectories are employed to resolve con-

flicting situations. This makes sure that only one trajectory of an object from

each camera is associated to other cameras. Trajectory segments belonging to

same object are then fused and linked to reconstruct a complete trajectory.

3. Our final contribution is to propose an algorithm that can analyse object tra-

jectories and can identify normal and abnormal activities [J2,B1]. In general

trajectory analysis algorithms use only one feature space for clustering [10, 11,

12, 13, 14, 15]. Even when more features are used, they are not processed

simultaneously [16, 17]. This can result in a coarse cost function defined by the

proximity measure due to reduced utilisation of complementary information,

thus leading to a local minima problem. One way to overcome this problem

is to use a stochastic optimisation algorithm. However, the convergence prop-

erties (such as the radius of convergence) of such algorithms are limited [18].

The major novelty of this algorithm is that we use multiple feature spaces si-

multaneously to obtain a higher degree of descriptiveness of the trajectories

as opposed to using one feature space only. We propose a partitional trajec-

tory clustering framework that combines internally a fuzzy clustering approach
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based on multiple features before generating a final crisp partition. Each fea-

ture space is then regarded as the empirical probability density function (pdf) of

the represented parameter and modes in each space correspond to the maxima

of the pdf. Once the modes are determined, the members can be associated to

each mode to form the clusters. We use Mean-shift in each feature space for

mode-seeking and clustering. Mean-shift is a non-parametric clustering algo-

rithm, which always converges to local mode of the data. The clustering results

of Mean-shift in each space are then refined by applying a cluster merging pro-

cedure. The final clustering is obtained by analysing the clustering results from

each feature space. The process results in the definition of the clusters’ struc-

tures along with the fuzzy membership of a trajectory to the final clusters. The

clusters with small number of associated elements and the trajectories that are

far from the clusters’ centre are considered as outliers.

1.3 Outline of the thesis

Chapter 2 discusses existing video analysis algorithms. The chapter discusses

techniques for view rectification and calibration of multi-camera networks with over-

lapping and non-overlapping views. Also, it explains various trajectory based object

association methods. Furthermore, significant works for trajectory clustering and

outliers detection are also covered in the chapter. In Chapter 3, we motivate and

describe our approach for view rectification and camera localisation. Chapter 4,

explains our method to reconstruct complete objects’ trajectories across multiple

views. Chapter 5 provides details of our trajectory clustering algorithm. It also

explains the process of combining clustering results from various feature spaces. Fur-
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thermore, our anomaly detection method is also discussed in the chapter. Chap-

ter 6 presents the evaluation of the proposed approaches on synthetic and real video

sequences. Finally, in Chapter 7, we summarise the achievements of this thesis and

we discuss possible extensions of this work.



Chapter 2

Prior works

This chapter provides details of prior works for (i) calibration of single as well

as multiple cameras, (ii) object association across multiple views and (iii) trajectory

clustering for scene analysis. The details of these approaches are provided in the

following sections.

2.1 Camera calibration

In this section, we primarily focus on approaches that learn the intrinsic calibra-

tion parameters (also known as self-calibration) of individual cameras. We further

extend this discussion to techniques that estimates extrinsic calibration parameters

(also known as localisation) of multiple cameras; especially, when the cameras have

non-overlapping views.

2.1.1 Self-calibration

It is well known that due to perspective projection the measurements made from

the images do not represent metric data. Thus, the obtained object trajectories are

17



18 Chapter 2: Prior works

projectively distorted, unless we have a calibrated camera. For example, a person

moving slowly but close to a camera induces large image motion compared to person

walking at a distance with a quicker pace. Therefore, it is desirable to have self-

calibrated cameras, where information within cameras’ field of views can only be

used for calibration.

We classify self-calibration techniques into two classes: (a) object-based, and

(b) scene-structure-based. The initial object-based self-calibration method was pre-

sented by Faugeras et al. [19]. The method showed that self-calibration was theoret-

ically and practically feasible, if a camera, with fixed intrinsic parameters, can take

images of an object from multiple views. The approach employed the Kruppa equa-

tions [20]. Based on these equations, Mendonca [21] introduced a built-in method

for the detection of ”critical motions” for each pair of images in the sequence. The

approach has a linear step, where only the focal length is computed followed by a

non-linear optimisation that refines the estimates obtained in the linear step and

allows for the estimation of more intrinsic parameters such as principal point. A re-

lated work was presented by Triggs [22], which estimates the absolute dual quadric

instead of conic over many views taken by a single camera that is moving with

constant velocity. Pollefeys et al. [23] developed a practical method, which recov-

ers metric reconstruction from image sequence where the intrinsic parameters of a

camera may vary. Furthermore, Agapito et al. [24], and Seo and Hong [25] solved

the self-calibration of a rotating and zooming camera using the infinite homography

constraint.

Scene-structure-based self-calibration approaches primarily assume that metric

properties (such as a length ratio and an angle) derived from available scene struc-

tures are enough to determine the projective transformation up to a scale [26, 27, 28].
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Table 2.1: State-of-the-art methods for localisation of a non-overlapping camera
network.

Est. parameters Constraints Ref.

Position only
Linear object motion [5]
Known environment map [6, 31]

Rotation only
Linear object motion+vanishing line [32]
Far objects with known trajectory [33]

Position and rotation
Only one smooth turn (in unobserved region) [7]
Only one sharp turn (in unobserved region) [34]

Once the vanishing line of the plane is identified the transformation from world to

image plane can be reduced to affinity [29]. Furthermore, with the help of metric

properties, the affinity can be reduced to similarity [30].

The information of intrinsic calibration parameters of individual cameras is help-

ful in extracting the extrinsic calibration parameters of a camera network, especially

with non-overlapping views, where there are no common control points between dif-

ferent views. The details of earlier works are provided in the next section.

2.1.2 Extrinsic calibration of non-overlapping cameras

Existing extrinsic calibration (also known as localisation) approaches for non-

overlapping cameras primarily assume that objects (e.g., pedestrians or vehicles)

move linearly in unobserved regions [5]. Under this assumption, the relative position

of two cameras can be estimated by extrapolating the trajectory in unobserved

regions using the velocity information learnt from the last few observed instances.

Javed et al. [5] combine linear velocity with a change in brightness function to learn

the relative positions of the cameras.

To estimate the relative orientation of two cameras, either vanishing points [32]

or far objects with known trajectories (e.g., stars) can be used [33]. Junejo et al.

demonstrate that the vertical vanishing point and the knowledge of a line in a plane
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orthogonal to the vertical direction are sufficient. There exist various approaches

that learn the topology of non-overlapping camera networks using graph represen-

tation [6]. In these approaches, camera nodes that are constituted by the exit and

entrance locations are considered as vertices and their spatial neighbourhood as

edges of a graph. Makris et al. [6] estimate camera topology from observations

by assuming a Gaussian transition distribution. Departures and arrivals within a

chosen time window are assumed to be corresponding. Tieu et al. [31] generalised

the work in [6] to multimodal transition distributions, and handled correspondences

explicitly. In their work, camera connectivity is formulated in terms of statistical

dependence, and uncertain correspondences are removed in a Bayesian manner. The

performances of these approaches degrade substantially when the dynamics of the

camera network is complex and also when the object motion deviates considerably

from the pre-modelled path in unobserved regions e.g., monitoring a difficult terrain

such as hilly area [35].

Other approaches track an object while simultaneously estimating the network

localisation parameters [7]. A Bayesian framework can be used to find unknown

parameters (localisation and trajectory), given the observations from each camera.

Maximum a posteriori (MAP) is estimated using the Newton-Raphson method that

makes the method computationally expensive with the increasing of the number of

cameras and the length of the trajectory. Furthermore, the performance degrades

substantially with noisy observations. In order to address these problems, it is

desirable to first estimate trajectory segments in unobserved regions and then to

learn the localisation parameters based on both the observed and the estimated

trajectory segments [34]. A summary of approaches is provided in Table 2.1.

An important application where camera calibration can play a vital role is the
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Table 2.2: State-of-the-art methods for object correspondence across multiple views.

Category Constraints Application Ref.

Supervised
Fixed motion paths

Indoor people tracking
[36]
[37]

Vehicle tracking on a highway [38]
Threshold on transition time Vehicle tracking [39]

Unsupervised
Airborne cameras Vehicle tracking in a parking lot [8]
- Sport’s analysis [9]

generation of a global (or complete) trajectory from a network of cameras. In the

next section, we discuss some of the important methods regarding reconstruction of

complete trajectories.

2.2 Global trajectory reconstruction

An important step for reconstructing complete trajectories is to establish object

correspondence across multiple views. A summary of existing approaches is provided

in Table 2.2. We categorise object correspondence approaches into supervised and

unsupervised algorithms. Supervised techniques depend upon the information either

contained in training samples or supplied manually by users. Several authors have

proposed supervised association approaches such as Kettnaker et al. [36], Huang

et al. [38], Dick et al. [37] and Wang et al. [39]. Unlike supervised techniques,

unsupervised techniques do not require training samples or manual selection of the

parameters. Recent unsupervised target association algorithms are presented by

Kayumbi et al. [9] and Sheikh et al. [8]. The rest of this section provides the details

of these techniques.

Kettnaker et al. [36] presented a Bayesian solution to the tracking of people

across multiple cameras. The system requires prior information about the environ-

ment and the way people move across it. Huang et al. [38] presented a probabilistic
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approach for tracking cars across two cameras on a highway, where transition times

were modelled as Gaussian distributions. Like Kettnaker et al., it was assumed that

the initial transition probabilities were known. This approach is application-specific,

using only two calibrated cameras with vehicles moving in one direction in a single

lane. Dick et al. [37] use a stochastic transition matrix to describe patterns of mo-

tion for both intra- and inter-camera correspondence. The correspondence between

cameras has to be supplied as training data. Wang et al. [39] connect trajectories

observed in multiple cameras based on their temporal information. The trajecto-

ries are considered to be corresponding, if they overlap in time for an empirically

pre-selected interval.

Kayumbi et al. [9] establish correspondence between cameras and a virtual

ground plane. Trajectory association is performed on the ground plane using shape

and length along with temporal information. The maximum likelihood for associa-

tion is calculated by cross correlation of spatio-temporal feature vectors. However,

this approach cannot differentiate two objects moving with varying speed in the

environment. Another approach in this category is presented by Sheikh et al. [8]. In

their approach, airborne cameras are used with the assumption of the simultaneous

visibility of at least one object by two cameras. Taking as input time-stamped tra-

jectories from each view, the algorithm estimates the inter-camera transformations.

The maximum likelihood is estimated as a function of the reprojection error. A pair

of trajectories is considered as generated from the same object if the reprojection

error is minimum.

Once the trajectories are reconstructed, the next step is to apply clustering to

learn the underlying hidden motion structures, clusters, and to learn the dynamics

of the scene i.e., identification of normal and abnormal trajectories. In the next
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Table 2.3: State-of-the-art methods for trajectory representation (Key. HMMs:
Hidden Markov Models; PRMs: Probabilistic and Regression Models; STFA: Spatio-
temporal Function Approximations; PCA: Principal Components Analysis; ICA:
Independent Components Analysis; TDH: Trajectory Directional Histogram).

Category Rep. Application Ref.

S
u
p

er
v
is

ed
HMMs

Vehicle tracking [40]
Nose tracking [41]
Gesture recognition [42]
Behaviour analysis [43]

PRMs
Hand tracking [12]
ECG and cyclone trajectories [44]

U
n
su

p
er

v
is

ed

STFA

Pedestrian tracking [13]
Behaviour analysis [45]
Pedestrians scene [46]
Speech signal analysis [47]
Vehicle tracking [48]

PCA
Hand tracking, [49]
Sport’s analysis [50]
Traffic analysis [17]

ICA Pedestrians counting [11]
TDH Vehicle tracking [16]

section, we provide details of existing approaches for trajectory clustering.

2.3 Trajectory clustering

Trajectory clustering plays a vital role in understanding the scene dynamics.

The process normally consists of two steps: (a) trajectory representation and (b)

trajectory grouping. The details of these are provided in subsequent sections.

2.3.1 Trajectory representation

The choice of a suitable pattern representation provides the core for a cluster-

ing algorithm. This section discusses and compares existing approaches for tra-

jectory representation, which are summarised in Table 2.3. Pattern representa-
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tions can also be divided into supervised ([40, 41, 43, 42, 44, 12]) and unsuper-

vised [45, 13, 48, 47, 46] classes. A Hidden Markov Model (HMM) is a supervised

trajectory representation approach, in which the state transition matrix represents

the dynamics of a trajectory. Porikli [40] performs trajectory clustering using eigen-

vector analysis on the HMM parameter space. Alon et al. [41] allow each sequence

to belong to more than a single HMM with some probability and the hard decision

about the sequence class membership is deferred until a later stage for final cluster-

ing. Parameterized-HMMs [42] and coupled-HMMs [43] are also used to recognise

more complex events such as moving object interactions. Although HMMs are

robust to dynamic time warping, the structures and probability distributions are

highly domain-dependent e.g., models to represent people motion would be com-

pletely different from vehicle motion models in terms of number of hidden states

and probabilities. Moreover, the parameter space increases considerably in size

with the complexity of the events, as more hidden states are required for modelling.

Self-organizing maps (SOMs) provide one of the examples of unsupervised rep-

resentation to project high-dimensional data patterns in a low dimensional space,

while keeping the topological properties of the input space [45, 13, 48]. Once SOM

nodes are organised, all the data associated with a given node may be made available

via that node. For real motion sequences, the convergence of these techniques is slow

and the learning phase is usually carried out off-line. The Trajectory Directional

Histogram (TDH) is another representation to encode the statistical directional dis-

tribution of the trajectories [16]. However, this feature alone does not suffice because

it does not encode spatial information. Therefore, two trajectories that are far on

the image plane shall be clustered together if they have similar directional histo-

grams. In the clustering literature, Principal Components Analysis (PCA) has been
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used extensively to reduce the dimensionality of the data set prior to clustering while

extracting the most important data variations. Bashir et al. [17, 49, 50] represent

trajectories as a temporal ordering of sub-trajectories. These sub-trajectories are

then represented by their PCA coefficients for optimally compact representation.

PCA works well for data with a single Gaussian distribution. For a mixture of

Gaussian distributions, Independent Components Analysis (ICA) is used to obtain

a compact representation. Antonini et al. [11] transform the input trajectories using

ICA and then use the Euclidean distance to find the similarities among trajecto-

ries. Both PCA and ICA require an accurate estimation of the noise covariance

matrix from the data, which is generally a difficult task. Furthermore, in their stan-

dard form, they do not contain high-order statistical information and therefore the

analysis is limited to second-order statistics.

2.3.2 Trajectory grouping

We classify the trajectory grouping techniques into hierarchical [51] and parti-

tional [52]. The details of existing works for each class are discussed in rest of this

section.

Hierarchical clustering

Hierarchical clustering provides a nested sequence of partitions [15]. These meth-

ods can further be divided into two classes, namely agglomerative and divisive.

Agglomerative clustering methods start by first considering each trajectory as a

separate cluster and then merge the clusters in a nested sequence [53]. On the other

hand, divisive clustering starts with all trajectories in one single cluster, and then

successively splits the cluster to obtain the final partition [54, 55]. The level of the
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tree structure depends upon the choice of threshold and is application specific. The

computation of the tree structures (dendograms) is expensive and impractical with

more than a few hundred patterns [56].

Partitional clustering

Partitional clustering is more suitable for the analysis of large data collections

as it generates clusters iteratively by minimizing an objective function. Partitional

clustering methods can be further divided into two classes, namely hard (crisp) and

soft (fuzzy). In hard clustering, each trajectory is assigned to one cluster only; in

soft clustering each trajectory is assigned a degree of membership to each cluster.

Furthermore, each class can be further divided into parametric and non-parametric

sub-classes. The following abbreviations are used in the remainder of this the-

sis: PHC for parametric-hard-clustering methods, NPHC for non-parametric-hard-

clustering methods, PSC for parametric-soft-clustering methods and NPSC for non-

parametric-soft-clustering methods.

In PHC, the trajectories are clustered into pre-specified number of partitions with

a cluster representative for each cluster. A widely used algorithm is the iterative

K-means [57, 58], which works in two steps, namely assignment and update. In

the assignment step, each trajectory represented as in a particular feature space

is assigned to the cluster, which has the smallest distance from the trajectory. In

the update step, the mean of the cluster is re-calculated. The process terminates

when either the change in clusters’ mean is less than a threshold or the number of

iterations reaches a pre-defined value.

Since K-means tends to associate each trajectory to one cluster, outlier tra-

jectories can affect the overall shape of the clusters. To overcome this limitation,
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a Self-Organizing Maps (SOMs) based approach can be used [14]. Initially, each

trajectory can be represented with number of coefficients of the Discrete Fourier

Transform (DFT). In the training phase, using these coefficients the SOM randomly

initialises a weight vector associated to the neuron outputs, which are initially set

to more than require for coarse clustering. The input trajectory is assigned to an

output neuron for which it has minimum Euclidean distance. At the end of the

training phase, the most similar cluster pairs are merged for fine clustering.

Dual Hierarchical Dirichlet Processes (Dual-HDP) is an example of NPHC al-

gorithm, which is inspired from document mining [39]. Trajectories are treated as

documents and the observations of an object on a trajectory are treated as words

in a document. Trajectories are clustered in an iterative way. In each iteration

the process performs clustering at two levels, namely at observation-level and at

trajectory-level. The first level helps in finding the regions and the second level as-

sociates each trajectory to one region. An abnormal trajectory is defined as one that

does not fall in dense regions. Another NPHC approach is presented in [59], where

the first trajectory forms the first cluster. Each next trajectory is compared with

the existing cluster(s). A trajectory is assigned to a cluster if it is sufficiently close

to that cluster. If a trajectory is not assigned to any of the existing clusters; then a

new cluster is initiated with that trajectory. A similar approach is presented in [60],

where clusters are constructed online using partial trajectory segments. Clusters

are organised by a tree-like structure, where each node corresponds to a cluster of

similar partial paths. Events (primarily unusual) are detected based on statistical

analysis of the path the object follows through the tree.

Hard partitional clustering methods (PHC and NPHC) work well when the phys-

ical boundaries of the clusters are well-defined. An advantage of soft clustering over
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hard clustering is that it yields more detailed information on the structure of the

data as it may assign each element to multiple clusters with an associated member-

ship value [61]. Furthermore, fuzzy clustering is less sensitive to outliers that will

have a smaller membership value with a particular cluster and thus affects less on

the overall cluster structure.

A popular PSC algorithm is Fuzzy K-means, a variant of the K-means algorithm,

which assigns each trajectory a certain degree of belongingness to the clusters. Thus,

trajectories on the edge of a cluster would have a smaller degree of membership than

the trajectories in the centre of the cluster. Although this algorithm minimizes the

intra-cluster variance, it has the same local minimum problem as K-means, and the

results depend on the initial choice of the number of clusters.

2.3.3 Outliers

An outlier trajectory is the one that deviates so much from other trajectories

as to raise suspicions that it is a result of an abnormal event. In the anomaly de-

tection literature, distance-based techniques are frequently used. Zhou et al. [62]

use an Edit distance to find the common pattern. A trajectory that is far from

the common pattern is considered as an anomaly. Similarly, Naftel et al. [63] use

the Hotelling T 2 test to determine if the Mahalanobis distance of a trajectory to its

nearest class centre makes it an outlier. The choice of the threshold value is selected

according to the given dataset. Furthermore, Fu et al. [15] use a Gaussian distribu-

tion to represent the test and template trajectories. If the difference between the

test trajectory and the template trajectory is larger than one standard deviation

from the mean of a template trajectory, then the test trajectory is considered as

abnormal. These distance based outlier detection techniques work well if the tra-
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jectory has completely different direction, starting (or ending) points, or velocities

from those of other trajectories. However, it is not clear whether these techniques

can detect outlying sub-trajectories from a set of very complicated trajectories. An-

other interesting classification based approach is presented by Li et al. [64]. In this

approach, common patterns called motifs are extracted from trajectories, and the

set of motifs forms a feature space in which the trajectories are placed. Through the

transformation into a feature vector, the trajectories are fed into a classifier. This

algorithm depends on training. More specifically, a classification model is built using

the training set, and a new trajectory is classified into either normal or abnormal.

The performance of the algorithm is highly dependent upon the reliability of the

training trajectory dataset, which is not always easy to obtain in real scenarios.

2.4 Summary

This chapter has initially provided an overview of existing camera calibration

techniques. Techniques for estimating intrinsic as well as extrinsic calibration param-

eters have been discussed. Particularly, for extrinsic calibration of non-overlapping

cameras, it has been observed that existing works either know or assume motion

models of objects or environment map. Therefore, there is still a need to develop

an approach that could localise a network of cameras even without any prior in-

formation. Next, this chapter has discussed object correspondence techniques to

reconstruct global trajectory of an object across multiple cameras. From the liter-

ature review, it has been observed that existing approaches perform association of

objects either on the image plane or on the ground plane. The association is mainly

performed based on a temporal threshold. These approaches work well when there



30 Chapter 2: Prior works

are few objects moving in a scene. The performance degrades substantially when

high density of similar objects is moving, which results in either no or multiple as-

sociations of an object among multiple views. To overcome these issues, there is a

need to develop a hybrid approach that can combine the strengths of both image

plane and ground plane associations and should be efficient in performance in both

low and high density of simultaneously moving objects. Finally, techniques for tra-

jectory clustering have been discussed. We have learnt that these techniques use

either single or concatenated multiple feature spaces, which result in a coarse cost

function defined by the proximity measure, thus leading to a local minima problem.

In order to obtain a higher degree of descriptiveness of the trajectories, it is desirable

to use multiple independent features simultaneously.
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Camera calibration

3.1 Introduction

The deployment of camera networks is essential for the observation of large en-

vironments in applications such as traffic and behaviour monitoring, remote surveil-

lance and sporting events [65, 66]. These networks may be characterised by the

presence of cameras with non-overlapping fields of view. Prior to applying video an-

alytics in a camera network, internal as well as external calibration of each camera of

the network has to be performed [67]. This calibration helps in solving camera han-

dovers of targets and reconstructing complete trajectories from partial views [68].

External calibration (also referred to as localisation) provides information about the

relative position and orientation of a camera with respect to the rest of the network.

When the number of cameras is large, it is impractical to employ manual localisation

techniques. Moreover, the use of GPS-based methods might not be viable all the

time, as they are more expensive and there are scenarios when they are not suitable

at all (e.g., when monitoring an underground train station [2]). There is therefore

the need for an automatic camera localisation approach that can exploit the infor-

31
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mation observed in each camera view. In this chapter, we focus on self-calibration

of a single camera and extrinsic calibration of non-overlapping camera network.

3.2 Self-calibration via view rectification

Self-calibration plays a fundamental role in case of using single camera [69, 70,

71]. In this section, we discuss the approach of self-calibration of a camera using

view rectification.

Instead of assuming a monitored scene as a 3D Euclidean space containing a

complete metric structure, we can consider it as being embedded in an affine or

even projective space [19]. Under this assumption, Liebowitz describes the geometry,

constraints and algorithmic implementation for metric rectification of planes [29].

Let ℵr and ℵi represent the real and the image plane, respectively. The mapping

between the two planes is a general planar homography on the form ℵi = H ℵr,

with H a 3 × 3 matrix of rank 3. This projective transformation can be visualised

as a chain of transformations on the form

H = Sςρ, (3.1)

where S represents the similarity transformation, ς represents the affine transfor-

mation, and ρ represents the pure projective transformation. Since the similarity

transformation changes the coordinates linearly and does not play any role in the

perspective view, in this work we have not removed this transformation from the

image. The details of view rectification are provided in subsequent sections.
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3.2.1 Inverse perspective transformation

The first step for view rectification is to determine the transformation ρ defined

as

ρ =


1 0 0

0 1 0

l1 l2 l3

 , (3.2)

where l∞ = (l1, l2, l3)T is the vanishing line of the plane. Parallel lines on the real-

plane intersect at vanishing points in the image plane on the vanishing line. A set of

real plane parallel lines are identified by manually selected four points {P1, . . . , P4}

on the image plane. The lines are projected to find the intersection or vanishing

point for the lines. An illustration of vanishing line construction is given in Fig. 3.1.

Once ρ is determined, the image can be affine-rectified and affine properties can be

measured.

3.2.2 Inverse affine transformation

To remove affine projection, the transformation ς can be represented with two

degree of freedoms:

ς =


1
κ2
−κ1

κ2
0

0 1 0

0 0 1

 , (3.3)

where κ1 and κ2 represent the image as of the circular points in the complex domain.

The assumption is useful for an invariant representation of the image to Euclidean

transformation. Liebowitz [29] presented various procedures to solve for the values

of the two parameters. To generate constraint circles from known angles and length

ratios in the image, we manually select four points {S1, . . . , S4} (square structure on
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Figure 3.1: Example of vanishing line construction. The blue lines represent pairs
of parallel lines intersecting on the vanishing points. The white line represents the
vanishing line. {S1, . . . , S4} and {R1, . . . , R3} are used for known angles and length
ratio selection.

the real plane) to represent line segments with known length ratio and three points

{R1, . . . , R3} to represent right angle formed in real scene. Fig. 3.1 also shows the

selected points for square and right-angled structures.

The circle parameters with known angles are calculated as


(

d1+d2
2
, d1−d2

2
cotθ

)
∣∣∣∣ d1−d2

2sin(θ)

∣∣∣∣ , (3.4)

where (d1+d2
2
, d1−d2

2
cotθ) is the 2D coordinate of the centre of the constraint circle,

| d1−d2
2sin(θ)

| is the radius of the constraint circle with θ = π
2
.

To calculate circle parameters with known length ratio, let dlx and dly represent

the horizontal and vertical directions of a line l and let s be the known length ratio.
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Then, 
(

d1xd1y−s2d2xd2y
d21y−s2d22y

, 0

)
∣∣∣∣ s(d2xd1y−d1xd2y)

d21y−s2d22y

∣∣∣∣ , (3.5)

again, (d1xd1y−s
2d2xd2y

d21y−s2d22y
, 0) and | s(d2xd1y−d1xd2y)

d21y−s2d22y
| are the centre and radius of the circle.

The final values of κ1 and κ2 are calculated by finding a point of intersection of both

constraint circles. The affine removal makes it possible to get the metric properties of

the plane. The steps for the perspective rectification procedure can be summarised

as follows:

• Select {P1, . . . , P4} to define the vanishing line; {S1, . . . , S4} and {R1, . . . , R3}

that define known angle and length ratios within a real-world structure. The

structures may exist at different heights in the scene.

• Calculate the inverse projection transformation (Eq. 3.2).

• Rectify the pure projection from the image by applying ρ.

• Calculate the inverse affine transformation (Eq. 3.4 and Eq. 3.5).

• Rectify the affine transformation from the image by applying ς.

Sample rectified images transformed using this procedure are shown in Fig. 3.2. In

next section, we extend the concept of the calibration from single camera to multiple

cameras.
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Figure 3.2: Sample rectified images using single camera calibration.

3.3 Extrinsic calibration of non-overlapping cam-

eras

Let C = {c1, c2, ..., cN} be a network of N cameras and zm = (xm, ym) the

position of a moving object within the field of view1 of camera ci at time instant m.

Let each camera provide a vertical top-down view of a portion of the scene, either

because its optical axis is perpendicular2 to the ground plane or because its view is

normalised [72]. Under this assumption, the parameters for localising camera ci are

its position, (xi, yi), and its rotation angle, ri, about its optical axis, measured with

respect to the horizontal axis of the ground plane. The set L of unknowns (Fig. 3.3)

is therefore

L = {(x1, y1, r1), (x2, y2, r2), ..., (xN , yN , rN)}. (3.6)

1For clarity of notation we do not use the subscript i for the position of an object within camera
ci.

2Due to top-down assumption, the optical centre of a camera is perpendicular to the image
centre
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Figure 3.3: Illustration of the unknown localisation parameters for the definition of
the configuration of the top-down camera network. The centre of each camera ci is
shown by a circle; (xi, yi) is the position of ci and ri is the orientation or rotation of
ci with reference to the horizontal axis of a common ground plane.

Moreover, let us define camera ci and camera cj as a camera-pair i.e., when an

object exits the field of view of ci and enters the field of view of cj, where j 6= i,

without being observed by another camera. Note that, according to this definition,

ci and cj may become a camera-pair, even if ci and cj are not physically close to

each other (Fig. 3.4). The flow diagram of the proposed approach for an iteration

is shown in Fig. 3.5. The details of algorithmic steps for the entire network are

provided in Algo.1 and described in the following sections.

3.3.1 Pre-processing

The observations in the field of view of each camera (trajectory segments) are

first pre-processed to remove outliers i.e., noisy observations. As the trajectory

segment can be corrupted by various types of estimation noises, we use RANSAC [20]

to smooth it before further processing. Instead of using all the available data,
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Figure 3.4: Example of formation of a camera-pair (ci and cj): an object exits from
ci at m=m0 and enters into the field of view of cj at m=m0+τ without being observed
by another camera.

RANSAC starts with a small subset of the complete data and then adds data which

are consistent with the assumed model. This makes RANSAC able also to filter out

noisy observations that are unrelated to the instantaneous function of the object

state (beyond the measurement error).

Let the motion parameters be approximated with a polynomial of degree l. We

start with nb observations chosen randomly from a trajectory segment. Next, within

this subset, we find the observations that are within a given tolerance of the poly-

nomial model. We repeat the process until the number of observations within this

tolerance is more than 50% of the total number of observations of that trajectory

segment in the camera view. The observations that fall outside the region of toler-

ance are considered outliers and therefore discarded from further processing.

Once the trajectories are filtered within the field of view of a camera, they are

used to estimate the movement of the object in the unobserved regions. We assume
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Figure 3.5: Iteration of the parameter estimation for a camera-pair.

that the object can take one sharp turn in unobserved region. The details of the

process is described in the next section.

3.3.2 Trajectory estimation

In order to generate the complete trajectory

Z ′ = {z0, ..., zm0 , ẑm0+1, ..., ẑm0+τ−1, zm0+τ , ..., zm0+τ+m1} (3.7)

of the moving object, we use the spatio-temporal information derived from available

trajectory segments

Z = {z0, ..., zm0 , zm0+τ , ..., zm0+τ+m1} (3.8)

in the fields of view of the cameras in order to estimate the trajectory points in the

unobserved regions

Ẑ = {ẑm0+1, ..., ẑm0+τ−1}. (3.9)

The estimation of the trajectories in the unobserved region between ci and cj

is performed in three steps: (i) forward and backward estimations, (ii) Kalman

filtering and (iii) fusion. First, we estimate the sequence of positions from time
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instant m0, corresponding to the last observation in ci, to m0 + τ , corresponding to

the first observation in cj. This estimation is performed in the forward and backward

directions. The forward estimation generates the series of candidate positions

Z̃f = {z̃m0+1
f , ..., z̃m0+τ−1

f }; (3.10)

whereas the backward estimation generates the series of candidate positions

Z̃b = {z̃m0+1
b , ..., z̃m0+τ−1

b }. (3.11)

Let each observation z̃m+1
f =(x̃m+1

f , ỹm+1
f ) be generated by a forward motion

model as



x̃m+1
f

x̃m+1
ν,f

ỹm+1
f

ỹm+1
ν,f


=



1 ax,f 0 0

0 1 0 0

0 0 1 ay,f

0 0 0 1





x̃mf

x̃mν,f

ỹmf

ỹmν,f


+



vmx

vmν,x

vmy

vmν,y


, (3.12)

where (x̃mν,f , ỹ
m
ν,f ) is the velocity of the object. Furthermore, ax,f and ay,f are com-

puted independently for each available trajectory segment using the lth order poly-

nomial fitting on observations from ci [73]. Moreover, vm(N (0,Σvm)) is modelling

additive noise with covariance Σvm=diag([1e−3, 1e−3, 1e−3, 1e−3]).

Similarly, let each observation z̃mb =(x̃mb , ỹ
m
b ) be generated by a backward motion
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model as 

x̃mb

x̃mν,b

ỹmb

ỹmν,b


=



1 ax,b 0 0

0 1 0 0

0 0 1 ay,b

0 0 0 1





x̃m+1
b

x̃m+1
ν,b

ỹm+1
b

ỹm+1
ν,b


+



vm+1
x

vm+1
ν,x

vm+1
y

vm+1
ν,y


, (3.13)

where ax,b and ay,b are calculated like ax,f and ay,f , but using the observations from

cj.

Before fusing the forward and backward estimated trajectories, we filter them

using a modified Kalman filtering to obtain smoothed estimated positions, i.e., Ẑ =

{ẑm0+1, ..., ẑm0+τ−1}. The Kalman gain, km, is calculated as

km = Σvm−1A[ATΣvm−1A+ Σwm ]−1, (3.14)

where Σwm is the covariance of the observation noise at instant m and A maps the

state vector with the measurements. Both Σvm and Σwm are updated as described

in [74]. The object position is updated using a forward motion model as

ẑm+1
f = ẑmf + km(z̃mb − A(ẑmf )). (3.15)

Note that z̃mb is used to calculate the residual z̃mb −A(ẑmf ), which is the discrepancy

between the forward estimation and the backward estimation. Zero residual means

that the forward and the backward measurements are in agreement. This modifi-

cation ensures that the object will be in the correct state at m0 + τ , in accordance

with the observation in cj.
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Algorithm 1 Automated localisation of a camera network.
Variables:
IDt: ID of the camera observing the target at t
I, J : IDs of the first and second cameras in a camera-pair
ζ: overall change in camera positions
δ: minimal change threshold
κ: iteration number
Initialisations
t=1; ζ = Inf; κ = 0
1: while ζ ≥ δ do
2: increment κ % start iterations
3: I = IDt−1

4: while I == IDt do
5: zt−1

I
= (xt−1

I
, yt−1

I
)

6: m0 = t-1
7: increment t
8: end while
9: if target is unobserved then

10: increment t
11: else
12: J = IDt

13: m0+τ = t
14: increment t
15: while J == IDt do
16: zt−1

J
= (xt−1

J
, yt−1

J
)

17: m0+τ+m1 = t-1
18: increment t
19: end while
20: apply RANSAC on Z (Sec. II.B)
21: compute Z̃f and Z̃b using Eq.(7) and Eq.(8), respectively
22: compute Ẑf and Ẑb using Eq.(10) and Eq.(11), respectively
23: compute Ẑ using Eq.(12)
24: compute Dκ

I,J
using Eq.(13)

25: compute rκ
I,J

using Eq.(18)
26: pκ

I
= (xI , yI )

27: pκ
J

= (xJ , yJ )+Dκ
I,J

28: Lκ
I,J
← (pκ

I
, pκ

J
, rκ
I,J

)
29: t = m0+τ

30: ζ =
∑N

n=1Norm2(pκn, p
κ−1
n )

31: end if
32: end while % end iterations
33: compute L∗ using Eq.(19) % non-iterative refinements

Similarly, the object position is updated using the backward motion model as

ẑm+1
b = ẑmb + km(z̃mf − A(ẑmb )). (3.16)
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Again, in the residual term z̃mf − A(ẑmb ), z̃mf is used to ensure that the estimated

object state at instant m0 is in accordance with the observation in ci.

The filtered forward and backward estimated segments are finally fused as:

ẑm = (1− βm)ẑmf + βmẑmb , (3.17)

where βm = m/m0 + τ for m = 1, ...,m0 + τ . The forward estimations get higher

weights when the object is closer to ci and these weights are progressively reduced

when the object moves away from ci.

Figure 3.6 shows a trajectory estimation comparison with and without Kalman

filtering corrections. Without the corrections, both the forward and the backward

estimates end far from the real object position in the fields of view of the cameras.

Kalman filtering followed by fusion improves the estimation of the object position

(green).

3.3.3 Position and orientation estimation

To localise the cameras we need to calculate their relative position (the dis-

tance between their centres) and their relative orientation. To estimate the relative

position of cj with respect to ci, we use the displacement vector, Dij, calculated as

Dij = zm0 − ẑm0+τ , (3.18)

where zm0 is the last observation in ci and ẑm0+τ is the first estimated object position

in cj. Furthermore, to estimate the relative orientation r̂ij of the camera-pair, we

could calculate the angle between the observed object position zm0+τ=(xm0+τ , ym0+τ )
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Figure 3.6: An illustration of trajectory estimation with and without Kalman cor-
rections on synthetic data (key; gray: two non-overlapping cameras; blue circles:
observations in each camera (Z); red line: the true trajectory; black dots: for-
ward estimation (Z̃f ); magenta line-dots: backward estimation (Z̃b); green line:

estimated trajectory (Ẑ)).

and the corresponding estimated object position ẑm0+τ=(x̂m0+τ , ŷm0+τ ) in camera

cj as

r̂ij = cos−1 (xm0+τ , ym0+τ ).(x̂m0+τ , ŷm0+τ )

|(xm0+τ , ym0+τ )||(x̂m0+τ , ŷm0+τ )|
. (3.19)

However, to increase the robustness of the orientation estimation process, instead

of relying on single instances of observation and estimation, we use a sub-segment

of the available trajectory segment in cj. This sub-segment is extracted using the

directional angle α(.), calculated as

α(q) = tan−1 y
m0+τ+q − ym0+τ+q−1

xm0+τ+q − xm0+τ+q−1
, (3.20)
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where q = 1, ...,m1 and m1 is the number of consecutive observations in cj. To find

the time ms at which the object changes its direction considerably, we use

ms =

 m0 + τ + q if |α(q)− α(q + 1)| > ξ

m0 + τ +m1 otherwise

, (3.21)

where ms is the instant of change. Equation 3.21 explains that if the change in

object direction is significant (ξ = π/12) at m0 + τ + q within the field of view of

cj, then we consider the trajectory segment only to that point for estimating the

relative orientation; otherwise, the complete trajectory segment is used. To generate

an estimated sequence

Ẑs = {ẑm0+τ , ..., ẑms}, (3.22)

we extrapolate further the trajectory estimate from instant m+ τ to ms. We rotate

the observed segments with θ = −π+n. π
180

where n = 0, 1, ..., 360. The final relative

orientation, rij, between ci and cj is calculated as

rij = arg min
θ

D(Ẑs,Vθ(Zs)), (3.23)

where Vθ(.) rotates Zs at an angle θ and D(., .) calculates the L2 distance between

the estimated and (rotated) observed trajectory segments.

The process of estimating the relative position and orientation continues and

iteratively approximates the configuration of all cameras with respect to each other.

The process terminates when the total change in position estimation is smaller than

a pre-defined threshold, δ, for example δ = 1% of the area representing the field of

view of a camera.

Finally, we can refine the localisation results, L = {(p1, r1), (p2, r2), ..., (pN , rN)}
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Figure 3.7: An example of improvements of the estimation results using bundle
adjustment: (top) input dataset (key; gray square: camera’s field of view; gray line:
ground truth trajectory; gray circles: observations) and (bottom) localisation of
each camera, where the estimation before (blue) and after (green and * with each
camera ID) bundle adjustments are superimposed.

with pi=(xi, yi), by employing bundle adjustment [75]. The cost function for bun-

dle adjustment is defined to ensure that the localisation parameters allow for the

minimal difference between observations and estimates:

L∗ = argmin
L=(ri,pi)

N∑
i=1

||Zi − ri(pi + Ẑi)||2, (3.24)
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where Zi and Ẑi are sets of observed and estimated positions in ci. Figure 3.7

shows an example of refinements with bundle adjustment. Figure 3.7(top) shows

the true camera configuration of the network along with the object trajectory. Fig-

ure 3.7(bottom) shows the initial configuration results (blue) that are refined after

applying bundle adjustment (green). Significant improvements can be observed in

the relative positioning of c3, c4, c7 and c8.

3.4 Summary

In this chapter, we have presented an approach for self-calibration of a single

camera using view rectification and then we focused on the extrinsic calibration of

a non-overlapping camera network. To this end, we proposed an iterative algorithm

for the localisation of a network of non-overlapping cameras that allows us to relax

the traditional linearity or smooth turn constraint on the motion of objects. The

algorithm recovers the position and the orientation of each camera based on two

main steps: the estimation of the unobserved trajectory in regions not covered by

the cameras’ fields of view and the estimation of the relative orientations of the

cameras. Kalman filtering initially employed on the available trajectory segments

to extrapolate their values in the unobserved regions, with the modification that

the forward motion model provides measurements for the backward trajectory es-

timation and vice versa. This helped in improving the accuracy of the trajectory

estimation in the unobserved regions. The relative orientation of the cameras is then

obtained by using the estimated and the observed exit and entry point information

in each camera field of view. The initial localisation of the network is refined by

bundle adjustment. The evaluation of the proposed approach and its comparison
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with an existing work on simulated as well as real datasets is presented in Ch. 6.

Furthermore, the calibrated cameras can be used to fuse various streams and to

generate a global view [76]. To this end, a challenging task is to establish object

correspondence across multiple views [77]. In Ch. 4, we present an algorithm that

estimates object correspondence and reconstruct a global trajectory for each object

on a common plane.



Chapter 4

Global trajectory reconstruction

4.1 Introduction

The reconstruction of objects’ trajectories across cameras facilitates the recogni-

tion of global behaviours for large scale events in applications such as sports analysis,

remote sensing and video surveillance. This requires a mechanism for associating

and integrating partially observed data in each camera view. Local trajectory in-

formation from individual cameras may be corrupted by inaccuracies due to noise,

objects re-entrances, occlusions and by errors due to crowded scenes. Therefore,

trajectory association becomes a difficult task under such complex scenarios. In this

chapter, we consider the problem of object association across partially overlapping

cameras using local trajectories. Initial correspondence among trajectories is estab-

lished on the ground plane using multiple spatio-temporal features and then image

plane reprojections of the matched trajectories are employed to resolve conflicting

situations. This makes sure that only one trajectory of an object from each camera

is associated to other cameras. The fusion is then applied to combine matched tra-

jectories. A spatio-temporal linkage procedure connects the fused segments in order

49
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Figure 4.1: Flow diagram for reconstruction of a global trajectory.

to obtain the complete global trajectories across the distributed set-up. Figure 4.1

shows the flow diagram of the proposed approach for the reconstruction of global

trajectories.

Let C = {c1, c2, ..., cN} be a set of N partially overlapping synchronised cameras

(Fig. 4.2). Let Oi,n represent the ith object observed in cn. We perform video object

extraction (foreground segmentation) using a statistical colour change detector and

then we associate them across consecutive frames using graph-matching [78]. Let

(xt, yt)i,n be the resulting observation (track-point) of Oi,n at instant t in camera cn.

The trajectory of Oi,n is a set of all observations i.e.,

Ti,n = {(x0, y0), (x1, y1), ..., (xJ , yJ)}, (4.1)
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Figure 4.2: Illustration of notations. (Top) an object is observed by a network of
cameras; (middle) trajectory segments of the object in image planes of each camera;
and (bottom) projections of trajectory segments on a common ground plane.

where J represent the length of the trajectory.

We construct a virtual ground plane (G) from the available image plane views

from multiple cameras and the image plane to ground plane projection is estimated

by applying the homography matrix HGn [79] i.e.,

T̂i,Gn(x̂t, ŷt) = HGn(xt, yt)i,n, (4.2)

where, T̂i,Gn(x̂t, ŷt) is the local ground plane projection of (xt, yt)i,n and HGn is the

homography matrix. HGn is constructed by manually selecting control points to

establish the image and ground plane correspondence. However, these local pro-

jections result in differences in the overlapping region (Ωm,n) on the ground plane.

Figure 4.3(top) shows a network of two partially overlapping cameras and accu-
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Figure 4.3: A network of partially overlapping cameras. (Top) configuration of the
cameras; (middle-row) accumulated trajectories in each view; (bottom-left) ground
plane projection from the two views and (bottom-right) an example of the differences
on the ground plane.

mulated trajectories in each view (Fig. 4.3(middle-row)). Figure 4.3(bottom-left)

shows the local projections of the trajectories on a common ground plane, where

there are considerable differences of an object’s trajectory viewed in two cameras

(Fig. 4.3(bottom-right)). This leads to the requirement of a process which can es-

tablish a proximity matrix to associate every pth trajectory to all qth trajectories in

Ωm,n. The final goal is to reconstruct a complete global trajectory of an object by

fusing the trajectory segments across the entire environment.
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Figure 4.4: Illustration of feature’s limitations. (Left) shape and length features
unable to distinguish the trajectories belonging to different objects and (right) shape,
length and average velocity features unable to differentiate two trajectories that are
spatially far from each other.

4.2 Trajectory association

In the case of partially overlapping cameras, we need to establish the correspon-

dence between transformed trajectory segments (T̂i,Gn) in the overlapping regions

on the ground plane. To find the relative pair-wise similarities for association, we

use both spatial and temporal features extracted from the trajectory segments. We

assume that a pair of trajectories from different cameras has to be similar both in

time and space for the association and fusion. In [9], the shape (βi,Gn) of the trajec-

tories , which is approximated by polynomial coefficients of second order, and length

(di,Gn) are used to find the similarity. However, these features are not generalised

enough to handle the variety of trajectories. Figure 4.4(left) shows an example,

where two trajectories are considered as similar in shape using these features. In

fact, the second object is moving twice the speed of the first one. We expand the

feature set by including the average target velocity, vi,Gn , which helps in describing

the rate of change of the ith object position and is calculated as
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vi,Gn =
1

J

J−1∑
j=1

(
x̂j+1 − x̂j, ŷj+1 − ŷj

)
. (4.3)

However, vi,Gn defines the average rate of change of an entire trajectory segment.

For localising (time and position) the abrupt changes in a trajectory, we employ the

sharpness of turns (~i,Gn), which defines the statistical directional characteristics of

a trajectory and is calculated as

~i,Gn = H(θi,Gn), (4.4)

where H(.) is a histogram function calculated over the directional angles (θi,Gn =

tan−1(ŷj+1−ŷj/x̂j+1−x̂j). We take the indices to the top three peaks of ~i,Gn as they

are sufficient to describe the dominant angles in the trajectory. Furthermore, we

consider a situation where two trajectories with similar shape, length and velocity

are present in completely different regions of the environment (see Fig. 4.4(right)).

In order to distinguish them, trajectory mean (mi,Gn) is used and is defined as

mi,Gn =
1

J

J∑
j=1

(
x̂j, ŷj

)
. (4.5)

The features discussed so far define the overall pattern of a trajectory. In order to

get the variation in observation information at the sample level, we include PCA

components analysis (pi,Gn). We apply PCA on sample points of each trajectory by

considering the covariance matrix as

Ξi,Gn =
1

J
T̃i,GnT̃

T
i,Gn , (4.6)
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p β d m h v Θ

Figure 4.5: Number of conflicts in individual feature spaces.

where T̃i,Gn is the mean-shifted version of Ti,Gn . The eigenvalue decomposition

of Ξi,Gn results in eigenvalues, α = {αj}Jj=1, and corresponding eigenvectors, ϕ =

{ϕj}Jj=1. After sorting α in descending order, we consider first two ϕk, ϕl ∈ ϕ,

corresponding to the top two eigenvalues, αk, αl ∈ α, as most of the variability in

the track points lies in these two components. The final (normalised) feature vector

for each trajectory is:

Θi,Gn = (βi,Gn ,di,Gn ,vi,Gn , ~i,Gn ,mi,Gn ,pi,Gn)T , (4.7)

where T denotes the transpose operator. Because of its robustness to the scale

variation, we use cross correlation as a proximity measure. For T
′
i,Gn

and T
′

k,Gm
in

Ωn,m the association matrix is calculated as:

AΩ(T̂i,Gn , T̂k,Gm) = F(Θi,Gn ,Θk,Gm), (4.8)
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Figure 4.6: Examples of conflicting situations in (top-left) p, (top-right) m, (bottom-
left) combined v and ~ and (bottom-right) d.

where, F is the correlation function. A trajectory T̂i,Gn will be associated to any

trajectory T̂k,Gm for which it has maximum correlation i.e.,

DΩ = arg max
r

(AΩ(T̂k,Gl , T̂r,Gm)) ∀ Or,m ∈ cm. (4.9)

It is noticed that individual features result in spurious associations as shown in Fig-

ure 4.5. There are number of conflict situations (examples are shown in Fig. 4.6),

however, the use of combined feature set reduces this number considerably. How-

ever, still there are cases where multiple trajectories can correspond to a trajectory.

Figure 4.7 demonstrates such an example, where two out of three trajectories match

the input trajectory. In order to have single trajectory segment belong to a physical

object in the overlapping region, we need to resolve this conflict situation. For this,

we perform matching in image plane by reprojecting the matched trajectories from
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Figure 4.7: An example of association conflict. (Top-left) four sample trajectories
(see Fig. 4.3); (top-right) association results with two trajectories (blue and green)
have equal scores; (bottom) representation of trajectories in each feature space with
a marker colour maps to trajectory colour (key; star:v; cross:m; triangle: β; circle:
p; square: ~); particular to v and ~ all trajectories coincide.

the ground plane. Suppose, trajectory segment T̂i,Gn can be associated to T̂k,Gm

and T̂s,Gm (or even more), we reproject the trajectories onto the image plane using

H−1
Gn

. Resampling is done in order to have equal length trajectories and then stan-

dard Euclidean distance (d) is employed as proximity measure. The trajectory is

selected for which the distance is minimum i.e.,

K = arg min
l

(d(T̂i,Gn , T̂l,Gm))∀ l = 1, ..., L, (4.10)

where L is the total number of matched trajectories on the ground plane.
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Figure 4.8: An example of trajectory fusion. (Left) matched trajectories from a pair
of overlapping cameras (Fig. 4.3) and (right) Fusion result.

4.3 Trajectory fusion

Once association is done, the next step is to fuse a pair of corresponding tra-

jectories in overlapping regions. The fusion is required to combine the trajectory

segments observed in multiple cameras . To fuse T̂i,Gn and T̂k,Gm , where both

trajectories are generated from the same object in real world, we use an adaptive

weighting method i.e.,

T̂ ti,k,Gn,m =


w1T̂

t
i,Gn

+ w2T̂
t
k,Gm

inRn,m

T̂ ti,Gn inRn

T̂ tk,Gm inRm,

(4.11)

where Rn,m is the region where observations from both T̂i,Gn and T̂k,Gm are available

at t. Rn and Rm are the regions where the observation is available from either T̂i,Gn

or T̂k,Gm , respectively. At each time t when the observation from both trajectories

are available, the trajectory segment which has more track points is given higher

weight than the other; otherwise, we utilise the available observation from one of

the trajectories. The weights (wi : i = 1, 2) are calculated as function of number of
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Figure 4.9: An example of trajectory linkage.

observations for each trajectory:

w1 =
|T̂i,Gn|

|T̂i,Gn|+ |T̂k,Gm|
, w2 =

|T̂k,Gm|
|T̂i,Gn |+ |T̂k,Gm|

, (4.12)

where |.| is the number of observations in a trajectory and w1+w2=1. In order to

have smoother overall trajectory to avoid small fluctuations due to the observation’s

gaps, we apply a moving average approach where window size is set to 5 observations.

Finally, to construct a complete trajectory across the entire environment, we

connect all segments that belong to same object (see Fig. 4.9) i.e.,

Ti,G =
κ⋃
i=1

χi, (4.13)

where κ is total number of connected regions. Also, χi is the segment observed

in overlapping region between cn and cm and χi+1 is the segment observed in non-

overlapping region (i.e. only in Cm) and χi+2 is the segment observed in overlapping

region between cm and cl. In this way, a complete trajectory is constructed for

cameras cl, cm and cn, whereby cl and cn are non-overlapping by configuration.
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4.4 Summary

In this chapter, we have addressed the problem of trajectory association across

camera network, without imposing constraints on the camera placement. Local

trajectory segments from each camera are projected on a common ground plane.

Multiple spatio-temporal features are then analysed to find the degree of proximity

between the trajectories. The matching is verified via the ground plane to image

plane reprojections. The proposed approach generates a complete trajectory belong-

ing to a physical object in an unsupervised way. The performance of the proposed

approach is evaluated in Ch. 6 and compared with existing works. Furthermore,

these trajectories are important elements for the analysis and the representation

of behaviours ([80], [81]). In the next chapter, we present an algorithm for video

analysis using trajectory clustering.
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Trajectory clustering

5.1 Introduction

Clustering is a key component of trajectory analysis when instead of modelling

and analysing the motion of an individual object, multiple trajectories are processed

together to discover the inherent structures of activities in a video. This process

aims to classify trajectories into two major classes, namely normal trajectories,

which belong to common patterns, and outliers, which exhibit a deviant behaviour.

Clustering groups unlabeled data in such a way that elements in a single cluster have

similar characteristics, and elements in different clusters have the most dissimilar

characteristics ([82], [83], [84]).

In this chapter, we propose a partitional trajectory clustering framework that

combines internally a fuzzy clustering approach based on multiple features before

generating a final crisp partition. We use multiple feature spaces simultaneously to

obtain a higher degree of descriptiveness of the trajectories as opposed to using one

feature space only. Each feature space is then regarded as the empirical probability

density function (pdf) of the represented parameter and modes in each space corre-
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spond to the maxima of the pdf. Once the modes are determined, the members can

be associated to each mode to form the clusters. We use Mean-shift in each feature

space for mode-seeking and clustering. The clustering results of Mean-shift in each

space are then refined by applying a cluster merging procedure. The final clustering

is obtained by analysing the clustering results from each feature space. The process

results in the definition of the clusters’ structures along with the fuzzy membership

of a trajectory to the final clusters. The clusters with small number of associated

elements and the trajectories that are far from the clusters’ centre are considered as

outliers. As a consequence the algorithm may consider a normal trajectory, within

a cluster, as an outlier; but it makes sure to reduce the chance of considering an

outlier as a normal trajectory, which is desirable especially in surveillance applica-

tions. Figure 5.1 shows the flow diagram of the proposed approach. The details of

the proposed approach are provided in following sections.

5.2 Feature extraction

We propose a multi-feature trajectory clustering algorithm that improves the

overall clustering performance by exploiting the descriptiveness of multiple feature

spaces. Let a trajectory Tj be represented as Tj = {(xij, yij); i = 1, . . . , Nj}, where

(xij, y
i
j) is the estimated position (mid-point of bottom of the bounding box) of

the jth target on the image plane, Nj is the number of trajectory points and j =

1, ..., J . J is number of trajectories. Note that the trajectories are likely to have

different length; therefore, we extract features from each input trajectory to have

equal lengths (dimensions). Let Fm(.) be a feature extraction function defined as

Fm(.) : Tj → Ψdm
m , with m = 1, ...,M , where M is total number of feature spaces. Fm
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Figure 5.1: Flow diagram of the trajectory clustering algorithm.

map every trajectory Tj to a dm-dimensional feature space {Ψdm
m }Mm=1. The feature

spaces are treated independently in order to avoid the need for normalisation, which

is required if features are processed together, and to help in analysing multi-domain

(spatial and angular) non-orthogonal feature spaces together. Moreover, it also

provides a framework for parallel clustering using different features and integrates

them together to avoid problems comparing non-similar features.

Feature selection depends upon the application and each feature space helps in

finding the coarse structures from the input data, which are then integrated for fine-

grained clustering. For this purpose, we investigate spatial and angular trajectory

representations, namely (a) the average target velocity, (b) the directional distance,

(c) the target trajectory mean, (d) the combination of the initial target position, its
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Figure 5.2: (a) Sample set of 1100 synthetic trajectories and their projections on the
following feature spaces: (b) average velocity, (c) directional distance, (d) trajec-
tory mean, (e) combination of initial position, speed and acceleration, (f) principal
components and (g) trajectory turns (three dominant angles).
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speed and its acceleration, (e) the PCA of the trajectory points, and (f) trajectory

turns1. Next, we provide details of each feature space.

The average target velocity, vj, describes the rate of change of the jth object

position. This feature helps separating the trajectories of objects moving at varying

pace. vj is defined as

vj =
1

Nj − 1

Nj−1∑
i=1

(
xi+1
j − xij, yi+1

j − yij
)
. (5.1)

The directional distance, dj, of the jth object is considered as the second feature to

extract the horizontal and vertical length of a trajectory. Moreover dj also encodes

the direction of motion (moving toward or away from the camera). This feature

helps distinguishing longer trajectories from shorter ones and also trajectories in

opposite directions. dj is calculated as

dj =
(
x
Nj
j − x0

j , y
Nj
j − y0

j

)
. (5.2)

The third spatial feature encodes the horizontal and vertical components of jth tra-

jectory mean (mj). This feature works well to distinguish the trajectories belonging

to different regions on the image plane and is calculated as

mj =
1

Nj

Nj∑
i=1

(
xij, y

i
j

)
. (5.3)

In order to model the shape of the jth trajectory irrespective of its length and sample

points we use polynomial regression as fourth feature space. The matrix notation

1Note that the trajectory turns feature is used to analyse the degree of turns in a particular
trajectory. This is different from the acceleration, which is the change of velocity over time
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for the model estimation of Tj is written as

y
′

j =

(
1 xj (xj)

2 ... (xj)
ρ

)
(β0β1...βρ)

T + ε, (5.4)

where the first term of the R.H.S is a Nj × ρ matrix with xj = {xij}
Nj
i=1, the second

term is ρ × 1 vector and the last term is a Njx1 vector. The output vector is also

Njx1 vector. The goal here is to find the optimal values of βi for which ε = |y′ − y|

becomes minimum. The process requires an inherent trade-off between accuracy

and efficiency. As the degree of the polynomial increases, the fit grows in accuracy

but only up to a point. We find the appropriate degree by starting with a first

degree polynomial and continually monitoring the fit to see if the degree needs to

be increased. If so, the regression is restarted with the degree incremented by one.

Here we have fixed ρ = 2 as an increase of the value of ρ does not affect the overall

accuracy. The three coefficients (β0, β1, β2) maps to the initial position, speed and

acceleration of the object.

In order to consider the variation information of each trajectory, we apply PCA

on sample points of each trajectory. For simplicity of notation, let xj = (xj, yj),

then Tj can be rewritten as Tj = {xi
j}

Nj

i=1. After subtracting the trajectory mean

(mj) from each trajectory point,

T̃j = {xi
j −mj; i = 1, ..., Nj}, (5.5)

we consider the covariance matrix as

Ξj =
1

Nj

T̃jT̃
T
j . (5.6)
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The eigenvalue decomposition of Ξj results in eigenvalues, α = {αi}
Nj
i=1, and corre-

sponding eigenvectors, ϕ = {ϕi}
Nj
i=1. After sorting α in descending order, we consider

the first two ϕk, ϕl ∈ ϕ, corresponding to the top two eigenvalues, αk, αl ∈ α, as

most of the variability of the data lies in these two components.

Lastly, to consider the sharpness of turns in Tj, the directional histograms (~j)

are calculated using the method presented in [16] as

~j = H(θij), (5.7)

where H(.) is a histogram function calculated over the directional angles (θij =

tan−1(yi+1
j − yij/x

i+1
j − xij)). We take the indices of the top three peaks of ~j as

they describe the dominant angles in the trajectory. To show relative placements of

trajectories in a particular feature space, we have constructed a synthetic dataset

consisting of 1100 trajectories as shown in Fig. 5.2(a). The dataset contains five

normal patterns with regions where trajectories from different patterns intersect

each other to make the dataset challenging. Figure 5.2(b-g) shows the relative

placement of each trajectory of a given dataset in each feature space.

Once the trajectories are transformed into multiple feature spaces, the next step

is to analyse each feature space to form clusters. Without prior knowledge on the

type of target we are observing, we consider all the features equally important and

give them equal weights for the final clustering. The detailed discussion about the

clustering process is given in the next section.
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5.3 Clustering

Each feature space is regarded as the empirical probability density function (pdf)

of the distribution of the trajectories in a particular feature space [85]. To de-

velop a more generic solution we use Mean-shift, which is an unsupervised and

non-parametric clustering algorithm. We apply Mean-shift on the normalised fea-

ture spaces to find the modes of the pdf and then we associate each trajectory with

the nearest mode to form the clusters.

Mean-shift is a clustering technique that climbs the gradient of a probability

distribution to find the nearest dominant mode or peak ([86]). Let χl ∈ Ψ
dj
j ; l =

1, ..., L be a set of L data points. The multivariate density estimator f̂(x) is defined

as

f̂(x) =
1

Lhdmm

L∑
l=1

K
(
x− χl
hdmm

)
, (5.8)

where hdmm is the bandwidth of the kernel, K(.). The choice of hdmm plays an important

role in Mean-shift clustering. We employ an incremental procedure to select this

value. Initially, hdmm is set to 10% of each dimension of mth feature space and it

iteratively increases to 80%. The lower bound prevents clusters containing a single

trajectory, while the upper bound avoids a cluster with all trajectories grouped

together. Although a smaller hdmm produces less biased density estimator, it increases

the variance. In order to find the compromise between the two quantities we used

Mean Integrated Squared Error (MISE) E [86], defined as

E(x) =

∫
E((χl − f̂(x))2)dx, (5.9)

The value of hdmm for which E(x) is minimum is considered to be the optimal one.
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Figure 5.3: Sample Mean-shift clustering results on the first two principal compo-
nents of the highway traffic sequence S3. Each point represents a trajectory. (a)
Initial trajectory representation. Results (zoom) of the (b) 1st, (c) 5th, and (d) 8th

iteration of the mode seeking procedure. (Key. Blue: unprocessed points. Magenta:
points within the kernel bandwidth. Green: mode-seeking path. Triangles: mode
at each iteration).

Moreover, K(.) in Eq. (5.8) is defined as

K(x) =


1

2V dmm
(dm + 2)(1− xTx) if xTx < 1

0 otherwise

, (5.10)

where V dm
m represents the volume of a dm-dimensional unitary sphere. The density

gradient estimate of the kernel can be written as
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Figure 5.4: Sample cluster merging results. (a) Initial trajectory clustering result
(5 clusters) before cluster merging; (b) final clustering result after cluster merging
(4 clusters).

∇̂f(x) = ∇f̂(x) =
1

Lhdmm

L∑
l=1

∇K
(
x− χl
hdmm

)
. (5.11)

Equation (5.11) can be re-written as

∇̂f(x) =
d+ 2

hdmm V dm
m

 1

Lc

∑
χl∈S(x)

(χl − x)

 , (5.12)

where S(x) is a hypersphere of radius hdmm , with volume hdmm V dm
m , centred in x and

containing Lc data points. The Mean-shift vector, ζh(x), is defined as

ζh(x) =
1

Lc

∑
χl∈S(x)

(χl − x) , (5.13)

and, using Eq. (5.12), we can express ζh(x) as

ζh(x) =
hdmm V dm

m

dm + 2

∇̂f(x)

f̂(x)
. (5.14)

The output of the Mean-shift procedure is the set of data points associated to each
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Figure 5.5: Comparison of single and multiple feature clustering results correspond-
ing to Fig. 5.2: (a) independent multiple features (proposed), (b) concatenated mul-
tiple feature, (c) average velocity only, (d) directional distance only, (e) trajectory
mean only, (f) combination of initial position, speed, acceleration only, (g) principal
components only and (h) trajectory turns (the three dominant angles) only.

mode. This process is illustrated in Fig. 5.3. Initially, the mode seeking process

starts by fixing a trajectory as a seed point; then after the Mean-shift process

converges to the local mode, all the trajectories within the bandwidth, hdmm , of

the kernel, K(.), are assigned to that mode [87]. These trajectories are then not
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considered for future iterations. The next seed point is selected randomly from the

unprocessed trajectories. The process terminates when all trajectories are assigned

to a corresponding local mode.

A small bandwidth causes an increase in the number of modes and a larger

variance, which results in unstable variations of local density. This artefact can

be eliminated by merging the closely located modes [88]. In this work, we merge

adjacent clusters if their modes are apart by less than hdmm + 0.1(hdmm ). A sample

result of cluster merging is shown in Fig. 5.4, where two modes in Fig. 5.4(a) (upper

region: dark and light blue) are located within the threshold value and are merged

as shown in Fig. 5.4(b). The cluster merging threshold is selected empirically; a

higher threshold may result in inappropriately large clusters.

5.4 Post processing

The final partitioning of the trajectories is obtained after analysing the refined

clustering results from each feature space. The integration of the clusters consists

of three steps, namely the estimation of the final number of clusters, the establish-

ment of the correspondence between clusters in different feature spaces, and the

association of each trajectory to a final cluster.

Let ξ = {ℵk}Mk=1 be the set containing the number of clusters for each feature

space Ψdk
k . The final number of clusters ℵ is selected as the median value of the set ξ.

After selecting the final number of clusters, we construct the final clusters by taking

the initial clustering results from each feature space. We estimate the structure of

clusters as characterised by a single mode; we model each cluster with a univariate

Gaussian with bandwidth of the kernel defining the variance of the cluster itself.
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Algorithm 2 Generalised cluster fusion process.

ξ = {ℵ1,ℵ2,...,ℵM}: number of clusters for each feature space
Ci
j: j

th cluster in the ith space;
ℵ: number of final clusters;

1: Compute: ℵ
2: ℵ = median(ξ)
3: Compute: Cf

4: l ← find ξ =ℵ
5: Cf

i = C l
i : i = 1,...,ℵ

6: for n = 1 to M do
7: if n 6= l
8: for i = 1 to ℵ do
9: find ν̂ = arg max

j
|C l

i ∩ {Cn
j }

ξn
j=1|

10: Cf
i = (Cf

i ∩ Cn
ν̂ )

11: end for
12: end if
13: end for

In order to find the structure of each cluster, we start the process with a feature

space Ψdl
l ∈ {Ψ

dk
k }Mk=1 such that ξl = ℵ. The initial parameters of the final clusters

(Cf
i ; i = 1, ...,ℵ) are those defined by Ψdl

l . To refine the parameters according to the

results of the other feature spaces, we find the correspondence of Ψdl
l with all the

other feature spaces Ψdn
n with Ψdn

n ∈ {Ψ
dk
k }Mk=1 and n 6= l.

Let ν̂ be the index of the cluster in Ψdn
n that has the maximum correspondence

(maximum number of overlapping elements) with the ith cluster of Ψdl
l :

ν̂ = arg max
j

∣∣C l
i ∩ Cn

j

∣∣ , (5.15)

where i = 1, ...,ℵ and j = 1, ...,ℵn. Also, C l
i and Cn

j represent the ith and jth

clusters in Ψdl
l and Ψdn

n , respectively. Then Cf
i is updated by taking the overlapping

elements, Cf
i = (Cf

i ∩ Cn
ν̂ ). This process continues for all features spaces (see Algo.

2). This results in ℵ clusters consisting of all the trajectories that are consistent i.e.,
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grouped together, across all feature spaces, and are therefore considered to represent

a reliable structure for each cluster. At this point we associate to the final clusters

the trajectories (T
′ ⊆ {Tj}Jj=1) which are not consistent across all the feature spaces.

To this end, we calculate a conditional probability of To ∈ T
′

generated from the

given cluster model as

p(To|Cf
k ) =

1

M

M∑
i=1

1√
2πσf,k

e
−(

µi,j−µf,k
σf,k

)2

, (5.16)

where µi,j = 1
|Cij |

|Cij |∑
j=1

mj and µf,k = 1

|Cfk |

|Cfk |∑
k=1

mk (see Eq. (5.3)) are the mean values of

Ci
j and Cf

k respectively; σf,k = 1

|Cfk |

|Cfk |∑
k=1

Ξk (see Eq. (5.6)) is the standard deviation

of Cf
k . The motivation behind these parameters is that each cluster is characterised

by a single mode with the spread of the cluster can be represented by σ. Note that

the decision is made at the cluster level and not at the feature space level, thus

removing the dependence on dimensionality or normalisation. To will be assigned to

Cf
k if

p(To|Cf
k ) > p(To|Cf

l ), (5.17)

where l=1, ...,ℵ and l 6= k. Figure 5.5 shows a comparison of trajectory clustering

results using single and multiple (concatenated and independent) features. Single

features (Fig. 5.5(c-h)) are not always capable of providing an effective data repre-

sentation as, for example, the average velocity encodes directional information only,

without providing any spatial relationship information among the trajectories. This

results in grouping trajectories even if they are located far from each other. On

the other hand, features such as the directional distance and trajectory mean con-

tain spatial information only, without encoding any variation information. For this
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reason, these features do not generate clusters of trajectories with similar motion

patterns that are not spatially close. The integration of the different features and

their properties improves the overall trajectory clustering results by generating a

more meaningful grouping, as shown in Fig. 5.5(b). However, in Fig. 5.5(b) there

are still 33 wrongly clustered trajectories. The proposed approach further improves

the performance by first post-processing the results (cluster merging) at feature

space level and then by fusing the post-processed results at later stage (Fig. 5.5(a)).

5.5 Outlier detection

An outlier trajectory is the one that deviates from other trajectories and can

correspond to an abnormal behaviour e.g., driver being on the wrong side of the

road. In this work we focus on identifying two types of outlier trajectories: those

existing in dense regions but exhibiting a different behaviour from the common

pattern; and those located in sparse regions.

To detect the first type of outliers, we use a distance-based approach. If a

trajectory T
′
j ∈ C

f
k , with trajectory mean µT ′j

, lies far from the centre (µf,k) of the

cluster it belongs to, then it is considered as outlier, i.e.,

|µT ′j − µf,k|
σf,k

> τ, (5.18)

where τ = 0.95 (empirically selected).

To detect the second type of outliers, we identify trajectories belonging to sparse

regions by considering the size of their cluster. If a cluster has few associated

trajectories and cannot be merged with a nearby cluster, then it is considered to be
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Figure 5.6: An example of multi-camera setup for trajectory clustering. (a) Camera
configuration, (b-e) input trajectories on top of key frame of each view.

a set of outliers. Here the threshold value is set to the 10% of the cardinality of the

cluster containing the median number of associated elements.
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(a) (b)

(c) (d)

Figure 5.7: Clustering results on each image plane.

5.6 Example of trajectory clustering

To analyse the performance of the clustering algorithm in a multi-camera setup,

we consider a simulated camera network that is consisting of four cameras as shown

in Fig. 5.6(a). The trajectories from each camera are shown on a key-frame of each

view in Fig. 5.6(b-e). We prepared a ground truth for this sequence manually. The

ground truth of the sequence is as follows: there are four clusters on left-path (c1,

c3 and c4) and one cluster on right-path (c1, c3 and c4) and one trajectory (a person

crossing the road) is an outlier.

Initially, we applied clustering on trajectories from each camera independently.

The results are shown in Figure 5.7. It can be observed that perspective deformations



78 Chapter 5: Trajectory clustering

Figure 5.8: Trajectory association results on input trajectories (note: corresponding
trajectories in four views are shown with same colour).

have affected the clustering results especially in c2, c3 and c4. Only two clusters are

found on the left-path in c3 and c4 and the corresponding right-path in c2. On the

other hand results in c1, which is observing the paths more closely, are accurate.

However, c1 is only observing a small region of the complete area. Therefore, to

accurately detect clusters at larger area, it is must to apply trajectory association

to reconstruct complete trajectories before applying clustering.

The colour-coded trajectory association results are shown in Fig. 5.8. The same

colour in multiple views shows the corresponding trajectories. The final clustering

results on complete trajectories are shown on a synthetic common-view in Fig. 5.9.

The final results exactly match the ground truth.
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(a) (b) (c)

(d) (e) (f)

Figure 5.9: Clustering results on a synthetic view. (a) Estimated common patterns
and (b-f) complete trajectories within each cluster.

5.7 Summary

In this chapter, we have presented a novel multi-feature video object trajectory

clustering algorithm that estimates common patterns of behaviours and isolates

outliers. The proposed algorithm is based on four main steps, namely the extrac-

tion of a set of representative trajectory features, non-parametric clustering, cluster

merging and information fusion for the identification of normal and rare object mo-

tion patterns. First we transformed the trajectories into a set of feature spaces on
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which Mean-shift identifies the modes and the corresponding clusters. Furthermore,

a merging procedure is devised to refine these results by combining similar adja-

cent clusters. The final common patterns are estimated by fusing the clustering

results across all feature spaces. Clusters corresponding to reoccurring trajectories

are considered as normal, whereas sparse trajectories are associated to abnormal

and rare events. An example of trajectory clustering in a multi-camera setup is also

presented. The performance of the proposed algorithm is evaluated in Ch. 6 and

compared with existing approaches.



Chapter 6

Experimental results

The organisation of this chapter is as follows: Sec. 6.1 provides details of ex-

perimental results of the camera calibration algorithm and its comparison with a

state-of-the-art approach; Sec. 6.2 discusses the results of object association across

multiple cameras and the comparison of the algorithm with existing works and fi-

nally, Sec. 6.3 discusses the results of the trajectory clustering algorithm and its

comparison with existing works.

6.1 Extrinsic calibration of non-overlapping cam-

eras

6.1.1 Datasets

To evaluate the performance of the proposed extrinsic camera calibration ap-

proach, we use two simulated and one real camera setups. The simulated setups

consist of six and eight cameras. The total coverage area is 200x200 unit-size. Fig-

ure 6.1 shows the simulated setups, where the layout of the cameras is superimposed

81
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on Google maps to highlight the difficulty of the problem. The figure also shows

that there exist unobserved regions which are at least twice in area as compare to

the field of view of each camera. We manually constructed the trajectory of an

object, where we intentionally introduce turn in unobserved regions to increase the

complexity. Furthermore, the real dataset is generated from five cameras (Fig. 6.2).

A toy car moves across the network on a toy car track. Since the car track contains

fixed paths, to increase the variability of the trajectory we keep rotating the track

with our hands during video acquisition. The coverage area is approximately 4.40

sq. meters. The dataset consists of 19137 frames. We use change detection to

extract and to generate the trajectory [89].

6.1.2 Performance evaluation

To compare the results of the proposed approach before bundle adjustment

(PBBA) and after bundle adjustment (PABA), we use a state-of-the-art MAP-

based approach [7]. Additionally, we initialise the MAP-based approach with the

initial configuration estimated by the proposed approach (PBBA) and refer to it as

Modified MAP (MMAP).

We constructed the ground truth, where position and rotation of cameras are

marked manually. The position estimation error, εt, is calculated with the L2 norm

between the ground truth and estimated position of cameras; whereas the rotation

error, εr, is calculated with the L1 norm between the ground truth and estimated

rotation of cameras.

The algorithms are developed in Matlab (ver 7.5) and run on a Pentium (R) dual

core CPU @ 2.00 GHz with 3.0 GB memory.
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Figure 6.1: Examples of camera network localisation on simulated datasets: (a,d)
trajectory of an object (black line) and field-of-view of each camera (gray) (Copyright
2010 Google - Map data); (b,e) localisation results of MAP (orange) and MMAP
(red) superimposed on the truth configuration; (c,f) localisation results of PBBA
(dark-blue) and PABA (light-blue) superimposed on the truth configuration. c1

(black) is the reference camera.

6.1.3 Discussion

Figure 6.1(a,d) shows the ground truth configurations of two simulated cam-

era networks. Figure 6.1(b,e) shows the localisation using MAP (orange) and is

superimposed on the true configuration. For both sequences, c1 is considered as

the reference (black). The visual analysis shows that there are considerable errors

in approximating the cameras’ positions. Specifically, in the first sequence, c2, c3

and c4 are noticeably misplaced. Similarly, for the second sequence, c2, c3 and c7

are far from the true configuration. This is primarily because MAP can handle
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Figure 6.2: Localisation results on a real dataset: (a) the experimental setup; (b)
trajectory (line) superimposed on the original configuration (gray); (c) localisation
results using MAP (orange), MMAP (red), PBBA (dark-blue) and PABA (light-
blue) superimposed on the original configuration (gray).

Table 6.1: Evaluation of the accuracy of the algorithms under analysis on the sim-
ulated datasets.

S Algo. c2 c3 c4 c5 c6 c7 c8 Avg.

1

MAP
εt 20.86 19.83 14.58 11.52 3.46 - - 14.05
εr 25.00 16.00 16.00 10.00 10.00 - - 15.40

MMAP
εt 24.14 18.50 11.79 11.00 2.70 - - 13.63
εr 10.00 15.00 15.00 5.00 2.00 - - 9.40

PBBA
εt 2.01 1.12 1.24 0.54 0.51 - - 1.08
εr 10.00 15.00 10.00 5.00 0.00 - - 8.00

PABA
εt 0.25 0.34 0.12 0.06 0.16 - - 0.18
εr 5.00 5.00 4.00 0.00 0.00 - - 2.80

2

MAP
εt 20.02 27.45 21.11 18.16 14.62 4.74 6.99 16.16
εr 20.00 20.00 4.00 10.00 18.00 21.00 20.00 16.14

MMAP
εt 23.83 29.97 20.52 17.61 14.44 4.16 5.84 16.62
εr 0.00 10.00 2.00 6.00 13.00 16.00 10.00 8.14

PBBA
εt 2.26 0.82 0.14 0.03 0.61 2.29 0.38 0.93
εr 10.00 8.00 2.00 4.00 12.00 15.00 4.00 7.86

PABA
εt 0.61 0.17 0.21 0.21 0.34 0.40 0.61 0.36
εr 0.00 2.00 1.00 0.00 9.00 10.00 3.00 3.57

only a subtle turn in the unobserved regions. In these sequences, the object takes

a sharp turn in the unobserved regions that affects the performance of the algo-

rithm. The localisation results for MAP are improved when it is initialised with the

output of PBBA. On the other hand, Figure 6.1(c,f) shows the results of the pro-

posed approach, where initial results (dark-blue) are improved by employing bundle

adjustment (light-blue).
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(a) (b) (c)

Figure 6.3: Localisation results in case of camera failure: MAP (orange), MMAP
(red), PBBA (dark-blue) and PABA (light-blue) when (a) c2 fails; (b) c3 fails; and
(c) c4 fails.

Table 6.1 summarises the localisation accuracy for MAP, MMAP, PBBA and

PABA on the simulated datasets. The discussion on Table 6.1 is organised as: we

start with first simulated dataset by analysing values of εt and εr for individual

cameras using MAP and MMAP. We compare these results with PBBA and PABA.

This is followed by the discussion on average results. Next, we detail the comparison

of εt and εr on the second simulated dataset. Again, we start with discussion on

individual cameras followed by the average results.

For the first sequence, the translation errors using MAP for c2, c3, c4, c5 and

c6 are 20.86, 19.83, 14.58, 11.52 and 3.46 unit-sizes, respectively. Except for the

path between c5 and c6, the object always takes sharp turn, as it moves between

a pair of cameras. The nature of these turns varies with the camera pairs; hence,

it is impossible to construct a single motion model apriori, which can handle these

variations of motion paths. Although MMAP reduced the translation error by 1.33,

2.79, 0.52 and 0.76 unit-sizes for c3, c4, c5 and c6, respectively, it is interesting to note

that specifically for c2, the error is increased by 3.28 unit-size. This hints that better

initialisation alone does not help a lot in improving the results for all cameras, but

the choice of motion models plays a more vital role in better localisation. Similar
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trends in the results can be seen for rotation errors, where the maximum error

with MAP is 25 deg. compared to 15 deg. with MMAP. On the other hand, the

translation errors with PBBA are 2.01, 1.12, 1.24, 0.54 and 0.51 for c2, c3, c4, c5

and c6, respectively. Further improvements are achieved by PABA, where errors

are reduced to 0.25, 0.34, 0.12, 0.06 and 0.16 for c2, c3, c4, c5 and c6, respectively.

In terms of error percentage, PABA has 7.29%, 6.88%, 5.11%, 4.05% and 1.17%

less error than MAP for c2, c3, c4, c5 and c6, respectively. Similarly, the maximum

rotation error with PABA is 5 deg., which is 20 deg. less than the maximum rotation

error by MAP. On average, MAP has 13.87 size-units larger position estimation error

compared to PABA. This error difference is reduced by 0.42 size-units with MMAP.

In terms of rotation, MAP results in 12.60 deg. worse error than PABA. With

MMAP this error difference is reduced to 6.6 deg.

For the second sequence, the translation errors using MAP for c2, c3, c4, c5, c6,

c7 and c8 are 20.02, 27.45, 21.11, 18.16, 14.62, 4.74 and 6.99 unit-sizes, respectively.

Like the first sequence, the object mostly takes a sharp turn, as it moves between

a pair of cameras. Note that the translation errors using MMAP are increased

by 3.81 and 2.52 unit-sizes for c2 and c3, respectively. This confirms our initial

observation that better initialisation plays little role in improving the results, but

the choice (or learning) of motion models play a more vital role in better localisation.

Similarly for rotation errors, the maximum error with MAP is 21 deg. compared

to 16 deg. with MMAP. On the other hand, the translation errors with PBBA are

2.26, 0.82, 0.14, 0.03, 0.61, 2.29 and 0.38 for c2, c3, c4, c5, c6, c7 and c8, respectively.

Further improvements are achieved by PABA, where errors are reduced to 0.61,

0.17, 0.21, 0.21, 0.34, 0.40 and 0.61 for c2, c3, c4, c5, c6, c7 and c8, respectively. In

terms of error percentage, PABA has 6.86%, 9.64%, 7.39%, 6.35%, 5.04%, 1.53%
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Table 6.2: Comparison of processing time for MAP, MMAP, PBBA and PABA
when varying the number of unknown parameters (camera localisation parameters
and missing observations).

S No. of param
Algo.

MAP MMAP PBBA PABA
1 18+1187 310.11 280.39 120.12 173.06
2 24+2118 563.05 401.73 155.71 221.10

and 2.41% less error than MAP for c2, c3, c4, c5, c6, c7 and c8, respectively. Also,

the maximum rotation error with PABA is 2 deg., which is 19 deg. less than the

maximum rotation error by MAP. Similar to the first sequence, the average position

estimation error for PABA is 0.36 size-units, which is 15.8 size-units smaller than

that of MAP and 16.26 size-units smaller than MMAP. In summary, analysis of

results on two simulated sequences shows that instead of using single global motion

model; learning the motion models locally (at camera pair level) helps in better

localisation of cameras.

Table 6.2 compares MAP, MMAP, PBBA and PABA on both simulated datasets

in terms of processing time (in seconds). For the first dataset the number of unknown

parameters is 1205 (12 for the camera positions, 6 for the camera rotations and 1187

for the missing observations) and for the second dataset, the number of unknown

parameters is 2118 (16 for the camera positions, 8 for the camera rotations and

2094 for missing observations). By increasing the number of unknown parameters

from 1205 to 2118, the processing time for PABA is increased by 27.74% and the

processing time for MAP is increased by 81.56%. With a better initialisation (i.e.,

MMAP) the processing time for MAP is increased by 43.02%, which is however still

higher than PABA. This confirms that the proposed approach is less time consuming

than MAP. This is an important aspect especially for the scalability of a network.

Figure 6.2(c) illustrates the localisation results of MAP, MMAP, PBBA and
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PABA on the real dataset. The corresponding localisation errors are summarised in

Table 6.3. The table shows that the maximum translation error with MAP is for c5.

This is primarily due to the reason that c5 contains fewer observations compared to

c2, c3 and c4. The approach tends to find the overall solution that is in agreement

with most of the available observations; therefore, the approach localises c2, c3 and

c4 better than c5, although, the trajectory segments between c4 and c5 are linear.

However, PBBA (or PABA) does not have any such constraint; but approximates

the position of cameras locally at camera pair level, thus the error in localising c5

is approximately the same as the error in approximating the position of c4. The

average position estimation error for the proposed approach is 0.36 mm, while the

average position estimation errors for MAP and MMAP are respectively 16.72 mm

and 16.63 mm. Similarly, the average rotation error for PABA is 2.25 deg. which is

9.97 deg. smaller than MAP and 6.75 deg. smaller than MMAP.

Furthermore, we also evaluate the robustness of the proposed algorithm to cam-

era failure situations and compare it with MAP. To this end, we dropped all the

observations from one camera at a time and applied the algorithms. The results are

shown in Fig. 6.3. Table 6.3 summarises the localisation accuracy: c3 is the most

important camera in the network as it is observing the region where the object is

taking most of the sharp turns; therefore, in case of its failure the localisation errors

for the rest of network increases substantially. The least important camera is c4,

the trajectory segments in c4 can be approximated with the observations of c2, c3

and c5 and its failure have not affected considerably the performance of network

localisation.

In summary, PABA outperforms MAP in three aspects: (a) in terms of the

motion model, contrary to MAP, PABA does not consider a global motion model,
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Table 6.3: Evaluation of the accuracy and robustness to camera failure of the algo-
rithms under analysis on the real dataset.

Desc. Algo. c2 c3 c4 c5 Avg.

All

MAP
εt 8.91 12.76 17.88 27.34 16.72
εr 13.00 17.00 13.00 5.00 12.00

MMAP
εt 8.90 13.04 17.59 26.98 16.63
εr 7.00 11.00 13.00 5.00 9.00

PBBA
εt 0.66 1.82 0.28 0.30 0.76
εr 7.00 11.00 13.00 4.00 8.75

PABA
εt 0.08 0.79 0.28 0.28 0.36
εr 4.00 3.00 1.00 1.00 2.25

c2 fails

MAP
εt - 9.36 13.94 26.15 16.48
εr - 25.00 18.00 12.00 18.33

MMAP
εt - 10.24 16.74 26.43 17.80
εr - 18.00 15.00 10.00 14.33

PBBA
εt - 0.27 0.93 1.12 0.77
εr - 15.00 13.00 9.00 12.33

PABA
εt - 0.14 0.49 0.50 0.38
εr - 14.00 8.00 7.00 9.67

c3 fails

MAP
εt 8.95 - 18.10 26.15 17.33
εr 15.00 - 19.00 12.00 15.33

MMAP
εt 8.91 - 18.07 26.43 17.80
εr 15.00 - 17.00 10.00 14.00

PBBA
εt 0.64 - 0.11 1.11 0.41
εr 15.00 - 16.00 9.00 13.33

PABA
εt 0.06 - 0.11 0.49 0.22
εr 7.00 - 6.00 7.00 6.67

c4 fails

MAP
εt 8.92 12.76 - 27.15 16.28
εr 13.00 17.00 - 5.00 11.67

MMAP
εt 8.89 13.04 - 27.15 16.36
εr 7.00 11.00 - 5.00 7.67

PBBA
εt 0.66 1.82 - 0.35 0.94
εr 4.00 11.00 - 5.00 6.67

PABA
εt 0.08 0.79 - 0.21 0.36
εr 4.00 3.00 - 2.00 3.00

therefore it can handle a sharp turn between a pair of cameras efficiently; (b) in

terms of number of observations, PABA does not give any preference to cameras

based on the number of its observations (although more observations help in better

localisation of that camera), therefore it is possible to localise a camera with fewer

observations as compared to MAP which inherently gives higher preference to the
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cameras with more observations; and (c) in terms of processing time, PABA requires

approximately 1/3 less processing time compared to MAP; therefore can be more

effective in case of network scalability.

In the next section, we provide results of object correspondence to reconstruct

complete trajectories across multiple calibrated cameras.

6.2 Global trajectory reconstruction

6.2.1 Datasets

To evaluate the performance of the proposed hybrid multi-feature association

(HMFA) approach, we use two real world datasets. The first dataset (S1) is an

indoor basketball video sequence, which consists of 500 frames (RGB 24 bit images

at 25 frames/sec and 1200x1600 pixels), describing a scene simultaneously recorded

by 4 cameras located at different viewpoints (see Fig. 6.4). The second dataset (S2)

is a more complex soccer match footage, which consists of 3000 frames (RGB 24

bit images at 25 frames/sec and 1920x1080 pixels), describing a scene simultane-

ously recorded by 6 cameras located at different viewpoints (see Fig. 6.5). In both

datasets, the closeness of players’ movement and similarity in team colours make

the association task even more challenging. As these sequences are captured during

real games, therefore, no constraints were imposed on objects’ trajectories.

6.2.2 Performance evaluation

For both datasets, we used visual data (manual) to generate the ground truth for

association, we perform objective evaluation of association and fusion results using

Recall (Ra) and Precision (Pa). Ra is the fraction of accurate associations to the



Chapter 6: Experimental results 91

500 1000 1500 2000 2500
0

100

200

300

400

500

600

700

800

900

1000

x−axis

y−
ax

is

Figure 6.4: Trajectory segments accumulated over 500 frames from the 4 partially
overlapping cameras. (Left) configuration of the cameras; (right) accumulated tra-
jectory segments (segment’s colour corresponds to the camera’s colour).

Figure 6.5: Trajectory segments accumulated over 3000 frames from the 6 partially
overlapping cameras of Figure 3. (Left) configuration of the cameras; (right) trajec-
tory segments (colour-coded). Note the visibility of the limits of the fields of view
of each camera.

true number of associations. Pa is the fraction of accurate associations to the total

number of achieved associations. Let ξΩ be the ground truth for pairs of trajectories

on the overlapping region Ω (marked in Fig. 6.6 and Fig. 6.7) and let EΩ be the

estimated results. Then Ra and Pa are calculated as:

Ra =
|ξΩ ∩ EΩ|
|ξΩ|

, (6.1)

Pa =
|ξΩ ∩ EΩ|
|EΩ|

, (6.2)
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Table 6.4: Evaluation and comparison of trajectory association results on S1 and
S2.

S1 S2
Ω1,2,3,4 Ω1,2 Ω3,4 Ω5,6 Ω1,3 Ω2,4 Ω3,5 Ω4,6 Avg.

Alg. Ra Pa Ra Pa Ra Pa Ra Pa Ra Pa Ra Pa Ra Pa Ra Pa Ra Pa
M1 .75 .83 .60 .70 .76 .85 .73 .78 .71 .87 .72 .76 .68 .80 .73 .71 .71 .79
M2 .95 .93 .80 .90 .88 .90 .81 .98 .90 .90 .82 .96 .82 .90 .78 .81 .84 .91
M3 1.00 1.00 .76 .81 .81 .92 .78 .99 .89 .92 .84 .97 .87 .96 .82 .85 .85 .93

HMFA 1.00 1.00 .96 .98 .95 1.00 .96 1.00 .93 .95 .85 .98 .87 .98 .82 .85 .92 .97

where |.| is the cardinality of a set. We compare the performance of the HMFA

with standard Dynamic Time Warping (DTW) [90] (M1) and two state-of-the-art

approaches presented in [9] (M2) and [8] (M3) in terms of Pa and Ra for both

sequences.

6.2.3 Discussion

Figure 6.6 and Fig. 6.7 show the complete global trajectories of all the objects for

both sequences. The objective results are compiled in Tab. 6.4. We initially evaluate

the performance of the algorithms only on the overlapping regions in both sequences;

followed by the overall average analysis of the results. For S1, there is only one

overlapping region Ω1,2,3,4. The results for Ra are 0.75, 0.95, 1.00 and 1.00 with M1,

M2, M3 and HMFA, respectively. Similarly, the results for Pa are 0.83, 0.93, 1.00

and 1.00 with M1, M2, M3 and HMFA, respectively. During this short duration

of game, most players exhibit similar motion patterns; therefore it is difficult to

distinguish players using DTW (M1) and using only the shape information (M2);

thus there are association errors. However, M3 and HMFA accurately associate the

trajectories from multiple views.

For S2, we divide overlapping regions into two: dense (Ω1,2, Ω3,4, Ω5,6) and

sparse (Ω1,3, Ω2,4, Ω3,5, Ω4,6). For dense regions, the average Ra are 0.70, 0.83,

0.78 and 0.96 with M1, M2, M3 and HMFA, respectively. Similarly, the average
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Figure 6.6: Trajectory association and fusion results across the cameras of S1. Each
complete trajectory is shown with different colour.

Figure 6.7: Trajectory association and fusion results across the cameras of S2. Each
complete trajectory is shown with different colour.

Pa are 0.78, 0.93, 0.91 and 0.99 with M1, M2, M3 and HMFA, respectively. On

the other hand, for sparse regions, the average Ra are 0.71, 0.83, 0.86 and 0.87

with M1, M2, M3 and HMFA, respectively. Similarly, the average Pa are 0.78, 0.89,

0.92 and 0.94 with M1, M2, M3 and HMFA, respectively. The analysis reveals

that for these sequences, DTW in its standard form has more association errors

than other approaches primarily due to spatio-temporal closeness of trajectories.

Furthermore, for dense regions, M2 has better precision and recall compared to
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M3. However, for sparse regions the performance of M3 is better than M2. This

shows that reprojection-based approach works well when the number of trajectories

is small and trajectories are not so close to each other; however, for dense regions

only trajectory feature based analysis can provide more reliable results. Therefore,

for both types of regions, the HMFA approach is better in associating trajectories

than its counterparts. On average the HMFA approach is better by 8% and 6% for

Ra and Pa respectively, compared to M2. Compared to M3, the HMFA approach

outperforms it by 7% and 4% for Ra and Pa, respectively.

In summary, in complex datasets such as S1 and S2, where objects are very close

in time and space, trajectory statistics help in better association. In particular, for

dense segments’ regions, HMFA outperformed the other approaches because of the

more generic feature-set used and built-in ground plane and image plane verification

method. On the other hand, M2 covers very limited features and lacks a procedure

to resolve conflicting situations. This results in lower Pa and Ra scores. Similarly, if

the segments are too close on the image plane, they cannot be separated using the

reprojection error criterion. Therefore, M3 fails to distinguish the segments that in

fact belong to different physical objects exhibiting similar motion patterns.

In the next section, we discuss results of trajectory clustering given that the

object association is already performed and complete trajectories are already recon-

structed.
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(a) (b)

 

(c) (d)

Figure 6.8: Trajectory datasets: CAVIAR video sequences (a) S1 and (b) S2, High-
way traffic video sequences (c) S3 and (d) S4.

6.3 Trajectory clustering

6.3.1 Datasets

To evaluate the performance of the proposed multi-feature based trajectory clus-

tering (MFTC) approach, four standard video sequences are used . The first two

sequences are from the CAVIAR dataset1. These videos are captured in a lobby

(S1, 90 trajectories, 384 x 288 pixels, 25 Hz) and in a corridor of a shopping centre

(S2, 84 trajectories, 384 x 288 pixels, 25 Hz). Two traffic sequences are from the

1http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/



96 Chapter 6: Experimental results

MPEG–7 (S3, 134 trajectories2, 352 x 288 pixels, 25 Hz) and from the CLEAR [91]

(S4, 47 trajectories, 720 x 480 pixels, 25 Hz) datasets, respectively. Figure 6.8 shows

the cumulated trajectories superimposed on a key-frame of each test sequence.

For S1, we are interested in clustering the trajectories into four main groups

consisting of 18, 13, 22 and 10 trajectories and representing, respectively, the trajec-

tories belonging to the upper-region on the image plane (starting from the top-right

and ending at top-left), the trajectories starting and ending at the bottom-right of

the image plane, the trajectories from the centre to the bottom-right of the image

and, finally, the trajectories starting and ending at the centre-left region of the im-

age. For S2, we are interested in finding five dominant regions consisting of 15, 28,

10, 9 and 10 trajectories and representing, respectively, the trajectories from the

centre-left to the bottom-right on the image plane, the trajectories on the top-left

corner, the trajectories from the bottom-right to the centre-left, the trajectories

from the top-left corner on the image plane to the bottom region and, finally, the

trajectories that start and end in the bottom-half of the image. For the S3 traffic

sequence the objective is to determine two dominant patterns consisting of 55 and

47 trajectories. For S4, the goal is to cluster trajectories into three groups consisting

of 20, 17 and 7 trajectories. The remaining trajectories are considered as outliers.

Note that in S3 and S4 there are true outliers e.g., a person crossing the highway

(S3) and a vehicle stopping on the road (S4). In S1 and S2, the outliers are short

trajectories generated by window shoppers (S1) or people which are very far from

the cameras (S4).

2http://www.tele.ucl.ac.be/PROJECTS/MODEST/
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Figure 6.9: Sensitivity analysis at the variation of the cluster merging criterion.

6.3.2 Performance evaluation

To objectively assess the clustering performance we use Precision (Pc) and Recall

(Rc). For the ith final cluster, Cf
i , Pc is calculated as

Pc =
|Cf

i ∩ Γi|
|Cf

i |
, (6.3)

and Rc as

Rc =
|Cf

i ∩ Γi|
|Γi|

, (6.4)

where |.| is the cardinality of a cluster.

In addition to the evaluation of the results obtained using the original trajec-

tories, we perform a series of robustness tests in which we evaluate the clustering

results after corrupting the input data (missing data and noisy data). In the first

test, we reduce the trajectory sampling rate by 2, 3, 4 and 5 steps. In the second

test, we add Gaussian noise with standard deviation equal to 5%, 10%, 15% and 20%

of the longest trajectory of each set. In all further experiments proximity measure
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Figure 6.10: Comparison of the MFTC approach and K-mean.

Table 6.5: Clustering precision and recall comparison for S1, S2, S3 and S4.
MFTC SOM [13] TDH [16]

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

Pc Rc Pc Rc Pc Rc Pc Rc Pc Rc Pc Rc Pc Rc Pc Rc Pc Rc Pc Rc Pc Rc Pc Rc Pc Rc Pc Rc Pc Rc

S1 .62 .50 .56 .77 1 .54 .43 .30 - - .36 .44 .33 .54 .23 .23 .13 .20 - - .45 .50 .36 .61 .44 .18 .21 .40 - -
↓ 2 .60 .50 .54 .76 1 .52 .38 .29 - - .34 .41 .30 .52 .21 .21 .11 .18 - - .44 .48 .36 .56 .42 .18 .21 .40 - -
↓ 3 .60 .49 .54 .76 1 .52 .36 .29 - - .33 .39 .28 .50 .19 .19 .11 .15 - - .40 .45 .34 .52 .40 .16 .20 .36 - -
↓ 4 .54 .47 .52 .75 .95 .51 .36 .28 - - .31 .37 .26 .48 .18 .16 .09 .13 - - .38 .42 .32 .43 .38 .14 .19 .30 - -
↓ 5 .50 .47 .48 .75 .90 .47 .35 .27 - - .29 .35 .24 .43 .15 .15 .06 .10 - - .38 .39 .29 .40 .36 .12 .18 .28 - -
5% .58 .49 .53 .71 .89 .45 .36 .29 - - .30 .38 .27 .50 .17 .20 .10 .14 - - .40 .41 .32 .42 .40 .14 .19 .36 - -
10% .50 .48 .50 .70 .81 .42 .32 .26 - - .28 .24 .24 .49 .14 .18 .08 .11 - - .37 .36 .29 .39 .37 .11 .17 .30 - -
15% .47 .46 .48 .68 .80 .39 .29 .26 - - .25 .30 .20 .45 .14 .15 .06 .09 - - .34 .32 .27 .36 .35 .09 .15 .28 - -
20% .43 .45 .46 .67 .80 .37 .29 .24 - - .20 .25 .17 .42 .12 .14 .06 .06 - - .31 .28 .25 .31 .32 .46 .14 .22 - -
Avg .54 .48 .51 .73 .91 .46 .35 .28 - - .30 .35 .25 .48 .17 .18 .09 .13 - - .38 .40 .31 .40 .38 .11 .19 .32 - -

S2 .80 .57 .80 .90 .86 .64 .63 .94 .75 .75 .54 .50 .12 .10 .46 .54 .45 .78 .17 .25 .42 .36 .26 .90 .54 .64 .07 .06 .25 .25
↓ 2 .80 .53 .80 .90 .84 .63 .61 .94 .74 .75 .52 .50 .12 .10 .46 .52 .45 .78 .16 .24 .38 .35 .24 .90 .51 .60 .07 .05 .23 .24
↓ 3 .79 .51 .78 .89 .84 .60 .61 .94 .72 .73 .52 .48 .10 .08 .42 .48 .42 .76 .14 .23 .35 .32 .21 .86 .48 .58 .05 .04 .21 .20
↓ 4 .76 .49 .76 .86 .80 .57 .59 .90 .70 .69 .48 .46 .09 .07 .40 .46 .39 .73 .12 .21 .31 .26 .19 .80 .44 .55 .03 .02 .18 .16
↓ 5 .75 .45 .75 .83 .80 .54 .56 .87 .68 .67 .44 .42 .06 .06 .36 .44 .36 .69 .10 .20 .27 .21 .17 .76 .40 .50 .03 .02 .17 .12
5% .78 .50 .78 .88 .85 .61 .62 .90 .73 .72 .50 .44 .10 .09 .41 .51 .34 .65 .13 .21 .38 .28 .20 .73 .44 .58 .06 .05 .16 .20
10% .76 .47 .74 .85 .83 .58 .60 .84 .79 .72 .47 .36 .08 .07 .39 .46 .28 .62 .09 .18 .27 .21 .17 .68 .38 .52 .04 .04 .14 .16
15% .74 .44 .71 .81 .79 .58 .57 .87 .68 .68 .40 .30 .07 .06 .37 .42 .26 .59 .08 .17 .24 .18 .14 .58 .36 .48 .01 .02 .10 .14
20% .68 .39 .69 .78 .74 .51 .53 .84 .64 .61 .38 .26 .06 .01 .34 .41 .22 .55 .06 .14 .20 .15 .12 .48 .31 .40 .01 .01 .06 .10
Avg .76 .48 .76 .86 .82 .58 .59 .89 .71 .70 .47 .41 .09 .07 .40 .47 .35 .68 .12 .20 .31 .26 .18 .71 .43 .54 .04 .03 .17 .17

S3 .96 1 .90 1 - - - - - - .72 1 .98 .91 - - - - - - .83 1 .86 .79 - - - - - -
↓ 2 .94 1 .90 1 - - - - - - .72 .98 .98 .91 - - - - - - .82 .90 .86 .76 - - - - - -
↓ 3 .91 1 .90 1 - - - - - - .71 .98 .98 .90 - - - - - - .81 .86 .86 .73 - - - - - -
↓ 4 .87 .97 .89 1 - - - - - - .71 .97 .97 .90 - - - - - - .81 .82 .83 .73 - - - - - -
↓ 5 .75 .96 .89 1 - - - - - - .70 .88 .98 .89 - - - - - - .84 .68 .89 .71 - - - - - -
5% .92 1 .90 1 - - - - - - .72 1 .98 .90 - - - - - - .81 .90 .81 .63 - - - - - -
10% .87 1 .89 1 - - - - - - .75 .96 .98 .88 - - - - - - .79 .86 .81 .57 - - - - - -
15% .81 .95 .89 1 - - - - - - .74 .91 .97 .85 - - - - - - .79 .80 .80 .51 - - - - - -
20% .75 .91 .85 1 - - - - - - .72 .87 .96 .81 - - - - - - .67 .77 .77 .42 - - - - - -

Avg .86 .98 .89 1 - - - - - - .72 .95 .97 .88 - - - - - - .79 .84 .83 .64 - - - - - -
S4 .87 1 .84 1 1 .40 - - - - .70 1 .87 .65 .35 .12 - - - - .93 .65 .90 1 1 .21 - - - -
↓ 2 .86 1 .96 1 .99 .31 - - - - .68 .89 .86 .65 .31 .11 - - - - .81 .42 .86 .81 1 .19 - - - -
↓ 3 .86 1 .94 1 1 .25 - - - - .68 .76 .81 .38 .21 .11 - - - - .75 .39 .83 .63 1 .15 - - - -
↓ 4 .86 1 .90 1 1 .21 - - - - .56 .62 .80 .12 .19 .10 - - - - .71 .28 .78 .51 1 .10 - - - -
↓ 5 .85 1 .84 1 1 .19 - - - - .26 .32 .75 .05 .19 .08 - - - - .67 .20 .75 .38 1 .10 - - - -
5% .98 1 .89 1 .97 .41 - - - - .70 .80 .67 .60 .41 .10 - - - - .93 .65 .92 .81 1 .12 - - - -
10% .97 1 .87 1 .96 .39 - - - - .61 .62 .59 .51 .15 .08 - - - - .92 .63 .90 .65 .99 .10 - - - -
15% .96 1 .86 1 1 .33 - - - - .55 .31 .51 .43 .13 .06 - - - - .89 .63 .90 .61 1 .10 - - - -
20% .96 1 .81 1 .99 .29 - - - - .44 .08 .52 .34 .12 .05 - - - - 1 .60 .89 .59 1 .09 - - - -
Avg .92 1 .88 1 .99 .31 - - - - .58 .60 .71 .41 .23 .09 - - - - .84 .42 .86 .66 1 .12 - - - -
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Figure 6.11: Sample outlier detection improvements by applying the proposed outlier
detection criteria on the SOM clustering results (red: new outliers identified in a
cluster).
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for cluster merging is set to hdmm + 0.1(hdmm ) (See Fig. 6.9).

As a baseline test, initially, we compare the performance of the MFTC ap-

proach with the standard K-mean clustering [58]. Afterward, we compare it with

two state-of-the-art trajectory clustering algorithms, based on Self-Organizing Maps

(SOM) [13] and on Trajectory Directional Histograms (TDH) [16].

6.3.3 Discussion

Figure 6.10 shows the comparison of the MFTC approach and K-mean. The

graph shows the average Pc and Rc results for the four test sequences. The results

show that the MFTC approach has 3% and 13% higher precision and recall for

S1. For S2, it has 7% and 9% higher precision and recall compared to K-mean.

Similarly, its Pc and Rc results are better by 1% and 6% for S3. Finally, for S4 the

MFTC approach has higher Pc and Rc results by 2% and 3%, respectively. Better Pc

and Rc results for all sequences show that MFTC is better in trajectory clustering

both in terms of exactness and completeness. The subsequent discussion focuses on

the performance comparison of the MFTC approach with SOM and TDH based

approaches.

Figure 6.12 compares the clustering results of the MFTC approach, SOM and

TDH on the four test sequences (S1, S2, S3 and S4). To facilitate the visualisation,

the trajectory clusters are shown in 3D, where each vertical layer corresponds to

a separate cluster. In each plot, the top-most layer corresponds to the detected

outliers. In the figure, the first column shows the ground truth, second, third and

fourth columns show the results of MFTC, SOM and TDH, respectively. Further-

more, the Pc and Rc results for the three approaches are also compiled in Table 6.5

(hereinafter ”the Table”). The Table is organised in four sections corresponding to
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four datasets (separated by double horizontal lines). Each section is further divided

into two (separated by single horizontal line), where the upper-half compiles the

clustering results on original and down-sampled version of input trajectories and

the bottom-half compiles the clustering results on the noisy version of input tra-

jectories. The overall results are also compiled in the last row of each section by

taking average of Pc and Rc of each approach on original, down-sampled and noisy

trajectories. The detailed discussion on the results is provided in rest of this section.

In Fig. 6.12 (b-d), for the first group of trajectories in S1, unlike the MFTC

approach, SOM and TDH generate clusters which contain additional trajectories

that either starts from the centre or bottom regions on the image plane. For the

second group, the clustering results for the MFTC approach outperform SOA and

TDH. In particular, the clustering results of TDH and SOM for the third group

are contaminated by additional trajectories that either start from the bottom or

the centre-left image plane regions. From the Table it is possible to notice that

for the first three clusters, the MFTC approach not only clusters the trajectories

accurately (Rc values) compared to SOM and TDH, but also avoids the additions

of other trajectories into a group (Pc values). However, for C4, the accuracy of

TDH is 10% better than that of the MFTC approach, though it adds more outliers

and trajectories belonging to other groups. The precision values are important as

they give an indication of how a particular algorithm treated the outliers: the larger

Pc, the higher the relevant information contained and therefore fewer outliers are

part of a cluster. Pc shows that in C4 TDH has 20% extra trajectories compared

to the MFTC approach. The Table also shows that, compared to SOM and TDH,

the MFTC approach is more robust to missing data and noisy trajectories. On

average, the overall degradation in accuracy (recall value) is 3% for the MFTC
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Figure 6.12: Comparison of trajectory clustering results for the test sequences S1
(first row), S2 (second row), S3 (third row) and S4 (fourth row). First column:
ground truth. Second column: results of the MFTC approach. Third column: SOM
results. Fourth column: TDH results. The top-most layer (’red’) shows the detected
outliers for each approach.

approach when the trajectory is reduced by 5 sampling steps. On the other hand,

the degradations for SOM and TDH are 8% and 12.5%, respectively. Similarly,

for noisy trajectories, on average the MFTC approach degrades by 9.5% when 20%

noise is added to the trajectories. For SOM and TDH, the degradation is 13.5% and

20.5%, respectively. The complexity of the trajectories affects SOM negatively. The
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reduced sampling and noisy trajectories affect TDH the most, as its performance

degrades substantially compared to the other two approaches.

For S2, Fig. 6.12 (g-h) shows that for the first type of motion the clustering

results of both SOM and TDH contain extra trajectories that either start from

the bottom or top regions. Similar results can be observed for other clusters. On

average, the MFTC approach (Fig. 6.12 (f)) outperforms SOM and TDH by 32.6%

and 31.8%, respectively. The robustness tests also reveal that the MFTC approach

efficiently clusters the trajectories compared to SOM and TDH, especially in C2 and

C5 for SOM, and in C4 and C5 for TDH.

For S3, Fig. 6.12 (j) shows that the MFTC approach correctly identifies the

clusters. There are noticeable errors in the SOM results (Fig. 6.12 (k)), for example

the left-most outlier trajectory is considered as part of the 1st cluster. Similarly,

for TDH (Fig. 6.12 (l)), there are several trajectories that should be part of the 1st

cluster, but are treated as outliers. For C1, the precision of the MFTC approach is

96%. Both SOM and TDH have a lower precision for the same cluster. SOM tends

to accept outliers as part of a normal cluster compared to the MFTC approach

and TDH. For C2 the precision and recall values for the MFTC approach are 90%

and 100%, respectively. For SOM, 9% of the trajectories in C2 are misclassified,

whereas for TDH the misclassification is 21%. As for the robustness test results,

the MFTC approach misclassifies 4% of trajectories in C1 when the sampling rate is

reduced from 2 to 5 steps and all the trajectories are successfully grouped together

for C2. By comparison, the clustering results of SOM degrade by 12% and 2% for C1

and C2, respectively. Likewise, the degradation of the results for TDH is 32% and

8% for C1 and C2. In the case of the maximum added noise, +20%, the trajectory

classification results are reduced by 9% in C1 and 0% in C2 for the MFTC approach.
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However, this reduction is 13%, and 10% in C1, and C2 for SOM, and 23%, and 37%

in C1, and in C2 for TDH. The MFTC approach is more robust to outliers up to ↓ 4

(subsampled by a factor 4) and +15% (15% added noise) in the generation of the

final clusters.

Figure 6.12 (n-p) shows the results for S4. SOM could not detect any outlier.

If the proposed outlier detection criteria are applied on the SOM results, its per-

formance can be improved. Figure 6.11 shows few examples where the proposed

outlier detection criteria has improved the clustering results. The Table shows that

although for C1 and C2, the MFTC approach identified the patterns correctly, for

C3 its performance is poorer due to varying behaviour of the trajectories in that

cluster and also to a strong similarity between the trajectories and the outliers.

However, the comparison with the other two approaches reveals that the results of

the MFTC approach are better by 35% for C2 and 43% for C3 over SOM, and by

35% and 31% for C1 and C2 over TDH. The robustness test results for S4 show that

the MFTC approach does not modify its results for C1 and C2, in case of sampling

rate reduction. However, there is a 21% degradation for C3. On the other hand, the

degradation for SOM is 68%, 60%, 4% in C1, C2 and C3, respectively. Furthermore,

this degradation for TDH is 45%, 62% and 11%, respectively. Moreover, for the

noisy data, the MFTC approach is more stable and the only reduction in perfor-

mance is 14% for C3. In the same conditions, there are relevant classification errors

for SOM (92%, 31%, 19%) and TDH (5%, 41%, 3%).

In summary, MFTC outperforms the other approaches in three aspects: (a) due

to the use of multiple complementary features, the approach is successfully able to

separate two trajectories which partially overlap in time and space for small duration

but belong to different clusters, (b) the approach is better in highlighting the outlier
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trajectories due to trajectory- and cluster-level analysis, and (c) the approach is

more stable to miss detections and to noisy observations.



Chapter 7

Conclusions

7.1 Summary of achievements

In this thesis, we addressed an important problem of video understanding in

multi-camera setups, without imposing any constraints on placement of cameras and

motion of the objects. We provided a framework that used trajectory segments from

multiple cameras and summarised the results in the form of common (or normal)

patterns and outliers. To this end, we assumed that scene structures affected the

behaviour of moving objects; therefore, from the analysis of trajectories, we learned

the common motion paths and any trajectory that deviated significantly from the

common path is considered as an outlier.

However, to understand the information from multiple cameras, it is needed

to know the relative configuration of the cameras. This knowledge is useful in

establishing object correspondence across multiple views. The object association is

required to reconstruct complete object trajectories across the entire scene. These

trajectories are then analysed together for summarisation. Major contributions of

this thesis are that it uses trajectory segments observed in multiple cameras to:

106
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(a) learn the configuration of a camera network,

(b) establish object correspondence across multiple views,

(c) identify common patterns and outliers for activity analysis.

To learn the configuration of the camera network, we considered both partially

overlapping and non-overlapping cameras. For partially overlapping cameras, we

used existing homography-based approach; however, for non-overlapping cameras,

we proposed an algorithm that allowed us to relax the traditional linearity or smooth

turn constraint on the motion of objects. The algorithm recovers the position and the

rotation of each camera based on two main steps: the estimation of the unobserved

trajectory in regions not covered by the cameras’ fields of view and the estimation of

the relative rotations of the cameras. Kalman filtering is initially employed on the

available trajectory segments to extrapolate their value in the unobserved regions,

with the modification that the forward motion model provides measurements for the

backward trajectory estimation and vice versa. This helps in improving the accuracy

of the trajectory estimation in the unobserved regions even if there is a sharp turn.

The relative rotation of the cameras is then obtained by using the estimated and the

observed exit and entry point information in each camera field of view. Refinements

are then applied using bundle adjustment. The proposed algorithm is tested on

a real and two simulated sequences and compared with existing approach. The

comparison showed that the proposed approach not only efficient in localising the

camera network but also requires at least 1/3 less processing time compared to

existing approach.

For object correspondence, we proposed an algorithm that works in an unsuper-

vised fashion and does not impose any constraints on the camera placement. Local
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trajectory segments from each camera are projected on a common ground plane.

Multiple spatio-temporal features are then analysed to find the degree of proximity

among the trajectories. The matching is validated via ground plane to image plane

reprojections. The proposed approach generates a complete trajectory belonging

to a physical object in an unsupervised way without requiring learning (a compu-

tationally complex process) of motion parameters. We tested the performance of

the proposed approach on two real world datasets and found that it outperforms

state-of-the-art approaches by at least of 4% in precision and 8% in recall. Fur-

thermore, it is also noticed that the proposed algorithm is efficient in establishing

correspondence not only for regions with sparse trajectory segments, but also for

regions with dense trajectory segments; on the other hand, other approaches work

mainly for regions with sparse trajectory segments.

Finally, we presented a framework for scene context learning and outlier detec-

tion by clustering video object trajectories. The input trajectories are transformed

into distinct feature spaces to represent the complementary characteristics of mo-

tion patterns. Next, Mean-shift was used to estimate clusters in each feature space

and adjacent clusters in a feature space were merged to refine the initial results. A

fuzzy membership of a trajectory to the final clusters was estimated, and crisp clus-

ters were then obtained based on the maximum membership using the information

from all the feature spaces. Finally, the clusters with only few associated trajec-

tories and trajectories far from the clusters centre were considered outliers. The

proposed approach was validated on standard datasets and compared with state-

of-the-art approaches. The results showed that the proposed algorithm is not only

able to cluster trajectories for indoor e.g., shopping mall and outdoor e.g., highway

sequences with higher precision and recall but also more stable to missed detections
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and noisy trajectories.

7.2 Future work

In future, we plan to extend this work in the following directions: (a) control

point’s selection, (b) complex motion modelling, (c) feature space’s selection and

(d) contextual outlier’s detection. The details of possible extensions are as follows:

(a) The choice of control points for both self-calibration (in the case of single

camera) and for homography (in case of partially overlapping cameras) is com-

pletely user dependent. However, it is desirable to define a mechanism to

assess the quality of these control points [92]. Furthermore, it is possible to

have scenarios were it is difficult to select reliable control points manually e.g.,

the regions where there is no structural information available. To completely

automate the process, it would be interesting to use object tracks as control

points. To this end it is possible to derive transformation matrices by selecting

(or identifying) few objects in each view [93]

(b) The proposed unobserved trajectory estimation algorithm primarily assumes

that an object takes one sharp turn in unobserved region between a pair of cam-

eras. However, if a complex environment is observed by a few non-overlapping

cameras, it is possible that the object may take more than one sharp turns in

unobserved regions. To this end, the contextual information (e.g., map of the

environment) can be used within motion models to handle this problem [94].

(c) While clustering using multiple features, we consider each individual feature

equally good. Therefore, during cluster fusion we do not give any preference

to a particular feature space based on its importance. However, by employing
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cluster validity [95] before fusion would help in assigning dynamic weights to

feature based on its ”goodness” for a particular application data.

(d) This thesis only considered point anomalies i.e., sparse trajectories that have

attribute different from the rest of trajectories. However, another dimension of

the work can be attained by considering contextual anomalies i.e., a trajectory

would be anomalous in a specific context, but not otherwise [96].
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