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ABSTRACT

Due to growing security concerns, video surveillance and monitoring has received an immense

attention from both federal agencies and private firms. The main concern is that a single camera,

even if allowed to rotate or translate, is not sufficient to cover a large area for video surveillance. A

more general solution with wide range of applications is to allow the deployed cameras to have a

non-overlapping field of view (FoV) and to, if possible, allow these cameras to move freely in 3D

space. This thesis addresses the issue of how cameras in such a network can be calibrated and how

the network as a whole can be calibrated, such that each camera as a unit in the network is aware

of its orientation with respect to all the other cameras in the network.

Different types of cameras might be present in a multiple camera network and novel techniques

are presented for efficient calibration of these cameras. Specifically: (i) For a stationary camera, we

derive new constraints on the Image of the Absolute Conic (IAC). These new constraints are shown

to be intrinsic to IAC; (ii) For a scene where object shadows are cast on a ground plane, we track

the shadows on the ground plane cast by at least two unknown stationary points, and utilize the

tracked shadow positions to compute the horizon line and hence compute the camera intrinsic and

extrinsic parameters; (iii) A novel solution to a scenario where a camera is observing pedestrians is

presented. The uniqueness of formulation lies in recognizing two harmonic homologies present in

the geometry obtained by observing pedestrians; (iv) For a freely moving camera, a novel practical

method is proposed for its self-calibration which even allows it to change its internal parameters by

zooming; and (v) due to the increased application of the pan-tilt-zoom (PTZ) cameras, a technique

is presented that uses only two images to estimate five camera parameters.
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For an automatically configurable multi-camera network, having non-overlapping field of view

and possibly containing moving cameras, a practical framework is proposed that determines the

geometry of such a dynamic camera network. It is shown that only one automatically computed

vanishing point and a line lying on any plane orthogonal to the vertical direction is sufficient to

infer the geometry of a dynamic network. Our method generalizes previous work which considers

restricted camera motions. Using minimal assumptions, we are able to successfully demonstrate

promising results on synthetic as well as on real data. Applications to path modeling, GPS coordi-

nate estimation, and configuring mixed-reality environment are explored.
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CHAPTER 1
INTRODUCTION

In recent years, there has been a growing interest in both federal agencies and private firms to

employ video cameras for monitoring and surveillance. These employed video cameras can have

an overlapping or non-overlapping field of view (FoV). It is the aim of this thesis to allow these

networked video cameras to self-configure. That is, each camera should automatically determine

its relative orientation with respect to every other camera in the network.

Most of the deployed camera systems share one common feature; a human operator must mon-

itor them. The effectiveness and the responsiveness of such a network is determined not by the

technological capabilities, but by the vigilance of the person monitoring these cameras. Moreover,

employing many people to monitor video cameras can be quite expensive. Therefore, due to in-

creased interest in the field of video surveillance, automatic object detection and tracking is one

of the primary areas of research in the field of computer vision. Using automatic object detection

and tracking not only minimizes the cost of employing many humans to monitor surveillance cam-

eras (or surveillance videos), but also maximizes the chances of successful event detection. Some

example of such systems include [JRA03, KCM03, ZAK05, BA03].

However, most of the existing methods for configuring camera network employstationary, or

overlapping FoVcameras; or cameras whoseintrinsic andextrinsicparameters are assumed to be

fixed or known (for e.g. [CT99, TDG05, HHZ06, SSK05]). For example, Kang et al. [KCM03]

use an affine transformation between each consecutive pair of images to stabilize moving camera

sequences. A planar homography computed by point correspondences is used to register station-

ary and moving cameras. Zhao et al. [ZAK05] formulate tracking in a unified mixture model
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framework. Ground-based space-time cues are used to match trajectories of objects moving from

one camera to another. Javed et al. [JRS03] track objects across multiple stationary cameras by

exploiting redundancy in paths that objects tend to follow. The system learns the camera topology

and path probabilities of objects using Parzen windows in the training phase. The correct corre-

spondences in the testing phase are assigned using the maximum a posteriori (MAP) estimation

framework.

If the camera is moved for some reason, or the lighting conditions are changed (due to a cloudy

weather), the methods mentioned above generally depict undesirable behavior. And they need to

recalculated the probabilities associated with object behavior (i.e. motion characteristics). Simi-

larly, if the camera intrinsic paramors are changes, for example a change of zoom, the methods fail

to cater for this changed condition (e.g. [KCM03]).

Our goal in this thesis is to overcome the above restrictions, and when possible employ non-

overlapping FoV cameras that are able to move freely in the environment. The main motivation for

deploying networked cameras is that a single camera, even if allowed to rotate or translate, is not

sufficient to cover a large area. By employing multiple cameras with non-overlapping or disjoint

FoV, we would like to maximize the monitoring area in addition to inferring the network configu-

ration. By network configuration we mean the location and orientation of cameras in the network

with respect to each other, also known as the network geometry. A more general case with a wide

range of applications is when the deployed disjoint FoV cameras may be allowed to move freely in

3D space, e.g. on roaming security vehicles. This configuration induces adynamic network geom-

etry. We propose a framework for self-calibration of such a dynamic network, thereby obtaining

the dynamic geometry of the network along with self-calibrating each camera in the network.
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1.1 Motivation

By configuring a camera network, where the cameras are able to freely move in space and the

camera FoV is non-overlapping (or disjoint), we can perform tasks which might not be possible on

existing systems that use stationary cameras or cameras with fixed parameters. Some motivating

factors for configuring such a camera network can be to:

• direct cameras to follow a particular object [DDZ01],

• calibrate cameras so that the observations are more coordinated and perform measurements

(with known scale) and possibly construct a Euclidean model of the 3-D world model [MK04,

CT04],

• solve the camera hand-over problem i.e. establish correspondence between tracked objects

in different cameras

• generate image/video scene mosaic

• infer network topology [ME05],

• build terrain model [CT98] or do spatial learning for navigation [YB96, Tan96], and

• estimate relative orientation and location between cameras in the network.

An overview of the key components of the system are shown in Figure1.1. Each of these com-

ponents has a long history in computer vision. The components which are addressed in this thesis

are camera calibration and relative camera orientation (i.e. network configuration) (rectangles with

red outline cf. Figure1.1).
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Figure 1.1: Overview of the key components of a multi-camera network.

1.2 Contributions

This thesis improves on the state of the art on various aspects of computer vision.

Camera Calibration: We present camera calibration techniques for different real world scenar-

ios. We propose five different calibration techniques, based on the characteristics of the

scene:

I . We revisit the role of image of the absolute conic (IAC) in determining the camera

geometry, and propose new constraints that are intrinsic to it, reflecting its invariant

features. We investigate the application of these new constraints on camera calibration.

II . We focus on the scenes where there is a reference plane and some shadows are cast on

it. In such scenes, we track the shadows on the reference plane (e.g. the ground plane)
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cast by at least two unknown stationary points, and utilize the tracked shadow posi-

tions to compute the horizon line and hence compute the camera intrinsic and extrinsic

parameters.

III . We propose a robust and a general linear solution to the problem of camera calibration

by observing moving objects by adopting a formulation different from the existing

methods. The uniqueness of formulation lies in recognizing two harmonic homologies

present in the geometry associated with walking pedestrians, and then using properties

of these homologies to obtain linear constraints on the unknown camera parameters.

IV . We present a novel practical method for self-calibrating a camera which may move

freely in space while changing its internal parameters by zooming. We show that point

correspondences between a pair of images, and the fundamental matrix computed from

these point correspondences, are sufficient to recover the internal parameters of a cam-

era. No calibration object with known 3-D shape is required and no limitations are

imposed on the unknown camera motion, as long as the camera is projective.

V. A novel solution for a pan-tilt-zoom (PTZ) camera is proposed. Using only two images,

we are able to solve for5 camera parameters by trading off linearity with polynomial

equations. Our solution is based on using a sequence of Givens rotations, whereby

we decompose the infinite homography into a pair of projectively equivalent upper-

triangular matrices that provide up to 5 constraints directly on the camera parameters.

Self-Configuring Camera Network: In order to monitor sufficiently large areas of interest for

surveillance or any event detection, we need to look beyond stationary cameras and employ
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an automatically configurable network of non-overlapping cameras. Moreover, features like

zooming in/out, readily available in security cameras these days, should be exploited in order

to focus on any particular area of interest if needed. A practical framework is presented that

determines the geometry of such a dynamic camera network. It is shown that only one auto-

matically computed vanishing point and a line lying on any plane orthogonal to the vertical

direction is sufficient to infer the dynamic network configuration. Our method generalizes

previous work which considers restricted camera motions [AHR01]. Using minimal assump-

tions, we are able to successfully demonstrate promising results on synthetic as well as on

real data.

1.3 Applications

The theory presented here can be applied to solving many of the other problems in the field of

computer vision and photogrammetry. This section analyzes four of the many possible uses, which

will be described later in this thesis.

1.3.1 Path Modeling

We address the issue of path surveillance in a single uncalibrated and calibrated camera. We

propose a novel solution for detecting unusual behaviors of objects as they pass through a scene.

The method consists of a path building training phase and a testing phase. During the unsupervised

training phase, a weighted graph is constructed with trajectories represented by the nodes and

weights determined by a similarity measure. Normalized-cuts are used recursively to partition

the graph into prototype paths. Each partition represents a group of trajectories, which in turn
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Figure 1.2: An example of different paths followed by objects in a scene. Different colors indicate
different paths.

is represented by a path envelope and an average trajectory. During the testing phase we seek

a relation between the input trajectories derived from a sequence and the prototype path models

using our similarity measures. The proposed method is used to generate a topology of a scene and

calculate probabilities for predicting object behavior. Real-world pedestrian sequences are used

to demonstrate the practicality of our method. Figure1.2 shows an example of multiple paths

extracted from a video sequence.

1.3.2 Registration To Satellite Imagery

Registration to the satellite imagery gives a global view of the scene being observed. Using the

calibration techniques presented in this thesis, the images can be rectified to one that would have

been obtained from a fronto-parallel view of the plane for a good registration to the aerial imagery.

To make this process automatic (i.e. without having to manually specify the Euclidean world

coordinates of points), the estimated affine and the projective components of the transformation can

be combined together to efficiently metric rectify the video-sequence such that the only unknown

transformation is a similarity transformation.
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1.3.3 GPS Coordinate Estimation

We introduce a novel application to the field of vision-based video forensics. By using only com-

puter vision techniques, we are able to estimate the GPS coordinates of the camera location. Once

we have a calibrated camera, we make some measurements on shadow trajectories to obtain the

geo-latitude of the camera. This step only requires three shadow trajectory points. We also obtain

the day (up to sign ambiguity) on which these images were taken and the declination angle of the

earth when these pictures were taken. This is possible by integrating techniques from the field

of astronomy and computer vision. We also discuss how the longitude can be obtained if more

information is available.

1.3.4 Mixed-Reality

To demonstrate the broader applicability of our proposed work, we present a practical framework

for registering a Mixed Reality (MR) environment of an arbitrary number of participants. Each

participants wears a head mounted display, which consists of a pair of stereo cameras. Participants

are assumed to be moving freely in 3D space and multiple HMDs need not have a common Field of

View (FoV). We show that the plane at infinity and a common vertical vanishing point can be use

to determine the exact orientation of all HMDs with respect to each other, and establish a common

reference frame up to translation.

1.4 Outline Of The Thesis

This thesis is divided into four parts:

Part I: Introduction and Background
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A brief history of the projective geometry is presented in Chapter2 followed by some basic

concepts in the projective geometry of 2-space and 3-space. The pinhole camera model is described

and its various parameters are introduced. The absolute conic, lying on the plane at infinity, at its

use in camera calibration is highlighted. The epipolar geometry, arising between different views of

the camera or between multiple cameras, is elaborated. These concepts serve as a foundation for

the rest of the thesis.

Part II: Camera Calibration

Camera calibration is the process of extractingintrinsic andextrinsiccamera parameters. Cal-

ibration is an obligatory process in computer vision in order to obtain a Euclidean structure of the

scene (up to a global scale), and to determine rigid camera motion.

This part presents novel solutions to calibrate any camera present in a network. Therefore, this

part applies to any single camera, not the network as a whole. Camera calibration techniques can

be broadly classified into two categories:

1. Scene Based Calibration:Calibration by observing a calibration object whose geometry in

the3-D space is known. The original work in this category is that of Tasi [Tsa87], where the

calibration object consists of two or more planes set orthogonal to each other.

2. Self-Calibration: The metric properties of the cameras are determined directly from con-

straints on the internal and/or external parameters [Tri97, FLM92, PKG99, HB06, AHR01,

Stu97b]. No calibration objects are required in these techniques. Simply by moving a cam-

era in a static scene the rigidity of the scene provides constraints that are used to calibrate

the camera.
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Another intermediatetechnique for camera calibration is based onscene constraints. The

knowledge of scene geometry, e.g.vanishing pointsor vanishing lines, is used to impose con-

straints on the camera parameters [SH04, LZ99]. Due to their ease of use and wide applicability,

the camera calibration methods presented in this work are all self-calibration or scene constraints

based.

Chapter3 revisits the role of the image of the absolute conic (IAC) in recovering the cam-

era geometry [JF06a]. New constraints on IAC are derived that advance our understanding of its

underlying building blocks. These new constraints are shown to be intrinsic to IAC, rather than

exploiting the scene geometry or the prior knowledge on the camera. We provide geometric inter-

pretations for these new intrinsic constraints, and show their relations to the invariant properties

of the IAC. This in turn provides a better insight into the role that IAC plays in determining the

camera internal geometry.

Chapter4 shows that a set of six or more photographs of shadow trajectories of stationary

objects in a scene are sufficient to accurately calibrate the camera [JF07d]. Calibration is possible

after the line at infinity has been recovered. The chapter provides two methods to recover this line

which is used with the concepts presented in Chapter3 to perform calibration.

Chapter5 addresses a practical situation where a stationary camera is observing pedestrians.

We present a robust linear solution to the problem of camera calibration from observing pedestri-

ans by adopting a formulation that is more general than existing methods [LZN02, KM05]. The

uniqueness of formulation lies in recognizing two harmonic homologies present in the geometry

induced by walking pedestrians, and then using properties of these homologies to obtain linear

constraints on the unknown camera parameters for arbitrarily walking pedestrians. This work has
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been published in various conferences [JFa, JF06b, JAS07]

Chapter6 describes a camera calibration method when the camera is freely moving [JCF06a,

JCF07]. We show that point correspondences between a pair of images, and the fundamental matrix

computed from these point correspondences, are sufficient to recover the internal parameters of a

camera. The main contribution of this chapter is the development of a global linear solution which

is based on the well-known Kruppa equations. We introduce a formulation different from the

Huang-Faugeras constraints.

Chapter7 describes a novel method for calibrating a pan-tilt-zoom (PTZ) camera from only

two images by trading off linearity with polynomial equations [JFb, JF07a]. Our solution is based

on using a sequence of Givens rotations, whereby we decompose the infinite homography into a

pair of projectively equivalent upper-triangular matrices that provide up to 5 constraints directly

on the camera parameters.

Part III: Network Calibration

This part focuses on a network of multiple cameras. In order to monitor sufficiently large areas

of interest for surveillance or any event detection, we need to look beyond stationary cameras and

employ an automatically configurable network of non-overlapping cameras. These cameras need

not have an overlappingField of View(FoV) and should be allowed to move freely in space if

desired. Moreover, features like zooming in/out, readily available in security cameras these days,

should be exploited in order to focus on any particular area of interest if needed.

Chapter8 presents a practical framework to use calibrated (possibly moving and zooming)

cameras and determine their absolute and relative orientations, assuming that their relative posi-

tion is known (using either survey points, GPS, or by initialization). It is shown that only one

11



automatically computed vanishing point and a line lying on any plane orthogonal to the vertical

direction is sufficient to infer the dynamic network configuration. The method generalizes previ-

ous work which considers restricted camera motions. Using minimal assumptions, we are able to

successfully demonstrate promising results on synthetic as well as on real data. This chapter is the

result of several publications [JCF07, JCF06c].

Part IV: Applications

Previous chapters described camera calibration methods for various scenarios and a network

configuration method. These novel methods can be applied to solve different problems in video

content analysis and video forensics. This chapter aims to describe some of the applications of our

proposed work that we have investigated.

Chapter9 describes application toEuclidean path modeling for video surveillance. We

present a novel yet simple method to model the behavior of pedestrians in a scene. Using pedestri-

ans for camera calibration, the trajectories of the tracked pedestrians are metric rectified to remove

projective distortion from the trajectories. These metric rectified trajectories represent atruer pic-

ture of the data. This chapter is the result of several publications [JFa, JF07c, JF07b, JJS04]

We also described how a modeled scene can be registered to satellite imagery for a global view

of the scene. Results are presented for single and multiple camera systems.

Chapter10presents a technique forGPS coordinate estimation. We show that once a camera

is calibrated from observing shadow trajectories (Chapter4), we can recover the GPS coordinates

of the camera location. Determining the GPS coordinates and the date of the year from shadows in

images is a new video forensic concept that we introduce in our work. This is possible by incorpo-

rating techniques from the field of astronomy and computer vision. This chapter is submitted for
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publication [JF07d]

Chapter11 describes application to a Mixed Reality (MR) environment [JCF06b]. We show

that the method described in Chapter8 can be used to configure a MR environment, where multiple

agents are using head mounted display (HMD) units.

1.5 Notations

Although this thesis adopts the standard notations used in computer vision literature, for example

[HZ04], we briefly highlight the most important notations:

• sets are denoted by symbols in “caligraph” or “script” font (e.g.S).

• matrices by using bold upper case symbols (e.g.K,P).

• scalars by normal face symbols (e.gf, λ ).

• vectors, points, and lines are presented in homogeneous coordinates using lower case bold

symbols (e.g.x, ω). At locations, the homogeneous coordinates are also denoted by a tilde

(˜).

• 3D elements, like points and lines by upper case bold symbols (e.g.Π, X).

• equality up to a multiplication by a non-zero scalar factor in a homogeneous coordinate

system as∼.

• skew symmetric matrix is denoted as[e]× for a vectore1

1If e = (e1, e2, e3)T is a 3-vector, then we can define a corresponding skew-symmetric matrix as:[e]× =


0 −e3 e2

e3 0 −e1

−e2 e1 0


.
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The terms multi-camera, multiple cameras and networked cameras are used interchangeably.

Similarly, calibrating and configuring a camera network shall be used interchangeably as well.

More notations shall be introduced at appropriate places when necessary.

14



CHAPTER 2
BACKGROUND: PROJECTIVE GEOMETRY

Projective geometry deals with the geometry of straight lines. We no longer deal with a right-

angled triangle or a circle, but with triangles and conics.

2.1 A Bit Of History

Projective Geometry: While Euclid’s geometry may be defined as the geometry of lines and

circles, the projective geometry can be defined as geometry of thestraight linesalone. All the

propositions for projective geometry are in fact old and may be traced back to Euclid (285 B.C.),

to Apollonius of Perga (247 B.C), to Pappus of Alexandria (4th century C.E.); to Desargues of

Lyons (1593− 1662); to Pascal (1623-1662); to de la Hire (1640-1718); to Newton (1642− 1727);

to Maclaurin (1698−1746); and to J.H. Lambert (1728−1777). The theories and methods derived

from these propositions are calledmodernbecause they have been discovered or perfected by

mathematicians of an age nearer to ours, such as Carnot, Brianchon, Poncelet, Möbius, Steiner,

Chasles, Staudt, etc. [Cre85].

Plane projective geometry deals with the projection of a 3-Dimensional world onto a 2-Dimensional

plane. The projective geometry deals with triangles, quadrangles and so on, but not with right-

angled triangles or parallelograms, and so on. This is due to our focus concern with geometrical

properties only that remain unchanged by thecentral projection. The motivation for this kind of

geometry came from fine arts. In1425 Italian architect Brunelleschi began to discuss the geomet-

rical theory of perspective, which later was consolidated by Alberti [FL01], see Figure2.1 for an

illustration of Alberti’s grid.
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Figure 2.1: Alberti’s Grid - c.1450 (also known as Alberti’s Veil).

Similarly, an ellipse or a parabola are simplyconicsin a projective geometry. Although conics

were studied by Manaechmus, Euclid, Archimedes and Apollonius in the early4th − 5th century

B.C., it was Pappus of Alexandria in third century C.E. who truly discovered the projective theo-

rems [Cox74]. J.V. Poncelet was the first to prove these theorems by purely projective reasoning.

Almost two hundred years before Poncelet, the concept ofpoint at infinityoccurred indepen-

dently to two scientists Johann Kepler and Girard Desargues. Desargues declared that, “parallel

lines have a common end at an infinite distance”. And, “when no point of a line is at a finite dis-

tance, the line itself is at an infinite distance”. This work laid out the foundation for the concept of

line at infinity, discovered later by Poncelet. This concept justifies our assumption that if coplanar

lines have no point in common, they intersect at a point at infinity.

The last traces of dependencies on Euclidean geometry were removed when Felix Klein, in

1871, provided an algebraic foundation for the projective geometry by introducinghomogeneous

16



(a) (b)

(c) (d)

Figure 2.2: Perspective Frames:(a) A painter incorporating perspective effect into his painting.
(b) Albrecht D̈urer’s interpretation of “The Draftsman’s Net”. (c) Albrecht Dürer’s Perspective
Machine of1525 demonstrates the principle of ray tracing.(d) Albrecht Dürer’s interpretation of
“Jacob de Keyser’s Invention”.

coordinates.

Theprinciple of duality- every statement about points and lines (in a plane) can be replaced

by a dual statements about lines and points - was introduced by Poncelet, later elaborated by J.D.

Gergonne (1771− 1859).

Pinhole Camera: Along the time when the theory of projective geometry was being developed,

perspective machineswere being developed to help painters accurately produce life like image of

the real world [FL01]. In this kind of machines, the eye of the painter was generally fixed and

a device was used to materialize the visual ray with the image plane, illustrating the geometry

of central projection. Figure2.2 depicts some of the devices invented for painters to add linear

perspective effects to their work.

Thecamera obscura(Latin for ’dark room’) was the ancestor of the modern camera. We find
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(a) (b)

Figure 2.3: Earlier Pinhole Cameras: (a) Camera Obscura, Athanasius Kircher,1646. (b) Cam-
era Obscura, Reinerus Gemma-Frisius,1544.

casual references by Aristotle (Problems, ca330 B.C.), and Euclid. Abu Ali Al-hasen Ibn-Alhasen

is the first to show how an image is formed on the eye, using the camera obscura as an analog.

(1038), printed inOpticae Thesaurus Alhazaniin 1572. The camera obscura would be a dark room

where the user would enter. The light entering through a small hole would produce the inverted

image on the opposite wall. Two examples of different camera obscura invented are shown in

Figure2.3.

2.2 Camera Model

In computer vision and other related fields, there are numerous different camera models which

model the imaging process by mapping points from the 3D world to 2D points on an image plane.

This process of image formation must be modeled in a rigorous mathematical fashion. The choice

of an appropriate camera model depends on several factors including the accuracy required in the

mapping, the actual camera used, and the relationship between the camera and the scene being

viewed.
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Our work focuses mainly on the pinhole camera (orcentral projection), described below in

Section2.2.2, and is the most commonly used camera model in the computer vision community

(e.g. [WMC03, CRZ00, CF04b, Zha02, CBP05, AZH96]). However, as the theory of camera

calibration is based on Projective Geometry, the important concept of homogeneous coordinates is

described first.

2.2.1 Homogeneous Coordinates

Suppose we have a point(x, y) on a Euclidean plane. In order to represent that point in a projective

space, we add a third coordinate:(x, y, 1). The overall scaling is unimportant i.e.(x, y, 1) is same

asλ(x, y, 1) for any non-zeroλ.

More formally, thehomogeneous coordinateset for a pointX in n-dimensional space with Eu-

clidean coordinates given by then-tuple(X1, X2, ..., Xn) ∈ Rn is a (n + 1)-tuples

{w(X1, X2, ..., Xn, Xn+1) ∈ Rn+1 \ {0, 0, ..., 0},∀w 6= 0}. Conversely, given the homogeneous

coordinates{w(X1, X2, ..., Xn, Xn+1) ∈ Rn+1 \ {0, 0, ..., 0},∀w 6= 0} of a pointX in n dimen-

sional space, Euclidean coordinates are derived as:(X1, X2, ..., Xn)/Xn+1, if Xn+1 6= 0. The

special case whenXn+1 = 0 happens when the point is at infinity; this can not be represented in

Euclidean space.

Two n + 1 vectorsx = [x1, ...xn+1]
T andx′ = [x′1, ...x

′
n+1]

T represent the same point in

projective space if and only if∃λ 6= 0 such thatxi = λx′i for 1 ≤ i ≤ n + 1.
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Figure 2.4: Pinhole Camera Model: The camera center is denoted byC. The 3D pointX is
projected onto a pointsx on the image plane. The image plane is placed in front of the the camera
center. The camera in the figure is placed at the origin of the coordinate system (Figure courtesy
of [Har]).

2.2.2 Pinhole Camera Model

The most general linear camera model is the pinhole camera model. This model is a perspective

projection of the world to the image plane. The pinhole camera model does not model the non-

linear distortions introduced by the camera. A 3D point in projective spaceP3 is projected onto

a plane inP2 by means of straight visual rays (cf. Figure2.4). The corresponding point is the

intersection of the image plane with the visual ray connecting the 3D point to the optical center.

Formally, represented in homogeneous coordinates, the projection of a 3D scene pointX ∼
[

X Y Z 1

]T

onto a point in the image planex ∼
[

x y 1

]T

, for a perspective camera

can be modeled by the central projection equation:

x ∼ K

[
R | −RC

]

︸ ︷︷ ︸
P

X,K =




f γ uo

0 fλ vo

0 0 1




(2.1)
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Figure 2.5: Euclidean transformation of the camera coordinate frame w.r.t. to the world coordinate
frame.(Figure courtesy of [Har]).

where∼ indicates equality up to a non-zero scale factor andC =
[

Cx Cy Cz

]T

represents

the Euclidean coordinates of the camera center. HereR = RxRyRz =

[
r1 r2 r3

]
is the

rotation matrix and−RC is the relative translation between the world origin and the camera center

(cf. Figure2.5). The upper triangular3× 3 matrixK encodes the five intrinsic camera parameters:

focal lengthf , aspect ratioλ, skewγ and the principal point at(uo, vo) [WS94].

The matrixP is denoted as the projective camera matrix, and the matrixK corresponds to the

matrix of intrinsic parameters. The matrixR and the vector−RC are jointly called theextrinsic

or externalparameters. If the matrixK is known, the camera is said to be calibrated. Hereafter,

the expressions “the cameraP” and “the intrinsic parametersK” should be read as “the camera

with projective camera matrix given byP” and “the intrinsic parameters represented by the matrix

K”, respectively.

OnceP is obtained, the camera model is said to be completely determined. The matrix can

be computed from the relative positioning of the world points and camera center, and from the

camera internal parameters; however, it can also be computed directly from image-to-world point

correspondences [AK71].
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Figure 2.6: Plane-to-plane homography: Points on one plane are projected by a plane-to-plane
homography to points on another plane. The camera center is denoted byC (Figure courtesy of
[Har]).

The projective camera describes a pinhole camera model by introducing the internal camera

parameters to account for the real camera characteristics. Physical lenses, however, introduce non-

linear distortions in the image, often modeled by radial distortion [SGN03]. Distortion will be

ignored in the current work - it is insignificant in the example images used and will be removed

when necessary [DF95].

2.2.3 Planar Homography

An interesting specialization of the perspective projection is theplane-to-planeprojection (cf.

Figure2.6). Points on one plane are projected by a plane-to-plane homography to points on another

plane [SK79]. This homography, also known as the plane projective transformation or collineation,

is a bijective mapping. Planar homography arises generally when the camera is projecting a planar

scene, for e.g. side of a building or looking at the ground plane.

Formally, a 3D pointXi lying on a plane is projected to a pointxi on the image plane as:

xi = HXi (2.2)
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Figure 2.7: Planar Homology: A planar homology is defined by a vertexv and an axisa. µ,
the characteristic ratio, can be determined by the cross ratio< v,x′1,x1, i1 > of the four aligned
points. The pointx′1 is projected on to the pointx1, and similarlyx′2 on tox2. (Figure courtesy
of [Har]).

whereH is a 3 × 3 homogeneous planar projection matrix describing the homography. The

world points are represented in homogeneous coordinatesX = (X,Y,W)T (omitting theZ-

component) and the 2D image points are denoted asx = (x,y,w)T, respectively.

Since the homography is bijective, it follows thatXi = H′xi is also valid, whereH′ = H−1.

Computation ofH is similar to that ofP. In particular,H has eight degrees of freedom (nine

parameters minus an overall scale), hence it can be shown that at least four world-to-image feature

points suffice to define the homography [HZ04].

2.2.4 Planar Homology

Planar homology is a plane projective transformation and an specialization of the homography. It

is characterized by a line of fixed points, theaxis, and a distinct fixed point not on the line, the

vertex. Planar homology arises in many situation, for instance, when different light sources cast
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Figure 2.8:Calibration Geometry: A pedestrian, detected at two different time instances, pro-
vides vertical vanishing point (vz) and another vanishing point (v′) lying on the horizon line of the
ground plane. As a result, two harmonic homologies exist in the scenario: one, havingv′ as its
vertex, and the other withvz as it vertex.

shadows of an object onto the same plane.

The planar homology is defined by a5 d.o.f. 3× 3, matrixH, and can be parameterized as:

H = I− (µ− 1)
vaT

vTa
(2.3)

whereµ is the characteristic ratio that can be computed as the cross ratio of the four aligned

points as shown in Figure2.7, andv anda represent the vertex and the axes of the homology,

respectively. Planar homology contains one distinct and two repeated eigenvalues i.e. eigenvalues

are{λ1 = µ, λ2 = 1, λ3 = 1} and the eigenvectors are{e1 = v, e2 = a⊥1 , e3 = a⊥2 }, such that

a = a⊥1 × a⊥2 .

Harmonic Homology: A specialization of the planar homology is the case when the cross

ratio is harmonic i.e.µ = −1. This planar homology is called the planar harmonic homology and

has4 degrees of freedom (one less due to the knownµ). This special case has the parametrization:
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H = H−1 = I− 2
vaT

vTa
(2.4)

In perspective images of a planar object with bilateral symmetry, corresponding points in the

images are related by a harmonic homology. Figure2.8 shows an example of harmonic homol-

ogy related to our work. A pedestrian, detected at two different time instances, provides vertical

vanishing point (vz) and another vanishing point (v′) lying on the horizon line of the ground plane.

2.3 Image Of The Absolute Conic

Consider the equation of a conicC:

ax2
1 + 2bx1x2 + 2cx1 + dx2

2 + 2ex2 + f = 0

In homogeneous coordinates this becomesxTCx = 0, whereC =




a b c

b d e

c e f




.

The matrixC is the homogeneous representation of the conicC. The equation of ann-

dimensional quadric, in general, is given as:

XTQX = 0

whereQ is a(n + 1)× (n + 1) symmetric matrix.

TheAbsolute Conic(AC) Ω∞ is a point conic on the plane at infinityΠ∞. The Image of the

Absolute Conic(IAC ), denoted byω, is the conicω = (KKT)
−1

= K−TK−1, whereK is the
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camera parameter matrix. Thusω only depends on the internal parametersK of the matrixP. ω

can be expanded up to a non-zero scale as:

ω =




1 − γ
λ f

−−vo γ+uo λ f
λ f

− γ
λ f

γ2+f2

λ2f2 − vo f2+vo γ2−uo λ fγ
λ2f2

−−vo γ+uo λ f
λ f

− vo f2+vo γ2−uo λ fγ
λ2f2

λ2f4+f2vo2+γ2vo2+λ2f2uo
2−2 uo vo λ fγ

λ2f2




(2.5)

The dual image of the absolute conic (the DIAC) may be defined as:

ω∗ = ω−1 = KKT

The conicω∗ is a dual (line) conic, whereasω is a point conic.

The aim of camera calibration is to determine the calibration matrixK. Instead of directly

determiningK, it is common practice [AHR01] to compute the symmetric matrixK−TK−1 or

its inverse (the dual image of the absolute conic). The obtained matrix,ω or ω∗, can then be

decomposed uniquely using the Cholesky Decomposition [PFT88] to obtain the calibration matrix

K. The matrixK can also be obtained uniquely fromω, as shown by [Zha00, CSS05]:
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λ =
√

1/(ω22 − ω2
12)

vo = (ω12ω13 − ω23)/(ω22 − ω2
12)

uo = −(voω12 + ω13)

f =
√

ω32 − ω2
13 − vo(ω12ω13 − ω23)

γ = −fλω12 (2.6)

where the subscripts ofωij denote an element’s rowi and columnj in matrixω.

2.4 Vanishing Points And Vanishing Lines

Vanishing points and vanishing lines are extremely powerful geometric cues. These entities convey

a lot of information about the scene. These points and lines can be estimated directly from the

images with no explicit knowledge required about the relative geometry between the camera and

the viewed scene [MK95, LZ98, Shu99].

As shown in Figure2.9, image of parallel lines in the world intersect at a common points

called the vanishing point. Similarly, vanishing points of a set of coplanar parallel lines in different

directions meet at a common line, called the vanishing line of their common plane.

In P3, the plane at infinityΠ∞ is the plane of directions - i.e. all parallel lines meet onΠ∞ at

one common point. A vanishing point is simply the projection of this point on the image plane.

Thus a vanishing point depends only on the direction of a line, not on its position. Thus, if a line

has a directiond, then it intersectΠ∞ at a pointX∞ = (dT , 0)T . Then the vanishing point,v, is
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Figure 2.9:Vanishing Point: (left) Image of parallel lines in the world intersect at a common point
called the vanishing point. (right) Set of more than one parallel lines in different direction meet at
a common line, the vanishing line.

θ

C

d

d1

2

x
1

x2

Figure 2.10: The angle between two rays.

given as:

v ∼ PX∞ = K [I|0]




d

0


 = Kd

Thus, the vanishing point of a line with directiond in P3 is the intersection of the ray with the

image plane at a pointv = Kd. Conversely, the directiond is obtained from the vanishing points

asd = K−1d up to a scale.

The angle between two raysd1 andd2 corresponding to image pointsx1 andx2 respectively,

may thus be obtained from the cosine formula for the angle between the two vectors:
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Figure 2.11:Two vanishing points,x1 andx2, of mutually orthogonal directions are said to be
conjugate w.r.t. the conicω.

cos θ =
dT

1 d2√
dT

1 d1

√
dT

2 d2

=
(K−1x1)

T(K−1x2)√
(K−1x1)T(K−1x1)

√
(K−1x2)T(K−1x2)

=
xT

1 (K−TK−1)x2√
xT

1 (K−TK−1)x1

√
xT

2 (K−TK−1)x2

(2.7)

This equation shows that ifω = (K−TK−1) is known, then the angle between rays can be

measured from their corresponding image points. In other words, a calibrated camera is a direction

tensor, acting as a 2D protractor. In the case when two vanishing pointsv1 andv2 represent

mutually orthogonal directions, i.e.cos θ = 0, Eq. 2.7reduces tovT
1 ωv2 = 0. Geometrically, the

two vanishing points are said to be conjugate w.r.t. the conicω, as shown in the Figure2.11. This

orthogonality relation puts a constraint onω, and subsequently onK, that are linear in elements of

ω. Leibowitz and Zisserman [LZ99] were the first to formulate the calibration constraints provided

by vanishing points of mutually orthogonal directions in terms ofω, [CT90] were the first to use

vanishing points for camera calibration. Some of the methods proposed by other researcher using

orthogonality condition include [Zha00, CBP05, Stu99, GS03, CDR99, WMC03, GP00, CS05].
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2.5 Circular Points

Under any similarity transformation, two points,I andJ , on the line at infinityl∞ are fixed. These

points are called thecircular points, with the canonical coordinates

I =




1

i

0




J =




1

−i

0




(2.8)

The circular points are a pair of ideal complex conjugate points. Thusl∞ intersectsω at two

points,I andJ, giving rise to two constraints on the elements ofω:

ITωI = 0 JTωJ = 0 (2.9)

In practice, all the circular point information is contained in one of the complex conjugate

points. Writing out the real and imaginary parts of eitherITωI = 0 or JTωJ = 0 yields two

linear expressions on the elements ofω.

2.6 Epipolar Geometry

A point P in a 3D space, viewed by a pair of cameras, makes a plane with the left and the right

camera centers, i.e.,Ol andOr, respectively. This plane is called theEpipolar Plane(π), defined

by theEpipolar Geometry. Figure2.12gives an example of the epipolar geometry. LetPl and

Pr be vectors in left and right camera reference frames respectively and let vectorspl andpr

represent the projections ofP onto the left and right image planes respectively. The vectorPl is
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Figure 2.12:Epipolar Geometry: A point P in 3D Space as seen from two cameras with centers
Ol andOr. Pl andPr are vectors in the left and right camera reference frames, respectively. The
vectorspl andpr are the projections ofP onto the left and right image planes, respectively.

related toPr by the distance between the cameras (T) and the angleα, given asPr = R(Pl −T),

whereR is the rotation matrix defined by angleα. The coplanarity condition between vectors

Pl,Pr andT results in the relationPr
TEPl = 0, whereE = R[S]× is theessential matrixand

[S]× is the rank deficient matrix, obtained by factorizingT×Pl. The essential matrix encodes

information about the epipolar geometry and is defined in camera coordinates. Since we are dealing

with image sequences, we need to know the transformation from the camera coordinates to the

pixel coordinates. Therefore, we use the fundamental matrix(F) that encodes both the extrinsic

parameters and the intrinsic parameters, along with the essential matrix. This relation is given as:

xTFx′ = 0 (2.10)

wherex andx′ are the points in left and right image planes, respectively. The projection of a point

on the left image lies on a line in the right image defined by Eq. (2.10). This is called theepipolar
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Figure 2.13:A point x in an image is transferred to a pointx′ in another image via the planeπ.

line [FLM92, HZ04].

Equivalently, consider a planeπ in space not passing through either of the two camera centers

(cf. Figure2.13). The ray passing through the first camera center corresponding to the pointx

meets the planeπ in a pointX. This pointX is then project to a pointx′ in the second images.

This procedure is known as transfer via the planeπ. The fundamental matrix can then be given as

F ∼ [e′]×Hπ, whereHπ is the transfer mapping from one image to another via any planeπ, and

[e′]× is the image of the camera center of the first camera as seen in the second camera.

A special case arises when the reference transfer plane is the plane at infinity i.e.π ∼ Π∞. In

this case, the transfer mapping i.e. the homography between the two images is given as

H∞ ∼ K′RK−1, (2.11)

whereR is the relative rotation between the cameras andH∞
Π∞ is called the infinite homogra-

phy. And the fundamental matrix is then given as [AHR01]:

F ∼ [e′]×H∞ (2.12)
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2.6.1 Kruppa’s Equations

Originally, the auto-calibration method by Faugeras et al. [FLM92] involved the computation of

the fundamental matrix, which encodes epipolar geometry between two images [Fau92, LF96].

Each fundamental matrix generates two quadratic constraints involving only the five elements of

ω∗, whereω∗ is the dual image of the absolute conic (DIAC). From three views a system of

polynomial equations is constructed called Kruppa’s equations [Kru13].

Kruppa’s equations are based on the relationship between the image of the absolute conic (ω)

and the epipolar geometry. If an epipolar line (l) is tangent tow, then the corresponding epipolar

line (l) is also tangent toω.

the infinite homographyH∞
Π∞ gives constraints onω∗ in the form of

ω∗ ∼ H∞ω∗HT
∞

Using the relation in Equation2.12and multiplyingω∗ on left and right by[e′]×, we obtain:

[e′]×ω∗[e′]× ∼ [e′]×H∞ω ∗HT
∞[e′]×,

∼ Fω∗FT (2.13)

Thus the fundamental matrix gives constraints onω∗. However,F andω∗ are only defined

up to a non-zero scaling and cross multiplying to remove the unknown scale gives quadratic con-

straints on the elements ofω∗. Each pair of views gives two quadratic equations containing the
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elements ofω, and, given three camera displacements (four independent pairs of views), they form

an overdetermined set of simultaneous polynomial equations.
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CHAPTER 3
DISSECTING THE IMAGE OF ABSOLUTE CONIC

The absolute conic,Ω∞, and its perspective projectionω, known as the Image of the Absolute

Conic (IAC), are among the most important concepts in defining the camera geometry. The im-

portance ofΩ∞ arises from the fact that it lies on the plane at infinity,Π∞, and hence is invariant

under Euclidean transformations. This implies that the relative position ofΩ∞ with respect to a

moving camera is fixed. As a result its image, IAC, remains fixed if the camera internal parameters

do not vary. Therefore IAC can be used as a calibration object, i.e. for recovering the intrinsic

camera parameters. Knowing the IAC, the camera pose, and the Euclidean geometry of the scene

[HZ04] can be recovered directly from image measurements up to a similarity.

In this chapter, we revisit the role of IAC in determining the camera geometry, and propose new

constraints that are intrinsic to it, reflecting its invariant features. We investigate the application of

these new constraints in camera calibration. We show that a more general camera model than the

one proposed by [CT90] and formalized in [LZ99] can be recovered from a single view, given an

input of three orthogonal vanishing points.

Next, we recall some preliminary notions on the relation between the camera geometry and

the IAC. We then dissect the IAC into its constituent components, and provide their geometric

meaning and importance. This is followed by an extensive set of experimentations and evaluation

of the performance of calibration under noise, and experimental results on real data and comparison

with [LZ99].
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Figure 3.1:The geometry of a pinhole camera. The absolute conicΩ is a conic on the plane at
infinity that is projected into the image plane as the conicω, which depends only on the intrinsic
parameters of the camera.

3.1 The Role Of IAC

The geometry of imaging the absolute conic in a pinhole camera is shown in Figure3.1. The

general pinhole camera projects a 3D pointM to an image pointm via

m ∼ KR [I | −C]M, K =




f s uo

0 λf vo

0 0 1




, (3.1)

where∼ implies equality up to an unknown non-zero scale factor,R is the rotation matrix

from the world coordinate frame to the camera coordinate frame,C is the inhomogeneous camera

projection center, andK is the camera intrinsic matrix containing the focal lengthf , the aspect

ratioλ, the skews, and the principal pointp ∼ [uo vo 1]T.

The role of IAC in defining the camera geometry is better understood by examining the action

of a finite camera on points that lie on the plane at infinityΠ∞. A point onΠ∞ can be written as
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M∞ ∼ [d 0]T, where the 3-vectord defines the direction of the ray obtained by connecting the

image ofM∞ and the camera projection center. SubstitutingM∞ in (3.1), one can readily verify

thatm∞ ∼ KRM∞. It therefore follows that the absolute conic, which is the conicΩ∞ = I on

Π∞ maps to the image conic

ω ∼ (KR)−T I(KR)−1 ∼ K−TK−1 (3.2)

known as the image of the absolute conic (IAC). Conversely, two image pointsm1 andm2 back-

project to two rays with directionsd1 = K−1m1 andd2 = K−1m2 in the camera coordinate

system, where the angle between the two rays is given by the familiar cosine formula

cos θ =
dT

1 d2√
dT

1 d1

√
dT

2 d2

=
mT

1 ωm2√
mT

1 ωm1

√
mT

2 ωm2

(3.3)

This shows that known angles between vanishing points can be used to impose constraints on

the IAC to obtain the camera intrinsic matrix. For instance, given the images of three infinite

pointsvi, i = 1, ...,3 along known directions, and assuming zero skew and unit aspect ratio, one

can recover the remaining unknown camera intrinsic parameters. In particular ifvi are the vanish-

ing points along three orthogonal directions then one can write three linear equations of the form

vT
i ωvj = 0, i 6= j to calibrate the camera [CT90, CDR99, LZ99, Zha00, Stu99, WMC03, CBP05].

This is essentially the core idea behind calibration using the vanishing points, which was formal-

ized by [LZ99]. These works showed that only a simplified camera model with three unknown

intrinsic parameters can be recovered from the vanishing points of three orthogonal directions, un-

less additional information is available (e.g. more images or the circular points [CBP05, LZ99]).
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Table 3.1:Scene and internal constraints on IAC.

Condition Constraint type # constraints
Orthogonality vT

i ωvj = 0, i 6= j linear 1
Pole-polar [l]×ωv = 0 linear 2
Homography hT

1 ωh2 = 0 linear 2
hT

1 ωh1 = hT
2 ωh2

zero skew ω12 = ω21 = 0 linear 1
unit aspect ratioω11 = ω22 linear 1

Generally speaking, in recovering the camera geometry from a single view three sources of in-

formation have been commonly used in the past to impose constraints on the image of the absolute

conicω:

• metric information about a plane with a known world-to-image homography;

• vanishing points and lines corresponding to known (usually orthogonal) directions and planes;

• a priori constraints, such as unit aspect ratio, or zero skew.

These constraints are summarized by Hartley and Zisserman (Table 8.1, page 224 in [HZ04]),

which is also reproduced in Table3.1.

In this section, we re-examine the problem of recovering the camera geometry from a single

view, when three vanishing points along world orthogonal directions are known.

3.2 Dissecting IAC

In the existing literature on camera calibration the role of IAC is primarily investigated in terms of

its relationship with other geometric entities in the image plane, i.e. the vanishing points and the

vanishing line. The relation between IAC and the internal parameters is often limited to equation
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(3.2). In this section and the following one, we present some new constraints and their geometric

meaning that are more intrinsic to the IAC, i.e. relate to the internal geometry of camera.

Theorem 3.2.1 (Invariance)

Letω be the image of the absolute conic. The principal pointp satisfies

ωp ∼ l∞ (3.4)

wherel∞ ∼ [0 0 1]T is the canonical position of the line at infinity.

The proof is straightforward and follows by performing the Choleskey factorization of the Dual

Image of the Absolute Conic (DIAC),ω∗, and direct substitution ofp.

In the next section, we also provide an alternative proof, which reveals the geometric meaning

of the constraint in (3.4).

Proposition 3.2.1 (Scale)

Letω, denote the image of the absolute conic. We have

|ω33| pTωp− det(ω) = 0 (3.5)

where|ω33| denotes the minor of IAC corresponding to its last component, anddet(·) is the deter-

minant.

Proposition 3.2.2 (Ortho-Invariance)

Letvi, i = 1, ...,3 denote three vanishing points along mutually orthogonal directions. The image
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of the absolute conic relates these vanishing points via

∑
i

1

vT
i ωvi

− 1

pTωp
= 0 (3.6)

Proofs for all the above results follow by using the Cholesky decomposition of DIAC,ω∗,

and direct substitution and algebraic simplification. Note that the result in (3.6) depends on the

orthogonality conditions, and hence is dependent on the familiar linear orthogonality constraints

vT
i ωvj = 0, i 6= j. However, (3.4) and (3.5) reflect some intrinsic properties of the IAC and do

not depend on the scene geometry or the prior knowledge on the camera intrinsics. This is the key

idea presented in this section.

3.2.1 Geometric Interpretation

The result in (3.4) is better understood if we provide its geometric interpretation. Clearly, (3.4)

is independent of the image points. Therefore, it reflects some intrinsic property of the IAC.

This intrinsic property is better understood if we rewrite (3.4) as the following two independent

constraints

pTω1 = 0 (3.7)

pTω2 = 0 (3.8)

whereωi are the rows of the IAC (or equivalently its columns due to symmetry).
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This shows that

p ∼ ω1 × ω2 (3.9)

which is true for a general camera model, i.e. no particular assumptions made about the aspect

ratio, or the skew.

A geometric interpretation (see Figure3.2) of this result is that the two rowsω1 andω2 of the

IAC correspond to two lines in the image plane that always intersect at the principal point regard-

less of the other intrinsic parameters. We may consider three cases: i.e. varying the skews, the

aspect ratioλ, or the focal lengthf . Although it is highly unlikely for a CCD camera to change

its skew or the aspect ratio, it is useful to evaluate these effects on calibrating a general pinhole

camera or a simplified one.

Varying the skew s: We may assume that we deal with two identical cameras that differ only in

skew: one zero skew and the other non-zero. Let us denote the two corresponding IAC’s by

ω ∼




ω1

ω2

ω3




and ωs ∼




ω′
1

ω′
2

ω′
3




(3.10)

whereωi andω′
i, i = 1, ..., 3 are the rows of the corresponding IAC’s.

For the IAC with zero skew, i.e.ω, the two linesω1 andω2 are parallel to the image x and

y axes respectively, and intersect at the principal point. For the general IAC with non-zeo skew,
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ω′, the corresponding two linesω′
1 andω′

2 are not perpendicular anymore. However, they still

intersect at the same image point, i.e. the principal point.

To demonstrate this formally, note that

ω′ ∼ K′−TK′−1

∼ K′−TKTK−TK−1KK′−1

∼ H−T
s ωH−1

s (3.11)

Therefore the transformation that maps the IAC with zero skew to the general IAC is given by the

homography

Hs ∼ K′K−1 (3.12)

It can be shown that this homography is of the form

Hs ∼




1 −w12

w11

w12

w11
vo

0 1 0

0 0 1




(3.13)

If we now perform the eigen-decomposition ofHs, we will find that this homography has only

two distinct eigenvectors both of which correspond to unit eigenvalues. The two eigenvectors are

[0 vo 1] and [1 0 0]. Geometrically, this is equivalent to saying that under the transformation

Hs (i.e. if the skew of a camera changes from zero to a non-zero value), the point[0 vo 1] and
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the vanishing point along the x-axis remain invariant. In other words, these are geometrically

fixed points underHs. Since any linear combination of these two points is also an eigenvector,

we deduce that the principal pointp, which lies on the line joining the two fixed points is also

invariant under this transformation. This shows that equation (3.4) conveys an invariant property

of the IAC, i.e. upon changing the skew the principal point should still lie on the intersection of

the image lines defined by the first two rows of the IAC.

Another illuminating feature ofHs is that if we do the eigendecomposition of the transposed

homographyHT
s , we will find that there are also only two distinct eigenvectors, i.e.[0 1 −vo]

T and

[0 0 1]T . Geometrically, this implies that the line[0 1 − vo]
T and the line at infinity are invariant

under changes in the skew. Since the principal point lies on the first line, it again confirms that the

principal point is a fixed point under variations in the skew.

Varying aspect ratio λ: Interestingly enough, the same process as above can be used to establish

that upon changing the aspect ratioλ, the principal point is also an invariant fixed point on the

intersection of the two image lines defined by the first two rows of the IAC. Again, if the two

IAC’s are denoted byω andω′, then their relationship is defined by a homography of the form

Hλ ∼ K′K−1 (3.14)

∼




1 0 0

0 λ vo(1− λ)

0 0 1




(3.15)
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whereλ =
√

ω2
11

ω11ω22−ω2
12

.

Similar eigen-analysis reveals thatHλ shares the same two eigenvectors[0 vo 1] and [1 0 0]

corresponding to its repeated unit eigenvalue, and a third eigenvector that corresponds to the point

at infinity along the y-axis, i.e.[0 1 0] with the eigenvalue equal toλ. This shows that the same

two points are again geometric fixed points. However this time the infinite point along the y-axis

is also fixed. Again using the fact that the linear combinations of eigenvectors corresponding to

unit eigenvalues is also an eigenvector, we conclude that the principal point, which lies on the line

joining the first two eigenvectors, is also geometrically a fixed point under variations ofλ.

Varying the focal length f : Finally, if we let the focal length of a camera vary then the homogra-

phy that relates the two IAC’s is given by

Hf ∼ K′K−1 (3.16)

∼




r (r − 1)ω12

ω11
(1− r)

(
uo + vo

ω12

ω11

)

0 r (1− r)vo

0 0 1




(3.17)

wherer is the ratio of two focal lengths.

The eigen decomposition of this homography indicates that the principal point is the eigen-

vector corresponding to the unit eigenvalue, and hence is a fixed point underHf . The last two

eigenvectors, are repeated and correspond again to the point at infinity along the x-axis[1 0 0],

with the eigenvalue equal tor.
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Figure 3.2:The geometry associated with the IAC:ω1, ω2, andω3 represent the lines associated
with the IAC when the skew is zero, andω′

1, ω′
2, andω′

3 illustrate the case when the skew is
not zero. In both cases the principal point is on the intersection of the first two lines, providing
two linear constraints on the IAC. The ratio of line segments along the two lines (two rows) are
preserved as the skew changes.

Remark If two cameras differ only by the intrinsic parameterss, λ, or f , then the corresponding

IAC’s, ω andω′, satisfy

ω1 × ω2 ∼ ω′
1 × ω′

2 (3.18)

Figure3.2 illustrates this underlying geometry of IAC for the case of varying skew. As can

be seen in Figure3.2 the third row of IAC also corresponds to a line in the image plane which

intersects the first two lines at two distinct points other than the principal point. These intersection

points together with other points along the two linesω1 andω2 can be used to confirm that the

ratio of line segments remain invariant, since all the homographies described above are affine.

Unfortunately, the third row of IAC or the resulting invariant ratios do not provide new independent

constraints.
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Before we close this section, we also formalize the familiar constraint that the principal point

is knowna priori to be close to the center of the imagec, as the following “soft constraint”

p̂ = argmin(p− c)T(p− c) (3.19)

This latter constraint is a very practical prior in self-calibration.

3.3 Single-View Calibration

The results of the previous section are both good news and bad news. The bad news is that we can

not find more than two intrinsic constraints on the IAC from its internal geometry. The good news

is that the two constraints that we find can be used to reprameterize the IAC. This is rather very

useful, since it allows us to recover a more general camera model than the existing single-view

calibration techniques such as [LZ99]: e.g. recoverf , s and(uo, vo) with three vanishing points,

or recoverf and(uo, vo) with two vanishing points.

For instance, let us assume that the camera skew is zero. The IAC is then of the form

ω ∼




1 0 ω13

0 ω22 ω23

ω13 ω23 ω33




(3.20)

Given three orthogonal vanishing points, we can formulate the single-view calibration problem as
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the solution to the following set of five equations:

vT
i ωvj = 0, i 6= j, i, j = 1, ...,3 (3.21)

pTω1 = 0, (3.22)

pTω2 = 0 (3.23)

These equations are linear in terms of the components ofω, and hence any four of them can be

used to reparameterizeω in (3.20) in terms of only the principal pointp. Suppose we use the

first four equations for reparameterization then the resultingω, which depends only onp should

minimize

p̂ = argminpTWp where W = ω2ω
T
2 (3.24)

We initialize p̂ at the center of the image, and minimize using a standard optimization method

(e.g. Levenberg-Marquardt) in a window around the center of the image. Once the principal point

is obtained, all components of the IAC can be recovered (since they are expressed in terms ofp),

and hence the camera intrinsic matrixK can be computed by Choleskey decomposition. Note that

the method recovers a more general camera model of four unknown parameters, e.g.f , λ and

(uo, vo).

The three columns of the rotation matrix are then given byri = ± K−1vi

‖K−1vi‖ - the sign ambiguity

can be removed using the cheirality constraint [HZ04]. The translation of the camera can also be

recovered up to an unknown global scale, taking an image point as the projection of the world

origin.
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3.4 Results And Noise Resilience

In this section, we show an extensive set of experimental results on both synthetic and real data

using the method described above. We have performed detailed experimentation on the effect of

noise in the estimation error over1000 independent trials. The simulated camera has a focal length

of f = 2000, the aspect ratioλ = 1015
2000

, zero skew, and the principal point at(510, 385), for image

size of1024× 768.

Performance Versus Noise Level:In this experimentation, we compared estimated camera in-

trinsic and extrinsic parameters against the ground truth, while adding a zero-mean Gaussian noise

varying from 0.1 pixels to 1.5 pixels. The results show the average performance over 1000 inde-

pendent trials. Figure3.3 summarizes the results for intrinsic parameters. For noise level of1.5

pixels, which is larger than the typical noise in practical calibration [Zha00], the relative error for

the focal lengthf is 0.7%. The maximum relative error for the aspect ratio is less than 0.01%,

while that of the principal point is less than 0.2%. Excellent performance is also achieved for all

extrinsic parameters as shown in Figure3.4, i.e. less than 0.4% error for bothtx andty relative to

f , and absolute errors of less than a tenth of a degree for all rotation angles.

Performance against [LZ99]: We performed the comparison using the same setup as above.

Figure3.5summarizes our results.

Performance on Real Data:For real data, in order to evaluate our results, we used an approach

similar to [Zha00] using the uncertainty associated with the estimated intrinsic parameters charac-

terized by their standard deviation over many images. Figure3.6shows two examples from the set

of real images that were used in this experimentation. Results are summarized in table3.2. The
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Figure 3.3:Performance vs noise (in pixels) averaged over 1000 independent trials: (a) relative
error for the focal lengthf , (b) the relative error for the aspect ratioλ, and (c) the relative in the
coordinates of the principal point.
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Figure 3.4:Performance vs noise (in pixels) averaged over 1000 independent trials: (a) absolute
error for the rotation angles, (b) absolute error for the translations along x and y axes.

Table 3.2:Uncertainty in experimental results with real data.

Parameter Mean Std.
f 460.52 5.74
λ 1.51 0.24
uo 318.33 5
vo 242.77 4.41

uncertainty is reasonable, but could be improved of course if we use more accurate approaches

[MK95, LZ98, Shu99, VMP04] to finding the vanishing points, rather than using an unreliable

manual point clicking.

49



0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

Noise Level (pixels)

R
el

at
iv

e 
E

rr
or

 o
f F

oc
al

 L
en

gt
h 

/ %
Our Method
Compared Method

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Noise Level (pixels)

R
el

at
iv

e 
E

rr
or

 o
f U

o / 
%

Our Method
Comared Method

0 0.5 1 1.5
0

0.5

1

1.5

2

Noise Level (pixels)

R
el

at
iv

e 
E

rr
or

 o
f V

o / 
%

 

Our Method
Compared Method

(a) (b) (c)

Figure 3.5:Performance vs [LZ99] averaged over 1000 independent trials: (a) relative error for
the focal lengthf , (b) & (c) the relative error in the coordinates of the principal point.

Figure 3.6:Two of many images used in evaluation with real data

Table 3.3:Intrinsic constraints of IAC. The first two are related to the invariant properties of the
principal point, the third constraint cross-correlates this property and the orthogonality constraint
(ortho-invariance), and the last one is a “soft constraint” on the position of the principal point in
the image plane.

Condition Constraint Linear
Invariance ωp ∼ l∞ yes
Scale |ω33| pTωp− det(ω) = 0 no
Ortho-invariance

∑
i

1
vT
i ωvi

− 1
pTωp

= 0 no

“Soft” p ∼ argmin(p− c)T(p− c) no
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3.5 Conclusion

In this chapter, we presented new constraints that are intrinsic to the image of the absolute conic.

The constraints reflect the invariant properties of the IAC, and characterize its geometric structure.

In particular, we showed that the rows of the IAC correspond to very specific image lines whose

intersections bear the invariant properties of the IAC. An immediate application of this geometric

characterization of the IAC is that it can extend our ability to estimate more complete set of camera

parameters from a single view. We therefore propose the following table as an addendum to table

given by Hartley and Zisserman (Table 8.1, page 224 in [HZ04]). Unfortunately, however, as

described in the text, not all the constraints can be used independently. As a result, we believe that

it is unlikely that one can recover all the five intrinsic parameters of the camera from a single view

of three orthogonal vanishing points, unless some additional information is available.
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CHAPTER 4
CAMERA CALIBRATION USING SHADOW PATHS

In this chapter, our main goal is to demonstrate that a camera can be calibrated by using the shadow

trajectory of an object. An object casts its shadow on the ground plane. When observed over a

period of time, this shadow forms a curve or a trajectory, which we refer to as a shadow trajectory.

We require at least two shadow trajectories, i.e. at least a pair of objects. We require at least five

points on this shadow trajectory to perform camera calibration. More object and more trajectory

points can be used for a more robust solution. By fitting conics to these shadow trajectories, we

are able to obtain the vanishing line of the ground plane.

The most related work is that of [CF06]. Cao and Foroosh [CF06] use multiple views of

the objects. This limits the applicability of their method as having more than one camera is not

always possible. Moreover, they require an object’s bottom and top location to be always visible

in the images, a condition which we have successfully relaxed in our proposed method. Compared

to other methods on camera calibration from shadow trajectories, the proposed method is more

robust and more precise, as it involves using multiple conics for the estimation of unknown camera

calibration matrix [Hei00].

The main step of our approach is a novel method to extract the vanishing line of the ground

plane from using only the shadow trajectories (Section4.2). This step requires at least five images (

> 5 for a robust solution) containing shadow trajectories of at least a pair of objects. The vanishing

line along with an extracted vertical vanishing point is used to estimate camera parameters (Section

4.4). Accordingly, this chapter is divided into corresponding sections addressing each issue.
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Figure 4.1:Two objectsT1 andT2 casting shadows on the ground plane. The locus of shadow
positions over the course of a day is a function of the sun altitudeφ, the sun azimuthθ and the
heighthi of the object.

4.1 The Setup

Let T be a 3D stationary point andB its footprint (i.e. its orthogonal projection) on the ground

plane. As depicted in Fig.4.1, the locus of shadow positionsS cast byT on the ground plane

is a smooth curve that depends only on the altitude and the azimuth angles of the sun in the sky

and the vertical distanceh of the object from its footprint. This geometric configuration is rather

interesting, since the object pointT together with the ground plane act as an artificial pinhole

camera, where the camera projection center is the object point, the image plane is the ground

plane, the focal length is the vertical distanceh, and the principal point is the footprintB.

Without loss of generality, we take the ground plane as the world planez = 0, and define

the x-axis of the world coordinate frame toward the true north point, where the azimuth angle is

zero. Therefore, algebraically, the 3D coordinates of the shadow position can be unambiguously

specified by their 2D coordinates in the ground plane as

S̄i = B̄i + hi cot φ




cos θ

sin θ


 , (4.1)
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whereS̄i = [Six Siy]T andB̄i = [Bix Biy]T are the inhomogeneous coordinates of the shadow

positionSi, and the object’s footprintBi on the ground plane,φ is sun altitude, andθ the sun

azimuth. Equation (4.1) is based on the assumption that the sun is distant and therefore its rays,

e.g. TiSi, are parallel to each other. It follows that the shadowsS1 andS2 of any two stationary

pointsT1 andT2 are related by a rotation-free 2D similarity transformation asS2 ∼ H12
s S1,

where

H12
s ∼




h2/h1 0 B2x −B1xh2/h1

0 h2/h1 B2y −B1yh2/h1

0 0 1




(4.2)

Note that the above relationship is for world shadow positions and valid for any day time.

4.2 Recovering The Vanishing Line

The goal in the calibration step in this chapter is to recover the vanishing line of the ground plane

from the shadow trajectories. Once the vanishing line (l∞) is recovered, it is used together with

the vertical vanishing point, found by fitting lines to vertical directions, to recover the image of the

absolute conic (IAC). There are two cases that need to be considered:

4.2.1 When Shadow Casting Object Is Visible

This case requires that the bottom point, and optionally the top point, of the shadow casting object

be visible in the image. An example of this case is the light pole visible in image sequence shown

in Figure4.9. Figure4.2 illustrates the general setup for this case. The vertical vanishing point is

obtained byvz = (T1 ×B1)× (T2 ×B2)
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The estimation ofl∞ is as follows: at time instancet = 1, the sun located at vanishing point

v1 casts shadow ofT1 andT2 at pointsS1 andS′1, respectively. The sun is a distant object and

therefore its rays,T1S1 andT2S
′
1, are parallel to each other. It then follows that the shadow rays,

i.e. S1B1 andS′1B2, are also parallel to each other. These rays intersect at the vanishing pointv1
x

on the ground plane. Similarly, for time instancet = 2 andt = 3, we obtain the vanishing points

v2
x andv3

x, respectively. These vanishing points all lie on the vanishing line of the ground plane on

which the shadows are cast, i.e.vi
x
T
l∞ = 0, wherei = 1, 2, . . . n andn is number of instances for

which shadow is being observed. Thus a minimum of two observations are required of at least two

vertical objects to obtainl∞.

4.2.2 When Shadow Casting Object Is NOT Visible

This is a moregeneralcase. The bottom point and/or the top point of the shadow casting object

might not always be visible in a video sequence. Figure4.3 shows a picture of downtown Wash-

ington D.C. One of the shadow casting object is the traffic light (marked with a blue dot) hanging

by a horizontal pole (or a cable). This traffic light does not have a bottom point on the ground

plane. In this setup,l∞ can not be recovered as described above. Also, the vertical vanishing point
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Figure 4.3:Few of the images in one of our data set that were taken from one of the live webcams
in Washington D.C. The objects that cast shadows on the ground are highlighted. Shadows move
to the left of the images as time progresses.

is now obtained by other vertical structures in the scene, not necessarily shadow-casting structures.

Therefore, in order to recoverl∞, we have to only work with the shadow trajectories.

Given any five imaged shadow positions of the same 3D point, cast at distinct times during one

day, one can fit a conic through them, which would meet the line at infinity at two points, which

may be real or imaginary depending on whether the resulting conic is an ellipse, a parabola, or a

hyperbola [HZ04]. Suppose now we have two world pointsT1 andT2 that cast shadows on the

ground plane. Any five distinct shadow positions ofT1 andT2 define two distinct and unique

conics on the ground plane, which after camera projection yield the image conicsC1 andC2,

respectively. These two conics are related byC2 ∼ (HH12
s H−1)−TC1(HH12

s H−1)−1, whereH

is the world to image planar homography with respect to the ground plane. Since the two world

conics are similar, owing to the distance of the sun from the observed objects, these two conics

generally intersect at four points, two of which must lie on the image of the horizon line of the

ground plane.

4.2.3 Computing Intersections

The basic idea of conic intersection is illustrated in Fig.4.4. We now present the method for

computing these intersections and expand on its relation to the recovery of the vanishing linel∞.
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All conics passing through the four points of intersection can be written as

Cµ ∼ C1 + µC2. (4.3)

Equation (4.3) defines a pencil of conics parameterized byµ, where all the conics in the pencil

intersect at the same four pointsmi, i = 1, ...,4. Four such points such that no three of them are

collinear also give rise to what is known as thecomplete quadrangle.

It can be shown that in this pencil at most three conics are not full rank. For this purpose note

that any such degenerate conic should satisfy

det(Cµ) = det(C1 + µC2) = 0. (4.4)

It can then be readily verified that (4.4) is a cubic equation in terms ofµ. Therefore upon

solving (4.4), we obtain at most three distinct valuesµi, i = 1, ..., 3, which provide the three

corresponding degenerate conics

Cµi
∼ C1 + µiC2, i = 1, ...,3. (4.5)

In the general case (i.e. when the three parametersµi, i = 1, ..., 3 are distinct), the three

degenerate conics are of rank 2, and therefore can be written as

Cµi
∼ lil

′T
i + l′il

T
i , i = 1, ...,3, (4.6)

whereli andl′i are three pairs of lines as shown in Fig.4.4.
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ground plane cast by two world points. Generally, the two conics intersect at four pointsmi, i =
1, ...,4 two of which must lie on the line at infinity. The four points form a quadrangle inscribed
to any one of the gray conics. The diagonal triangle∆v1v2v3 is self-polar [SK79].

Now, letC∗
µi

be the adjoint matrix ofCµi
. It then follows from (4.6) that

C∗
µi
li = C∗

µi
l′i = 0, i = 1, ...,3, (4.7)

which yields (by using the property that the cofactor matrix is related to the way matrices distribute

with respect to the cross product [HZ04])

C∗
µi
li ×C∗

µi
l′i = Cµi

(li × l′i) = 0, i = 1, ...,3. (4.8)

In other words, the intersection pointvi of the pair of lines,li and l′i, is given by the right null

space ofCµi
. Therefore, in practice, it can be found as the eigenvector corresponding to the

smallest eigenvalue of the degenerate conicCµi
. The triangle formed by the three verticesv1v2

andv3 is known as thediagonal triangleof the quadrangle [SK79].

Theorem 4.2.1 (Self-Polar Triangle)
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Letm1,m2,m3 andm4 be four points on the conic locusCµ, the diagonal triangle of the quad-

ranglem1m2m3m4 is self-polar w.r.t.Cµ. Since two of the points lie onl∞, one of the vertices

of ∆v1v2v3 also lies onl∞.

This theorem follows directly from the projective geometry and we omit the proof here. Thus the

triangle∆v1v2v3 is the diagonal triangle of the quadrangle composed of pointsmi, i = 1, ...,4

inscribed in a conic. There also exists a harmonic relationship between any two sides of the quad-

rangle andvi of ∆v1v2v3 that meets that side. Exploring this harmonic relationship for obtaining

further constraints is the topic of our future research.

Next, we verify that for any conicCµ in the pencil

(li × l′i)
TCµ(lj × l′j) = 0, i 6= j, i, j = 1, ...,3 (4.9)

This means that any pair of right null vectors of the degenerate conicsCµi
, i = 1, ...,3 are conju-

gate with respect to all conics in the pencil. In other words, their intersections form the vertices of

a self-polar triangle with respect to all the conics in the pencil.

To obtain the intersection points of the two shadow conics, we use the fact that all the conics

in the pencil intersect at the same four points. Therefore, the intersection points can also be found

as the intersection of the linesli andl′i with the lineslj andl′j (i 6= j). The linesli andl′i can be

simply found by solving

Cµi
∼ lil

′T
i + l′il

T
i (4.10)

Equation (4.10) provides 4 constraints onli andl′i (5 due to symmetry minus 1 for rank deficiency).

In practice it leads to two quadratic equations on the four parameters of the two lines, which can
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Figure 4.5:The horizon line detected from a sequence of self-polar triangles and the intersection
of the conics fit on shadow trajectories of two objects.

be readily solved. The solution, of course, has a twofold ambiguity due to the quadratic orders,

which is readily resolved by the fact that

li × l′i ∼ null(Cµi
) (4.11)

The process can be repeated forlj andl′j, and the intersections of the lines between the two sets

would then provide the four intersection points of the shadow conics.

4.3 Robust estimation ofl∞

The shadow cast on the ground plane might not be very accurately localized. This is due to the

nature of the problem, mainly because of the irregularities of the road, for example, or the shadow

not being very sharp due to a cloudy weather. Therefore some scheme needs to be adopted to

minimize the influence of outliers and noise ontrue data points so that accurate results may be

obtained.

In our case, since two of the intersection points of the shadow conics are at infinity (without

60



loss of generalityl′1 as shown in Fig.4.4), one of the vertices,v1, of the self-polar triangle must

be a vanishing point, and thus also lies on the horizon line,l∞, of the ground plane. Therefore

given six or more corresponding image points on the shadow paths of the two objects, we can get

six or more self-polar triangles, from which the horizon line of the ground plane can be recovered.

Since, two of intersection points (2 points of the quadrangle) are also on the horizon line of the

ground plane, they can be used together with one vertex of each self-polar triangle to recover the

horizon line. As an example, Figure4.5 illustrates the horizon line fitted to many points obtained

through synthetic experiment, to be described shortly. Therefore, the system of overdetermined set

of equations needed to solve forl∞ can be given as:

ΦT l∞ = 0 (4.12)

whereΦ is a matrix containing the estimated vanishing points. Note that forn ≥ 6 corresponding

points on shadow paths of two objects, we obtain a total of3n!
(n−5)!5!

vanishing points. For instance,

with only 10 corresponding shadow points, we would get 756 points on the horizon line. This

would allow us to very accurately estimate the horizon line in the presence of noise.Φ is therefore

a 3n!
(n−5)!5!

× 3 matrix and we have torobustlyestimatel∞.

The main goals of robust statistics is to recover the best structure that fits the majority of the

model while rejecting the outliers. We need to recover the bestl∞ such thatK is closest to the

actual calibration matrix. The popular standard least squares (LS) estimation, which minimizes

the Euclidean norm of the residuals, is extremely sensitive to outliers i.e. it has a breakdown point

of zero. Total Least Squares (TLS) method, on the other hand, minimizes the Frobenius norm.
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Figure 4.6: Two commonly used minimization cost functions.

Given an over-determined system of equations, TLS problem is to find the smallest perturbation to

the data and the observation matrix to make the system of equations compatible. A suitable func-

tion also needs to be selected that is less forgiving to outliers, one such example is thetruncated

quadratic [BA96], commonly used in computer vision (cf.4.6). The errors are weighted up to

a fixed threshold, but beyond that, errors receive constant penalty. Thus the influence of outliers

goes to zero beyond the threshold.

In order to remove the outlier influence, we use the truncated Rayleigh quotient. The quotients

are estimated as:

ρ(l∞) =
N∑ xTAx

xTx
< ξ (4.13)

wherex represent the three parameters ofl∞, A =

[
vi
x vi

y 1

]T [
vi
x vi

y 1

]
contains the

determined vanishing points, andξ is the threshold. The Rayleigh quotients are estimated from the

observation points and the residual errors are estimated. The thresholdξ is set to the median of all

the residual errors. Observation points obtained from Eq.4.12having residual errors greater than

ξ are removed as outliers. After outlier removal, theoutlier-freeremaining observation pointsQ
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are used to construct the over-determined system of Eqs. (4.12). The system is then solved using

the Singular Value Decomposition (SVD). The correct solution is the eigenvector corresponding

to the smallest eigenvalue.

In summary, in order to minimize the influence of noise on our observation matrixQ, we

apply the Rayleigh quotient tofilter out the noisy data points. Once the outliers are removed, the

Total Least Squares method is applied to the remaining observation points to estimate the unknown

parameterw11 of the IAC.

4.4 Camera Calibration

The computed horizon linel∞, together with the vertical vanishing pointvz, fitted from vertical

objects, provide two constraints on the image of the absolute conic in the form of the pole-polar

relationshipl∞ ∼ ωvz [HZ04]. Assuming a camera with zero skew, and unit aspect ratio, the IAC

would be of the form

ω ∼ [ω1 ω2 ω3] ∼




1 0 ω13

0 1 ω23

ω13 ω23 ω33




(4.14)

In the existing literature on camera calibration the role of IAC is primarily investigated in terms

of its relationship with other geometric entities in the image plane, i.e. the vanishing points and the

vanishing line. The relation between IAC and the internal parameters is often limited to equation

ω ∼ K−TK−1. In a relation that is more intrinsic to the IAC. Geometric interpretation for this

relation allows us to gain more insight into widely used the “closeness-to-the-center” constraint

[CS05, HZ04].
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4.4.1 Geometric Interpretation

The result in Theorem (3.2.1) is better understood if we provide its geometric interpretation. This

intrinsic property of IAC is better understood if we rewrite (3.4) as:

pTω1 = 0 (4.15)

pTω2 = 0 (4.16)

from which, we get

p ∼ ω1 × ω2 (4.17)

which is true for a general camera model, i.e. no particular assumptions made about the aspect

ratio, or the skew.

A geometric interpretation (see Figure4.7) of this result is that the two rowsω1 andω2 of
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the IAC correspond to two lines in the image plane that always intersect at the principal point

regardless of the other intrinsic parameters.

Using the two constraints provided by the pole-polar relationship, we express the IAC in terms

of only one of its parameters, e.g.ω33, and solve for it by enforcing the constraint that the principal

point is close to the center of the image by minimizing

ω̂33 = arg min ‖ω1 × ω2 − c‖ (4.18)

wherec is the center of the image, andω̂33 is the optimal solution forω33, from which the other two

parameters are computed to completely recover the IAC in (4.14). It must be noted that the pole-

polar relationship could also be used on its own to recover a more simplified IAC without using the

minimization in (4.18). Note also that the proposed auto-calibration method is independent of any

scene structure [LZ99, Tri98, Zha00], or (special) camera motions [Har97, HA97, PKG99]. We

only require the vertical vanishing point and that the shadow be cast on a plane without requiring

any further information.

4.5 Experimental Results

We rigorously tested and validated our method on synthetic as well as real data sequences for

self-calibration steps. Results are described below.

Synthetic Data:Two vertical objects of different heights were randomly placed on the ground

plane. Using the online available version of SunAngle Software [Gro], we generated altitude

and azimuth angles for the sun corresponding to our own geo-location with latitude28.51◦. The
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Figure 4.8: Performance averaged over1000 independent trials: (a) & (b) relative error in the
coordinates of the principal point(uo, vo), (c) the relative error in the focal lengthf .

vertical objects and the shadow points were projected by a synthetic camera with a focal length of

f = 1000, the principal point at(uo, vo) = (320, 240), unit aspect ratio, and zero skew.

In order to test resilience of the proposed self-calibration method to noise, we gradually added

Gaussian noise of zero mean and standard deviation of up to1.5 pixels to the projected points.

The estimated parameters were then compared with the ground truth values mentioned above. For

each noise level, we performed1000 independent trials. The final averaged results for calibration

parameters are shown in Figure4.8. Note that, as explained in [Tri98], the relative difference with

respect to the focal length is a more geometrically meaningful error measure. Therefore, relative

error off , uo andvo were measured w.r.tf while varying the noise from0.1 to1.5 pixels. As shown

in the figure, errors increase almost linearly with the increase of noise in the projected points. For

the noise of1.5 pixels, the error is found to be less than0.3% for f , less than0.5% for uo and less

than1% for vo.

Real Data:Several experiments on two separate data sets are reported below for demonstrating

the proposed method. In the first set,11 images were captured live from downtown Washington

D.C. area, using one of the webcams available online athttp://trafficland.com/ . As

shown in Figure4.9, a lamp post and a traffic light were used as two objects casting shadows
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Figure 4.9:Few of the images taken from one of the live webcams in downtown Washington D.C.
The two objects that cast shadows on the ground are shown in red and blue, respectively. Shadows
move to the left of the images as time progresses.

on the road. The shadow points are highlighted by colored circles in the figure. The calibration

parameters were estimated as

K =




700.357 0 172

0 700.357 124

0 0 1




4.6 Discussion And Conclusion

The auto-calibration step requires only the shadow trajectories of two objects on the ground plane

to be visible in the images, along with the vertical vanishing point. Unlike shadow-based calibra-

tion methods such as [AB04, CF06], this step does not require the objects themselves to be seen in

the images.

It is, however, important that the shadow trajectories can be used to fit conics. An exception,

which leads to a degenerate case, happens twice a year during equinox, when the lengths of the

day and the night are equal. As a result, it can be shown that, the shadow trajectories degenerate

to straight lines. Two cases may occur: if the two objects casting shadows are not aligned along

the east-west direction, then their shadow trajectories will be two distinct straight lines that are
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parallel in the world. Therefore, their intersection would provide only a single point at infinity,

which is insufficient to determine the horizon line; if the two objects are aligned along the east-

west direction, then the shadow lines will coincide and no vanishing point can be found. In both

cases auto-calibration cannot be performed using our method. However, this degenerate case is

rather rare and happens only twice a year.
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CHAPTER 5
CAMERA CALIBRATION FROM PEDESTRIANS

Observation of human activities from stationary cameras is of significant interest to many appli-

cations. This is mainly due to the fact that the computer vision research has advanced to systems

that can accurately detect, recognize and track objects as they move through a scene. Most of the

video surveillance involves, for instance, monitoring an area of interest (e.g. a building entrance,

or an embassy) using stationary cameras where the intent is to monitor as large an area as possible.

The goal for such a system can be to model the behavior of objects (e.g. cars or pedestrians, de-

pending on the situation). Typically, one can employ path modeling techniques or activity learning

techniques for single or multiple cameras (e.g. [GSR98]) and even establish relations between the

camera system [MT04], as discussed in more detail later. It is known that due to perspective pro-

jection the measurements made from the images do not represent metric data. Thus the obtained

object trajectories and consequently the associated probabilities represent projectively distorted

data, unless we have a calibrated camera. This is evident from a simple observation: the objects

grow larger and move faster as they approach the camera center, or two objects moving in parallel

direction seem to converge at a point in the image. The projective camera thus makes it difficult to

characterize objects - in terms of their sizes, motion characteristics, length ratios and so on - unless

more information is available about the camera being used. This is where the camera calibration

steps in.

This chapter proposes a robust auto-calibration method to estimate camera intrinsics and ex-

trinsics by observing pedestrians in a scene. Many camera calibration techniques exits for different

scenarios [HZ04] but we limit ourselves with related work on camera auto-calibration from observ-
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ing pedestrians.

Lv et al. [LZN02] were the first to propose calibration by recovering the horizon line and the

vanishing points from observed walking humans. However, their formulation does not handle ro-

bustness issues. Recently Krahnstoever and Mendonça [KM05] proposed a Bayesian approach for

auto-calibration by observing pedestrians. Foot-to-head homology is decomposed to extract the

vanishing point and the horizon line for calibration. They also incorporate measurement uncer-

tainties and outlier models. However, their method requires prior knowledge about some unknown

calibration parameters and prior knowledge about the location of people; and their algorithm is

also non-linear. We also handle a more general scenario where the pedestrian does not need to

walk on a straight line.

We propose a robust linear solution to estimate camera intrinsic and extrinsic parameters by

observing pedestrians. See Fig.5.1 for an example of the scenario. The detected head and feet

locations of a person, over at least two instances, are used to estimate two harmonic homologies:

head-to-foot and frame-to-frame. The former is referred to as the vertical homology, vertical van-

ishing points being the vertex. The later is referred to as the horizontal homology as the vertex

lies on the horizon line. Linear constraints on the unknown camera parameters are obtained by

using properties of these homologies. The noise in the data points is minimized by using total least

squares method to solve an over-determined system of equations, where the outliers are removed

by truncating the Rayleigh quotient [GL89].

We next discuss the method in detail and provide results for both synthetic and real data.
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Figure 5.1:A homology defined by an axisl and a vertexv. See text for more details.

5.1 Harmonic Homologies From Pedestrians

Our auto-calibration method, to be described shortly, is based on using a pair of homologies defined

by a walking pedestrian. A plane projective transformationH is a homology if it has a line of fixed

points (called theaxis), and a fixed point not on the axis (called thevertex) [HZ04]. A homology

H is completely specified by its axisl, its vertexv, and its characteristic invariantµ [HZ04, SK79],

and is given by:

H = I− (µ− 1)
vlT

vTl
(5.1)

This is depicted schematically in Fig.5.1. Under the homologyH, the axis is mapped to itself.

Each pointxi off the axis lies on a fixed line through the vertexv, intersecting the axis at a point

pi, and is mapped to another pointx′i on the line. As a result, the corresponding pointsxi ←→ x′i,

the vertexv and the intersection of their joint with the axis atpi are collinear. The cross ratio given

by these four collinear points defines the characteristic invariantµ of the homology (see [HZ04],

Fig. A7.2, page 630).
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Figure 5.2:Harmonic Homologies: Tracking pedestrians over any two frames provides two har-
monic homologies. See text for more details.

As an object or a pedestrian of heighth traverses the ground plane, the line joining the top

and bottom points (i.e. head and feet for pedestrian) at different time instances can be intersected

to obtain the vertical vanishing pointvz (see Figure5.2b), since the pedestrians can be viewed as

vertical objects on a ground plane. Similarly, since the height of a pedestrian does not change (we

ignore the case when a pedestrian might sit or jump), the line joining the head locations at two

instances and similarly for the feet locations, intersect at a common pointv′ lying on the line at

infinity l∞ (see Figure5.2b). For a simple case of two frames, the head to foot correspondence can

be mapped by a homology. We refer to this homology as thevertical homology, since the vertical

vanishing pointvz is the vertex of the homology:

Hv = I− (µv − 1)
vzl

T
1

vT
z l1

(5.2)

wherevz andl1 are, respectively, the vertex and the axis of the homology. Therefore,Hv maps

head locations to feet locations about the axisl1.
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Another important geometric relation, so far ignored in existing literature on camera calibration

from pedestrians, is the homology existing between different locations of a pedestrian. As shown

in Fig. 5.2(b), since the height of a pedestrian is the same in all the frames, the line joining the

head locations (t1 andt2) intersects the line joining the feet locations (b1 andb2) at a pointv′ on

the line at infinity (l∞), forming another homology, which we refer to as thehorizontalhomology:

Hh = I− (µh − 1)
v′lT2
v′Tl2

(5.3)

wherel2 andv′ are as depicted in Fig.5.2(b) andµh is the invariant of the homology.

In general, a homology has five degrees of freedom [HZ04], i.e. two for the axis, two for

the vertex, and one for the characteristic invariant. Therefore, three point correspondences are

sufficient to uniquely determine the homology. A special case occurs whenµ = −1, in which

case the homology is said to beharmonic[SK79]. A simple inspection of the scenario at hand

reveals that the above two homologies defined by a walking pedestrian are indeed harmonic. To

demonstrate this note that in our homologies the vertex is always a vanishing point (i.e. the image

of a point at infinity), and the intersection of the joint of corresponding points with the axis is

always the imaged midpoint of the two corresponding points. As a result, the cross ratio for the

vertical homology is given by

µv = Cross(vz, t1,p1,b1) = (
vzb1

vzt1

)÷ (
p1b1

p1t1

) = −1 (5.4)

This last result follows immediately from the fact that the cross ratio is a projective invariant, and

that its value in the 3-D space is -1. Similarly,µh = Cross(v′, t2,q2, t1) = −1 for Hh. Hence,
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only two point correspondences are sufficient to determine the head to foot mapping, completely.

Moreover, knowing Cross(vz, t1,p1,b1) = Cross(v′, t2,q2, t1) = −1 can be used to constrain

the head-foot location in presence of noise, as shall be discussed shortly. The method in [KM05]

employs only the vertical homology (nottwo harmonic homologies) and therefore requires more

than two point correspondences to solve the problem.

This result is also closely related to the configuration resulting from the perspective image of

an object with a bilateral symmetry, where corresponding points are related by a harmonic ho-

mology about the imaged axis of symmetry [CBP05, WMC03, CF04a]. To demonstrate this note

that any two instances of a walking pedestrian form a rectangle in the world (connect the four red

dots in Figure5.2(b)). Since the intersection of lines is preserved under perspective projection, the

intersection of the two diagonals is the center of this rectanglemp. For our case of vertical homol-

ogy, and equivalently for the horizontal homology,mp along withq1,q2 andvz areharmonici.e.

there exists a representation in which the four points have parameters0,−1, 1 and∞, respectively

[SK79, pg.48]. Thus in such case the cross-ratio of the four pointsµv (or µh for the horizontal

case), referred to as the harmonic cross-ratio, is equal to−1. The imaged mid-pointmp is given

by, mp = (b1 × t2)× (b2 × t1). As shown in Fig.5.2, t1,b1 correspond tot2,b2, respectively

to construct the harmonic homology (Hh). Similarly, t1, t2 respectively correspond tob1,b2 to

determineHv.

Initial homology estimation: Hh andHv are estimated from the detected head/foot location

of an observed pedestrian. To estimateHv, vz = (b1 × t1)× (b2 × t2). The axis of vertical

homology is obtained asl1 = p1 × p2, wherep1 = (mp × v′)× (b1 × t1) and

p2 = (mp × v′)× (b2 × t2). Hh is obtained in a similar manner.
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Figure 5.3: (a) shows an instance of a video sequences where a pedestrians is moving in the scene.
(b) and (c) represent the detected pedestrian in two different frames. The head and foot location
are denoted byti andbi. See text for more details.

Determining head/foot locationsThe proposed method requires point correspondences, which

are head/foot positions of the pedestrians. Moving foreground objects (or region of interest), with

shadows removed, can be extracted and tracked fairly accurately with statistical background mod-

els [GSR98, JS02, SM98]. Lv et al. [LZN02] perform eigendecomposition of the detected blob to

extract head/feet location. An example of a detected pedestrian is shown in Fig.5.3.

A simpler approach can be adopted to extract the head and foot location [KM05]. As shown in

Fig. 5.3, these locations can be easily estimated by calculating the center of mass and the second

order moment of the lower and the upper portion of the bounding box of the foreground region (cf.

Fig. 5.3(b)(c)).

5.2 Robust Auto-Calibration

The main issue with camera auto-calibration by observing pedestrians is that head/feet detection

is noisy. For example, a pedestrian may walk casually so that the posture might not be straight.

Violations such as these result in measurements that can be viewed asoutliers. Thus, some scheme

needs to be adopted to minimize the influence of these outliers and noise ontruedata points so that

accurate results may be obtained. An elegant way of doing this would be to enforce the constraint
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that the noise-free homologies must be harmonic, i.e.µh = µv = −1.

For this purpose, we express the vanishing points in terms of the IAC, as follows:

v̂z ∼ l2 × l⊥xy ∼ l2 × ωv′ (5.5)

v̂′ ∼ l1 × l∞ ∼ l1 × ωvz (5.6)

wherel⊥xy is any line orthogonal to thexy-plane given by the pole-polar relationshipl⊥xy = ωv′

[HZ04].

Therefore, the harmonic cross ratios can be expressed now in terms of the IAC:

Cross(v̂z, t1,p1,b1) + 1 = (
v̂zb1

v̂zt1

)÷ (
p1b1

p1t1

) + 1 = 0 (5.7)

Cross(v̂′, t2,q2, t1) + 1 = (
v̂′t1

v̂′t2

)÷ (
q2t1

q2t2

) + 1 = 0 (5.8)

Unfortunately, Eqs. (5.7) and (5.8) are not independent. Hence, we have only one constraint on

ω. Unless we have more information, we can only solve for one unknown inω = diag(ω11, ω11, 1).

Fortunately, these two equations can be simplified into linear equations of the form:aj
iw11+bj

i = 0,

where the subscripti indicates the frame number and the superscriptj = {1, 2} indicates the two

equations obtained per image pair. Thus from each pair of images we obtain two equations with one

unknown. Consequently, as each combination provides two equations, forn frames,2×
(

n

2

)

such combinations are possible. Equations obtained from a sequence are used to construct an

over-determined system of equations:
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


a1
1 b1

1

a2
1 b2

1

...
...

a1
n b1

n

a2
n b2

n




︸ ︷︷ ︸
Q




w11

1


 = 0 (5.9)

The main goal of robust statistics is to recover the best structure that fits the majority of the

model while rejecting the outliers. Thus, we need to recover the bestw11 such thatK is closest

to the actual calibration matrix. The popular standard least squares (LS) estimation is extremely

sensitive to outliers i.e. it has a breakdown point of zero. Therefore, Total Least Squares (TLS)

method is adopted to solve the system of Eqs (5.9). Given an over-determined system of equations,

TLS problem is to find the smallest perturbation to the data and the observation matrix to make the

system of equations compatible. A suitable function also needs to be selected that is less forgiving

to outliers, one such example is thetruncated quadratic[BA96], commonly used in computer

vision. The errors are weighted up to a fixed threshold, but beyond that, errors receive constant

penalty. Thus the influence of outliers goes to zero beyond the threshold.

We use the truncated Rayleigh quotient to remove outlier influence. The quotients are estimated

as:

ρ(w11) =
n∑ xTAx

xTx
< ξ (5.10)

wherex =




w11

1


, A =

[
aj

i bj
i

]T [
aj

i bj
i

]
andξ is the threshold. The Rayleigh quotients

are estimated from the observation points and the residual errors are estimated. The thresholdξ

is set to the median of all the residual errors. Observation points obtained from Eq. (5.9) having

77



residual errors greater thanξ are removed as outliers. After outlier removal, theoutlier-free re-

maining observation pointsQ are used to construct the over-determined system of Eqs. (5.9). The

system is then solved using the Singular Value Decomposition (SVD). The correct solution is the

eigenvector corresponding to the smallest eigenvalue.

In summary, in order to minimize the influence of noise on our observation matrixQ, we

apply the Rayleigh quotient tofilter out the noisy data points. Once the outliers are removed, the

Total Least Squares method is applied to the remaining observation points to estimate the unknown

parameterw11 of the IAC.

5.2.1 Estimating More Parameters

As described above, we are able to determine only the focal lengthf (by estimatingw11), along

with extrinsic parameters. The proposed method considers a very general case - making no as-

sumptions about pedestrian movements. However, if more camera parameters are to be obtained,

some additional constraints need to be considered. Lv et al. [LZN02] assume a pedestrian walking

in different directions for some duration. Thus more than one vanishing point of the ground plane

are obtained, which enables them to calculatel∞. Knowing l∞ provides additional constraints on

ω:

l∞ ∼ ωvz (5.11)

Generally this relation provides two linear constraints onω but in our case it is dependent

on Eqs. (5.7),(5.8). Moreover, if these different direction of pedestrian movements are mutually

orthogonal, the third vanishing points can be obtained - enabling us to obtain a total of3 camera
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parameters [CDR99].

5.3 Results

The proposed system has been tested on multiple sequences with a variety of motion trajectories.

The sequences have a resolution of320 × 240 pixels and captured at multiple locations and each

location contained multiple paths of travel. Three test sequences were used for evaluation purposes,

namedSeq#1, Seq#2, andSeq#3. Our tracker is able to accurately establish correspondences

over a variety of environmental conditions. Results on synthetic and real data are presented below.

Synthetic data: We rigourously test the proposed method for estimating the camera parameter i.e.

f . Nine vertical lines of same height but random location are generated to represent a pedestrian in

our synthetic data. The ends of the lines indicate the head or the foot locations. We gradually add a

Gaussian noise withµ = 0 andσ ≤ 5 pixels to the data-points making up the vertical lines. Taking

two vertical lines at a time, the four points i.e. two head and two foot location are used to obtain

Hh andHv. Vanishing points derived in Eqs. (5.5),(5.6) are substituted into Eqs. (5.8), (5.7) to

construct the over-determined system of equations, as described in Section5.2. While varying the

noise from0.1 to 5 pixel level, we perform1000 independent trials for each noise level, the results

are shown in Fig.5.4. The relative error inf increases almost linearly with respect to the noise

level. For a maximum noise of5 pixels, we found that the error was under12%. The absolute error

in the estimated rotation angles, i.e. panθy and tilt θx, also increase linearly and is well under1◦

degree.

Real Data: The proposed system has been tested on multiple sequences. The image sequences

have a resolution of320×240 pixels and captured at multiple locations. Different pedestrians from
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Figure 5.4: Performance of auto-calibration method VS. Noise level in pixels.
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Figure 5.5: The figure depicts instances of the data sets used for testing the proposed auto-
calibration method. The estimated head and foot locations are marked with circle. Different frames
are super-imposed on the background image to better visualize the test data.

a single sequences are used to obtain the camera parameters. As reported by [Zha00], the mean of

the estimated focal length is taken as the ground truth and the standard deviation as a measure of
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Table 5.1:The recovered focal length for (starting from the left column, going clock wise direction)
Seq#1, Seq#2 andSeq#3. Obtained results are compared to the method proposed in [LZ99].

Seq#1 Recovered Focal Length (f )

Fig. 5.5a f = 2362.48
Fig. 5.5b f = 2341.72
Fig. 5.5c f = 2287.68
Fig. 5.5d f = 2295.54
Fig. 5.5e f = 2252.24

from [LZ99] f = 2248.56

Seq#2 Recovered Focal Length (f )

Fig. 5.5f f = 2046.06
Fig. 5.5g f = 1905.12

from [LZ99] f = 1885.65

Seq#3 Recovered Focal Length (f )

Fig. 5.5f f = 840.68
Fig. 5.5g f = 837.84

from [LZ99] f = 799.68

uncertainty in the results. Additionally, we compare our results to the method proposed in [LZ99].

This comparison of the results should be a good test of the stability and consistency of the proposed

method.

Three video sequences are used for testing.Seq#1 contains less than 5 minutes of data. As

shown in Fig.5.5(a)-(e), different pedestrians are chosen for auto-calibration. Using the method

described above, the focal length is determined using the robust TLS method. The results for this

sequence are given in Table5.1(left column). The standard deviation is low and the estimated focal

length isf = 2307.932±44.12. Seq#2 is another sequence used for testing, a couple of instances

are shown in Fig.5.5(f)-(g). The estimated focal lengths are very close to each other, as shown in

Table5.1(right column - top). Similarly, results forSeq#3 are shown in Table5.1(right column

- bottom). The results are also compared to a standard camera calibration method proposed by

Liebowitz and Zisserman [LZ99], shown in the last row for each corresponding sequence in Table

5.1. The focal lengths obtained from both methods are comparable.

The error in the results can be attributed to many factors. One of the main reason is that only

a few frames are used per sequence to emulate a more practical scenario. If a large data sequence
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is used, the system of equations (i.e. Eq. (5.9)) becomes more stable and thus better results may

be obtained. The standard deviation inf for all our experiments is found to be less than the results

reported in [KM05].

5.4 Conclusion

This chapter presented a robust and a more general solution to camera calibration by observing

pedestrians. Compared to existing methods, the solution does not assume any special kind of

pedestrian motion. We recognize the special geometry of the problem and present a more gen-

eral and robust formulation than the existing methods. Two harmonic homologies are extracted

from a pair of images containing instances of a pedestrian. Using unique properties of these ho-

mologies, linear constraints are derived to obtain the unknown camera parameters. The detected

head/feet locations are used to robustly estimate the unknown camera parameters. We successfully

demonstrate the proposed method on synthetic as well as on real data.
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CHAPTER 6
SELF-CALIBRATION OF FREELY MOVING CAMERAS

Self-calibration differs from conventional calibration where the camera internal parameters are de-

termined from the image of a known calibration grid or properties of the scene, such as vanishing

points of orthogonal directions. The prefixself- is added as soon as the world’s Euclidean struc-

ture is unknown, which can be seen as a case of “0D” calibration. In self-calibration the metric

properties of the cameras are determined directly from constraints on the internal and/or external

parameters.

The first self-calibration method, originally introduced in computer vision by Faugeraset al.

[FLM92], involves the use of the Kruppa equations. The Kruppa equations are two-view con-

straints that require only the fundamental matrix to be known, and consist of two independent

quadratic equations in the elements of the dual of the absolute conic. Algorithms for computing

the focal lengths of two cameras given the corresponding fundamental matrix and knowledge of the

remaining intrinsic parameters are provided by Hartley [Har92]. Mendonça [Men01] generalized

the results in [Har92] for an arbitrary number of cameras and introduced a built-in method for the

detection of critical motions for each pair of images in the sequence. Thorough analysis of critical

motions which would result in ambiguous solutions by Kruppa-based methods are described in

[Stu97a].

An alternative direct method for self-calibration was introduced by Triggs [Tri97], which es-

timates the absolute dual quadric over many views. The basic idea is to transfer a constraint on

the dual image of absolute conic to a constraint on the absolute dual quadric, and hence determine

the matrix representing the absolute dual quadric, from which a rectifying 3D homography can be
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decomposed that transforms from projective to metric reconstruction. Heyden and Astrom [HA97]

showed that metric reconstruction was possible knowing only skew and aspect ratio, and Pollefeys

et al. [PKG99] and Heyden and Astrom [HA99] showed that zero skew alone was sufficient.

Special motions can also be used for self-calibration. Agapitoet al. [AHR01] and Seo and

Hong [SH99] solved the self-calibration of a rotating and zooming camera using the infinite

homography constraint. Before their work, Hartley [Har97] solved the special case where the

camera’s internal parameters remain constant throughout the sequence. Frahm and Koch [FK03]

showed it was also possible to solve the problem of generally moving camera with varying intrin-

sics but known rotation information.

In this chapter we focus on extracting internal parameters of a freely moving camera and

present a simple and novel global linear solution. We do not assume any special camera motion or

known camera rotation matrix as used by [AHR01, SH99, FK03, PKG99, Har97]. The proposed

method relies only on point correspondences between different views from a single camera. We

test our method on synthetic as well as on real data and present encouraging results.

We allow the camera to vary its internal parameters by zooming in/out. As argued by [PKG99,

AHR01, Zha00, HA97], it is safe to assume zero skew, unit aspect ratio and principal point at the

center of an image for currently available CCD cameras. These general assumption are used to

estimate the varying focal length. The notationi andj represent any two consecutive frames from

a single camera.

Figure6.1 depicts an illustration of two images taken from a camera. Generally, two consec-

utive images from a camera contain some overlapping area. This overlapping area can be used to

obtain the fundamental matrixFi,j, which relates a point in imageIj to a line in imageIi. As the
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Figure 6.1: Illustration of two views from a camera: Two consecutive images from a camera
contain an overlapping area. This overlapping area can be used to obtain the fundamental matrix
Fi,j, which relates a point in imageIj to a line in imageIi. As the internal parameters change at
each view, the IACω also changes.

internal parameters change at each view, IACω also changes. Thusω needs to be computed for

each image of the camera.

6.1 Linear Solution With Varying Focal Length

Consider an image sequence ofn frames and letKi be the intrinsic matirx for a camera atith

frame, thenKi is of the form:

Ki =




fi 0 0

0 fi 0

0 0 1




whereγ = 0, λ = 1, (uo = 0, vo = 0).

For a freely moving camera, the fundamental matrix can be easily obtained from successive

frames and is thus used for self-calibration based on Kruppa equations [FLM92]. In order to

deal with noise in an image, many techniques exist to robustly estimate the fundamental matrix

[CZZ97, BGK96]. Once the fundamental matrix is computed between two different viewsi andj
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of a camera, we have (see [Men01, FLM92]):

Fi,jω
∗
i F

T
i,j ∼ [e′]×ω∗

j [e
′]×, (6.1)

whereω∗
i andω∗

j represent thedual IAC for two different views,i and j, respectively. If the

intrinsic parameters remain constant over different views thenω∗
i ∼ ω∗

j and Eq. (6.1) can be

expressed asFi,jω
∗
i F

T
i,j ∼ [e′]×ω∗

i [e
′]×.

Eq. (6.1) amounts to 3 linearly independent equations with an unknown scale, allowing for the

symmetry and rank deficiency. Eq. (6.1) is not in a form that can be easily applied and traditional

methods cross multiply to eliminate the unknown scale [HZ04, Men01]. Instead of taking this

approach, we directly solve for the unknown scale involved in the three equations obtained from

Eq. (6.1).

For a camera with unknown focal length,ω∗ for thejth frame is given as:

ω∗
j =




Wj 0 0

0 Wj 0

0 0 αj




(6.2)

whereWj = αjf
2
j . The the unknown scale, i.e.αj, is different for every image pair. Forω∗

i ,

the left hand side of Eq. (6.1), the unknown scale is normalized to 1. Hence for a pair of images

the three unknowns areαj,Wi andWj.

For anyKi Eq. (6.1) gives us only three equations to solve for the three unknowns, owing to

rank deficiency and symmetry. We formulate the problem as:
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Ai,jYi,j = Bi,j where Yi,j =

[
Wi Wj αj

]T

(6.3)

andAi,j is a3 × 3 matrix containing the coefficients ofWi,Wj andαj; andBi,j contains the

knownFi,j and[e′]×. From the solution vectorYi,j, the intrinsic parameters for each view can be

obtained as:

fi =
√

Yi,j(1)
, fj =

√
Yi,j(2)

/αj, αj = Yi,j(3)

A global solution for computing intrinsic parameters for a varying focal length camera overk

frames is given by cascading the above equation into:




Ai,j 0 · · ·

0 Ai+1,j+1 · · ·
...

.. .
...

0 0 Ai+k,j+k




︸ ︷︷ ︸
A




Yi,j

Yi+1,j+1

...

Yi+k,j+k




︸ ︷︷ ︸
Y

=




Bi,j

Bi+1,j+1

...

Bi+k,j+k




︸ ︷︷ ︸
B

(6.4)

Eq. (6.4) computes a linear solution for an entire image sequence, which is fairly efficient

and easy to implement. If the intrinsic parameters do not vary, Eq. (6.4) can be reformulated so

that it becomes an over-determined system. This system of equations can then be solved using

least squares method for the entire image sequence. Degenerate configurations for self-calibration

methods are numerous and it is out of the scope of the current work to elaborate on various such

configurations. See [HZ04, ZLA98] for detailed discussion on critical motion sequences that result
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in degenerate conditions.

6.2 Varying Focal Length With Unknown λ

In the previous section we assumed that the aspect ratio (λ) is unity. Practically,λ remains un-

changed for any single camera through its life span. Eq. (6.1) can be extended to solve for an

unknownλ by selecting a reference frameq. Three images i.e. two instances of Eq. (6.1) are

sufficient to solve for six unknowns. Eq. (6.1) for an imagej with respect to the reference frameq

can be expressed as:

Fq,j




λWq 0 0

0 Wq 0

0 0 1




FT
q,j ∼ [e′]×




λWj 0 0

0 Wj 0

0 0 αj




[e′]× (6.5)

Thus the first pair introduces four unknowns(λ,Wq,Wj, αj) and every subsequent frame intro-

duces only 2 unknowns (unknown scale and new focal length). Onceλ is determined non-linearly,

it is substituted into Eq. (6.1) for improving the estimated focal length. Eq. (6.1) can not be used

to solve for any more unknown intrinsics parameters (see [HZ04]).

An obvious advantage of the above linear solution is its simplicity and computational efficiency,

making it suitable for many real time applications.

6.3 Experiments And Results

Synthetic Data: In order to validate the robustness of the proposed self-calibration method, a point

cloud of 1000 points [AHR01] was generated inside a unit cube to determine point correspon-
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Figure 6.2:Performance of the self-calibration method VS. noise level in pixels:(a) The relative
error of the fixed focal length when the noise is increased up to2.5 pixels is plotted in blue, while
the relative error when the focal length randomly changes between views is plotted in green.(b)
Depicts the relative error of the aspect ratio relative to the focal length whenf remains fixed.(c)
Relative error inf estimation when the used number of views increase. The more views we use,
the lesser the error rate.

dences. The synthetic camera parameters were chosen as:f = 1000, λ = 1, γ = uo = vo = 0.

Gaussian noise with zero mean and standard deviation ofσ ≤ 3 was added to the data points used

for computing the fundamental matrix. Rotation and translation between views was chosen sub-

jectively to avoid degenerate configurations. As argued by [Tri98, Zha00], the relative difference

with respect to the focal length rather than the absolute error is a more geometrically meaningful

error measure. Therefore, we measure the relative error of estimatedf with respect to truef while

varying the noise level from0.01 to 3 pixels. For each noise level, we performed1000 independent

trials and the results are shown in Figure6.2.

The relative error inf increases almost linearly with respect to the noise level, as shown in

Figure6.2(a). For a maximum noise of3 pixels, we found that the error was under9%. The blue

curve in the figure depicts the relative error whenf was kept constant. We also test the proposed

method for the case whenf is varying randomly between the views, depicted by the green curve

in Figure6.2(a). For aspect ratio(λ), we measure the relative error w.r.t. itself (cf. Figure6.2(b)),
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Table 6.1:Computed focal length from our method compared with vanishing points based calibra-
tion technique.

View Our Method Compared Method

Figure6.3(a) (left) 3048.77 3290.36
Figure6.3(b) (left) 1590.24 1766.74
Figure6.3(b) (right) 3000.35 3350.17
Figure6.3(a) (right) 2598.47 2482.24

which is less than0.25%. Relative error in estimatingf (when the noise is fixed to1.5 pixels)

compared to the number of views used for the estimation is plotted in Figure6.2(c). The relative

error reduces as the number of the views increase.

Real Data: Using the method described in Section6.1, we tested the proposed camera calibration

algorithm on a number of sequences. In the first data set, two cameras, labeledl andr, are located

on the second and third floor of a building monitoring a lobby entrance. The cameras are zooming

in/out while translating and rotating at the same time. The height and motion of each camera is

subjectively selected to allow observation of the specified area. We compared our method to the

standard three parameter estimation technique using three orthogonal vanishing points [HZ04].

Results obtained from the two methods are compared in Table6.1and the images used are shown

in Figure6.3. The results obtained from the two methods are comparable to each other.

The second data set consist of a zooming in/out video taken from a driving car while looking

at some houses. Figure6.5 depicts four such instances from the sequences taken from a camera

different from the one used in above data set. The focal length for each instance is shown below

each image of Figure6.5. Another set of test data is shown in Figure6.6. The camera in this

situation has fixed focal length. The figure shows only two images from the dataset with computed
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(a) A view from two neighboring cameras (b) A view from two neighboring cameras

(c) Recovered 3D Geometry of cameras (d) Recovered 3D Geometry of cameras

Figure 6.3:(a) and (b) are views taken from two disjoint FoV cameras looking at a lobby entrance.
The two cameras are free to rotating and translating. The 3D rendering in (c) and (d) demonstrates
the computed dynamic geometry of the network. This network geometry is unique at each instance
of time.

Camera # 1-Estimatedf (left to right): 1091.14, 1135.35, 1155.76, 1162.52, 1113.01, 1124.15

Camera # 2-Estimatedf (left to right): 1121.14, 1124.35, 1103.436, 1181.191, 1190.05, 1171.96

Figure 6.4:Some images from a test sequence using two cameras. The cameras are translated as
well as rotated. The green line indicate the knowledge of a line in world. In this particular case,
the line in one camera is orthogonal to the corresponding line in the second camera.

focal lengths.

Some of the images from another test sequence are shown in Figure6.4. The top row of the Fig-

ure depicts images from camera 1, while the bottom from camera 2. Self-calibration is performed

on the sequence and the results are shown below the images in Figure6.4. The fundamental matrix
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f = 1146.01 f = 843.92 f = 1184.21 f = 1723.93

Figure 6.5:Four instances from a video sequence taken from a road while looking at some houses.

(a)f = 2067.1957 (b) f = 2074.483

Figure 6.6: (a) Two of the many images taken from a camera inside a lab, with lines used for computing
the vertical vanishing points superimposed.

is computed between consecutive frames obtained from each single camera to determine the cali-

bration matrix. As reported by Zhang [Zha00], the mean of the estimated focal length is taken as

the ground truth and the standard deviation as a measure of uncertainty in the results. Thus, with a

low standard deviationσ = 32.05, f is determined to be1139.50.

6.4 Conclusion

We have successfully demonstrated a novel global linear solution approach to recovering the intrin-

sic parameters of a camera where each camera is assumed to undergo a general motion. Once the

fundamental matrix is determined, by using just point correspondences, we solve for the internal

parameters linearly. We also provide a non-linear solution for extracting the aspect-ratio for each

camera. Experiments are carried out on several real and synthetic data sequences.
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CHAPTER 7
PTZ CAMERA CALIBRATION

Rotating and zooming cameras are now common tools used in camera networks, with applications

ranging from security and surveillance to tele-conferencing, distant learning, and virtual class-

rooms. A key issue with many of these applications is that the traditional off-line calibration

methods [Tsa87, Zha00] are not practical due to the dynamic changes in internal and external pa-

rameters of the camera. As a result it is important that one can auto-calibrate the camera online,

when required.

The first auto-calibration method was due to Faugeras et al. [FLM92] who considered a freely

moving camera with unknown but constant internal parameters. Since then, several methods have

been proposed [Har94, KZR03, LZ99, HA97, Tri97] some of which consider special camera mo-

tions such as pure translation [MGP96] or pure rotation [Har97]. More recent methods also con-

sider auto-calibration under varying internal parameters [HHA99, HA97, HA99, PKG99, KTA00].

The most related work to ours is the auto-calibration method for rotating and zooming cameras by

Agapito et al [AHR01], who used the mapping of the image of the absolute conic (IAC) between

two images by the infinite homography to impose constraints on camera internal parameters in a

pair of images. The approach that we propose in this chapter, however, is based on direct matrix

decompositions of the infinite homography. The goal in most matrix decompositions is to reduce

the matrix into some canonical form [GL89]. For our application, we consider two possible decom-

positions: one which allows to decompose the3×3 infinite homography into a pair of projectively

equivalent upper-triangular matrices, and a second one based on eigen-decomposition and direct

construction of a system of homogeneous equations, which we use for solving degenerate cases.
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Compared to Agapito’s work our method has the advantage that we can solve for a more gen-

eral camera model in the degenerate cases (i.e. solve for 5 unknowns). However, in the degenerate

cases, our method does not provide any constraint on the camera aspect ratio. Also, for the non-

degenerate case, our method can only allow for varying focal length. The remainder of this chapter

consists of a brief description of background and notations, two main sections discussing the gen-

eral case and the degenerate scenarios, and a thorough validation of the results.

7.1 Background and Notations

For a pinhole camera model, a 3D pointM = [X Y Z 1]T and its corresponding image projection

m = [u v 1]T are related via a3× 4 matrixP by

m ∼ K[r1 r2 r3 t]︸ ︷︷ ︸
P

M, K =




λf γ u0

0 f v0

0 0 1




, (7.1)

where∼ indicates equality up to multiplication by a non-zero scale factor,ri are the columns of

the rotation matrixR, t is the translation vector, andK is a nonsingular3 × 3 upper triangular

matrix known as the camera calibration matrix including five parameters, i.e. the focal lengthf ,

the skewγ, the aspect ratioλ and the principal point at(u0, v0).

The IAC, denoted byω, is an imaginary point conic directly related to the camera internal

matrixK, via ω ∼ K−TK−1.
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7.2 General Case: Arbitrary Rotation & Varying Focal Length

Our solution for the general case is based on using a sequence of Givens rotations [GL89], whereby

we decompose the infinite homography into a pair of projectively equivalent upper-triangular ma-

trices that provide up to 5 constraints directly on the camera parameters from only two images.

As described in [GL89], a Givens rotation in the 3D space corresponds to a rotation in the plane

spanned by any pair of coordinate axes. When applied to a3 × 3 homography, a Givens rota-

tion would rotate each column of the homography counter-clockwise in the plane of the two axes

through an angle defined by Givens rotation matrix. By an appropriate choice of the rotation angle

one can then selectively nullify any one of the entries in a homography.

Now, let K1 andK2 be the camera calibration matrices for a pair of images obtained by a

fixed rotating and zooming camera. Let alsoR12 denote the relative rotation between the two

orientations of the camera. As is well-known, independently of the scene structure, the two images

are related by the infinite homography given by

H21 ∼ K1R21K
−1
2 , (7.2)

If we rearrange this homogeneous equation as follows

K−1
1 H21 ∼ R21K

−1
2 , (7.3)

then the right hand side will be merely the camera intrinsic matrix for the second image up to

some unknown rotation. Therefore it can be restored to an upper-triangular matrix by a sequence
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of Givens rotations, as follows: LetK−1
1 = [kT

1 kT
2 kT

3 ]T , whereki, i = 1, 2, 3 are the rows of

K−1
1 . Let alsoH = [h1 h2 h3], wherehi, i = 1, 2, 3 are the columns of the infinite homography.

Consider the Givens rotation defined by

G1 =




1 0 0

0 cos θ1 sin θ1

0 − sin θ1 cos θ1




(7.4)

where

cot θ1 =
kT

2 h1

kT
3 h1

(7.5)

It can be verified thatG1 rotates each side of equation (7.3) to align the last two components

of the first column with the x-axis. As a result it would nullify the third element in the first column

on each side of the equation. In a similar manner, we defineG2 andG3 as follows:

G2 =




cos θ2 sin θ2 0

− sin θ2 cos θ2 0

0 0 1




(7.6)

whereθ2 can be obtained from

cot θ2 =
kT

1 h1

(kT
2 h1hT

1 k2 + kT
3 h1hT

1 k3)
1
2

(7.7)
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and

G3 =




1 0 0

0 cos θ3 sin θ3

0 − sin θ3 cos θ3




(7.8)

where

cot θ3 =
kT

3 h2 sin θ1 cos θ2 + kT
2 h2 cos θ1 cos θ2

kT
3 h2 cos θ1 − kT

2 h2 sin θ1

− kT
1 h2 sin θ2

kT
3 h2 cos θ1 − kT

2 h2 sin θ1

(7.9)

Applying the sequence of Givens rotations to both sides of (7.3), we get

G3G2G1K
−1
1 H21 ∼ K−1

2 (7.10)

Thesignificance of Givens rotationshere is that the relative rotationR21 is eliminated from equa-

tion (7.3). As a result, we obtain a homogeneous equality between two upper-triangular matrices

that depend only on the unknown intrinsic parameters. Therefore let

G3G2G1K
−1
1 H21 =




k11 k12 k13

0 k22 k23

0 0 k33




(7.11)

Assuming that the principal point remains invariant and that the skew is zero, we get the following
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four independent constraints to solve for the unknown components ofK1:

k13 + u0k11 = 0 (7.12)

k23 + v0k22 = 0 (7.13)

k22 − λk11 = 0 (7.14)

k12 = 0 (7.15)

Although, these equations are non-linear, it turns out that they are all independent of the focal

lengthf2 for the second image, and all lead to low-order polynomials, which can be readily solved

without resorting to optimization methods. This closed-form solution yields the unknown focal

lengthf1, the aspect ratioλ and the principal point(u0, v0). To obtain the focal lengthf2 for the

second camera, note that the above discussion holds symmetrically if we interchange the role of

K1 andK2, and replaceH21 by H12. Therefore, in the general case, our method recovers five

unknown parameters in closed-form from only two images, i.e. the varying focal length, the aspect

ratio and the principal point.

7.3 Degenerate Cases: Pure Pan & Pure Tilt

An important issue for calibration of a rotating and zooming camera is how a method performs

when the rotation reduces to either pure pan or pure tilt. This is of particular practical importance,

since existing applications such as surveillance, and tele-conferencing use PTZ cameras that are

often operated under these degenerate conditions.

When the camera rotation is reduced to either pure pan or pure tilt, many existing solutions
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[Har97, AHR01] in the literature, including our general solution based on Givens rotations of the

infinite homography, degenerate. As a result they cannot provide all the unknown parameters from

only two images. Below, we describe a new approach that allows to solve for 4 intrinsic parameters

and the unknown rotation angle from two images in both pure pan and pure tilt.

Pure Pan: We show that the case of pure pan can be solved by direct construction of a set

of homogeneous equations. For pure pan, we obtain 5 independent equations from two images in

terms of the unknown intrinsic parameters using eigendecomposition of the infinite homography

and direct use of equation (7.2).

The analysis that we present below are similar to Liebowitz and Zisserman [LZ99]. However,

we investigate the case when the rotation degenerates and the camera is allowed to vary its fo-

cal length. We then investigate how the degenerate rotations such as pure pan affect the general

analysis. We provide an alternative interpretation of the circular points, by correlating the eigen-

decomposition of the infinite homographyH21 to that ofHT
21.

As pointed out in [LZ99] the eigendecomposition of the infinite homographyH21 provides

three fixed points under the homography given by the eigenvectors: one real eigenvectorv, which

corresponds to the vanishing point of the rotation axis, and two complex onesI andJ that corre-

spond to the imaged circular points of any plane orthogonal to the rotation axis. When the camera

intrinsic parameters are fixed, these points provide four independent constraints on the image of

the absolute conicω [LZ99]:

IT ωI = 0, JT ωJ = 0, lv ∼ I× J ∼ ωv (7.16)
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Figure 7.1:Constraints on IAC induced by the infinite homography.

where the first two impose the constraints that the circular points of a plane must lie on the IAC

and the third one impose the constraint that the vanishing point of the rotation axis direction has

pole-polar relationship with the vanishing line of any plane orthogonal to the axis of rotation. The

construction is depicted in Figure7.1

The question now iswhat happens to these constraints if we allow the focal length to vary,

and let the rotation degenerate to pure pan or tilt. To answer these questions we also look at the

line homographyHT
21. The homographyHT

21 also has one real eigenvector corresponding to a real

eigenvalue, and two complex ones corresponding to a pair of complex conjugate eigenvalues. Let

ay ∼ [0 1 0]T be the axis of rotation for a panning camera. By definition this axis must be invariant

to panning, i.e.RT
21ay = R12ay = ay. Since the infinite homographyH21 is a conjugate rotation

matrix, we have

HT
21K

−T
1 ay ∼ K−T

2 RT
21ay (7.17)

∼ K−T
2 ay (7.18)

Therefore, the vanishing line of the pencil of planes perpendicular to the axis of rotation is also

given byK−T
2 ay.
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Proposition 1 For a zero-skew camera, under pure pan, the real eigenvector of the line homogra-

phyHT
21 is the vanishing line of the pencil of planes perpendicular to the axis of rotation, if and

only if the focal length andv0 are fixed, but is invariant to the aspect ratio andu0.

Proposition 2 For a zero-skew camera, under pure pan, the three eigenvectors of the line homog-

raphyHT
21, given byK−T

1 ay, lI andlJ satisfy the pole polar relationship with the real eigenvector

of H21, and the circular points, respectively, if and only if the focal length andv0 are fixed, but is

invariant to the aspect ratio andu0.

ThereforelI andlJ may be viewed as the imaged vanishing lines of some imaginary planes that

intersect the absolute conic at the circular points. As a result, the four constraints imposed by the

infinite homography on the IAC are encoded in the following three homogeneous equations:

lv ∼ K−T
1 ay ∼ ωv, lI ∼ ωI, lJ ∼ ωJ (7.19)

To see what happens when the rotation degenerates note that these equations are linear inω, and

upon taking cross-products of both sides as usual [HZ04], they can reduce to a homogeneous

equation of the form

Acω = 0 (7.20)

wherecω is the vector of unknown components of IAC arranged in some order. When the rotation

is general it can be shown thatA has a one dimensional null space representing the solution to the
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Figure 7.2:Depiction of the classical geometric error function under general camera motion based
on minimizing the reprojection error subject to the epipolar constraint.

four unknowns ofω. However, when the rotation degenerates to pure pan, or pure tilt the null space

becomes 2-dimensional, and only two independent constraints can be imposed on the IAC from the

set of equations in (7.19). In particular, one of the constraints applies directly to the principal point:

Proposition 3 In a zero-skew camera, for pure pan the principal point lies on the vanishing line

of the pencil of planes that are perpendicular to the axis of rotation, if and only if the focal length

andv0 are fixed, but is invariant to the aspect ratio andu0.

To demonstrate this, denote the principal point byp ∼ [u0 v0 1]T . It follows that

aT
y K−1

2 p = aT
y




0

0

1




= 0 (7.21)

which proves the result being sought.

Remark: The above propositions hold for pure tilt if we simply exchange the role ofu0 with v0.
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In summary:

• Under degenerate rotation the eigenvectorlv corresponding to the real eigenvalue ofHT
21

provides one constraint on the location of the principal point in the form

pT lv = 0 (7.22)

It is important to note that (7.22) does not hold under general rotation.

• Under degenerate camera rotation the IAC can be written as a one parameter family of conics

given by

ω(α) = ω1 + αω2 (7.23)

whereω1 andω2 span the right null-space ofcω. This can be solved linearly by applying an

additional constraint, for instance, by assuming known or fixed aspect ratio. Note that one

could also formulate the problem similarly for DIAC. However, the constraints would then

be quadratic leading to two-fold ambiguity. For degenerate rotations, it can be verified that

the zero-skew constraint cannot resolve the ambiguity.

To conclude this section, in order to solve for a more general camera model under pure pan and

zoom from a minimum set of two images, we resort to a solution based on direct construction of a

set of homogeneous equations. For this purpose, we first verify that under pure pan and zoom the
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imaged circular points of the plane perpendicular to the axis of rotation will become of the form




a± ib

v0

1




(7.24)

wherea andb can be written in terms of the unknown intrinsic parameters and the panning angle.

Therefore the real and imaginary parts of the circular points may be used directly to impose con-

straints on the intrinsic parameters and the rotation angle. On the other hand, we can also construct

additional homogeneous equations directly from (7.2) as follows:

Let H21 = [hT
1 ,hT

2 ,hT
3 ]T , K1 = [kT

11,k
T
12,k

T
13]

T , R21 = [r1, r2, r3]
T , andK2 = [k21,k22,k23],

whereH21 andK1 are expressed in terms of their rows, andR21 andK2 are expressed in terms of

their columns. We can then write the following set of homogeneous equations

hT
i k2j ∼ kT

1irj, i, j = 1, ..., 9 (7.25)

The above equations together with the two constraints derived from the circular points provide

only 5 independent constraints on the unknown rotation angle and the intrinsic parameters. Unfor-

tunately, unlike the general case described earlier, for pure panning and zooming it is not possible

to establish a constraint on the aspect ratioλ. Therefore, assuming that the aspect ratio is known

(e.g.λ = 1), and that except for the focal length all other intrinsic parameters remain invariant, our

constraints lead to low order polynomials, which can be readily solved. Therefore, our solution

provides four unknown intrinsic parameters (other thanλ) and the rotation angle from only two
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images for pure panning under variable focal length and zero skew.

Pure Tilt: The case for pure tilt is quite similar to pure pan, with minor differences. All the

analyses can be equally applied to tilting. In particular, as in pure pan, it can be proved that for pure

tilt and zooming the principal point must lie on the vanishing line of the pencil of planes that are

perpendicular to the axis of rotation. This provides a constraint similar to (7.22) on the principal

point of the camera. Also, the real and the imaginary parts of the imaged circular points depend on

the intrinsic parameters and the rotation angle as before, and can be used to impose constraints on

the unknown parameters. However, the construction in (7.25) is somewhat different for the case of

pure tilt, because the infinite homography in the case of pure tilt is of the form

H2,1 ∼




1 h12 h13

0 h22 h23

0 h32 h33




(7.26)

providing only 5 equations. Again, it can be shown that in the case of pure tilt, none of the above

constraints depends on the camera aspect ratioλ. As a result, it is not possible to recoverλ for a

purely tilting and zooming camera. Therefore, our solution provides again four unknown intrinsic

parameters (i.e. the two focal lengths, and the principal point) plus the rotation angle from only

two images for pure tilting under zero skew and variable focal length.

Cascading degenerate cases:One interesting and practical solution for the degenerate case

occurs when the camera first pans and then tilts (or vice versa), leading to a minimum case of three

images, with the corresponding infinite homographiesH21 andH32. In such case, the principal
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point can be recovered immediately using

p ∼ l21
v × l32

v (7.27)

wherel21
v andl32

v are the eigenvectors corresponding to the real eigenvalues ofHT
21 andHT

32.

Therefore, the problem would immediately reduce to the simple case of known principal point,

which in most auto-calibration methods, including ours, simplifies the remaining set of equations.

This scenario can be, for instance, used in a network of PTZ cameras at the cold start, for deter-

mining the principal point once and use it throughout the operation of the network, assuming that it

remains invariant. Note also that in this case our method recovers all camera parameters including

the aspect ratio, since the first and the third image have general rotation, although the other two

pairs of combinations are degenerate.

7.4 Geometrically Optimized Refinement

Most practical auto-calibration methods comprise of two steps [Har98, HZ04]: In the first step

an initial solution is found by solving directly a set of algebraic constraints that are often linear -

although in some cases such as ours or Kruppa’s equations may also be non-linear; In the second

step the initial solution is refined by minimizing an error function, which preferably should reflect

the geometry of the configuration [Har98, HZ04]. The most versatile geometric error function is

based on minimizing the reprojection error [HZ04], which aims to simultaneously refine the point

correspondences and the camera parameters. To make the problem tractable and less sensitive to

initialization, under general camera motion the reprojection error is often minimized subject to the
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constraint that the orthogonal distance between a reprojected point and the corresponding epipolar

line is minimized. This is depicted schematically in Figure7.2.

For pure rotation, however, the epipolar geometry does not exist. As a result, in existing litera-

ture the general form of the reprojection error is used. In this section, we derive a novel geometric

error for a purely rotating camera, similar in spirit to the epipolar constraint, which increases noise

resilience and tractability, and reduces sensitivity to initial point correspondences. We first briefly

describe the classical error functions used for pure rotation and then derive our new geometric error

function.

7.4.1 Classical Error Functions

When a set of matchesxi ↔ x′i are known between a pair of images, it is generally assumed that

there are errors in measurements of bothxi andx′i. In order to minimize this error, one of the first

techniques generally used, specially for a PTZ camera, involves minimizing the cost function:

Calg =
∑n−1

j=1
‖ KjK

T
j −HjK0K

T
0 HT

j ‖2F (7.28)

where subscriptF indicates the use of Frobenius norm. This cost function minimizes the algebraic

error. The disadvantage is that the quantity being minimized is not geometrically or statistically

meaningful [HZ04]. The solutions based on algebraic distances are generally used as starting

points for other non-linear methods.

Alternative error functions are based on geometric distances in the image plane that usually in-

volve minimizing the error between the measured and the estimated reprojected image coordinates.

Thus we seek a Maximum Likelihood (ML) solution assuming that the error in the measurement is

107



Gaussian. For a geometrically meaningful minimization of the overall error and for camera param-

eters refinement, researchers [AHR01, SH99, TMH99] have used a bundle adjustment approach.

Givenn images andm corresponding points, the maximum likelihood estimate can be obtained by

minimizing the following error function:

Cml =
∑n

i=1

∑m

j=1
‖ x̂ij −KiRiX̄j ‖2 (7.29)

Thus the squared error sum between the image measurement (x̂ij) and the projection of the

true image points for all points across all views is minimized. Minimizing (7.29) is a non-linear

problem, which is solved by Levenberg-Marquardt iterative minimization method [PFT88]. Min-

imizing (7.29) is equivalent to the Maximum Likelihood (ML) estimate. Agapito et al. [AHR01]

show that prior knowledge of the parameters can also be incorporated for a ML estimate.

The bundle adjustment solution is geometrically meaningful and it can be visualized asad-

justing the bundleof rays between each camera center and a set of 3D points. It provides a ML

solution while being tolerant to missing data. This method can also be viewed as minimizing the

reprojection error between two images. In fact it assumes that the optimal (ML) solution lies close

to the initial solution. Thus it aims to change (or perturb) the estimated points and the camera

parameters such that the cost function is minimized subject to the reprojection model defined by

the homography relationship between the views. Therefore the probability of a true solution will

follow a normal distribution. Formally, the measured locationx̂ is related to the true location by a

Gaussian additive noiseη:
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x̂ = x + η = F(K,R) + η (7.30)

whereF(K,R) is the reprojection model for the true values of the image points given an estimate

of the parametersK andR. Therefore the probability of the true solution is:

p(x̂|K,R, σ) = N (x̂|F(K,R), σ) (7.31)

which one aims to maximize.

7.4.2 Optimal Geometric Error

In contrast to the above solution, we propose a geometricallyoptimizederror function. Byopti-

mizedwe mean a cost function tailored specifically to our special camera model i.e. pure rotation

and zoom. We initially explain our cost function for the simple case of single axis rotation and

then extend the results to the more general case of pan-tilt motion.

Pure Pan: For a panning PTZ camera, a pointx in the first imageI1 is related to the corre-

sponding pointx′ in the second imageI2 via the infinite homography:

x′ ∼ K2RyK
−1
1 x (7.32)

109



where the rotation matrixRy is parameterized asRy =




c 0 −s

0 1 0

s 0 c




wherec = cos θy and

s = sin θy. Using the two linear constraints given by

x′ × (K2RyK
−1
1 x) = 0 (7.33)

we then expressc ands in terms ofKi and the feature pointsx andx′. Upon substitutingc ands

into the Pythagorean identity

c2 + s2 − 1 = 0 (7.34)

and rearranging, we get:

x′TQx′ = 0 (7.35)

whereQ is a conic given by the3× 3 symmetric matrix,

Q =




a b/2 d/2

b/2 c e/2

d/2 e/2 f




(7.36)
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with a = (xy − v0)
2 (7.37)

b = 0 (7.38)

c = −f 2
1 − (xx − u0)

2 (7.39)

d = (4u0v0xy − 2u0x
2
y − 2u0v

2
0) (7.40)

e = (2v0x
2
x − 4xxv0u0 + 2v0u

2
0 + 2v0f

2
1 ) (7.41)

f = u2
0x

2
y − 2v0u

2
0xy + f2

2v2
0 − f2

1v2
0

−2f 2
2 v0xy + f2

2x2
y + 2v2

0u0xx − v2
0x

2
x (7.42)

wheref1 andf2 are the camera focal lengths in viewsI1 andI2, respectively.

The conicQ, in addition to the camera parameters, is parameterized by the image pointx =

[ xx xy 1 ]T. What equation (7.35) implies is that for every pointx in I1, the corresponding

point x′ in I2 must lie on the conicQ, which is defined by the camera parameters and the point

x. Similarly, for transformation fromI2 to I1, it can be shown that for every pointx′ in I2, the

corresponding pointx in I1 must lie on a conicQ′:

xTQ′x = 0 (7.43)

whereQ′, in contrast toQ, is defined by the camera parameters and the pointx′ = [ x′x x′y 1 ]T

in I2.

In summary, as a camera pans the points in the image plane trace a conic trajectory.It can be
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Figure 7.3:(a) image pointsxi in I1. (b) For pure pan the corresponding points lie on a conic in
I2.

Figure 7.4:Depiction of the proposed new geometric error function under pure rotation.

readily verified from (7.37)-(7.39) that these conics are in fact hyperbolas. This is demonstrated in

Figure7.3. Points corresponding toxi in view I1 lie on a hyperbolic trajectory inI2. Exactly where

a corresponding point lies on the hyperbola depends on the rotation angle. As shown in the Figure

7.3(b), the blue dots are the corresponding points when the pan angle wasθy = 20◦ whereas it was

θy = 35◦ for the red dots. Therefore, in minimizing the reprojection error, instead of searching in

the neighborhood of a points in all directions, we can minimize the orthogonal distance of points

from the hyperbolic curves.

7.4.2.1 Derivation of the Cost function

While a fundamental matrix for a general camera motion defines a correlation mapping from points

to lines, the discussion above shows that a PTZ camera, undergoing pan motion (or tilt for that
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matter), defines quadratic curves for mapping of the corresponding image pointsx ↔ x′. Thus,

instead of minimizing the distance of feature points to epipolar lines [ZDF95], for pure rotation we

can minimize the distance of points to conics.

The geometric distanceD of a pointx to a conicQ′ can be obtained using Sampson’s rule

[HZ04]

D = εT (JJT)−1ε (7.44)

whereε = xTQ′x is the cost associated withx andJ =

[
∂(xTQ′x)

∂xx
, ∂(xTQ′x)

∂xy

]
is a matrix of

partial derivatives.

Using the chain rule, the elements ofJ are computed as:

∂(xTQ′x)

∂xx

=
∂(xTQ′x)

∂xx

∂x

∂xx

= 2(Q′x)1

and similarly

∂(xTQ′x)

∂xy

= 2(Q′x)2

where the subscripts1 and2 denote the first and the second component of the vector, respectively.

Using (7.44), the distance of a pointx to a conicQ′ thus reduces to:

D =
(xTQ′x)2

4((Q′x)21 + (Q′x)22)
(7.45)

For symmetric error minimization, the cost function would be then of the form
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n∑
i=1

(
(xT

i Q′
ixi)

2

4((Q′
ixi)21 + (Q′

ixi)22)
+

(x
′T
i Qix

′
i)

2

4((Qix′i)
2
1 + (Qix′i)

2
2)

)

=
n∑

i=1

(D +D′) (7.46)

That is, the camera intrinsic and extrinsic parameters and the correct feature point locations must

minimize the sum of distances to the conics (cf. Figure7.4). The minimum of this non-linear cost

function is sought using the Levenberg-Marquardt algorithm. Thus we have reduced the search

space of true feature locations to quadratic curves.

Tilt Motion : The above discussion equally applies to pure tilt, or in fact to any single axis rotation.

7.4.3 Pan-Tilt Motion

For a PTZ camera undergoing both pan and tilt motion, (7.32) is modified as:

x′ ∼ K2RxRyK
−1
1 x (7.47)

whereRy is as defined above, andRx defines rotation around thex-axis byθx. In principle, there

are sufficient number of constraints to eliminate the two angles. However, due to non-linearity,

this is not straightforward. Therefore, we parameterizeRy as before in terms ofc ands, and also

parameterizeRx by c′ = cos θx ands′ = sin θx. Similar to pan case, we then expressc ands

in terms of feature points and the camera parameters to obtain a conic as defined in (7.35). The

difference now is that the conicQ (and similarlyQ′) contains the tilt angle componentsc′ ands′,

which are used as additional parameters in the cost function (7.46).
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Our overall algorithm is thus as follow: For a PTZ camera, we solve for the unknownKi and

R using the method described in Section7.2. If the camera motion is just pan or just tilt, we use

the method described in Section7.3. We then refine the estimated parameters by minimizing the

new geometric error.

7.5 Experimental Results

In this section, we show an extensive set of experimental results on both synthetic and real data to

evaluate the proposed solutions and compare with the state of the art.

7.5.1 Synthetic Data

We performed detailed experimentation on the effect of noise on camera parameter estimation

over 1000 independent trials. For this purpose, a point cloud of1000 random points [AHR01]

was produced inside a unit cube to generate image point correspondences. Simulated camera has

a focal length of1000, aspect ratio ofλ = 1.5, skewγ = 0, and the principal point at(u0, v0) =

(512, 384), for image size of1024× 768.

Performance vs. Noise Level:In this experimentation, we compare our results to Agapito et al.

[AHR01] without performing the refinement proposed in section7.4. Errors for estimated camera

intrinsic and extrinsic parameters are measured with respect to the ground truth, while adding

a zero-mean Gaussian noise varying from 0.1 pixels to 3 pixels. The results show the average

performance over1000 independent trials. As argued by [Tri98, Zha00], the relative difference

with respect to the focal length rather than the absolute error is a more geometrically meaningful

error measure forf, λ and(u0, v0). Figure7.5summarizes the results for intrinsic parameters. For
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Figure 7.5:Performance vs. Noise Level: averaged over1000 independent trials. Results without
geometric optimization compared to Agapito et al.

noise level of3 pixels, which is larger than the typical noise in practical calibration [Zha00], the

relative error for the focal lengthf is 0.1%. The maximum relative error for the aspect ratio is

less than 0.2%, the relative error inu0 is less than 0.35%, and the relative error inv0 is less than

0.16%. Excellent performance is also achieved for all extrinsic parameters as shown in the figure,

i.e. absolute errors of less than a tenth of a degree for all rotation anglesθx, θy andθz.

Comparison with Agapito et al. [AHR01]: We perform the comparison using the same setup as

above. Figure7.5 summarizes our results, where the results of our method are drawn in blue and

those of Agapito et al. [AHR01] in red. Without refinement, the errors for both methods are of the
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Figure 7.6:Performance vs. Noise Level: averaged over1000 independent trials. Results after
geometric optimization compared to ML-optimized Agapito et al.

same order, although we obtained slightly better performance for the focal length, while Agapito’s

method did slightly better on other parameters. The main advantage of our method here is that we

obtain more parameters using fewer images, by trading off linearity.

7.5.1.1 Results After Refinement

We refined the results obtained in the previous subsection by minimizing the geometric cost func-

tion that we derived in (7.46). We compare our refined results with the ML estimate method

proposed by [AHR01] as defined in (7.29). As demonstrated below, our refinement approach con-

sistently outperforms the classical ML refinement.

Pan Motion: The results are shown in Figure7.6. Figure7.6(a) shows the relative error inu0,

which is found to be less than0.2% for a noise of up to3 pixels. Similarly, noise for thev0 andf is

also very low. The error in the proposed estimated method is comparably lower than the classical

ML estimation method.

Pan-Tilt Motion: For the case when the camera is both panning and tilting, the error curves are

shown in Figure7.7. The error for the parametersu0, v0, f, and θx is lower than0.04%,0.1%,

0.04% and0.05◦, respectively.
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Figure 7.7:Performance vs. Noise Level: averaged over1000 independent trials for pan-tilt mo-
tion. Results after geometric optimization compared to ML-optimized Agapito et al.

The above results indicate that minimization based on the optimal geometric error function

derived in this chapter consistently give better results than the traditional ML estimate for the PTZ

camera.

7.5.2 Real Data

Several experiments are performed on real data. The data was obtained by a SONYr SNC-RZ30N

PTZ camera with an image resolution of320 × 240. Hence the ground truth rotation angles are

known. Image features and correspondences are obtained by using the SIFT algorithm [Low04].

In order to evaluate our results, we use an approach similar to [Zha00], i.e. use the uncertainty

associated with the estimated intrinsic parameters characterized by their median deviation over

many images, while taking into account the ground truth rotation angles. We deliberately keep

f1 andf2 same so that we can estimate the accuracy of parameters estimations in the absence of
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(a)
Combination θy u0 v0 f1 f2

C1 0.97 196.185 206.07 682.07 678.01
C2 0.91 120.5 187.91 637.81 635.98
C3 1.02 195.35 210.89 785.97 774.81
C4 0.88 124.24 147.58 662.13 659.43
C5 1.26 187.33 198.13 759.02 756.57
C6 0.8 128.92 179.62 768.4 765.42
C7 1.08 130.96 188.92 662.13 659.43
C8 0.93 135.49 155.49 786.22 778.48
C9 1.16 165.89 182.02 786.22 778.48
C10 0.89 141.03 194.5 673.24 668.83
C11 1.19 118.52 198.93 666.35 660.04
C12 0.94 196.9 198.13 756.17 755.07
C13 1.05 184.08 181.48 770.77 775.22
C14 0.87 175.58 200.17 662.59 660.79
C15 0.97 153.52 162.65 797.4 790.03

Mean 0.99 156.97 186.17 723.77 719.77
M. Deviation 0.08 29.28 9.29 41.23 34.95

(b)

Figure 7.8:Sample images from pan sequence. Estimated parameters and their statistics.

ground truth for intrinsic camera parameters.

Pan Motion: Around15 images were captured while panning the camera. The rotation between

the successive frames is1◦. In order to further investigate the stability of the proposed method, we

apply it to all the combinations of14 images out of the15 images. The results are shown in Figure

7.8(b). A few of the images are shown in Figure7.8(a). The second column depicts the estimated

rotation angles to be.99◦, which is almost equal to the ground truth rotation angle. Camera zoom

remained constant in the sequences; hence column5 and6 i.e. f1 andf2 are very close to each

other. The results also demonstrate low median deviation for the estimated parameters.

Tilt Motion: Another sequence for the degenerate condition, i.e. tilt, was taken while keeping

the focal length the same. Around21 images were captured with a tilt rotation of1◦. We apply

our method to all the combinations of20 images out of the total21 images, as in the pan case.

The results are shown in Figure7.9(b) and a few images are shown in Figure7.9(a). The rotation
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Comb. θx u0 v0 f1 f2

C1 0.97 196.185 206.07 682.07 678.01
C2 0.91 120.5 187.91 637.81 635.98
C3 1.02 195.35 210.89 785.97 774.81
C4 0.88 124.24 147.58 662.13 659.43
C5 1.26 187.33 198.13 759.02 756.57
C6 0.8 128.92 179.62 768.4 765.42
C7 1.08 130.96 188.92 662.13 659.43
C8 0.93 135.49 155.49 786.22 778.48
C9 1.16 165.89 182.02 786.22 778.48
C10 0.89 141.03 194.5 673.24 668.83
C11 1.19 118.52 198.93 666.35 660.04
C12 0.94 196.9 198.13 756.17 755.07
C13 1.05 184.08 181.48 770.77 775.22
C14 0.87 175.58 200.17 662.59 660.79
C15 0.97 153.52 162.65 797.4 790.03

Mean 0.95 178.26 222.07 823.62 844.33
M. Dev. 0.15 17.95 34.62 9.44 49.8

(a) (b)

Figure 7.9: (a) sample images. (b) Results obtained from the tilt sequence and their statistics.

angle is estimated to be0.95◦ and the two estimated focal lengths are very close to each other as

expected.

Pan-Tilt Motion: Another sequence for evaluating the general rotation, as described in Section

7.2, is taken while panning withθy = 2◦ and tilting with θx = 2◦, and keeping the focal length

fixed for the camera. We apply the method to all the combinations of6 images from the total of7

images. The results are shown in Figure7.10. The pan angleθy is estimated at1.84◦, whereas the

tilt angleθx was estimated as2.06◦. The aspect ratioλ is estimated as1.06, the two focal lengths

between the images are also very close to each other. The principal point is also estimated to be

close to the center of the image.

7.6 Discussion and Concluding Remarks

This chapter makes three main contributions to auto-calibration of rotating and zooming cam-

era: (i) By successive rotations of the infinite homography and axis alignments, we derive a new
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(a)
Comb. λ u0 v0 f1 f2 θx θy

C1 1.97 185.98 127.21 588.98 610.06 2.34 1.15
C2 0.36 118.65 166.2 676.78 738.14 1.94 1.16
C3 0.85 164.27 121.88 827.88 765.56 2.69 1.58
C4 0.61 171.69 168.06 892.77 780.88 1.24 2.98
C5 1.45 261.95 150.47 942.02 1021.1 1.85 1.84
C6 0.56 177.80 139.42 672.32 696.32 2.76 2.2
C7 1.62 152.92 168.65 821.43 837 1.58 1.95

Mean 1.06 176.17 148.84 774.6 778.44 2.06 1.84
M. Dev. 0.49 14.29 17.59 120.59 63.29 0.4 0.36

(b)

Figure 7.10:(a) Sample images from pan-tilt sequence. (b) Estimated parameters and their statis-
tics.

non-linear solution that provides five intrinsic parameters (i.e.f1, f2, u0, v0, λ) from only two im-

ages; (ii) we focus on PTZ camera applications by performing thorough analysis of degenerate

single-axis rotations; (iii) we derive a new geometric error function for refinement of solution that

outperforms classical ML reprojection error. Although Agapito et al. [AHR01] use more images

than required by our method, they do provide a linear solution, whereas our solution is non-linear

but in terms of low-order polynomials.

On the other hand, pure pan or tilt are unstable cases for their method. Therefore, usingγ = 0

constraint is not sufficient and they have to assume knownλ. Although assuming a non-zero skew

introduces instability in our method as well, we are able to solve for4 intrinsic parameters (i.e.

f1, f2, u0, v0) and the rotation angle (θx or θy) using only an image pair. We have investigated

the effect of increasing/non-zero skew on the stability of estimating other parameters. Results are

shown in Figure7.11. Except forv0, error in other estimated parameters increases non-linearly

when we have a panning camera, as seen in Figure7.11. The error in parameter estimation while

the camera is tilting is linear, except foru0 (cf. Figure7.11). A particular remark to be made here
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Figure 7.11:Effect of non-zero skew on the error in estimation of other parameters.

is thatu0 is less sensitive to non-zero skew for pan, and converselyv0 is less sensitive to non-zero

skew in tilt. Also, we found that other parameters were in general less sensitive to non-zero skew

under panning.
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CHAPTER 8
CONFIGURING A NETWORK OF CAMERAS

In Part II, we addressed the problem of calibrating any individual camera in the network. Our goal

in this chapter is to demonstrate that one can establish a common world reference frame to recover

absolute and relative camera orientations even with non-overlapping FoVs.

The main motivation for deploying networked cameras is that a single camera, even if allowed

to rotate or translate, is not sufficient to cover a large area. Figure8.1 shows an active example

of a configuration where two fixed cameras are monitoring one particular area. A more general

case with a wide range of applications is when the deployed disjoint FoV cameras may be allowed

to move freely in 3D space, e.g. on roaming security vehicles. By employing multiple cameras

with non-overlapping or disjoint FoV, we would like to maximize the monitoring area in addition

to inferring the network configuration. By network configuration we mean the absolute and the

relative orientations of cameras in the network assuming that their relative location is determined

by either GPS or surveyed points in the 3D world. We propose a framework for auto-configuration

of such a dynamic network, thereby obtaining the dynamic geometry of the network along with

self-calibrating each camera in the network. By configuring such a camera network we can (i)

direct cameras to follow a particular object [DDZ01], (ii) calibrate cameras so that the observa-

tions are more coordinated and perform measurements (with known scale) and possibly construct

a 3-D world model [MK04, CT04], (iii) solve the camera hand-over problem i.e. establish corre-

spondence between tracked objects in different cameras (iv) generate image/video scene mosaic

(v) infer network topology [ME05], and (vi) build terrain model [CT98] or do spatial learning for

navigation [YB96, Tan96].
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8.1 Related Work And Our Approach

For a general configuration, each camera in the network needs to be self-calibrated by any of the

method described in Part II, depending on scenario restrictions. Recently, tracking across multi-

ple non-overlapping cameras, for video surveillance as well as topology inference, has attracted

considerable amount of attention. Makris et al. [MT04] estimate camera topology from observa-

tions by assuming Gaussian transition distribution. Departures and arrivals within a chosen time

window are assumed to be corresponding. Recently, Tieu et al. [TDG05] generalized the work in

[MT04] to a multi-modal transition distributions, and handled correspondences explicitly. Cam-

era connectivity is formulated in terms of statistical dependence, and uncertain correspondences

are removed in a Bayesian manner. Javed et al. [JSS05] demonstrate that the brightness trans-

fer functions from a given camera to another camera lie in a low dimensional subspace. Their

method learns this subspace of mappings for each pair of cameras from the training data. Using

the subspace of brightness transfer functions, the authors attempt to solve the camera hand-over

problem. Kang et al. [KCM03] use an affine transform between each consecutive pair of images

to stabilize moving camera sequences. A planar homography computed by point correspondences

is used to register stationary and moving cameras. Zhao et al. [ZAK05] formulate tracking in a

unified mixture model framework. Ground-based space-time cues are used to match trajectories

of objects moving from one camera to another. It is well known that due to perspective projection

the measurements made from the images do not represent metric data. Thus the obtained object

trajectories and consequently the associated probabilities, used in most of the work cited above,

represent projectively distorted data, unless we have a calibrated camera. For example, a person
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Figure 8.1:Two cameras in a network several blocks apart from each other.

moving slowly but close to a camera induces large image motion compared to person walking at

a distance with a quicker pace. Also, appearance based features exhibit undesirable results under

varying lighting conditions. On the other hand, inter-camera relationships can not be correctly

established unless dynamic positions and orientations between cameras are known at any point in

time.

The most related work is that of Jaynes [Jay04]. Assuming a common ground plane for all

cameras, relative rotation of each camera to the ground plane is computed independently. The

motion trajectories of objects tracked in each camera are then reprojected on to a plane in front

of the camera frame in order to compute corresponding unwarped trajectories. Camera-to-ground-

plane rotation and plane-to-plane transform computed from the matched trajectories is then used to

compute relative transform between a pair of cameras. This method assumes that all cameras are

calibrated, requires motion trajectories on objects, and each camera is considered to be stationary

looking at a common ground plane.

We present a more general solution for registering a network of disjoint cameras. We do not

assume any special camera motion or known camera rotation matrix, as used by [AHR01, SH99,

FK03, PKG99, Har97]. Instead of relying only on the color features for performing video surveil-

lance or inferring network configuration, computed metric information from the calibrated cameras
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can be used to determine correct correspondences. We present a novel technique to configure the

network as a whole. The target is that each calibrated camera should be able to communicate its

intrinsic and extrinsic parameters with other cameras in the network. We demonstrate that a (ver-

tical) vanishing point and the knowledge of a line in a plane orthogonal to the vertical direction is

sufficient to perform this task.

Our key contributionincludes a method to compute the relative orientation between non-

overlapping cameras using only vertical vanishing point, and a novel approach to calculate the

infinite homography between a pair of cameras in the network. As an application, we apply our

method to configure a Mixed Reality(MR) environment (Chapter11).

8.2 Geometry Of Networked Cameras

Our goal in this section is to demonstrate that one can establish a common world reference frame

to recover absolute camera orientations even with non-overlapping FoVs. The key to establishing

a common reference frame is the fact that all cameras share the same plane at infinity and, in our

case, also the same vertical vanishing point. In addition, we require a line to be visible in each

image in order to completely determine the orientation between the cameras with disjoint FoV.

The lines in each image need not to be parallel in the world; orthogonal lines can be used as well

(explanation follows in the next subsection).

Assuming that each camera as a unit has been calibrated in the network using the method

described in Part II, we would like the entire camera network to recover its own configuration.

That is, each camera should learn its relative orientation with respect to every other camera.

Figure8.2(a) shows a typical configuration of a camera network. Cameras are moving freely in
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Figure 8.2: A typical configuration (a) Dynamic Epipolar Geometry: figure demonstrates a
dynamic camera network where each camera is moving with respect to itself and with respect to
all the cameras in the network thereby inducing a different epiploar geometry at each time instance.
For a camerai at any time instancet, its center is labeled asCt

i . The camera can be looking at a
planar as well as non planar scene while translating and rotating. Each camera has an associated
FoV and all the cameras in the network have disjoint FoVs. The relative orientation between
cameras is denoted byRt

i,j and the translation byTt
i,j. (b) shows an instance of the dynamic

epipolar geometry. The figure contains two cameras having disjoint FoVs with some rotation and
translation between each camera.

space, inducing a unique epipolar geometry at each time instance. For any camerai at time instance

t, its center is labeled asCt
i . Figure8.3 shows a broader picture of the camera network. Each

camera is mounted on a moving or a stationary platform while varying its intrinsic and extrinsic

parameters. Each camera has an associated FoV and all the cameras in the network have disjoint

FoVs. The relative orientation between cameras at any time instancet is denoted byRt
i,j and the

relative translation byTt
i,j. We assume that the relative translationsTt

i,j can be computed either by

a set of surveyed points in the scene, or given by GPS. From here on we omit the superscriptt to

keep the notation simple.

8.2.1 Relative Orientation Estimation Using Vanishing Points

Vertical vanishing point (vi
z) [CT90] can be readily obtained from most naturally occurring or

man-made scenes, e.g. scenes containing buildings or other structures. Similarly, people or objects
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Figure 8.3: A Network of Cameras: The figure shows a general view of the network where each
camera may be mounted on a moving platform while detecting/tracking objects.

in the FoV of each camera can be used to determinevi
z. Several researchers [LZN02, KM05] and

recently we presented a method [JF06b] where motion of a tracked pedestrian is used to obtain the

vertical vanishing point. For a camerai at any time instance, given a vertical vanishing pointvi
z,

the vanishing lineli∞ can be determined by using the pole-polar relationship [HZ04]:

li∞ = ωiv
i
z (8.1)

li∞ intersects theIAC ωi at two complex points called the circular points.

In addition, we require that a line be visible in each image. This line can lie on any plane that is

orthogonal to the vertical direction, and may be specified either by the user, extracted by registering

to architectural plans or maps, or determined by other vision-based methods [CRZ99, BZ99]. For

example, checkered tiles on the floor, or brick lining on the wall, or other lines abundant in indoor

and outdoor setting, can be used to serve our purpose. Two situations, simplified to two-image
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Figure 8.4:Views from two non-overlapping cameras: A pair of parallel lines intersectl∞ at a
vanishing pointvi

x in the left image andvj
x in the right image, respectively. Above, the vanishing

line for each view is drawn in black while the parallel lines, an example of case1, are drawn
in green. The green line in each view intersect the vanishing line at a point. This point is the
corresponding vanishing point between the two views. As an example for case2, the blue line in
right image is orthogonal to the green line in the left image. Red color is selected to denote lines
used for estimating the vertical vanishing point.

cases, can occur with such a configuration, as shown in Figure8.4:

1 When the visible lines are parallel to each other in world: In this case, intersection of the imaged

line, li, with theli∞ yields a vanishing point orthogonal tovi
z:

vi
x ∼ li × li∞ (8.2)

wherevi
x, without loss of generality, is taken as the vanishing point along the x-axis for an

imagei.

2 When the visible lines are perpendicular to each other in world: The intersection of the imaged

line with the line at infinity yields vanishing point in each image that represent mutually

orthogonal directions in the world. In addition to Eq.8.2, for the second image (j) we get:

vj
y ∼ lj × lj∞ (8.3)

129



As an example for case1 (cf. Figure8.4), note thatli (i.e. green line) is visible in the left image

andlj (i.e. green line) is visible in the right image only (since we are dealing with non-overlapping

FOV). But sinceli andlj are parallel in the world, they intersect atvi
x andvj

x , respectively. These

two points are the corresponding vanishing points in the two views. As an example for case2, the

blue line in right image is orthogonal to the green line (li) in the left image, hence the vanishing

pointvj
y is orthogonal to the vanishing pointvi

x.

Absolute rotation w.r.t. the world reference frame: Given two vanishing pointsvi
x andvi

z from

each view of a single camera, the rotation of camerai with respect to a common world coordinate

system can be computed as:

r3 = ± K−1
i vi

z

‖K−1
i vi

z‖
, r1 = ± K−1

i vi
x

‖K−1
i vi

x‖
, r2 =

r3 × r1

‖r3 × r1‖ , (8.4)

wherer1, r2 andr3 represent three columns of the rotation matrix. The sign ambiguity can be

resolved by the cheirality constraint [HZ04] or by known world information, like the maximum

rotation possible for the camera.

Relative orientation is obtained from the obtained absolute orientation for each camera view.

Care must be taken in using Eq. (8.2) and Eq. (8.3). Based on the obtained vanishing points

(vy or vx), appropriate equations from Eq. (8.4) must be selected for determining the absolute

orientations.

8.2.2 Alternate Solution: Using Infinite Homography Relationship

An alternate solution is to use the infinite homography. A rotating and/or a zooming camera in-

duces an infinite homographyH∞
i,j, which relates two camerasi and j via the plane at infinity
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(Π∞). For such a case, infinite homography may be calculated directly from point or line cor-

respondences using Eq. (2.11) using the method described in [AHR01] (see [ZH94, HJL89] for

more on pose estimation). But for a camera undergoing a general motion the correspondences can

not be obtained as the FoV is disjoint. However, by determining points or lines lying onΠ∞ it is

possible to estimateH∞
i,j from such ideal point/line correspondences. The idea is as follows:Eq.

(2.11) should be simplified so that instead of solving forH∞
i,j, we only solve for the relative rotation

matrixRi,j between two camerasi andj.

Any point, let us sayvi
x, lying on li∞, for a camerai satisfies the orthogonality constraint

viT

x ωiv
i
z = 0. Thusvi

x is chosen as a vanishing point orthogonal tovi
z. Any such point in camera

i is transformed viaΠ∞ to a pointvj
x on another cameraj as:

H∞
i,jv

i
x ∼ vj

x, (8.5)

and similarly

H∞
i,jv

i
z ∼ vj

z, (8.6)

whereH∞
i,j is the infinite homography between camerai andj; andvi

x is obtained from the

method described in the last subsection.

We need more constraints if we are to solve for a generalH∞
i,j as it contains 8 unknowns (nine

minus the scale). However, we only need to compute the relative orientationRi,j between each

camera since the calibration matrix for each camera is already computed. Therefore, Eq.(8.6) can

be simplified to:

131



KjRi,jK
−1
i vi

z ∼ vj
z

or Ri,jr
i
3 ∼ rj

3 (8.7)

wherers
3 = K−1

s vs
z

‖K−1
s vs

z‖
with s = {i, j}. The third column of the rotation matrix thus computed

can provide two unknown angles for each camera as follows.

θs
y = sin−1(rs

3(1)
) and θs

x =
sin−1(rs

3(2)
)

cos(θs
y)

Eq.(8.5) is also simplified to:

Ri,jK
−1
i vi

x ∼ K−1
j vj

x (8.8)

whereKi andKj are the computed calibration matrices for camerai andj, respectively.

The third angle,θs
z for each camera need not be computed explicitly in order to get the relative

rotation between cameras. The relative rotation matrix is simplified to,

Ri,j = Rxj
Ryj

Rzj
RT

zi
RT

yi
RT

xi

or Ri,j = Rxj
Ryj

Rzij
RT

yi
RT

xi
(8.9)

whereRxi
Ryi

Rzi
represents rotation aroundx-axis,y-axis andz-axis, respectively, for a camera
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i.

Replacingsine andcosine with unknownx andy respectively, we solve Eq. (8.9) linearly

w.r.t. x andy. Scale ambiguity is removed by taking the cross ratio of the left and right hand side

of Eq. (8.9) while substitutingRxi
,Ryi

,RT
yj

andRT
xj

with the angles calculated above. Singular

Value Decomposition is applied to obtain the unknown relative angleθzij
. Knowing all the angles

allows us to recover relative orientation between each pair of cameras in the network.

The two methods described above require same information i.e.vx andvz, and provide sim-

ilar results. The methods are indeed alternate: in first method the relative camera orientations is

obtained from absolute camera orientation whereas in the second method we directly solve for the

relative rotation matrixRi,j. For experimental validation, the method described in Subsection8.2.1

is chosen due to its simplicity.

8.3 Singularities

The camera or network calibration algorithms, like any other algorithms, havesingularities. This

is also often referred to asdegenerate configurationsby some researchers. It is important to be

aware of such situations in order to get an insight into the problem and obtain reliable results.

By degenerate configurations we mean situations where a particular camera motion does not

result in any constraint on the camera intrinsics. For example, [WKS04] shows that it is possible to

obtain a closed-form solution for the only unknownf for a fronto-parallel or panning configuration

of a rotating camera. But it is not possible to obtain a closed-form solution forλ whenf, λ are

unknown parameters for a panning camera. Note that for rotating fixed cameras or freely moving

cameras it is always favorable to have large rotations. If there is no rotation between views then the
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Kruppa equations do not provide any constraint onω∗i as for such caseF = [e′]× and the equation

is reduced to[e′]×ω∗
i [e

′]× ∼ [e′]×ω∗
i [e

′]×.

It is beyond the scope of the current work to expound on all degenerate configurations for self-

calibration. Therefore, we only focus on critical configuration for one (f ) or two parameters (f, λ)

estimations. Zisserman et al. [ZLA98] examine ambiguities arising from motions with single di-

rection of the rotation axis when all the parameters are unknown but constant. When the axis of

rotation is perpendicular to the image plane, specified skew, principal point and aspect ration are

not sufficient to remove the ambiguity. For variable focal length cameras, [Stu99] derives condi-

tions under which it is not possible to calculate the value off . He shows that critical configuration

arises when: optical centers of stereo cameras are collinear, optical centers lie on ellipse/hyperbola

pair, or when the optical axes are parallel. Kahl et al. [KTA00] generalize [Stu99] to include cases

when other parameters vary as well and show that criticality is independent of the values of the

intrinsic camera parameters. For methods based on Kruppa’s equations, when onlyf is unknown,

motions are criticaliff the optical axes of the two cameras intersect or when the optical axes planes

are orthogonal.

We now consider critical configuration for the proposed method. We showed that it is possible

to determine absoulte/relative rotations for cameras comprising a network and that only one van-

ishing point is required. Critical configuration occurs only when we are unable to determine the

vanishing point for image sequences. Projection of the vertical vanishing point is given as:
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vz ∼




λf 0 0

0 f 0

0 0 1







r1 r2 r3 tx

r4 r5 r6 ty

r7 r8 r9 tz







0

0

1

0




T

or vz ∼
[

fr3 fr6 r9

]T

, (8.10)

assuming known aspect ratio (λ). Degenerate configuration occurs when:

1. r9 = cos θx cos θy = 0: This happens when eitherθx = 90◦ andθy = 90◦. This is the case

when our camera viewing direction is perpendicular to the vertical direction (z).

2. vz =

[
0 0 0

]T

i.e. θx = 90◦ andθy = 0◦: This situation occurs when camera is located

on the vertical axis with viewing direction perpendicular to thex − y plane. In this casevz

coincides with the principal point (since our principal point is at(0, 0) ).

3. f −→ ∞: The camera becomes an instance of affine camera. In such a configuration it

is not possible to measure any vanishing points as parallel lines are invariant under affine

transformations. An example would be that of distant aerial imagery.

Although of significant theoretical importance, the above cases do not commonly occur in

general settings.

8.4 Results

In this section we present some experimental results with synthetic as well as real data.
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Figure 8.5:Performance of network configuration method VS. Noise level in pixels:Left - Ab-
solute error in angles obtained by using the method described in Section8.2.2. Right - Absolute
error in errors obtained from the method described in Section8.2.1. Notice that while the curve for
θz is somewhat different, the curve for the other two angles is exactly the same. This is due to the
fact that we are using the same vertical vanishing point to estimateθx andθy for both the methods.

Synthetic Data: We rigourously test the proposed method for estimating the relative angles

between different cameras. Hundred vertical lines of random length and random location are gen-

erated to approximate the vertical vanishing points. Similarly, we chose hundred points (arbitrary

number) to represent the line (li) which is visible in imagei (see Section8.2). We gradually add

a Gaussian noise withµ = 0 andσ ≤ 3 to the data points making up the vertical lines. Vertical

vanishing point is obtained usingSVDon the vertical lines. Similarly,SVDis applied to the points

making upli to obtain the point of intersection ofli andl∞i . Translation and rotation are selected

subjectively to avoid degenerate configurations. While varying the noise from0.1 to 3 pixel level,

we perform1000 independent trials for each noise level, the results are shown in Figure8.5. The

absolute error is found to be less than1.2◦ for the maximum noise of3 pixel in our tests using both

the methods described in Section8.2.1and Section8.2.2as shown in Figure8.5.

Real Data-Using PTZ Camera for ground-truth: In order to obtain ground truth for relative

camera rotations, we employ a SONYr SNC-RZ30N PTZ cameras. The purpose of this demon-
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Figure 8.6:Outline map of the test sequence setup. Two cameras, initially with orthogonal FoV,
are translated and rotated. A camera is represented byCk

i , wherek is a camera label andi is a
frame or an instance number. See text for more details.

Camera # 1-Estimatedf (left to right): 1091.14, 1135.35, 1155.76, 1162.52, 1113.01, 1124.15

Camera # 2-Estimatedf (left to right): 1121.14, 1124.35, 1103.436, 1181.191, 1190.05, 1171.96

Figure 8.7:Some images from a test sequence using two cameras. The cameras are translated as
well as rotated. The green line indicate the knowledge of a line in world. In this particular case,
the line in one camera is orthogonal to the corresponding line in the second camera.

stration is to verify the accuracy and applicability of the proposed method. The outline of the test

sequence is shown in Figure8.6. Two PTZ cameras are used for the demonstration. The cameras

are represented byCk
i , wherek is a camera label andi is a frame number.

Some of the images from the test sequence are shown in Figure8.7. The top row of Figure

depicts images from camera 1, while the bottom from camera 2. The ground truth rotation for

the shown images is known by controlling the PTZ cameras. Self-calibration is performed on the

sequence and the results are shown in Figure8.7. The fundamental matrix is computed between
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Table 8.1:Ground Truth θz Vs. Estimated θ̂z: Column represent Camera # 1 denoted byC1
i ,

and rows represent Camera # 2 denoted byC2
i . Since the orientation between cameras is symmet-

ric(only a sign change), values of the lower left triangle of the table are denoted by *.

CAMERA # 1

C
A

M
E

R
A

 #
 2

C1
1 C1

2 C1
3 C1

4 C1
5 C1

6

(θz; θ̂z) (θz; θ̂z) (θz; θ̂z) (θz; θ̂z) (θz; θ̂z) (θz; θ̂z)
C2
1 (90◦; 90.66◦) (105◦; 100.59◦) (120◦; 117.6◦) (135◦; 132.22◦) (150◦; 150.94◦) (165◦; 157.56◦)
C2
2 * (90◦; 96.91◦) (105◦; 113.92◦) (120◦; 124.54◦) (135◦; 137.26◦) (150◦; 153.89◦)
C2
3 * * (90◦; 92.69◦) (105◦; 108.29◦) (120◦; 123.02◦) (135◦; 133.64◦)
C2
4 * * * (90◦; 96.56◦) (105◦; 111.91◦) (120◦; 121.53◦)
C2
5 * * * * (90◦; 88.26◦) (105◦; 103.82◦)
C2
6 * * * * * (90◦; 89.64◦)

consecutive frames obtained from each single camera to determine the calibration matrix. The

computed fundamental matrix is decomposed to obtain the relative translation and relative rotation

between the two frames. The technique presented by [Low04] automatically detects scene features

that can be used to robustly compute the fundamental matrix. If the scene contains moving objects,

the vertical vanishing point can be obtained automatically, as demonstrated by [KM05, JF06b] and

Lv et al. [LZN02]. As reported by Zhang [Zha00], the mean of the estimated focal length is taken

as the ground truth and the standard deviation as a measure of uncertainty in the results. Thus, with

a low standard deviationσ = 32.05, f is determined to be1139.50.

As is evident from Sections8.2, the most difficult angle to obtain is therelative θz (we omit

superscriptsij), as it can not be obtained fromvz alone. Therefore, we set up the experiment to

vary θz. Initially, the two cameras are separated by an angle ofθz = 90◦(pan angle) i.e. forC1
1 vs.

C2
1 (see Figure8.6). While translating, the cameras are rotated by some known angle. The images

shown in Figure8.7are selected such that the rotation angle between different instances/frames is
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(a) A view from two neighboring cameras (b) A view from two neighboring cameras

(c) Recovered 3D Geometry of cameras (d) Recovered 3D Geometry of cameras

Figure 8.8:(a) and (b) are views taken from two disjoint FoV cameras looking at a lobby entrance.
The two cameras are free to rotating and translating. The 3D rendering in (c) and (d) demonstrates
the computed dynamic geometry of the network. This network geometry is unique at each instance
of time.

θz = 15◦(an arbitrary angle). For example, the difference between the orientation ofC1
2 andC1

1 is

θz = 15◦. After self calibration, the method described in Section8.2.1is used to obtain the relative

camera orientation. The obtained results are presented in Table8.1.

Table8.1 compares the obtained̂θz with the ground truthθz. Each column of the table repre-

sents an instance from camera 1, while each row represents an instance from camera two. For ex-

ample, intersection of row3 and column3 represented the orientation between3rd frame/instance

of each cameraC1
3 andC2

3 . Since the relative rotation between two cameras is symmetric, we de-

note the lower left triangle of the table by* . The mean error in estimated angle and the standard

deviation is found to be3.53◦ and2.5◦, respectively, which is very low.

Errors can be attributed to many factors. Main source of error in a PTZ camera is the radial

distortion, as visible in the test images. Another important factor is the inherent error present in

localizing pixels for determining vanishing points.
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(a) Neighboring Cameras (b) Recovered 3D Geometry (c) Neighboring Cameras (d) Recovered 3D Geometry

Figure 8.9:(a) and (c) are instances from a data sequence looking from inside a hallway. The two
cameras have disjoint FoV as they are looking in almost opposite direction. At each time instance
the camera network has a unique geometry. The 3D rendering in (b) and (d) only demonstrates the
computed dynamic geometry of the network and the images inside the rendering do not represent
registered images.

Real Data-Moving Cameras: For further experimental validation, two sequences of real data

were obtained from two pairs of moving cameras fitted with GPS receivers. GPS data is required

to pinpoint exact camera location allowing us to compute the translation between each camera.

Unlike the results demonstrated in the previous subsection, the ground-truth is not available for

this experimentation and visual inspection is the only goodness of measure.

The data was collected over a long period of time and two instance from the first sequence are

shown in Figure8.8. The left camera is denoted by its centerCl and the right camera is denoted by

Cr, omitting the superscript used to indicate different time instances. Using computed vanishing

points, inter-camera rotation matrixRl,r is computed, which is then used to compute theH∞
i,j.

The resulting angles obtained are presented in Table8.2 (row 1 and2). Figure8.8(c) and Figure

8.8(d) render the recovered network geometry, which is intended to help visualize the obtained

results; and the rendered scene images are only texture maps and do not depict the actual image

registration.
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Table 8.2:External Parameters obtained from test dataset.

Views Recovered Relative Rotation (θij
x , θij

y , θij
z ) in degrees

Figure8.8(a) (12.84, 11.56, 44.99)
Figure8.8(b) (13.58, 13.51, 134.99)
Figure8.9(a) (−154.25,−1.04, 45.04)
Figure8.9(c) (−176.42,−1.7, 94.96)
Figure6.6 (9.53, 3.748,−86.22)

The second data sequence contains cameras looking in opposite directions in a hallway. In-

stances of this data sequence are shown in Figure8.9(a) and Figure8.9(c). The cameras are in

continuous motion at every time instance; the network geometry is rendered in Figure8.9(b) and

Figure8.9(d). Generally, scenes containing abundant architectural structures are well desirable if

we are to compute the vanishing points.

The rotation angles calculated from the second data sets are presented in row 3 and 4 of table

8.2. Since the cameras are looking in opposite direction,θx is close to−180o.

The errors could be attributed to several sources. Besides noise, non-linear distortion and

imprecision of the extracted features, one source is the causal experimental setup using minimal

information, which is deliberately targeted for a wide spectrum of applications. Despite all these

factors, our experiments indicate that the proposed algorithm provides good results.

SPECIAL CASE - PURE ROTATION: The proposed self-calibration method (Chapter6) is

based on the Kruppa equations. However, these equations rely on accurate estimation of the funda-

mental matrix. For a special case when no translation occurs, the fundamental matrix degenerates

and our self-calibration technique would not be applicable.

In order to self-calibrate a pure rotating camera, without loss of generality, the projection matrix
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(a) Ground Truth Angles(5◦, 0◦, 65◦) : Calculated Angles(5.41◦, 0.261◦, 64.04◦)

(b) Ground Truth Angles(11◦, 0◦, 55◦) : Calculated Angles(16.81◦, 1.82◦, 58.95◦)

(c) Ground Truth Angles(0◦, 0◦, 80◦) : Calculated Angles(1.08◦, 1.79◦, 78.15◦)

(d) Ground Truth Angles(10◦, 0◦, 45◦) : Calculated Angles(15.04◦, 0.73◦, 44.8184◦)

Figure 8.10:Four of the many test sequences taken from a PTZ camera. The ground truth relative
rotation angles are compared to the obtained rotation angles. Green line indicates a common lines
parallel in real world) while the lines used to compute the vertical vanishing point are drawn in
red.

for the first view can be formulated asPi = Ki[Ri|0], where the translationti = −RiC = 0. The

projection of any scene pointX onto an image plane is expressed asx = KiRiX.

For a scene point projected onto two different images, a 2D projective transformationHi,j

relates the corresponding points asxj = Hi,jxi, whereHi,j = KjRi,jK
−1
i . This 2D projective

transformation maybe calculated directly from point or line correspondences between images.

Using the propertyR = R−T, the definition ofHi,j leads to some constraints on theIAC :
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Ground Truth(0◦, 0◦, 55◦) : Calculated Angles(1.08◦, 3.78◦, 54.49◦)

Figure 8.11: A test sequence taken from a PTZ camera with people walking. The ground truth
relative rotation angles are compared to the obtained rotation angles. See text for more details.

(KjK
T
j ) = Hi,j(KiK

T
i )HT

i,j (8.11)

whereωj = (KjK
T
j )−1 andωi = (KiK

T
i )−1. Linear constraints on the unknowns ofω are

obtained by further assuming zero skew and unit aspect ratio. See [AHR01], [BR97] for further

details and discussions about calibrating rotating and zooming cameras.

Some test sequences are performed for this special case of camera motion. Four of the test cases

are shown in Figure8.10. The ground-truth relative rotation angles are compared to the obtained

relative rotation angles. Two PTZ cameras are used for this sequence. The lines which are parallel

in the world are drawn in green, while the lines used for the vertical vanishing point are drawn in

red. After self-calibrating each rotating camera, as described above, the angles are estimated as

described in Section8.2. The estimated rotation angles are shown below the figure. Another set of

a test sequence captured with a PTZ camera is shown in Figure8.11. Here pedestrians are walking

in the FoV of each camera. Different frames are supperimposed on one image as shown in the

Figure. The method proposed by Lv et al. [LZN02] is used to extract the vertical vanishing point.

The results obtained are very encouraging and close to the ground truth.

Effect of Principal Point on Camera Parameters:The proposed method assumes the princi-
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Figure 8.12:Intrinsic and extrinsic camera parameters when the principal points is not exactly at
the center of the image.

pal point is located at the center of an image. The image is then transformed so that the principal

point lies at(0, 0). Although this is a very reasonable assumption for currently available cameras,

we analyze the effect of deviation from this assumption on both intrinsic and extrinsic camera

parameters.

A random Gaussian noise ofµ = 0 andσ = 9 pixel was introduced to a point cloud containing

250 points. The error curves for the obtained focal lengthf, θx, θy andθz are shown in Figure8.12.

The error curves for all the estimated parameters are near linear. For a displacement of9 pixels off

the image center, the relative error inf is close to0.03% (cf. Figure8.12). Similarly, the absolute

errors forθx, θy andθz are also very small, see Figure8.12(b) and Figure8.12(c), respectively.

Thus a displaced principal point does not significantly affect the proposed method.

8.5 Conclusion

We have successfully demonstrated a novel approach to recover dynamic network geometry. Each

camera, having a disjoint FoV, is assumed to undergo a general motion. Such a network could

be, for instance, deployed for surveillance applications comprising of both stationary PTZ cameras
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and cameras mounted on a roaming security or reconnaissance vehicles (e.g. [CM03]). Another

application could be in an urban battlefield setting with soldiers carrying head mounted cameras.

Our contribution includes (i) computing the relative rotation matrix betweenN cameras using

only vertical vanishing point, and (ii) calculating theH∞
i,j for non-over lapping cameras and using

it to obtain absolute rotation of each camera with respect to a common world coordinate system

without overlapping FoV. We have successfully demonstrated the proposed method on several se-

quences and discussed possible degenerate configurations. The proposed network calibration tech-

nique is tested on synthetic as well as on real data. Encouraging results indicate the applicability

of the proposed system.
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CHAPTER 9
EUCLIDEAN PATH MODELING

We consider the problem of monitoring an area of interest, e.g. a building entrance, parking lot,

port facility, an embassy, or an airport lobby, using stationary cameras. Our goal is to model the

behavior of objects of interest, e.g. cars or pedestrians, with the intent to cover as large areas as pos-

sible by generally deploying non-overlapping cameras. In path modeling [GSR98, JH95, JJS04]

for surveillance, the goal is to build a system that, once given an acceptable set of trajectories of

objects in a scene, is able to learn the routes or paths most commonly taken by objects in order to

classify incoming trajectories as conforming to the model or as unusual and anomalous.

The definition of an unusual behavior might be different for different applications. For exam-

ple, a person walking in a region not used by most people, a car following a zigzag path or a person

running in a region where most people simply walk. Apathor routecan be defined as any estab-

lished line of travel or access. This is the region that is most used by the objects.Trajectorycan

be defined as a path followed by an object moving through the space. Most objects tend to follow

a common trajectory while entering or exiting a scene due to presence of pavements, benches, or

designated pathways. Our approach can model the usual trajectories of the object and perform

measurements to indicate atypical trajectories that might call for further investigation through any

higher level event recognition. Thus, given an unusual or anomalous behavior, we are able to dis-

tinguish it from acceptable ones. Moreover, as common pathways are detected by clustering the

trajectories, we can efficiently assign detected trajectory to its associated path model. Hence, the

vision system needs only to store the path label and the object labels instead of the whole trajectory

set, resulting in a significant compression for storing surveillance data.
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It is, however, known that due to perspective projection the measurements made from the im-

ages do not represent Euclidean information. Thus the obtained object trajectories and conse-

quently the associated probabilities represent projectively distorted data, unless we have a cali-

brated camera. This is evident from simple observations: an object grows larger and moves faster

as it approaches the camera center, or two objects moving in parallel directions seem to converge

at a point in the image plane. Or, for example, a person walking at a distance from a camera will

be in the field of view for a longer period of time compared to a person walking very close to the

camera. Similarly, for a person walking towards a camera, the obtained trajectory contains a fewer

number of overlapping data points and it is not possible to obtain accurate object motion from such

a trajectory. The projective camera thus makes it difficult to characterize object characteristics and

behaviors - in terms of their sizes, motion, length ratios and so on - unless camera is calibrated, in

which case one can perform Euclidean measurements directly from images. For this purpose, we

use the method described in Chapter5.

In a nutshell, this chapter addresses a comprehensive set of problems for building a path mod-

eling system, by proposing novel methods to use the calibrated camera to (i) perform metric rec-

tification of the input sequence, (ii) register the sequence to the aerial imagery, (iii) obtain metric

information about the objects from the rectified and registered images, and hence (iv) build Eu-

clidean path models to monitor and characterize behavior of the objects by observing and perform-

ing measurements on trajectories. Remainder of chapter is organized accordingly.
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9.1 Related Work

We divide the task of path modeling for surveillance in a single camera into three steps. The first

step involves detecting and tracking objects in the video frames. Through this process, one can

extract image plane trajectories of moving objects, which provide projectively distorted 2D repre-

sentation of the true path in the 3D scene. In the second step, projective distortions are removed

from the extracted trajectories to provide a Euclidean model of the path in the 3D space. Finally,

a scene path model is built, whereby anomalous behaviors are detected by matching incoming tra-

jectories to the model path for the area under surveillance. The system is able to log the behavior

of an object from the moment it enters the camera’s field of view until it exits, and enables the user

to determine its conformity to the path model.

The first step of tracking is essentially a correspondence problem and is not the primary focus

of this section; correspondence needs to be established between an object seen in the current frame

and those seen in previous frames. Tracking is a widely studied problem in computer vision, and

many suitable trackers exist for our purpose [CRM03, SM00, Ver99, KCM03, KS03]. We used the

tracker presented by Javed et al. [JS02] to validate our method.

The second step, i.e. removal of the projective distortion, is very essential. As argued above, in

order to obtain undistorted and real world information from any video sequence, the camera needs

to be calibrated. Calibration is a necessary process in computer vision in order to obtain Euclidean

information about the scene (up to a global scale), and to determine the rigid camera motion. We

used the camera calibration methods based on pedestrians as described in Chapter5.

Given a calibrated camera, object trajectories can be metric rectified. We can, thus, construct
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a path model for the scene, incorporating various metric characteristics such as curvature and ve-

locity. Although path modeling is a relatively new problem, we briefly survey some of the related

work. Grimson et al. [GSR98] use a distributed system of cameras to cover a scene, and em-

ploy an adaptive tracker to detect moving objects. A set of parameters for each detected object

are recorded, like the position, direction of motion, velocity, size, and aspect ratio of each con-

nected region. Tracked patterns (e.g. aspect ratio of a tracked object) are used to classify objects

or actions. Tracks are clustered using spatial features based on the vector quantization approach.

Once these clusters are obtained the unusual activities are detected by matching incoming trajec-

tories to these clusters. Thus, unusual activities are outliers in the clustered distributions. Boyd

et al. [BMV99] demonstrate the use of network tomography for statistical tracking of activities

in a video sequence. The method estimates the number of trips made from one region to another

based on the inter-region boundary traffic counts accumulated over time. It does not track an ob-

ject through the scene but only logs the event when an object crosses a boundary. The method

only determines the mean traffic intensities based on the calculated statistics and no information is

given about trajectories. Johnson et al. [JH95] use a neural network to model the trajectory dis-

tribution for event recognition and prediction. Recently, [MT04], and [TDG05] proposed methods

for determining topology of a multi-camera network, and [WP05] used the 3D structure tensor for

representing global patterns of local motion.

The most related work to ours is that of Makris and Ellis [ME02], where they develop a spatial

model to represent the routes in an image. Once a trajectory of a moving object is obtained, it is

matched with routes already existing in a database using a simple distance measure. If a match is

found, the existing route is updated by a weight update function; otherwise a new route is created

149



for this new trajectory having some initial weight. Spatially proximal routes are merged together

and a graph representation of the scene is generated. One limitation of this approach is that only

spatial information is used for trajectory clustering and behavior recognition. The system cannot

distinguish between a person walking and a person lingering around, or between a running and a

walking person, since their models and measurements are not Euclidean. There exist no stopping

criteria for merging of routes.

Our approach provides a Euclidean path modeling based on calibrated measurements. We then

propose a multi-feature path modeling method that allows us to discriminate between trajectories

with confidence. Innovative use of normalized-cuts makes possible to employ an unsupervised

training phase for path modeling. Unlike existing methods, we not only look at the spatial infor-

mation, but also the velocity and the curvature characteristics of trajectories. We test our system

on real-world sequences with pedestrians passing through

9.2 Training Phase - Camera Calibration & Trajectory Rectification

Our framework is divided into two phases: the training phase and the testing phase. During train-

ing phase, our goal is tofirst used the calibrated camera to metric rectify the extracted object

trajectories.Second, to cluster the input trajectories and build a model based on our features (Sec-

tion 9.2.1). Once we have our path model, we can test the incoming trajectories and check for

conforming behavior (as described in Section9.3).

Trajectory And Image Rectification Once the camera is calibrated, the object trajectories ob-

tained in the training phase can be metric rectified. As argued above, metric rectified data presents

a more accurate picture of the original data. The line at infinityl∞ intersectsω at two complex
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conjugate ideal pointsI andJ, called thecircular points [HZ04]. The conic dual to the circular

points is given byC∗
∞ = IJT + JIT whereC∗

∞ is a degenerate conic invariant under similarity

transformation. Under a point transformation,C∗
∞ transforms as:

C∗′
∞ = (HPHA)C∗

∞(HPHA)T =




KKT KKTv

vTKKT vTKKTv




whereHP andHA are respectively the projective and affine components of the projective trans-

formation. It is clear that the affine (K) and the projective (v) components are determined directly

from the image ofC∗
∞. OnceC∗′

∞ is identified, a suitable rectifying homography is obtained by

using the SVD decomposition:

C∗′
∞ = U




1 0 0

0 1 0

0 0 0




UT (9.1)

whereU is the rectifying projectivity. A stratified solution is also proposed by Liebowitz

[LZ98]. More results are provided in Section9.5.1.

Fig. 9.1 depicts some results obtained by rectifying the obtained training trajectories from

two of our three test sequences - each column represents a different sequence. Fig.9.1(a) shows

the training trajectories superimposed on the images plane. Fig.9.1(c) is the rectified image,

representing rectified trajectories, obtained by performing metric rectification on Fig.9.1(a).

From here on, all references to 2-D image coordinates and trajectories implyrectified 2-D

image coordinates andrectified trajectories, respectively. For simplicity and better visualization,
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(a) (b)

(c) (d)

Figure 9.1: Rectified Trajectories for two sequences (column wise):(c) represents reconstructed
trajectories forSeq#2, while (d) representsSeq#3. Jagged dots at end points of the trajectories,
in (d), are due to noisy tracking. See text for more details.

the results are still shown on un-rectified image plane in subsequent sections.

9.2.1 Model Building

Another important step during the training phase is to identify the different paths traversed by

pedestrians in a scene. This section elaborates on how the extracted trajectories are used to create

a path model.

Typical Setup: A typical setup consists of a single camera mounted on a wall or on a tripod looking

at a certain location.For our training, we let people walk around the monitored scene and the object

tracker gives the trajectories for the objects moving across the scene. Generally the trackers are

able to uniquely label objects appearing in the sequence. Therefore, it is possible to maintain a

history of the route taken by an object. For any objecti tracked throughn frames, the 2-D image

coordinates for the trajectory obtained can be given asTi = {(x1,y1), (x2,y2), ..., (xn,yn)}.
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Note that the trajectories will be of varying lengths, depending on the location and velocity of

the person. The trajectory of an object moving slowly will have more points (or pixels) compared

to a fast moving object. For most tracking systems, it suffices to track the centroid of an object.

But this might not be a good measurement for our system as we are dealing with physical path-

ways where the position of an object is very important. Thus, we track the feet of the objects for

more precise measurements. The trajectories obtained through the tracker are sometimes noisy;

therefore, trajectory smoothing is performed.

9.2.2 Trajectory Clustering

Once we have rectified trajectories from our training set, the next task is to cluster the trajectories

into different paths. Clustering has to be based on some kind of similarity criteria. Perceptually,

humans tend to group trajectories based on their spatial proximity. Since we are trying to create

a path model, it is essential that we perform clustering using the spatial characteristics of the

trajectories. Thus, we choose the Hausdorff distance as our similarity measure. For two trajectories

Ti andTj, the Hausdorff distance,D(Ti,Tj), is defined as:

D(Ti,Tj) = max{d(Ti,Tj),d(Tj,Ti))}, (9.2)

whered(Ti,Tj) =
max min

a ∈ Ti b ∈ Tj

‖a− b‖

The advantage of using Hausdorff distance is that it can compare two sets of different car-

dinality. Thus it allows us to compare two trajectories of different lengths. In order to cluster

trajectories into different paths, we formulate a complete graph. Each node of the graph represents
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Figure 9.2:A complete graph of five nodes with Hausdorff distance as the edge weights. The red
line may be a possible normalized-cut partitioning the graph into two subgraphs.

(a) (b) (c) (d)

Figure 9.3:Results of trajectory clustering using normalized-cuts. (a) all the trajectories in our
training setSeq#2 . After applying normalized-cuts, the clustered paths are shown in (b), (c) and
(d).

a trajectory. The weight of each edge is determined by the Hausdorff distance between the two

trajectories. The constructed complete graph needs to be partitioned. Each partition corresponds

to a unique path, having one or more trajectories. To perform such a partition accurately and au-

tomatically, normalized-cuts [SM00] are used recursively to partition the graph. An example of

graph formulation is given in Fig.9.2.

Spatially proximal trajectories will have small weights because of lesser Hausdorff distance,

and vice versa. This novel usage of normalized-cuts for trajectory clustering has certain advantages

over other graph cut techniques. First, it avoids bias for partitioning out small sets of points.

154



Second, the problem is reduced to finding the eigenvectors of the system, which is very easy to

compute. This technique makes it possible to perform recursive cuts by using special properties of

the eigenvectors. We refer the reader to [SM00, SM98] for details on normalized-cuts. Fig.9.3

shows the results obtained by clustering one of our data set.

9.2.3 Envelope And Mean Path Construction

At this stage, trajectories have been clustered into different paths by applying normalized-cuts.

Each path is represented by trajectories that make up that particular path. These trajectories, rep-

resenting their corresponding paths, are used to create a path envelope and a mean path represen-

tation. An envelopecan be defined as the spatial extent of a path (see Fig.9.4). Applying the

Dynamic Time Warping (DTW) [Keo02] algorithm, with column representing a trajectoryA and

the row representing a trajectoryB, point-wise correspondences between the two trajectories is

determined. Using DTW, distance at each instance is given by:

S(i, j) = min{S(i− 1, j − 1), S(i− 1, j), S(i, j − 1)}+ q(i, j) (9.3)

where the distance measure isq(i, j) = e
(−κ(i,j))

σκ +e
(−ij)

σe

2
, ij represents the Euclidean distance,

σκ represent the standard deviation in spatio-temporal curvature (explained later), andσe repre-

sents a suitable standard deviation parameter for the trajectory (in pixels). Thus, this distance

measure merges trajectories based on the spatial as well as spatio-temporal curvature similarity.

This algorithm is applied to the trajectories of all the obtained paths.

By pair-wise application of the above mentioned algorithm on each pair of trajectories from

an obtained path, an envelope is created to represent the spatial extent of the path, and a mean
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Figure 9.4:(a) Standard construction for DTW algorithm for matching two trajectoriesA andB.
(b) represents a typical scene where an object is traversing an existing path. An average trajectory
and an envelope boundary are calculated for each set of clustered trajectories.

trajectory (using DTW) to represent all trajectories in the path. As shown in Fig.9.5, for two

trajectories, the point-wise matching between the two trajectories is carried out using theS(i, j)

measure defined above. Connecting the mid-points of the lines joining the matched corresponding

points is taken as the mean path. And consequently, for these sample cases, the two trajectories,

represented in green and red color, show the spatial extent of the path.

9.3 Test Phase: Scene Modeling And Verification

This section describes thetest phase. A path model is developed that distinguishes between trajec-

tories that are:

• Spatially unlike

• Spatially proximal, but of different speeds

• Spatially proximal but crooked

• or spatially proximal, but exceeding a maximum physical speed limit.
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Figure 9.5:Dynamic Time Warping: An example of an average trajectory obtained by applying
DTW on two sample trajectories. Blue lines connect corresponding matched points between the
two trajectories.

To achieve these goals, first the usual paths are learned by applying normalized-cuts to cluster

trajectories, as mentioned above. Once we have detected all paths in a scene, we apply our testing

measure to verify the conformity of a candidate trajectory.

Validity of the candidate trajectory is tested based on its spatial, velocity and spatio-temporal

curvature properties. Each of these tests serves a distinctive purpose. The usage of spatial proper-

ties for testing is to guarantee that the candidate trajectory is spatially close to our path i.e. to the

envelope of our model. An anomalous trajectory can be discarded right away if it is considerably

distant from the model. Using velocity characteristics allows us to distinguish between objects

moving at different speeds e.g. a person walking compared to a person running, or recognize

exceeding the expected physical speed limit. The spatio-temporal curvature measure makes it pos-

sible to distinguish between motion characteristics of our data and that of the candidate trajectory.

For example, if our training data consists of pedestrians walking in straight line, then we can eas-
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ily distinguish someone walking in a zigzag manner using our model, and hence classify it as an

anomalous behavior.

Spatial Proximity: To verify spatial similarity, membership of the test trajectory is verified to the

developed path model. All points on the candidate trajectory are compared to the envelope of the

path model. The result of this process is a binary vector with1 when a trajectory points is inside the

envelope and0 (zero) otherwise. This information is used to make a final decision for a candidate

trajectory along with the spatio-temporal curvature measure. If all candidate trajectory points are

outside the envelope, then this is an outright rejection.

Motion Similarity: The second step is essential to discriminate between trajectories of varying

motion characteristics. The trajectory whose velocity is similar to the velocity characteristics of

an existing route is considered similar. Velocity for a trajectoryTi(xi,yi, ti) , i = 0, 1, , N − 1, is

calculated as:

v′i = (
xi+1 − xi

ti+1 − ti

yi+1 − yi

ti+1 − ti

), i = 0,1, . . . ,N− 1 (9.4)

Mean and the standard deviation of the motion characteristics of the training trajectories are

computed. A Gaussian distribution is fitted to model the velocities of the trajectories in the path

model. The Mahalanobis distance measure is used to decide if the test trajectory is anomalous.

τ =
√

(v′i −m′
p)T(

∑
)−1(v′i −m′

p) < ϕ (9.5)

Wherev′i is velocity from the test trajectory,m′
p is the mean,ϕ a distance threshold, and

∑
is

the covariance matrix of our path velocity distribution.
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Spatio-Temporal Curvature Similarity: The third step allows us to capture the discontinuity in

the velocity, acceleration and position of our trajectory. Thus we are able to discriminate between

a person walking in a straight line and a person walking in an errant path. The velocityv′i and

accelerationv′′i , first derivative of the velocity, is used to calculate the curvature of the trajectory.

Curvature is defined as:

κ =

√
y′′(t)2 + x′′(t)2 + (x′(t)y′′(t)− x′′(t)y(t))2

(
√

x′(t)2 + y′(t)2 + 1)3
(9.6)

Wherex′ andy′ are the velocity components inx andy direction, respectively. Mean and stan-

dard deviation ofκ’s is determined to fit a Gaussian distribution for spatio-temporal characteristic.

We compare the curvature of the test trajectory with our distribution using the Mahalanobis dis-

tance, bounded by a threshold. By using this measure we are able to detect irregular motion. For

example, a drunkard walking in a zigzag path, or a person slowing down and making a u-turn.

True Physical Velocity: This measure is obtained by registering the ground-based surveillance

cameras to aerial imagery. It is known that under projective imaging, a plane is mapped to the

image plane by a perspective transformation. One way to uniquely identify this projective trans-

formation is when the Euclidean world coordinates of four or more points are known. Thereafter,

the images can be rectified to one that would have been obtained from a fronto-parallel view of the

plane for a good registration to the aerial imagery. However, this imposes too many restrictions on

the image rectification process as the knowledge of the world points is not always readily available,

and the process can not be automated. To make this process automatic (i.e. without having to man-

ually specify the Euclidean world coordinates of points), the estimated affine and the perspective
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 9.6:Image Rectification and Registration:(a) An image fromSeq # 3, where as (b) is the
metric rectified image for the same sequence. The metric rectified image is then registered to the
satellite image as shown in (c). A rectified frame fromSeq # 2andSeq # 1are shown in (d) and (f),
respectively. The satellite images for these sequences are shown in (e) and (g), respectively. Since
the satellite imagery (i.e. (e) and (g)) is different from the test sequences (due to new construction),
the test images (i.e. (d) and (f) are not registered.

transform can be combined together to efficiently metric rectify the video sequence such that the

only unknown transformation is the similarity transformation. We then use the method presented

in [SS06, SGJ05] to perform image registration.

Fig. 9.6 shows an example of our automatic registration to aerial imagery. Once, a video

sequence is registered to an aerial image, it is possible to retrieve metric information from the

input video sequence, e.g. the true physical velocity. Generally, aerial images contain the world-

to-image scale information, for instance in Fig.9.9, where140 pixels correspond to40 yards. We

use this estimated velocity to test if an object violates any established speed restrictions in a scene.
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Given the spatial, and spatio-temporal measures computed as described above, we can examine

the conformity of any incoming sequence. Thus, initially we detect non-conforming trajectories on

the basis of spatial dissimilarity. In case the given trajectory is spatially similar to one of the path

models, the similarity in the velocity feature of the trajectories in that path and the given trajectory

is computed. If the motion features are also similar then a final check on spatio-temporal curvature

is made. In addition to these similarity measures, we also determine the true physical speed to

verify if a maximum permitted speed is violated. The trajectory is deemed to be anomalous if it

fails to satisfy any one of the spatial, velocity or spatio-temporal curvature constraints.

9.4 Handling Occlusions

For object detection and tracking, we use the method proposed by [JS02]. When an occlusion

occurs the accurate position and velocity of the occluded object can not be determined. Few cases

of occlusion are:

Inter-object occlusion occurs when one object blocks the view of other objects in the field of

view of the camera. The background subtraction method gives a single region for occluding

objects. If two initially non-occluding objects cause occlusion then this condition can be

easily detected.

Occlusion of objects due to thin scene structureslike poles or trees causes an object to break

into two regions. Thus more than one extracted region can belong to the same object in such

a scenario.

Occlusion of objects due to large structurescauses the objects to disappear completely for a
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(a) (b) (c) (d) (e)

Figure 9.7: Some cases of trajectories resulting from occlusion during the training phase and
the test phase. (a) and (c) shows some trajectories obtaining due to occlusion not included in the
training set forSeq # 1andSeq # 2, respectively. (b), (d) and (e) show some incomplete trajectories
obtained due to occlusion which were rejected during the test phase.

certain amount of time, that is there is no foreground region representing such objects.

More details on how we handle these occlusions during the tracking process can be found in

[JS02]. Although our tracking can handle occlusions to a great degree, not all cases can be han-

dled correctly. As a result, we obtain incorrect trajectories, which affects our trajectory clustering

method. During our training phase, two cases are considered:

1. When Inter-Object occlusion occurs: This kind of occlusion generates incomplete trajecto-

ries, i.e. a trajectory starts from one end of the image and ends before reaching the image

boundary (possibly an exit point). We ignore this trajectory and do not use in our path build-

ing phase.

2. A new trajectory is generated not at the boundary of the image, but rather well inside the

image plane. This generally occurs when scene structures causes an object to break, or when

the tracker assigns new trajectories to objects emerging from occlusion. We also ignore this

type of trajectory.

Some cases of trajectories resulting from occlusions are shown in Figure9.7. Currently, oc-

cluding trajectories are not used in the training phase. Mainly because using partial or incomplete
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trajectories would in general lead to an incorrect path model. However, some user-defined cases

may be included if required.

During the testing phase, trajectories resulting from occlusion are not treated specially. If

such a trajectory does satisfy the spatial proximity feature, it fails the motion and spatio-temporal

features. This happens because there is no information regarding velocity and the curvature of the

trajectory at the missing sections of the trajectory.

9.5 Results

The proposed system has been tested on multiple sequences with a variety of motion trajecto-

ries. The sequences have a resolution of320 × 240 pixels and captured at multiple locations and

each location contained multiple paths of travel. Three test sequences were used for evaluation

purposes, namedSeq#1, Seq#2, andSeq#3. Our tracker is able to accurately establish cor-

respondences over a variety of environmental conditions. Some test results and examples were

provided throughout this chapter to clarify and illustrate the steps. Below, we present additional

experimental evaluations.

9.5.1 Evaluating Registration To Aerial Imagery

Registration to aerial imagery gives a global view of the scene that is under observation, and allows

for measuring physical quantities such as speed for determining conformity of incoming trajecto-

ries. The results obtained by rectifying the test sequences are shown in Fig.9.6. A frame from the

test sequenceSeq # 3is rectified by using the line at infinity which is obtained as:l∞ = ωvz. The

obtained circular points are used to construct the conicC∗′
∞ in order to obtain the rectifying projec-
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(a) (b) (c) (d) (e) (f)

Figure 9.8:Six test cases used to retrieve metric information. See text for more.

tivity, as described in Section9.2.1. The rectified image is shown in Fig.9.6(b), and the registered

image is shown in Fig.9.6(c). Similar computation forSeq # 2andSeq # 1produce the rectified

images as shown in9.6(d) and9.6(f), respectively. Due to some newly constructed structures, the

aerial imagery forSeq # 2andSeq # 1is somewhat different from the test sequences, hence the

images are not perfectly registered.

Five cases are shown in Fig.9.8 for computing physical speed. Fig.9.8(a) shows a golf cart

that takes only two seconds to move across the scene - the true speed obtained from the registered

image is found to be20.369 km/hr. The velocity of the bicycle, as shown in Fig.9.8(b), is found

to be 12.22 km/hr, whereas for three cases of pedestrians (i.e. Fig.9.8(c)-(e)) the velocity is

determined to be4.58 km/hr, 3.66 km/hr, and4.22 km/hr, respectively, which is very close to the

average human walking speed. A case of a person riding a skate board is shown in Fig.9.8(f) and

the retrieved velocity is9 km/hr.

Registration of multiple cameras to the aerial image is shown in Fig.9.9. Three cameras were

placed at three different locations along the path shown in the figure. Behavior of objects in the re-

gions covered by the three cameras can be modeled by the proposed method and gives, in essence,

the global behavior of the objects. Moreover, after metric rectification, the data obtained from mul-

tiple cameras can be used to obtain correct object correspondences across multiple non-overlapping
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CAM 1

CAM 2

CAM 3

SCALE INFO

Figure 9.9:Multiple cameras registered to the corresponding satellite image: The input images
have a few new structures compared to the old satellite image.

cameras i.e. the problem of object hand-over across multiple cameras (see [KCM03, JSS05]). For

example, the true velocity of an object, or the height of an object can be extracted (once the camera

is calibrated) and used as an additional feature for obtaining the correct correspondences across

multiple non-overlapping camera.

9.5.2 Evaluating Path Modeling

As described above, during the training phase, normalized-cuts are applied to the trajectories in

order to extract different paths in the scene. Once the different paths are determined, various

characteristics are extracted form the trajectories in each path (Section9.3). Three test sequences

of varying length used:

Seq#1: This is a short sequence of3730 frames with 15 different trajectories forming two

unique paths. The clustered trajectories are shown in Fig.9.10.

Trajectories obtained for the training sequence are depicted in Fig.9.10(a)(b)(c), representing

different behavior of the pedestrians. One test case is shown in Fig.9.10(d). The training sequence

only contained people walking in the scene. But the cyclist shown in (d) has motion character-
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(a) (b) (c) (d)

Figure 9.10:(b)(c) show three clustered path forSeq#1 while (a) shows all the trajectories in the
training phase. (d) demonstrates a test case where a bicyclist crosses the scene at a velocity greater
than the pedestrians observed during the training phase.

(a) (b) (c)

Figure 9.11:Results obtained fromSeq#2. Image (a),(b) and (c) show instances of a drunkard
walking, a person running, and a person walking, respectively. Red trajectories denote unusual
behavior while the black trajectories are the casual behavior.

istics different (containing faster movement) than the training cases, hence detected as abnormal

behavior (displayed in red).

Seq#2: A real sequence of9284 frames with27 different trajectories forming3 different paths

after clustering. The length of the trajectories varies from250 points to almost800 points. The

trajectories clustered into paths are shown in Fig.9.3. The sequence contained pedestrians walking

in either a straight line, or move left/right at the junction.

Three test cases are depicted in Fig.9.11. A person walking in a zigzag fashion (Fig.9.11(a)),

and a person running (Fig.9.11(c)) are flagged for an activity that is considered as an unusual

behavior. Fig.9.11(b) demonstrates a case where a person walks at a normal pace in conforming

behavior.
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(a) (b)

(c) (d) (e)

Figure 9.12:Results from the training sequence ofSeq#3: (a) shows all the trajectories used in
the training set. (b)-(d) are the4 paths clustered from the input data.

Seq#3: The training sequence contains over20 minutes of data forming over100 trajectories

of people walking around in the scene. The trajectories are clustered into4 path models: horizontal

movement, people coming from the upper part of the scene and going to the right, people coming

from the upper region and coming to the lower right, and people coming from the left region and

moving towards the lower part of the image. Trajectories clustered into different paths are shown

in Fig. 9.12.

Some of the test cases are shown in Fig.9.13 (column wise). Two cases Fig.9.13(a,e) and

Fig.9.13(b,f) contain people walking at normal pace - following the path model constructed in

the training phase, hence flagged with a black trajectory i.e. acceptable behavior. Third column

Fig.9.13(c,d) is flagged unacceptable as the person moves left, which is not contained in the model.

Similarly, 4th column contains a golf cart driven across the scene.

The system gives satisfactory results for all our experiments and is fairly efficient. Although

some existing methods do incorporate model update, we believe this is what leads to amodel drift.

That is, after a number of updates the model can become general enough to accommodate any be-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9.13:Results forSeq#3. Column1 and2 demonstrate normal behavior, while column3
and4 demonstrate two examples of unacceptable behaviors. See text for more details.

havior considering it as acceptable behavior. But certainly, the applicability of the proposed system

lies in the spheres where there is a defined behavior, differentiable from certain other unacceptable

behavior for, lets say, security reasons.

9.6 Conclusion

This chapter proposes a unified method for path modeling, detection and surveillance. The trajec-

tory data is metric rectified to represent a truer picture of the data. Metric rectified observed scene

is registered to aerial view to extract metric information from the video sequence, for example, the

actual speed of an object. Normalized-cuts are then used to cluster metric rectified input training

trajectories into various paths. We extract spatial, velocity and spatio-temporal curvature based

features from the clustered paths and use it for unusual behavior detection. The proposed path

modeling method has been extensively tested on a number of sequences and have demonstrated

satisfactory results. Recognizing more complex events by attaching meanings to the trajectories is

also one of our future goals.
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CHAPTER 10
ESTIMATING GPS COORDINATES FROM IMAGES

In Chapter4, we described how to calibrate a camera by presenting two different methods for

estimatingl∞. As described below, in order to perform geo-temporal localization, we need to

estimate the azimuth and the altitude angle of the sun. For this, it is necessary that the object

bottom and top be visible in the image. However, if by some other technique the above mentioned

two angles are readily available, then it is not necessary for the object to be visible.

In ICCV 2005 a contest was run on a collection of color images acquired by an already cali-

brated digital camera. The photographs were taken at various locations and often shared overlap-

ping fields of view, or had certain objects in common. More importantly, the GPS locations for a

subset of these images were provided in advance. The goal of the contest was to guess, as accu-

rately as possible, the GPS locations of the unlabeled images. This chapter pushes the limits in the

state of the art beyond what is currently known to be feasible from images in terms of geo-temporal

localization solely based on computer vision techniques.

The cue that we use to geo-localize the camera and to determine the date of acquisition is

the shadow trajectories of two stationary objects during the course of a day. Shadows have been

used in multiple-view geometry in the past to provide information about the shape and the 3-

D structure of the scene [BP98, CW06], or to recover camera intrinsic and extrinsic parameters

[AB04, CS05]. Shadows are also recognized as useful tools for determining the time of the day.

The use of shadow trajectory of a gnomon to measure time in a sundial is reported to as early as

1500 BC by Egyptians, which surprisingly requires sophisticated astronomical knowledge [Her67,

III94, Wau73]. Determining the GPS coordinates and the date of the year from shadows in images
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is a new concept that we introduce in this chapter.

In terms of applications, it is clear that the ability to determine geo-temporal information di-

rectly from visual cues, and without using any special instruments, opens new opportunities for the

use of camera systems, or processing of visual data. Numerous applications may be envisioned,

amongst which forensics, intelligence, security, and navigation are perhaps the most important

ones. To demonstrate the power of the proposed method we downloaded images from online traf-

fic surveillance webcams, and determined accurately the geo-locations and the date of acquisition.

10.1 The Geo-temporal Localization Step

After auto-calibration, we can determine the geo-location up to longitude ambiguity, and specify

the day of the year when the images were taken up to, of course, year ambiguity. This is possible

by using only three shadow points, compared to5 required for the camera calibration. The key

observation that allows us to achieve this is the fact that a calibrated camera performs as a direction

tensor, capable of measuring direction of rays and hence angles, and that the latitude and the day

of the year are determined simply by measuring angles in images.

Latitude: An overview of the proposed method is shown in Fig.10.1. Let si, i = 1, 2, 3 be the

images of the shadow points of a stationary object recorded at different times during the course of

a single day. Letvi andv′i, i = 1, 2, 3 be the sun and the shadow vanishing points, respectively.

For a calibrated camera, the following relations hold for the altitude angleφi and the azimuth angle
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Figure 10.1:The setup used for estimating geo-temporal information.

θi of the sun orientations in the sky, all of which are measured directly in the image domain:

cos φi =
v′Ti ωvi√

v′Ti ωv′i
√

vT
i ωvi

(10.1)

sin φi =
vT

z ωvi√
vT

z ωvz

√
vT

i ωvi

(10.2)

cos θi =
vT

y ωv′√
vT

y ωvy

√
v′T ωv′

(10.3)

sin θi =
vT

x ωv′√
vT

x ωvx

√
v′T ωv′

(10.4)

Without loss of generality, we choose an arbitrary point on the horizon line as the vanishing

pointvx along the x-axis, and the image pointb of the footprint as the image of the world origin.

The vanishing pointvy along the y-axis is then given byvy ∼ ωvx × ωvz. Now, letψi be the

angles measured clockwise that the shadow points make with the positive x-axis as shown in Fig.

10.1. We have
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cos ψi =
v′Ti ωvx√

v′Ti ωv′i
√

vT
x ωvx

(10.5)

sin ψi =
v′Ti ωvy√

v′Ti ωv′i
√

vT
x ωvy

i = 1, 2, 3 (10.6)

Next, we define the following ratios, which are readily derived from spherical coordinates, and

also used in sundial construction [Her67, III94, Wau73]:

ρ1 =
cos φ2 cos ψ2 − cos φ1 cos ψ1

sin φ2 − sin φ1

(10.7)

ρ2 =
cos φ2 sin ψ2 − cos φ1 sin ψ1

sin φ2 − sin φ1

(10.8)

ρ3 =
cos φ2 cos ψ2 − cos φ3 cos ψ3

sin φ2 − sin φ3

(10.9)

ρ4 =
cos φ2 sin ψ2 − cos φ3 sin ψ3

sin φ2 − sin φ3

(10.10)

(10.11)

For our problem, it is clear from (10.1)-(10.6) that these ratios are all determined directly in

terms of image quantities. The angle measured at world origin between the positive y-axis and the

ground plane’s primary meridian (i.e. the north direction) is then given by

α = tan−1

(
ρ1 − ρ3

ρ4 − ρ2

)
(10.12)
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from which we can determine the GPS latitude of the location where the pictures are taken as

λ = tan−1(ρ1 cos α + ρ2 sin α) (10.13)

For n shadow points, we obtain a total of n!
(n−3)!3!

estimations of latitude(λ). In presence of

noise, this leads to a very robust estimation ofλ.

Day Number:Once the latitude is determined from (10.13), we can also determine the exact day

when the images are taken. For this purpose, letδ denote the declination angle, i.e. the angle of

the sun’s rays to the equatorial plane (positive in the summer). Let also~ denote the hour angle

for a given image, i.e. the angle the earth needs to rotate to bring the meridian of that location to

solar noon, where each hour time corresponds toπ
12

radians, and the solar noon is when the sun is

due south with maximum altitude. Then these angles are given in terms of the latitudeλ, the sun’s

altitudeφ and its azimuthθ by

sin ~ cos δ − cos φ sin θ = 0 (10.14)

cos δ cos λ cos ~+ sin δ sin λ− sin φ = 0 (10.15)

Again, note that the above system of equations depend only on image quantities defined in (10.1)-

(10.6). Upon finding the declination and the hour angles by solving the above equations, the exact

day of the year when the pictures are taken can be found by

N =
365

2π
sin−1

(
δ

δm

)
−No (10.16)
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whereN is the day number of the date, with January1st taken asN = 1, and February assumed of

28 days,δm ' 0.408 is the maximum absolute declination angle of earth in radians, andNo = 284

corresponds to the number of days from the first equinox to January1st.

Longitude: Unfortunately, unlike latitude, the longitude cannot be determined directly from ob-

serving shadows. The longitude can only be determined either by spatial or temporal correlation.

For instance, if we know that the pictures are taken in a particular state or a country or a region in

the world, then we only need to perform a one-dimensional search along the latitude determined by

(10.13) to find also the longitude and hence the GPS coordinates. Alternatively, the longitude may

be determined by temporal correlation. For instance, suppose we have a few frames from a video

stream of a live webcam with unknown location. Then they can be temporally correlated with our

local time, in which case the difference in hour angles can be used to determine the longitude.

For this purpose, let~l andγl be our own local hour angle and longitude at the time of receiving

the live pictures. Then the GPS longitude of the location where the pictures are taken is given by

γ = γl + (~− ~l) (10.17)

In the next section, we validate our method and evaluate the accuracy of both self-calibration

and geo-temporal localization steps using synthetic and real data.
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Figure 10.2:The Cylindrical of Sun Path Diagram (Mazria, Edward, The Passive Solar Energy
Book). The shadow of an object throughout the course of a day follows a curve on the ground
plane.

10.2 Using only two shadow points

For any location on the globe, the relationship between the location of the sun and the shadow is

unique. This relationship can be graphically represented through sun-path diagrams. The exact

position of the sun can be determined for any given time of the day using only the azimuth and

altitude angle of that site. Figure10.2 shows an example of vertical projection of sun-path as

observed from earth. The vertical axis denotes the altitude and the horizontal axis denotes the

azimuth angle. This plot is an earth base view of the sun’s movement across the celestial sphere.

The exact form of the curve depends on the location (latitude and longitude) and the time of the

year. The question now is, can we estimate the GPS coordinates from just two points, whereas in

previous sections we used three points?

The method presented in Section10.1 requires azimuth and altitude angles,θ andφ respec-

tively, of at least three shadow points. We also need to estimate the four ratios, i.e. (10.7)-(10.10),

which depends on the angle,ψ. This angleψ is measured between the shadow pointv′ and the

+ve x-axis, as shown in Fig.10.1. Therefore, we need tofirst, estimate the azimuth and altitude
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Figure 10.3:A 2nd − degree polynomial fitted to the estimated altitude and azimuth angles.

angle of the sun for any time of the day, andsecond, estimate the vanishing pointv′ of the shadows

cast at that particular time.

It becomes clear upon observing Fig.10.2that the sun-path curve is symmetric. The axis of

symmetry is exactly at180◦ azimuth angle. This corresponds to the solar noon, that is, when the

sun is at its highest point. Now consider the case when we have only two images i.e. we have

only two shadow points. This is shown in Fig.10.3. The axis of symmetry is plotted by a vertical

line atθ = 180◦. The two shadow points obtained from the images are plotted on the left of this

axis. These two points are then reflected across the axis, as shown in the figure. The problem now

reduces to fitting a polynomial curve to these four points. A polynomial ofkth degree is given as:

y = a0 + a1x + . . . akx
k (10.18)

where the goal is to minimize the residual

R =
n∑

i=1

[yi − (a0 + a1x + . . . akx
k)]2
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to fit the model as close to the data as possible. In matrix notation, the solution to the polynomial

fit is given by:

y = Xa (10.19)

wherey contains the LHS of (10.18) evaluated for all data points, the matrixX contains thex

values of the data points from the RHS of (10.18), anda contains the unknown parametersai

[PFT88]. (10.19) can be solved as:

a = (XTX)−1XTy (10.20)

In our experiments, the polynomial that best fits the shadow data is that of degree2. This is

plotted in Fig.10.3as a dotted green curve. Once this curve is obtained, altitudeφ3 of any azimuth

θ3 of our choice can be estimated and vice versa.

Once (φ3, θ3) are obtained from the fitted shadow curve, the shadow pointv′ is obtained by

solving the two equations:

v′Tl∞ = 0 (10.21)

cos θ3 =
vT

y ωv′√
vT

y ωvy

√
v′T ωv′

(10.22)

Oncev′ is obtained, (10.5) is used to estimateψ to determine the four ratios i.e. (10.7)-(10.10).

This enables use to used the method described in Section10.1to estimated the GPS coordinates.
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10.3 Experimental Results

We rigorously test and validate our method on synthetic as well as real data. Results are described

below.

Synthetic Data: Two vertical objects of different heights were randomly placed on the ground

plane. Using the online available version of SunAngle Software [Gro], we generated altitude and

azimuth angles for the sun corresponding to our own geo-location with latitude28.51◦. The data

was generated for the315th day of the year i.e. the11th of November2006 from 10:00am to

2:00pm . The solar declination angle for that time period is−17.49◦. The vertical objects and the

shadow points were projected by a synthetic camera with a focal length off = 1000, the principal

point at(uo, vo) = (320, 240), unit aspect ratio, and zero skew.

Averaged results for latitude, solar declination angle, and the day of the year are shown in

Figure10.4. The error is found to be less than0.9%. For a maximum noise level of1.5 pixels, the

estimated latitude is28.21◦, the declination angle is−17.932◦, and the day of the year is found to

be314.52.

Real Data:Several experiments on two separate data sets are reported below for demonstrating the

power of the proposed method. In the first set,11 images were captured live from downtown Wash-

ington D.C. area, using one of the webcams available online athttp://trafficland.com/ .

As shown in Figure10.5, a lamp post and a traffic light were used as two objects casting shadows

on the road. The shadow points are highlighted by colored circles in the figure.

Since we had more than the required minimum number of shadow locations over time, in order

to make the estimation more robust to noise, we took all possible combinations of the available
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Figure 10.4:Performance averaged over1000 independent trials: Result for average error in lati-
tude, solar declination angle, and day of the year.

Figure 10.5:Few of the images taken from one of the live webcams in downtown Washington D.C.
The two objects that cast shadows on the ground are shown in red and blue, respectively. Shadows
move to the left of the images as time progresses.

points and averaged the results. For this first data set the images were captured on the15th Novem-

ber at latitude38.53◦ and longitude77.02◦. We estimated the latitude as38.444◦, the day number

as316.293 and the solar declination angle as−19.258◦ compared to the actual day of 319, and

the declination angle of−18.62◦. The small errors can be attributed to many factors e.g. noise,

non-linear distortions and errors in the extracted features in low-resolution images of320 × 240.

Despite all these factors, the experiment indicates that the proposed method provides good results.

In order to evaluate the uncertainty associated with our estimation, we then divided this data set

into 11 sets of 10-image combinations, i.e. in each combination we left one image out. We repeated
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Table 10.1:Results for 11 sets of 10-image combination, with mean value and standard deviation.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 Mean STD
λ 33.73 35.70 37.03 36.1 35.72 38.21 39.23 45.78 41.84 40.88 41.96 38.743 3.57
δ -14.47 -15.78 -15.93 -16.54 -17.25 -16 -16.70 -18.94 -15.87 -16.99 -16.24 -16.43 1.11
N 328.64 332.26 331.09 326.87 330.15 331.37 331.32 332.56 326.81 331.72 326.72 329.95 2.28

Figure 10.6:Few of the images in the second data set that were temporally correlated with our local
time, taken also from one of the live webcams in Washington D.C. The objects that cast shadows
on the ground are highlighted. Shadows move to the left of the images as time progresses.

the experiment for each combination and calculated the mean and the standard deviation of the

estimated unknown parameters. Results are shown in Table10.1. The low standard deviations can

be interpreted as small uncertainty, indicating that our method is consistently providing reliable

results.

A second data set is shown in Figure10.6. The ground truth for this data set was as follows:

longitude77.02◦, latitude38.53◦, day number of 331, and the declination of−21.8◦. For this data

set we assumed that the data was downloaded in real-time and hence was temporally correlated

with our local time. We estimated the longitude as78.761◦, the latitude as37.791◦, the day number

as323.0653, and the declination angle as−29.65◦.

10.4 Conclusion

This chapter describes a novel method based entirely on computer vision to determine the geo-

location of the camera up to longitude ambiguity, without using any GPS or other instruments,
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and by solely relying on imaged shadows as cues. We also describe situations where longitude

ambiguity can be removed by either temporal or spatial cross-correlation. Moreover, we determine

the date when the pictures are taken without using any prior information. The method is tested on

synthetic as well as on real data, and the results are promising.
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CHAPTER 11
APPLICATION TO MR ENVIRONMENT

A Mixed Reality (MR) system combines the real scene viewed by the user/agent and the virtual

scene generated by the computer that augments the scene with some additional information. In

order to successfully accomplish this task, the position and orientation of each user is tracked by

the means of inertial sensors attached to the video see-through head mounted displays (HMDs) in

a controlled MR environment. See [YWC05] for pose estimation in an augmented/mixed reality

scenario. Figure11.1(a)(b) shows images of such a scenario. A video see-through HMD consist

of small mounted cameras that capture the surrounding environment. On the inside of the HMD,

the captured video is played to the user in real-time possibly with some virtual information. While

sufficient for indoors, this approach is not feasible for outdoor scenarios. The reason is that active

tracking sensors (transmitter, receiver) systems are not portable and can only operate indoor under

fixed and expensive setups. The cost involved is very high. Since HMDs contain mounted cameras,

henceforth we simply use camera when referring to a HMD.

11.1 Estimating Relative Orientation

In order to successfully merge virtual information with real, each user’s position and orientation has

to be tracked continuously. For our experiments, we had two users wearing Canon Coastar video

see-through Head-Mounted Displays HMDs walk in a family size room equipped with Polhemus

magnetic tracker and an Intersense IS-900/PC hybrid acoustical/inertial tracker. In order to verify

our method, described in Chapter8, we compute the absolute rotation of each HMD w.r.t. the

world co-ordinate system. We compared our results with the ground-truth from active sensors.
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(a) (b) (c)

Figure 11.1:(a) shows a general setup of a MR environment. (b) is a picture taken of a user with an
HMD mounted on his head. (c) Instances of the test data set. These images are taken from HMDs
mounted on two users. See text for details.

Table 11.1: Error in degree for the angles calculated. See text for details.

Instance #Error (θx) Error (θy) Error (θz)

1 2.13 0.747 1.9
2 2.09 0.868 2.25
3 1.735 0.17 2.34
4 2.18 0.133 2.47
5 1.35 0.228 2.57
6 2.15 0.148 2.66
7 2.047 0.48 2.74
8 0.808 0.39 2.76
9 0.32 3.71 1.38
10 1.78 2.51 1.79
11 3.82 0.9 2.49
12 4.8 3.35 2.16
13 1.87 1.36 1.25
14 0.16 2.72 3.55

Absolute orientation angles were obtained at each instance for each HMD. A long data sequence

was used for testing and a few instances are shown in Figure11.1(c). Table11.1 presents the

absolute error in degree (θx,θy,θz) for each instance. The results are encouraging and angles are

very close to the ground truth. For our dataset, we found the mean error to be2.06◦ degrees with

standard deviation of1.87◦.
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11.2 Conclusion

We have successfully demonstrated a novel approach to recover dynamic network topology for

configuring a MR environment. Each camera or HMD, having a disjoint FoV, is assumed to un-

dergo a general motion. Our contribution includes computing the relative rotation matrix between

N cameras using only vertical vanishing point; and calculating theH∞
i,j for non-overlapping cam-

eras and using it to obtain absolute rotation of each camera with respect to a common world coor-

dinate system in a MR environment. Thus, instead of expensive tracking and positioning systems

that are currently being used in VR environments, the proposed method does the same task satis-

factorily with inexpensive cameras. We successfully demonstrate the proposed method on several

sequences.
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CHAPTER 12
CONCLUSIONS

In this thesis, we have successfully demonstrated a novel approach to self-calibrate a dynamic cam-

era network. Each camera, possibly having a disjoint FoV, can be permitted to undergo a general

motion. Such a network could be, for instance, deployed for surveillance applications comprising

of both stationary PTZ cameras and cameras mounted on a roaming security or reconnaissance

vehicles (e.g. [CM03]). Another application could be in an urban battlefield setting with soldiers

carrying head mounted cameras.

Our contribution includes (i) a global linear solution to self-calibrate a moving camera in the

dynamic network using only the fundamental matrix, (ii) a camera calibration based on scene con-

straints (i.e. vanishing points and vanishing lines) by enforcing new constraints on the IAC, (iii)

calibrating a PTZ camera from only two images, (iv) calibrate a camera observing shadow tra-

jectories, (v) using only pedestrians for camera calibration, (vi) computing the relative rotation

matrix betweenN cameras using only vertical vanishing point, and (vii) calculating theH∞
i,j for

non-overlapping cameras and using it to obtain absolute rotation of each camera with respect to a

common world coordinate system without overlapping FoV. In addition, we demonstrated appli-

cations of our method (i) to configure a network of HMDs in a MR environment, (ii) to perform

surveillance by constructing a path model based on behavior of the observed objects in a scene,

and (iii) to estimate the GPS coordinates of the camera using only shadow trajectories of objects

in the scene. We have successfully demonstrated the proposed method on several sequences and

discussed possible degenerate configurations. The proposed camera calibration and network cali-

bration technique are tested on synthetic as well as on real data. Encouraging results indicate the
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applicability of the proposed system.

186



LIST OF REFERENCES

[AB04] M. Antone and M. Bosse. “Calibration of outdoor cameras from cast shadows.” In
Proc. IEEE Int. Conf. Systems, Man and Cybernetics, pp. 3040–3045, 2004.

[AHR01] L. De Agapito, E. Hayman, and I. Reid. “Self-calibration of rotating and zooming
cameras.”Int. J. Comput. Vision, 45(2):107–127, 2001.

[AK71] Y. I. Abdel-Aziz and H. M. Karara. “Direct linear transformation into object space
coordinates in close-range photogrammetry.” 1971.

[AZH96] M. Armstrong, A. Zisserman, and R.I. Hartley. “Self-Calibration from Image Triplets.”
In Proc. ECCV, pp. 3–16, 1996.

[BA96] Michael J. Black and P. Anandan. “The robust estimation of multiple motions: Para-
metric and piecewise-smooth flow fields.”Journal of Computer Vision and Image
Understanding, 63(1):75–104, January 1996.

[BA03] P. Baker and Y. Aloimonos. “Calibration of a multicamera network.” InProc. of IEEE
Workshop on Omnidirectional Vision and Camera Networks, 2003.

[BGK96] M. Bober, N. Georgis, and J.V. Kittler. “On Accurate and Robust Estimation of Fun-
damental Matrix.” p. Poster Session 2, 1996.

[BMV99] Jeffrey E. Boyd, Jean Meloche, and Y. Vardi. “Statistical Tracking in Video Traffic
Surveillanc.” InInternational Conference on Computer Vision (ICCV), 1999.

[BP98] J. Bouguet and P. Perona. “3D Photography on Your Desk.” InProc. ICCV, pp. 43–50,
1998.

[BR97] A. Basu and K. Ravi. “Active camera calibration using pan, tilt and roll.”IEEE Trans-
actions on Systems, Man and Cybernetics, Part B, 27(3):559–566, January 1997.

[BZ99] C. Baillard and A. Zisserman. “Automatic Reconstruction of Piecewise Planar Models
from Multiple Views.” pp. II: 559–565, 1999.

[CBP05] C. Colombo, A.D. Bimbo, and F. Pernici. “Metric 3D Reconstruction and Texture
Acquisition of Surfaces of Revolution from a Single Uncalibrated View.”IEEE Trans.
Pattern Anal. Mach. Intell., 27(1):99–114, 2005.

[CDR99] R. Cipolla, T. Drummond, and D. Robertson. “Camera calibration from vanishing
points in images of architectural scenes.” InProc. of BMVC, pp. 382–391, 1999.

[CF04a] X. Cao and H. Foroosh. “Camera Calibration Without Metric Information Using 1D
Objects.” InProc. IEEE ICIP, pp. 1349–1352, 2004.

187



[CF04b] Xiaochun Cao and Hassan Foroosh. “Simple Calibration Without Metric Information
Using an Isoceles Trapezoid.” InProc. Int. Conf. Pattern Recognition, ICPR’04, Cam-
bridge, UK, August 2004.

[CF06] X. Cao and H. Foroosh. “Camera Calibration and Light Source Orientation from Solar
Shadows.”Journal of Computer Vision and Image Understanding (CVIU), 105:60–72,
2006.

[CM03] J. Casper and R.R. Murphy. “Human-robot interactions during the robot-assisted urban
search and rescue response at the World Trade Center.”IEEE Transactions on Systems,
Man and Cybernetics, Part B, 33(3):367–385, June 2003.

[Cox74] H. S. M. Coxeter.Projective Geometry. University of Toronto Press, 1974.

[Cre85] Luigi Cremmona.Elements of Projective Geometry. Oxford University Press, 1885.

[CRM03] D. Comaniciu, V. Ramesh, and P. Meer. “Kernel-Based Object Tracking.”IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (PAMI), 25(5):564–575, 2003.

[CRZ99] A. Criminisi, I. Reid, and A. Zisserman. “A Plane Measuring Device.”Image and
Vision Computing, 17(8):625–634, 1999.

[CRZ00] A. Criminisi, I. Reid, and A. Zisserman. “Single View Metrology.”Int. J. Comput.
Vision, 40(2):123–148, 2000.

[CS05] X. Cao and M. Shah. “Camera Calibration and Light Source Estimation from Images
with Shadows.” InProc. IEEE CVPR, pp. 918–923, 2005.

[CSS05] X. Cao, Y. Shen, M. Shah, and H. Foroosh. “Single View Compositing with Shadows.”
The Visual Computer, 21(8):639–648, 2005.

[CT90] B. Caprile and V. Torre. “Using Vanishing Points for Camera Calibration.”Int. J.
Comput. Vision, 4(2):127–140, 1990.

[CT98] Guan-Yu Chen and Wen-Hsiang Tsai. “An incremental-learning-by-navigation ap-
proach to vision-based autonomous land vehicle guidance in indoor environments us-
ing vertical line information and multiweighted generalized Hough transform tech-
nique.” IEEE Transactions on Systems, Man and Cybernetics, Part B, 28(5):740 – 748,
Oct 1998.

[CT99] Robert Collins and Yanghai Tsin. “Calibration of an Outdoor Active Camera System.”
In IEEE Computer Vision and Pattern Recognition (CVPR ’99), pp. 528 – 534, June
1999.

[CT04] L. Cadman and T. Tjahjadi. “Efficient three-dimensional metric object modeling from
uncalibrated image sequences.”IEEE Transactions on Systems, Man and Cybernetics,
Part B, 34(2):856–876, April 2004.

188



[CW06] Yaron Caspi and Michael Werman. “Vertical Parallax from Moving Shadows.” InProc.
CVPR, pp. 2309–2315, 2006.

[CZZ97] G. Csurka, C. Zeller, Z.Y. Zhang, and O.D. Faugeras. “Characterizing the Uncertainty
of the Fundamental Matrix.”68(1):18–36, October 1997.

[DDZ01] W.E. Dixon, D.M. Dawson, E. Zergeroglu, and A. Behal. “Adaptive tracking control
of a wheeled mobile robot via an uncalibrated camera system.”IEEE Transactions on
Systems, Man and Cybernetics, Part B, 31(3):341–352, June 2001.

[DF95] F. Devernay and O. Faugeras. “Automatic calibration and removal of distortion from
scenes of structured environments.” InSPIE, volume 2567, San Diego, CA, July 1995.

[Fau92] O. Faugeras. “What can be seen in three dimensions with an uncalibrated stereo rig?”
In Proc. ECCV, pp. 563–578, 1992.

[FK03] J.M. Frahm and R. Koch. “Camera Calibration with Known Rotation.” InProc. IEEE
ICCV, pp. 1418–1425, 2003.

[FL01] Olivier Faugeras and Quang-Tuan Luong.The Geometry of Multiple Images. Oxford
University Press, 2001.

[FLM92] O. Faugeras, T. Luong, and S. Maybank. “Camera self-calibration: theory and experi-
ments.” InProc. of ECCV, pp. 321–334, 1992.

[GL89] G.H. Golub and C.F. Van Loan.Matrix Computations. John Hopkins Press, 1989.

[GP00] P. Gurdjos and R Payrissat. “Recovering the vanishing self-polar triangle from a single
view of a planar pattern.” pp. 756–759, 2000.

[Gro] Christopher Gronbeck. “SunAngle software (www.susdesign.com/sunangle/).”.

[GS03] P. Gurdjos and P. Sturm. “Methods and Geometry for Plane-Based Self-Calibration.”
In Proc. IEEE CVPR, pp. 491–496, 2003.

[GSR98] W.E.L. Grimson, C. Stauffer, R. Romano, and L. Lee. “Using Adaptive Tracking to
Classify and Monitor Activities in a Site.” InIEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), 1998.

[HA97] A. Heyden and K. Astrom. “Euclidean reconstruction from image sequences with
varying and unknown focal length and principal point.” InProc. IEEE CVPR, pp.
438–443, 1997.

[HA99] A. Heyden and K. Astrom. “Flexible Calibration: Minimal Cases for Auto-
Calibration.” InProc. IEEE ICCV, pp. 350–355, 1999.

[Har] http://www.robots.ox.ac.uk/˜az/HZbook/HZfigures.html.

189



[Har92] R. I. Hartley. “Estimation of Relative Camear Positions for Uncalibrated Cameras.” In
Proc. ECCV, pp. 579–587, 1992.

[Har94] R. I. Hartley. “Self-calibration from multiple views with a rotating camera.” InProc.
ECCV, pp. 471–478, 1994.

[Har97] R. I. Hartley. “Self-Calibration of Stationary Cameras.”Int. J. Comput. Vision, 22(1):5–
23, 1997.

[Har98] R.I. Hartley. “Minimizing algebraic error in geometric estimation problems.” InProc.
of ICCV, pp. 469–476, 1998.

[HB06] Adlane Habed and Boubakeur Boufama. “Camera self-calibration from bivariate poly-
nomial equations and the coplanarity constraint.”to appear: Image and Vision Com-
puting (IVC), 2006.

[Hei00] J. Heikkila. “Geometric camera calibration using circular control points.”IEEE Trans.
Pattern Anal. Mach. Intell., 22(10):1066–1077, 2000.

[Her67] A.P. Herbert.Sundials Old and New. Methuen & Co. Ltd, 1967.

[HHA99] R. I. Hartley, Eric Hayman, L. De Agapito, and I. Reid. “Camera calibration and the
search for infinity.” InProc. IEEE ICCV, pp. 510–517, 1999.

[HHZ06] Weiming Hu, Min Hu, Xue Zhou, Jianguang Lou, Tieniu Tan, and Steve Maybank.
“Principal Axis-Based Correspondence between Multiple Cameras for People Track-
ing.” IEEE Trans. Pattern Anal. Mach. Intell., 28(4):663, 2006.

[HJL89] R.M. Haralick, H. Joo, C. Lee, X. Zhuang, V.G. Vaidya, and M.B. Kim. “Pose es-
timation from corresponding point data.”IEEE Transactions on Systems, Man and
Cybernetics, Part B, 19(6):1426–1446, Nov 1989.

[HZ04] R. I. Hartley and A. Zisserman.Multiple View Geometry in Computer Vision. Cam-
bridge University Press, ISBN: 0521540518, second edition, 2004.

[III94] Frederick W. Sawyer III. “A Three-Point Sundial Construction.”Bulletin of the British
Sundial Society, 94(1):22–29, Feb 1994.

[JAS07] Imran Junejo, Nazim Ashraf, Yuping Shen, and Hassan Foroosh. “Robust Auto-
Calibration Using Fundamental Matrices Induced by Pedestrians.” InIEEE Interna-
tional Conference on Image Processing (ICIP), 2007., 2007.

[Jay04] Christopher O. Jaynes. “Multi-view calibration from planar motion trajectories.”Image
Vision Computing, 22(7):535–550, 2004.

[JCF06a] Imran Junejo, Xiaochun Cao, and Hassan Foroosh. “Calibrating Freely Moving Cam-
eras.” In18th International Conference on Pattern Recognition (ICPR)., 2006.

190



[JCF06b] Imran Junejo, Xiaochun Cao, and Hassan Foroosh. “Configuring Mixed Reality Envi-
ronment.” In18th International Conference on Pattern Recognition (ICPR)., 2006.

[JCF06c] Imran Junejo, Xiaochun Cao, and Hassan Foroosh. “Geometry of a Non-Overlapping
Multi-Camera Network.” In5th IEEE International Conference on Advanced Video
and Signal-based Surveillance (AVSS)., 2006.

[JCF07] Imran Junejo, Xiaochun Cao, and Hassan Foroosh. “Auto-Configuration of a Dynamic
Non-Overlapping Camera Network.”IEEE Transactions on Systems, Man, and Cyber-
netics, Part B: Cybernetics, August, 37, 2007.

[JFa] Imran Junejo and Hassan Foroosh. “Euclidean Path Modeling for Video Surveillance.”
at final stage of review at Journal of Image and Vision Computing (IVC).

[JFb] Imran Junejo and Hassan Foroosh. “Geometrically Optimized PTZ Camera Calibra-
tion From Only Two Images.”IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI) - (Submitted).

[JF06a] Imran Junejo and Hassan Foroosh. “Dissecting the Image of the Absolute Conic.” In
5th IEEE International Conference on Advanced Video and Signal-based Surveillance
(AVSS)., 2006.

[JF06b] Imran Junejo and Hassan Foroosh. “Robust Auto-Calibration from Pedestrians.” In
Proceedings of 5th IEEE International Conference on Advanced Video and Signal-
based Surveillance (AVSS)., 2006.

[JF07a] Imran Junejo and Hassan Foroosh. “Calibration of Rotating and Zooming Cameras
by Direct Decomposition of Infinite Homography.” InEleventh IEEE International
Conference on Computer Vision (ICCV), 2007 (Submitted), 2007.

[JF07b] Imran Junejo and Hassan Foroosh. “Euclidean Path Modeling from Ground and Aerial
Views.” In 7th IEEE International Workshop on Visual Surveillance with CVPR., 2007.

[JF07c] Imran Junejo and Hassan Foroosh. “Using Calibrated Camera for Euclidean Path Mod-
eling.” In IEEE International Conference on Image Processing (ICIP), 2007., 2007.

[JF07d] Imran Junejo and Hassan Foroosh. “Where and when are these pictures taken.” In
Eleventh IEEE International Conference on Computer Vision (ICCV), 2007 (Submit-
ted), 2007.

[JH95] Neil Johnson and David Hogg. “Learning the Distribution of Object Trajectories for
Event Recognition.” InProc. of British Machine Vision Conference (BMVC), 1995.

[JJS04] Imran Junejo, Omar Javed, and Mubarak Shah. “Multi Feature Path Modeling for
Video Surveillance.” In17th conference of the International Conference on Pattern
Recognition (ICPR), 2004.

191



[JRA03] Omar Javed, Zeeshan Rasheed, Orkun Alatas, and Mubarak Shah. “KNIGHTM: A
Real Time Surveillance System for Multiple Overlapping and Non-Overlapping Cam-
eras.” InThe fourth International Conference on Multimedia and Expo (ICME), 2003.
Baltimore, Maryland.

[JRS03] Omar Javed, Zeeshan Rasheed, Khurram Shafique, , and Mubarak Shah. “Tracking
Across Multiple CamerasWith Disjoint Views.” InThe Ninth IEEE International Con-
ference on Computer Vision, 2003.

[JS02] Omar Javed and Mubarak Shah. “Tracking and Object Classification for Automated
Surveillance.” Inthe seventh European Conference on Computer Vision, 2002.

[JSS05] Omar Javed, Khurram Shafique, and Mubarak Shah. “Appearance Modeling for Track-
ing in Multiple Non-overlapping Cameras.” InIEEE CVPR, 2005.

[KCM03] J. Kang, I. Cohen, and G. Medioni. “Continuous tracking within and across camera
streams.” InProc. IEEE Conference on Computer Vision and Pattern Recognition,
2003.

[Keo02] Eamonn Keogh. “Exact Indexing of Dynamic Time Warping.” In28th International
Conference on Very Large Data Bases. Hong Kong, pp. 406–417, 2002.

[KM05] Nils Krahnstoever and Paulo R. S. Mendonca. “Bayesian Autocalibration for Surveil-
lance.” InTenth IEEE International Conference on Computer Vision, 2005.

[Kru13] E. Kruppa. Zur ermittlung eines objektes aus zwei perspektiven mit innerer orien-
tierung,122:19391948. Sitz.-Ber. Akad. Wiss., Wien, math. naturw. Abt. IIa,, 1913.

[KS03] Sohaib Khan and Mubarak Shah. “Consistent Labeling of Tracked Objects in Multiple
Cameras with Overlapping Fields of View.”IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), 25(10), 2003.

[KTA00] F. Kahl, B. Triggs, and K.̊Aström. “Critical Motions for Auto-Calibration When Some
Intrinsic Parameters Can Vary.”J. Math. Imaging Vis., 13(2):131–146, 2000.

[KZR03] J. Knight, A. Zisserman, and I. Reid. “Linear Auto-Calibration for Ground Plane Mo-
tion.” In Proc. IEEE CVPR, pp. 503–510. IEEE, 2003. Madison, Wisconsin.

[LF96] Q.T. Luong and O.D. Faugeras. “The fundamental matrix: Theory, algorithms, and
stability analysis.”Int. J. Comput. Vision, 17(1):43–75, 1996.

[Low04] David G. Lowe. “Distinctive image features from scale-invariant keypoints.”Interna-
tional Journal of Computer Vision, 6(2):91–110, 2004.

[LZ98] D. Liebowitz and A. Zisserman. “Metric Rectification for Perspective Images of
Planes.” InProc. IEEE CVPR, pp. 482–488, 1998.

192



[LZ99] D. Liebowitz and A. Zisserman. “Combining Scene and Auto-Calibration Constraints.”
In Proc. IEEE ICCV, pp. 293–300, 1999.

[LZN02] Fengjun Lv, Tao Zhao, and Ramakant Nevatia. “Self-Calibration of a Camera from
Video of a Walking Human.” InIEEE International Conference of Pattern Recognition,
2002.

[ME02] Dimitrios Makris and Tim Ellis. “Path Detection in Video Surveillance.”Image and
Vision Computing Journal (IVC), 20(12):895–903, 2002.

[ME05] D. Makris and T. Ellis. “Learning semantic scene models from observing activity in
visual surveillance.” IEEE Transactions on Systems, Man and Cybernetics, Part B,
35(3):397–408, June 2005.

[Men01] P. R. S. Mendonça.Multiview Geometry: Profiles and Self-Calibration. PhD thesis,
University of Cambridge, Cambridge, UK, May 2001.

[MGP96] T. Moons, L.V. Gool, M. Proesmans, and E. Pauwels. “Affine reconstruction from
perspective image pairs with a relative object-camera translation in between.”IEEE
Trans. Pattern Anal. Mach. Intell., 18(1):77–83, 1996.

[MK95] G. F. McLean and D. Kotturi. “Vanishing point detection by line clustering.”IEEE
Trans. Pattern Anal. Mach. Intell., 17(11):1090–1095, 1995.

[MK04] Y. Motai and A. Kak. “An interactive framework for acquiring vision models of 3-D
objects from 2-D images.”IEEE Transactions on Systems, Man and Cybernetics, Part
B, 34(1):566–578, Feb 2004.

[MT04] D. Makris and J. T.J. Ellis. “Bridging the Gaps between Cameras.” InIEEE Conference
on Computer Vision and Pattern Recognition CVPR, 2004.

[PFT88] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling.Numerical Recipes in C. Cam-
bridge University Press, 1988.

[PKG99] M. Pollefeys, R. Koch, and L. V. Gool. “Self-Calibration and Metric Reconstruction in
Spite of Varying and Unknown Internal Camera Parameters.”Int. J. Comput. Vision,
32(1):7–25, 1999.

[SGJ05] Y. Sheikh, A. Gritai, I. Junejo, R. Muise, A. Mahalanobis, and M. Shah. “Establishing a
Common View from Multiple Moving Aerial Sensors.” InSPIE Symposium on Defense
and Security., 2005.

[SGN03] R. Swaminathan, M.D. Grossberg, and S.K. Nayar. “A Perspective on Distortions.” In
Proc. IEEE CVPR, pp. 594–601, 2003.

[SH99] Y. Seo and K. Hong. “About the Self-Calibration of a Rotating and Zooming Camera:
Theory and Practice.” InProc. IEEE ICCV, pp. 183–189, 1999.

193



[SH04] Yongduek Seo and Anders Heyden. “Auto-calibration by linear iteration using the DAC
equation.”Image and Vision Computing (IVC), 22(11):919–926, 2004.

[Shu99] J. A. Shufelt. “Performance Evaluation and Analysis of Vanishing Point Detection
Techniques.”IEEE Trans. Pattern Anal. Mach. Intell., 21(3):282–288, 1999.

[SK79] J. G. Semple and G. T. Kneebone.Algebraic Projective Geometry. Oxford Classic
Texts in the Physical Sciences, 1979.

[SM98] J. Shi and J. Malik. “Motion Segmentation and Tracking Using Normalized Cuts.” In
Proc. IEEE ICCV, 1998.

[SM00] Jianbo Shi and Jitendra Malik. “Normalized Cuts and Image Segmentation.”IEEE
Transactions on Pattern Analysis and Machine Intelligence(PAMI), 2000.

[SS06] Yaser Sheikh and Mubarak Shah. “Object Tracking Across Multiple Independently
Moving Airborne Cameras.” InIEEE International Conference on Computer Vision,
2005., 2006.

[SSK05] Y. Shan, H.S. Sawhney, and R.T. Kumar. “Vehicle Identification between Non-
Overlapping Cameras without Direct Feature Matching.” pp. I: 378–385, 2005.

[Stu97a] P. Sturm. “Critical Motion Sequences for Monocular Self-Calibration and Uncalibrated
Euclidean Reconstruction.” InProc. IEEE CVPR, pp. 1100–1105, 1997.

[Stu97b] Peter Sturm. “Self-calibration of a moving zoom-lens camera by pre-previous calibra-
tion.” Image and Vision Computing (IVC), 15(8):583–589, 1997.

[Stu99] Peter Sturm. “Critical Motion Sequences for the Self-Calibration of Cameras and
Stereo Systems with Variable Focal Length.” InBritish Machine Vision Conference,
Nottingham, England, pp. 63–72, Sep 1999.

[Tan96] J. Tani. “Model-based learning for mobile robot navigation from the dynamical systems
perspective.”IEEE Transactions on Systems, Man and Cybernetics, Part B, 26(3):421–
436, June 1996.

[TDG05] Kinh Tieu, Gerald Dalley, and W. Eric L. Grimson. “Inference of Non-Overlapping
Camera Network Topology by Measuring Statistical Dependence.” InInternational
Conference on Computer Vision, 2005.

[TMH99] B. Triggs, P. McLauchlan, R. I. Hartley, and A. Fitzgibbon. “Bundle Adjustment — A
Modern Synthesis.” InVision Algorithms: Theory and Practice, pp. 298–373, 1999.

[Tri97] B. Triggs. “Autocalibration and the Absolute Quadric.” InProc. IEEE CVPR, pp.
609–614, 1997.

[Tri98] B. Triggs. “Autocalibration from planar scenes.” InProc. ECCV, pp. 89–105, 1998.

194



[Tsa87] R.Y. Tsai. “A versatile camera calibration technique for high-accuracy 3D machine
vision metrology using off-the-shelf tv cameras and lenses.”IEEE J. of Robotics and
Automation, 3(4):323–344, 1987.

[Ver99] Ramin Zabih Vera Kettnaker. “Bayesian Multi-Camera Surveillance.” InIEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (CVPR), 1999.

[VMP04] R. Vidal, Y. Ma, and J. Piazzi. “A New GPCA Algorithm for Clustering Subspaces by
Fitting, Differentiating and Dividing Polynomials.” InProc. IEEE CVPR, pp. 510–517,
2004.

[Wau73] A.E. Waugh.Sundials: Their Theory and Construction. Number ISBN 0-486-22947-5.
Dover Publications, Inc., 1973.

[WKS04] Lei Wang, Sing Bing Kang, Heung-Yeung Shum, and Guangyou Xu. “Error Analysis
of Pure Rotation-Based Self-Calibration.”IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(2):275–280, 2004.

[WMC03] K.-Y. Wong, R.S.P. Mendonça, and R. Cipolla. “Camera Calibration from Surfaces of
Revolution.” IEEE Trans. Pattern Anal. Mach. Intell., 25(2):147–161, 2003.

[WP05] John Wright and Robert Pless. “Analysis of Persistent Motion Patterns Using the 3D
Structure Tensor.” InProceedings of the IEEE Workshop on Motion and Video Com-
puting, pp. 14–19, 2005.

[WS94] G. Willson, Reg. and A. Shafer, Steven. “What is the Center of the Image?” Technical
Report 11, Nov 1994.

[YB96] B. Yamauchi and R. Beer. “Spatial learning for navigation in dynamic environments.”
IEEE Transactions on Systems, Man and Cybernetics, Part B, 26(3):496–505, June
1996.

[YWC05] Ying Kin Yu, Kin Hong Wong, and M.M.Y.; Chang. “Pose estimation for augmented
reality applications using genetic algorithm.”IEEE Transactions on Systems, Man and
Cybernetics, Part B, 35(6):1295–1301, Dec 2005.

[ZAK05] Tao Zhao, M. Aggarwal, R. Kumar, and H. Sawhney. “Real-time wide area multi-
camera stereo tracking.” InIEEE Computer Vision and Pattern Recognition (CVPR),
2005.

[ZDF95] Zhengyou Zhang, Rachid Deriche, Olivier D. Faugeras, and Quang-Tuan Luong. “A
Robust Technique for Matching two Uncalibrated Images Through the Recovery of the
Unknown Epipolar Geometry.”Artificial Intelligence, 78(1-2):87–119, 1995.

[ZH94] Xinhua Zhuang and Yan Huang. “Robust 3-D-3-D pose estimation.”IEEE Transac-
tions on Systems, Man and Cybernetics, Part B, 16(8):818–824, Aug 1994.

195



[Zha00] Z. Zhang. “A Flexible New Technique for Camera Calibration.”IEEE Trans. Pattern
Anal. Mach. Intell., 22(11):1330–1334, 2000.

[Zha02] Z. Zhang. “Camera Calibration with One-Dimensional Objects.” InProc. ECCV, pp.
161–174, 2002.

[ZLA98] A. Zisserman, D. Liebowitz, and M. Armstrong. “Resolving Ambiguities in Auto-
Calibration.” Phil. Trans. Royal Soc. London A, 356(1740):1193–1211, 1998.

196


	Towards A Self-calibrating Video Camera Network For Content Analysis And Forensics
	STARS Citation

	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 INTRODUCTION
	1.1 Motivation
	1.2 Contributions
	1.3 Applications
	1.3.1 Path Modeling
	1.3.2 Registration To Satellite Imagery
	1.3.3 GPS Coordinate Estimation
	1.3.4 Mixed-Reality

	1.4 Outline Of The Thesis
	1.5 Notations

	CHAPTER 2 BACKGROUND: PROJECTIVE GEOMETRY
	2.1 A Bit Of History
	2.2 Camera Model
	2.2.1 Homogeneous Coordinates
	2.2.2 Pinhole Camera Model
	2.2.3 Planar Homography
	2.2.4 Planar Homology

	2.3 Image Of The Absolute Conic
	2.4 Vanishing Points And Vanishing Lines
	2.5 Circular Points
	2.6 Epipolar Geometry
	2.6.1 Kruppa's Equations


	CHAPTER 3 DISSECTING THE IMAGE OF ABSOLUTE CONIC
	3.1 The Role Of IAC
	3.2 Dissecting IAC
	3.2.1 Geometric Interpretation

	3.3 Single-View Calibration
	3.4 Results And Noise Resilience
	3.5 Conclusion

	CHAPTER 4 CAMERA CALIBRATION USING SHADOW PATHS
	4.1 The Setup
	4.2 Recovering The Vanishing Line
	4.2.1 When Shadow Casting Object Is Visible
	4.2.2 When Shadow Casting Object Is NOT Visible
	4.2.3 Computing Intersections

	4.3 Robust estimation of l
	4.4 Camera Calibration
	4.4.1 Geometric Interpretation

	4.5 Experimental Results
	4.6 Discussion And Conclusion

	CHAPTER 5 CAMERA CALIBRATION FROM PEDESTRIANS
	5.1 Harmonic Homologies From Pedestrians
	5.2 Robust Auto-Calibration
	5.2.1 Estimating More Parameters

	5.3 Results
	5.4 Conclusion

	CHAPTER 6 SELF-CALIBRATION OF FREELY MOVING CAMERAS
	6.1 Linear Solution With Varying Focal Length
	6.2 Varying Focal Length With Unknown 
	6.3 Experiments And Results
	6.4 Conclusion

	CHAPTER 7 PTZ CAMERA CALIBRATION
	7.1 Background and Notations
	7.2 General Case: Arbitrary Rotation & Varying Focal Length
	7.3 Degenerate Cases: Pure Pan & Pure Tilt
	7.4 Geometrically Optimized Refinement
	7.4.1 Classical Error Functions
	7.4.2 Optimal Geometric Error
	7.4.3 Pan-Tilt Motion

	7.5 Experimental Results
	7.5.1 Synthetic Data
	7.5.2 Real Data

	7.6 Discussion and Concluding Remarks

	CHAPTER 8 CONFIGURING A NETWORK OF CAMERAS
	8.1 Related Work And Our Approach
	8.2 Geometry Of Networked Cameras
	8.2.1 Relative Orientation Estimation Using Vanishing Points
	8.2.2 Alternate Solution: Using Infinite Homography Relationship

	8.3 Singularities
	8.4 Results
	8.5 Conclusion

	CHAPTER 9 EUCLIDEAN PATH MODELING
	9.1 Related Work
	9.2 Training Phase - Camera Calibration & Trajectory Rectification 
	9.2.1 Model Building
	9.2.2 Trajectory Clustering
	9.2.3 Envelope And Mean Path Construction

	9.3 Test Phase: Scene Modeling And Verification
	9.4 Handling Occlusions
	9.5 Results
	9.5.1 Evaluating Registration To Aerial Imagery
	9.5.2 Evaluating Path Modeling

	9.6 Conclusion

	CHAPTER 10 ESTIMATING GPS COORDINATES FROM IMAGES
	10.1 The Geo-temporal Localization Step
	10.2 Using only two shadow points
	10.3 Experimental Results
	10.4 Conclusion

	CHAPTER 11 APPLICATION TO MR ENVIRONMENT
	11.1 Estimating Relative Orientation
	11.2 Conclusion

	CHAPTER 12 CONCLUSIONS
	LIST OF REFERENCES

