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ABSTRACT

Due to growing security concerns, video surveillance and monitoring has received an immense
attention from both federal agencies and private firms. The main concern is that a single camera,
even if allowed to rotate or translate, is not sufficient to cover a large area for video surveillance. A
more general solution with wide range of applications is to allow the deployed cameras to have a
non-overlapping field of view (FoV) and to, if possible, allow these cameras to move freely in 3D
space. This thesis addresses the issue of how cameras in such a network can be calibrated and how
the network as a whole can be calibrated, such that each camera as a unit in the network is aware
of its orientation with respect to all the other cameras in the network.

Different types of cameras might be present in a multiple camera network and novel techniques
are presented for efficient calibration of these cameras. Specifically: (i) For a stationary camera, we
derive new constraints on the Image of the Absolute Conic (IAC). These new constraints are shown
to be intrinsic to IAC; (ii) For a scene where object shadows are cast on a ground plane, we track
the shadows on the ground plane cast by at least two unknown stationary points, and utilize the
tracked shadow positions to compute the horizon line and hence compute the camera intrinsic and
extrinsic parameters; (iii) A novel solution to a scenario where a camera is observing pedestrians is
presented. The uniqueness of formulation lies in recognizing two harmonic homologies present in
the geometry obtained by observing pedestrians; (iv) For a freely moving camera, a novel practical
method is proposed for its self-calibration which even allows it to change its internal parameters by
zooming; and (v) due to the increased application of the pan-tilt-zoom (PTZ) cameras, a technique

is presented that uses only two images to estimate five camera parameters.



For an automatically configurable multi-camera network, having non-overlapping field of view
and possibly containing moving cameras, a practical framework is proposed that determines the
geometry of such a dynamic camera network. It is shown that only one automatically computed
vanishing point and a line lying on any plane orthogonal to the vertical direction is sufficient to
infer the geometry of a dynamic network. Our method generalizes previous work which considers
restricted camera motions. Using minimal assumptions, we are able to successfully demonstrate
promising results on synthetic as well as on real data. Applications to path modeling, GPS coordi-

nate estimation, and configuring mixed-reality environment are explored.
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CHAPTER 1
INTRODUCTION

In recent years, there has been a growing interest in both federal agencies and private firms to
employ video cameras for monitoring and surveillance. These employed video cameras can have
an overlapping or non-overlapping field of view (FoV). It is the aim of this thesis to allow these
networked video cameras to self-configure. That is, each camera should automatically determine
its relative orientation with respect to every other camera in the network.

Most of the deployed camera systems share one common feature; a human operator must mon-
itor them. The effectiveness and the responsiveness of such a network is determined not by the
technological capabilities, but by the vigilance of the person monitoring these cameras. Moreover,
employing many people to monitor video cameras can be quite expensive. Therefore, due to in-
creased interest in the field of video surveillance, automatic object detection and tracking is one
of the primary areas of research in the field of computer vision. Using automatic object detection
and tracking not only minimizes the cost of employing many humans to monitor surveillance cam-
eras (or surveillance videos), but also maximizes the chances of successful event detection. Some
example of such systems includdiRA03 KCMO03, ZAKO05, BAO3].

However, most of the existing methods for configuring camera network ensgatipnary or
overlapping FoVcameras; or cameras whas&insic andextrinsicparameters are assumed to be
fixed or known (for e.g. €T99 TDGO05 HHZ06, SSK03). For example, Kang et al.KICMO03]
use an affine transformation between each consecutive pair of images to stabilize moving camera
sequences. A planar homography computed by point correspondences is used to register station-

ary and moving cameras. Zhao et aZAKO5] formulate tracking in a unified mixture model



framework. Ground-based space-time cues are used to match trajectories of objects moving from
one camera to another. Javed et dR$03J track objects across multiple stationary cameras by
exploiting redundancy in paths that objects tend to follow. The system learns the camera topology
and path probabilities of objects using Parzen windows in the training phase. The correct corre-
spondences in the testing phase are assigned using the maximum a posteriori (MAP) estimation
framework.

If the camera is moved for some reason, or the lighting conditions are changed (due to a cloudy
weather), the methods mentioned above generally depict undesirable behavior. And they need to
recalculated the probabilities associated with object behavior (i.e. motion characteristics). Simi-
larly, if the camera intrinsic paramors are changes, for example a change of zoom, the methods fail
to cater for this changed condition (e.¢cGMO03]).

Our goal in this thesis is to overcome the above restrictions, and when possible employ non-
overlapping FoV cameras that are able to move freely in the environment. The main motivation for
deploying networked cameras is that a single camera, even if allowed to rotate or translate, is not
sufficient to cover a large area. By employing multiple cameras with non-overlapping or disjoint
FoV, we would like to maximize the monitoring area in addition to inferring the network configu-
ration. By network configuration we mean the location and orientation of cameras in the network
with respect to each other, also known as the network geometry. A more general case with a wide
range of applications is when the deployed disjoint FoV cameras may be allowed to move freely in
3D space, e.g. on roaming security vehicles. This configuration indut@ssanic network geom-
etry. We propose a framework for self-calibration of such a dynamic network, thereby obtaining

the dynamic geometry of the network along with self-calibrating each camera in the network.



1.1 Motivation

By configuring a camera network, where the cameras are able to freely move in space and the
camera FoV is non-overlapping (or disjoint), we can perform tasks which might not be possible on
existing systems that use stationary cameras or cameras with fixed parameters. Some motivating

factors for configuring such a camera network can be to:

e direct cameras to follow a particular obje€tpZ01],

e calibrate cameras so that the observations are more coordinated and perform measurements
(with known scale) and possibly construct a Euclidean model of the 3-D world nmd#é€l4,

CT04,

e solve the camera hand-over problem i.e. establish correspondence between tracked objects

in different cameras

e generate image/video scene mosaic

e infer network topology MEQY],

¢ build terrain model CT99 or do spatial learning for navigatiory B96, Tan94, and

e estimate relative orientation and location between cameras in the network.

An overview of the key components of the system are shown in Fipdrécach of these com-
ponents has a long history in computer vision. The components which are addressed in this thesis
are camera calibration and relative camera orientation (i.e. network configuration) (rectangles with

red outline cf. Figurd..1).



This thesis improves on the state of the art on various aspects of computer vision.

Camera Calibration: We present camera calibration techniques for different real world scenar-

ios. We propose five different calibration techniques, based on the characteristics of the
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Figure 1.1: Overview of the key components of a multi-camera network.

1.2 Contributions

scene.

We revisit the role of image of the absolute conic (IAC) in determining the camera
geometry, and propose new constraints that are intrinsic to it, reflecting its invariant

features. We investigate the application of these new constraints on camera calibration.

. We focus on the scenes where there is a reference plane and some shadows are cast on

it. In such scenes, we track the shadows on the reference plane (e.g. the ground plane)
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cast by at least two unknown stationary points, and utilize the tracked shadow posi-
tions to compute the horizon line and hence compute the camera intrinsic and extrinsic

parameters.

[l . We propose a robust and a general linear solution to the problem of camera calibration
by observing moving objects by adopting a formulation different from the existing
methods. The uniqueness of formulation lies in recognizing two harmonic homologies
present in the geometry associated with walking pedestrians, and then using properties

of these homologies to obtain linear constraints on the unknown camera parameters.

IV. We present a novel practical method for self-calibrating a camera which may move
freely in space while changing its internal parameters by zooming. We show that point
correspondences between a pair of images, and the fundamental matrix computed from
these point correspondences, are sufficient to recover the internal parameters of a cam-
era. No calibration object with known 3-D shape is required and no limitations are

imposed on the unknown camera motion, as long as the camera is projective.

V. A novel solution for a pan-tilt-zoom (PTZ) camera is proposed. Using only two images,
we are able to solve fa¥ camera parameters by trading off linearity with polynomial
equations. Our solution is based on using a sequence of Givens rotations, whereby
we decompose the infinite homography into a pair of projectively equivalent upper-

triangular matrices that provide up to 5 constraints directly on the camera parameters.

Self-Configuring Camera Network: In order to monitor sufficiently large areas of interest for

surveillance or any event detection, we need to look beyond stationary cameras and employ



an automatically configurable network of non-overlapping cameras. Moreover, features like
zooming in/out, readily available in security cameras these days, should be exploited in order
to focus on any particular area of interest if needed. A practical framework is presented that
determines the geometry of such a dynamic camera network. It is shown that only one auto-
matically computed vanishing point and a line lying on any plane orthogonal to the vertical
direction is sufficient to infer the dynamic network configuration. Our method generalizes
previous work which considers restricted camera motiédtR01]. Using minimal assump-

tions, we are able to successfully demonstrate promising results on synthetic as well as on

real data.

1.3 Applications

The theory presented here can be applied to solving many of the other problems in the field of
computer vision and photogrammetry. This section analyzes four of the many possible uses, which

will be described later in this thesis.

1.3.1 Path Modeling

We address the issue of path surveillance in a single uncalibrated and calibrated camera. We
propose a novel solution for detecting unusual behaviors of objects as they pass through a scene.
The method consists of a path building training phase and a testing phase. During the unsupervised
training phase, a weighted graph is constructed with trajectories represented by the nodes and
weights determined by a similarity measure. Normalized-cuts are used recursively to partition

the graph into prototype paths. Each partition represents a group of trajectories, which in turn



Figure 1.2: An example of different paths followed by objects in a scene. Different colors indicate
different paths.

is represented by a path envelope and an average trajectory. During the testing phase we seek
a relation between the input trajectories derived from a sequence and the prototype path models

using our similarity measures. The proposed method is used to generate a topology of a scene and
calculate probabilities for predicting object behavior. Real-world pedestrian sequences are used

to demonstrate the practicality of our method. Figlir2 shows an example of multiple paths

extracted from a video sequence.

1.3.2 Registration To Satellite Imagery

Registration to the satellite imagery gives a global view of the scene being observed. Using the
calibration techniques presented in this thesis, the images can be rectified to one that would have
been obtained from a fronto-parallel view of the plane for a good registration to the aerial imagery.
To make this process automatic (i.e. without having to manually specify the Euclidean world
coordinates of points), the estimated affine and the projective components of the transformation can
be combined together to efficiently metric rectify the video-sequence such that the only unknown

transformation is a similarity transformation.



1.3.3 GPS Coordinate Estimation

We introduce a novel application to the field of vision-based video forensics. By using only com-
puter vision techniques, we are able to estimate the GPS coordinates of the camera location. Once
we have a calibrated camera, we make some measurements on shadow trajectories to obtain the
geo-latitude of the camera. This step only requires three shadow trajectory points. We also obtain
the day (up to sign ambiguity) on which these images were taken and the declination angle of the
earth when these pictures were taken. This is possible by integrating techniques from the field
of astronomy and computer vision. We also discuss how the longitude can be obtained if more

information is available.

1.3.4 Mixed-Reality

To demonstrate the broader applicability of our proposed work, we present a practical framework
for registering a Mixed Reality (MR) environment of an arbitrary number of participants. Each
participants wears a head mounted display, which consists of a pair of stereo cameras. Participants
are assumed to be moving freely in 3D space and multiple HMDs need not have a common Field of
View (FoV). We show that the plane at infinity and a common vertical vanishing point can be use
to determine the exact orientation of all HMDs with respect to each other, and establish a common

reference frame up to translation.

1.4 Outline Of The Thesis

This thesis is divided into four parts:

Part I: Introduction and Background



A brief history of the projective geometry is presented in Chaptillowed by some basic
concepts in the projective geometry of 2-space and 3-space. The pinhole camera model is described
and its various parameters are introduced. The absolute conic, lying on the plane at infinity, at its
use in camera calibration is highlighted. The epipolar geometry, arising between different views of
the camera or between multiple cameras, is elaborated. These concepts serve as a foundation for
the rest of the thesis.

Part Il: Camera Calibration

Camera calibration is the process of extraciimgnsic andextrinsiccamera parameters. Cal-
ibration is an obligatory process in computer vision in order to obtain a Euclidean structure of the
scene (up to a global scale), and to determine rigid camera motion.

This part presents novel solutions to calibrate any camera present in a network. Therefore, this
part applies to any single camera, not the network as a whole. Camera calibration techniques can

be broadly classified into two categories:

1. Scene Based Calibration:Calibration by observing a calibration object whose geometry in
the3-D space is known. The original work in this category is that of TasaB1, where the

calibration object consists of two or more planes set orthogonal to each other.

2. Self-Calibration: The metric properties of the cameras are determined directly from con-
straints on the internal and/or external paramefén®y, FLM92, PKG99 HB06, AHRO1,
Stu97h). No calibration objects are required in these techniques. Simply by moving a cam-
era in a static scene the rigidity of the scene provides constraints that are used to calibrate

the camera.



Another intermediatetechnique for camera calibration is based smene constraints The
knowledge of scene geometry, e.ganishing pointsor vanishing linesis used to impose con-
straints on the camera paramete38iD4 LZ99]. Due to their ease of use and wide applicability,
the camera calibration methods presented in this work are all self-calibration or scene constraints
based.

Chapter3 revisits the role of the image of the absolute conic (IAC) in recovering the cam-
era geometryJF064. New constraints on IAC are derived that advance our understanding of its
underlying building blocks. These new constraints are shown to be intrinsic to IAC, rather than
exploiting the scene geometry or the prior knowledge on the camera. We provide geometric inter-
pretations for these new intrinsic constraints, and show their relations to the invariant properties
of the IAC. This in turn provides a better insight into the role that IAC plays in determining the
camera internal geometry.

Chapter4 shows that a set of six or more photographs of shadow trajectories of stationary
objects in a scene are sufficient to accurately calibrate the cadted@d. Calibration is possible
after the line at infinity has been recovered. The chapter provides two methods to recover this line
which is used with the concepts presented in Chapterperform calibration.

Chapter5 addresses a practical situation where a stationary camera is observing pedestrians.
We present a robust linear solution to the problem of camera calibration from observing pedestri-
ans by adopting a formulation that is more general than existing methd#0p, KM05]. The
uniqueness of formulation lies in recognizing two harmonic homologies present in the geometry
induced by walking pedestrians, and then using properties of these homologies to obtain linear

constraints on the unknown camera parameters for arbitrarily walking pedestrians. This work has
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been published in various conferencésdg JFO6h JASO7

Chapter6 describes a camera calibration method when the camera is freely md@Gr@6a
JCFO01. We show that point correspondences between a pair of images, and the fundamental matrix
computed from these point correspondences, are sufficient to recover the internal parameters of a
camera. The main contribution of this chapter is the development of a global linear solution which
is based on the well-known Kruppa equations. We introduce a formulation different from the
Huang-Faugeras constraints.

Chapter7 describes a novel method for calibrating a pan-tilt-zoom (PTZ) camera from only
two images by trading off linearity with polynomial equatiodsh JFO74. Our solution is based
on using a sequence of Givens rotations, whereby we decompose the infinite homography into a
pair of projectively equivalent upper-triangular matrices that provide up to 5 constraints directly
on the camera parameters.
Part Ill: Network Calibration

This part focuses on a network of multiple cameras. In order to monitor sufficiently large areas
of interest for surveillance or any event detection, we need to look beyond stationary cameras and
employ an automatically configurable network of non-overlapping cameras. These cameras need
not have an overlappingield of View(FoV) and should be allowed to move freely in space if
desired. Moreover, features like zooming in/out, readily available in security cameras these days,
should be exploited in order to focus on any particular area of interest if needed.

Chapter8 presents a practical framework to use calibrated (possibly moving and zooming)
cameras and determine their absolute and relative orientations, assuming that their relative posi-

tion is known (using either survey points, GPS, or by initialization). It is shown that only one
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automatically computed vanishing point and a line lying on any plane orthogonal to the vertical
direction is sufficient to infer the dynamic network configuration. The method generalizes previ-
ous work which considers restricted camera motions. Using minimal assumptions, we are able to
successfully demonstrate promising results on synthetic as well as on real data. This chapter is the
result of several publicationdCF07 JCF06¢.

Part IV: Applications

Previous chapters described camera calibration methods for various scenarios and a network
configuration method. These novel methods can be applied to solve different problems in video
content analysis and video forensics. This chapter aims to describe some of the applications of our
proposed work that we have investigated.

Chapter9 describes application t&uclidean path modeling for video surveillance. We
present a novel yet simple method to model the behavior of pedestrians in a scene. Using pedestri-
ans for camera calibration, the trajectories of the tracked pedestrians are metric rectified to remove
projective distortion from the trajectories. These metric rectified trajectories represeat pic-
ture of the data. This chapter is the result of several publicatitfres JFO7¢ JFO7h JIJS04

We also described how a modeled scene can be registered to satellite imagery for a global view
of the scene. Results are presented for single and multiple camera systems.

ChapterlO presents a technique f@PS coordinate estimation We show that once a camera
is calibrated from observing shadow trajectories (Chaftewe can recover the GPS coordinates
of the camera location. Determining the GPS coordinates and the date of the year from shadows in
images is a new video forensic concept that we introduce in our work. This is possible by incorpo-

rating techniques from the field of astronomy and computer vision. This chapter is submitted for
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publication pF07d
Chapterll describes application to a Mixed Reality (MR) environmel€F06k. We show
that the method described in Chapderan be used to configure a MR environment, where multiple

agents are using head mounted display (HMD) units.

1.5 Notations

Although this thesis adopts the standard notations used in computer vision literature, for example

[HZ04)], we briefly highlight the most important notations:

e sets are denoted by symbols in “caligraph” or “script” font (&.

e matrices by using bold upper case symbols (KgP).

e scalars by normal face symbols (¢.g\ ).

e vectors, points, and lines are presented in homogeneous coordinates using lower case bold

symbols (e.gx, w). At locations, the homogeneous coordinates are also denoted by a tilde
).
¢ 3D elements, like points and lines by upper case bold symbolsI(e.4.).

e equality up to a multiplication by a non-zero scalar factor in a homogeneous coordinate

system as-.

o skew symmetric matrix is denoted @$, for a vectore!

Uf e = (e1,e2,e3)T is a 3-vector, then we can define a corresponding skew-symmetric matrijelas:=
0 —€3 (&)
€3 0 —€1

—€9 €1 0
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The terms multi-camera, multiple cameras and networked cameras are used interchangeably.
Similarly, calibrating and configuring a camera network shall be used interchangeably as well.

More notations shall be introduced at appropriate places when necessary.
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CHAPTER 2
BACKGROUND: PROJECTIVE GEOMETRY

Projective geometry deals with the geometry of straight lines. We no longer deal with a right-

angled triangle or a circle, but with triangles and conics.

2.1 ABIt Of History

Projective Geometry. While Euclid’s geometry may be defined as the geometry of lines and
circles, the projective geometry can be defined as geometry dfttagght linesalone. All the
propositions for projective geometry are in fact old and may be traced back to Euclid (285 B.C.),
to Apollonius of Pergaqd7 B.C), to Pappus of Alexandrial{ century C.E.); to Desargues of
Lyons (1593 — 1662); to Pascal (1623-1662); to de la Hire (1640-1718); to NewtoAZ — 1727);

to Maclaurin (698 — 1746); and to J.H. Lambertl(f28 — 1777). The theories and methods derived
from these propositions are calledodernbecause they have been discovered or perfected by
mathematicians of an age nearer to ours, such as Carnot, Brianchon, Ponédlets,Nbteiner,
Chasles, Staudt, etcCfe89.

Plane projective geometry deals with the projection of a 3-Dimensional world onto a 2-Dimensional
plane. The projective geometry deals with triangles, quadrangles and so on, but not with right-
angled triangles or parallelograms, and so on. This is due to our focus concern with geometrical
properties only that remain unchanged by tieatral projection The motivation for this kind of
geometry came from fine arts. 1425 Italian architect Brunelleschi began to discuss the geomet-
rical theory of perspective, which later was consolidated by AlbEtD[L], see Figure2.1 for an

illustration of Alberti’s grid.
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Figure 2.1: Alberti’'s Grid - c.1450 (also known as Alberti’'s Veil).

Similarly, an ellipse or a parabola are simglynicsin a projective geometry. Although conics
were studied by Manaechmus, Euclid, Archimedes and Apollonius in the £arly 5** century
B.C., it was Pappus of Alexandria in third century C.E. who truly discovered the projective theo-
rems [Cox74. J.V. Poncelet was the first to prove these theorems by purely projective reasoning.

Almost two hundred years before Poncelet, the concepbaoft at infinityoccurred indepen-
dently to two scientists Johann Kepler and Girard Desargues. Desargues declared that, “parallel
lines have a common end at an infinite distance”. And, “when no point of a line is at a finite dis-
tance, the line itself is at an infinite distance”. This work laid out the foundation for the concept of
line at infinity, discovered later by Poncelet. This concept justifies our assumption that if coplanar
lines have no point in common, they intersect at a point at infinity.

The last traces of dependencies on Euclidean geometry were removed when Felix Klein, in

1871, provided an algebraic foundation for the projective geometry by introduzimgogeneous
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Figure 2.2: Perspective Frames:(a) A painter incorporating perspective effect into his painting.
(b) Albrecht Durer’s interpretation of “The Draftsman’s Net”. (c) Albrechti2r's Perspective
Machine of1525 demonstrates the principle of ray tracing.(d) Albreclitr&’s interpretation of
“Jacob de Keyser’s Invention”.

coordinates

The principle of duality- every statement about points and lines (in a plane) can be replaced
by a dual statements about lines and points - was introduced by Poncelet, later elaborated by J.D.
Gergonne (771 — 1859).
Pinhole Camera: Along the time when the theory of projective geometry was being developed,
perspective machinagere being developed to help painters accurately produce life like image of
the real world FLOZ1]. In this kind of machines, the eye of the painter was generally fixed and
a device was used to materialize the visual ray with the image plane, illustrating the geometry
of central projection. Figur@.2 depicts some of the devices invented for painters to add linear
perspective effects to their work.

The camera obscurdLatin for 'dark room’) was the ancestor of the modern camera. We find
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illum 1n rabula per radios Solis., quam in ceelo contin-
git:hoc eft, i in ceelo fuperiar pars deliquif patiarur,in
radiis apparebic inferior deficere,vt rario exigitoptica.
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(b)

Figure 2.3: Earlier Pinhole Cameras: (a) Camera Obscura, Athanasius Kirchée6. (b) Cam-
era Obscura, Reinerus Gemma-Frisiligl4.

casual references by Aristotle (Problems3s8aB.C.), and Euclid. Abu Ali Al-hasen Ibn-Alhasen

is the first to show how an image is formed on the eye, using the camera obscura as an analog.
(1038), printed inOpticae Thesaurus Alhazaimi 1572. The camera obscura would be a dark room
where the user would enter. The light entering through a small hole would produce the inverted
image on the opposite wall. Two examples of different camera obscura invented are shown in

Figure2.3

2.2 Camera Model

In computer vision and other related fields, there are numerous different camera models which
model the imaging process by mapping points from the 3D world to 2D points on an image plane.
This process of image formation must be modeled in a rigorous mathematical fashion. The choice
of an appropriate camera model depends on several factors including the accuracy required in the
mapping, the actual camera used, and the relationship between the camera and the scene being

viewed.
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Our work focuses mainly on the pinhole camera ¢entral projection, described below in
Section2.2.2 and is the most commonly used camera model in the computer vision community
(e.g. WMCO03, CRZ0Q CF04h Zha02 CBP05 AZH96]). However, as the theory of camera
calibration is based on Projective Geometry, the important concept of homogeneous coordinates is

described first.

2.2.1 Homogeneous Coordinates

Suppose we have a poifit, y) on a Euclidean plane. In order to represent that point in a projective
space, we add a third coordinate: y, 1). The overall scaling is unimportanti.ex, y, 1) is same
as\(z,y, 1) for any non-zero\.

More formally, thehomogeneous coordinaset for a pointX in n-dimensional space with Eu-
clidean coordinates given by thetuple (X, Xs, ..., X,,) € R"is a (» + 1)-tuples
{w(Xy, Xa, ..., X, Xpy1) € R™N {0,0,...,0}, Vw # 0}. Conversely, given the homogeneous
coordinateg w (X1, Xo, ..., Xn, Xpi1) € RN\ {0,0,...,0},Vw # 0} of a pointX in n dimen-
sional space, Euclidean coordinates are derived &s; X, ..., X,,)/ X411, if X,,y1 # 0. The
special case wheX,,,; = 0 happens when the point is at infinity; this can not be represented in
Euclidean space.

Two n + 1 vectorsx = [X1,..Xn41]" @andx’ = [x},..x},,]T represent the same point in

projective space if and only #X # 0 such thate; = Az} for1 <: <mn+ 1.
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Figure 2.4: Pinhole Camera Model: The camera center is denoted @y The 3D pointX is
projected onto a points on the image plane. The image plane is placed in front of the the camera
center. The camera in the figure is placed at the origin of the coordinate system (Figure courtesy
of [Har]).

2.2.2 Pinhole Camera Model

The most general linear camera model is the pinhole camera model. This model is a perspective
projection of the world to the image plane. The pinhole camera model does not model the non-
linear distortions introduced by the camera. A 3D point in projective sffads projected onto
a plane inP? by means of straight visual rays (cf. Figdrd). The corresponding point is the
intersection of the image plane with the visual ray connecting the 3D point to the optical center.
Formally, represented in homogeneous coordinates, the projection@fsaehe poiniX ~
T

T
{ XY 7 1 } onto a point in the image plane ~ { z oy 1 } , for a perspective camera

can be modeled by the central projection equation:

v
XNK[R |—RC}X,K= 0 fA v, (2.1)
P 0 0 1
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Figure 2.5: Euclidean transformation of the camera coordinate frame w.r.t. to the world coordinate
frame.(Figure courtesy oHar]).

where~ indicates equality up to a non-zero scale factor @nd [ c. C, C, ]T represents
the Euclidean coordinates of the camera center. Here RyR,R, = {rl ry Ty } is the
rotation matrix and-RC is the relative translation between the world origin and the camera center
(cf. Figure2.5). The upper triangulas x 3 matrix K encodes the five intrinsic camera parameters:
focal lengthf, aspect ratio\, skew~ and the principal point gt,, v,) [WS94.

The matrixP is denoted as the projective camera matrix, and the mKircorresponds to the
matrix of intrinsic parameters. The matriR and the vectorRC are jointly called theextrinsic
or externalparameters. If the matrik is known, the camera is said to be calibrated. Hereafter,
the expressions “the cameRd and “the intrinsic parameterK” should be read as “the camera
with projective camera matrix given " and “the intrinsic parameters represented by the matrix
K”, respectively.

OnceP is obtained, the camera model is said to be completely determined. The matrix can
be computed from the relative positioning of the world points and camera center, and from the
camera internal parameters; however, it can also be computed directly from image-to-world point

correspondence&K71].
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Figure 2.6: Plane-to-plane homography Points on one plane are projected by a plane-to-plane
homography to points on another plane. The camera center is denoteédqMgure courtesy of
[Har]).

The projective camera describes a pinhole camera model by introducing the internal camera
parameters to account for the real camera characteristics. Physical lenses, however, introduce non-
linear distortions in the image, often modeled by radial distort®&IN03. Distortion will be
ignored in the current work - it is insignificant in the example images used and will be removed

when necessanpF95.

2.2.3 Planar Homography

An interesting specialization of the perspective projection isplame-to-planeprojection (cf.
Figure2.6). Points on one plane are projected by a plane-to-plane homography to points on another
plane BK79. This homography, also known as the plane projective transformation or collineation,

is a bijective mapping. Planar homography arises generally when the camera is projecting a planar
scene, for e.g. side of a building or looking at the ground plane.

Formally, a 3D poiniX; lying on a plane is projected to a poixton the image plane as:

Xi = H)(l (22)
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Figure 2.7: Planar Homology: A planar homology is defined by a vertexand an axisa. p,
the characteristic ratio, can be determined by the cross «atox’, x,,i; > of the four aligned
points. The poink] is projected on to the point;, and similarlyx’s on tox,. (Figure courtesy
of [Har]).

whereH is a3 x 3 homogeneous planar projection matrix describing the homography. The
world points are represented in homogeneous coordifétes (X,Y, W)T (omitting the Z-
component) and the 2D image points are denoted-agx, y, w)T, respectively.

Since the homography is bijective, it follows th¥t = H'x; is also valid, wherdd’ = H™!.
Computation ofH is similar to that ofP. In particular,H has eight degrees of freedom (nine
parameters minus an overall scale), hence it can be shown that at least four world-to-image feature

points suffice to define the homograpiy404].

2.2.4 Planar Homology

Planar homology is a plane projective transformation and an specialization of the homography. It
is characterized by a line of fixed points, thris and a distinct fixed point not on the line, the

vertex Planar homology arises in many situation, for instance, when different light sources cast
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Figure 2.8:Calibration Geometry: A pedestrian, detected at two different time instances, pro-
vides vertical vanishing point(,) and another vanishing poin¢’) lying on the horizon line of the
ground plane. As a result, two harmonic homologies exist in the scenario: one, RAasgts
vertex, and the other with, as it vertex.

shadows of an object onto the same plane.

The planar homology is defined bysal.o.f. 3 x 3, matrixH, and can be parameterized as:

vaT

H=1—(u—1)— (2.3)

vTa
wherep is the characteristic ratio that can be computed as the cross ratio of the four aligned

points as shown in Figurg.7, andv anda represent the vertex and the axes of the homology,

respectively. Planar homology contains one distinct and two repeated eigenvalues i.e. eigenvalues

are{\; = u, s = 1,\3 = 1} and the eigenvectors afe; = v,e, = a;,e3 = ay }, such that
a=aj x ay.

Harmonic Homology: A specialization of the planar homology is the case when the cross
ratio is harmonic i.ey = —1. This planar homology is called the planar harmonic homology and

has4 degrees of freedom (one less due to the knpyvrThis special case has the parametrization:
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T
H=-H'=1-2"2 (2.4)

vTa

In perspective images of a planar object with bilateral symmetry, corresponding points in the
images are related by a harmonic homology. FigiiBshows an example of harmonic homol-
ogy related to our work. A pedestrian, detected at two different time instances, provides vertical

vanishing point{,) and another vanishing poing’() lying on the horizon line of the ground plane.

2.3 Image Of The Absolute Conic

Consider the equation of a corit

axi + 2bx1T0 + 2cwy + das + 2exy + f =0

In homogeneous coordinates this becom&Ex = 0, whereC = | , 4

c e f

The matrix C is the homogeneous representation of the ca@nic The equation of am-

dimensional quadric, in general, is given as:

XTQX =0

whereQ is a(n + 1) x (n + 1) symmetric matrix.
The Absolute Conig¢AC) (2., is a point conic on the plane at infinilfl,. Thelmage of the

Absolute Coni¢IAC), denoted byw, is the conicw = (KKT) ' = K-TK-!, whereK is the
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camera parameter matrix. Thusonly depends on the internal parametKr®f the matrixP. w

can be expanded up to a non-zero scale as:

1 7 _ =V ytuc A f
\f Af
w = _a i i _ Vo f? vy —uo A fy (2.5)
)\f )\2f2 )\2f2
=y tue A e v P —us A fy N2 FA 2002 1200 2 AN fRue 2 —2 10 wo A fy
Af )\2f2 A2f2

The dual image of the absolute conic (the DIAC) may be defined as:

w'=w !'=KKT

The conicw* is a dual (line) conic, whereas is a point conic.

The aim of camera calibration is to determine the calibration ma&€rixinstead of directly
determiningK, it is common practiceAHRO01] to compute the symmetric matriK " TK~1 or
its inverse (the dual image of the absolute conic). The obtained maitrix, w*, can then be
decomposed uniquely using the Cholesky DecomposiiiTBg to obtain the calibration matrix

K. The matrixK can also be obtained uniquely fram as shown byZha0Q CSS0%:
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A= /1/(wa — wi)
Vo = (wiowi — wa3)/ (w22 — wi,)

Up = —(Vowr2 + wi3)

f = \/w32 - W%Q, - Uo(w12w13 - wzs)

v = —fAwr (2.6)

where the subscripts af;; denote an element’s roinand columry in matrix w.

2.4 Vanishing Points And Vanishing Lines

Vanishing points and vanishing lines are extremely powerful geometric cues. These entities convey
a lot of information about the scene. These points and lines can be estimated directly from the
images with no explicit knowledge required about the relative geometry between the camera and
the viewed scenaK95, LZ98, Shu99.

As shown in Figure2.9, image of parallel lines in the world intersect at a common points
called the vanishing point. Similarly, vanishing points of a set of coplanar parallel lines in different
directions meet at a common line, called the vanishing line of their common plane.

In P3, the plane at infinity1,, is the plane of directions - i.e. all parallel lines meetldg at
one common point. A vanishing point is simply the projection of this point on the image plane.
Thus a vanishing point depends only on the direction of a line, not on its position. Thus, if a line

has a directiord, then it intersecll,, at a pointX,, = (d”,0)”. Then the vanishing point;, is
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Figure 2.9:Vanishing Point: (left) Image of parallel lines in the world intersect at a common point
called the vanishing point. (right) Set of more than one parallel lines in different direction meet at
a common line, the vanishing line.

Figure 2.10: The angle between two rays.

given as:

v ~ PX,, = K[I|0] ~ Kd

Thus, the vanishing point of a line with directianin P? is the intersection of the ray with the
image plane at a point = Kd. Conversely, the directiod is obtained from the vanishing points
asd = K~1d up to a scale.

The angle between two rayls andd, corresponding to image poinkg andx, respectively,

may thus be obtained from the cosine formula for the angle between the two vectors:
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Figure 2.11:Two vanishing pointsx; andxs, of mutually orthogonal directions are said to be
conjugate w.r.t. the conio.

d’11‘d2 (K71X1>T(K71X2)

Vdidiy/dyd, - V(KT (K 1% ) /(K- 1x2) T (K- 'xa)
_ x7 (K~ TK1)x, 2.7)
VXT(K-TK )%, /x5 (K- TK1)x,

cosf =

This equation shows that ib = (K~-TK™!) is known, then the angle between rays can be
measured from their corresponding image points. In other words, a calibrated camera is a direction
tensor, acting as a 2D protractor. In the case when two vanishing poingsd v, represent
mutually orthogonal directions, i.eos 6§ = 0, Eq. 2.7 reduces tor] wv, = 0. Geometrically, the
two vanishing points are said to be conjugate w.r.t. the cenias shown in the Figur2.11 This
orthogonality relation puts a constraint @nand subsequently dd, that are linear in elements of
w. Leibowitz and ZissermanL[Z99] were the first to formulate the calibration constraints provided
by vanishing points of mutually orthogonal directions in termssfCT9( were the first to use
vanishing points for camera calibration. Some of the methods proposed by other researcher using

orthogonality condition includezha0Q CBP05 Stu99 GS03 CDR99 WMCO03, GP0Q CS05.
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2.5 Circular Points

Under any similarity transformation, two poinisandJ , on the line at infinityl, are fixed. These

points are called theircular points with the canonical coordinates

1 1
0 0

The circular points are a pair of ideal complex conjugate points. Thustersectsv at two

points,I andJ, giving rise to two constraints on the elements.of

ITwI=0 JTwJI=0 (2.9)

In practice, all the circular point information is contained in one of the complex conjugate
points. Writing out the real and imaginary parts of eitliéwI = 0 or JTwJ = 0 yields two

linear expressions on the elements.of

2.6 Epipolar Geometry

A point P in a 3D space, viewed by a pair of cameras, makes a plane with the left and the right
camera centers, i.e.); andO,., respectively. This plane is called tEpipolar Plane(r), defined
by the Epipolar Geometry Figure2.12 gives an example of the epipolar geometry. BPgtand
P, be vectors in left and right camera reference frames respectively and let vpgtans p,.

represent the projections &f onto the left and right image planes respectively. The veleias
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Figure 2.12:Epipolar Geometry A point P in 3D Space as seen from two cameras with centers
O, andO,. P, andP, are vectors in the left and right camera reference frames, respectively. The
vectorsp; andp, are the projections aP onto the left and right image planes, respectively.

related taP, by the distance between the camerB}&nd the angle, given asP, = R(P, — T),
whereR is the rotation matrix defined by angie The coplanarity condition between vectors

P,, P, andT results in the relatio®, TEP, = 0, whereE = RI[S] is theessential matrixand

[S]« is the rank deficient matrix, obtained by factorizifigx P;. The essential matrix encodes
information about the epipolar geometry and is defined in camera coordinates. Since we are dealing
with image sequences, we need to know the transformation from the camera coordinates to the
pixel coordinates. Therefore, we use the fundamental maYitt{at encodes both the extrinsic

parameters and the intrinsic parameters, along with the essential matrix. This relation is given as:

xTFx' =0 (2.10)

wherex andx’ are the points in left and right image planes, respectively. The projection of a point

on the left image lies on a line in the right image defined by RdL@. This is called theepipolar
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Figure 2.13:A point x in an image is transferred to a poitdtin another image via the plane

line [FLM92, HZ04].

Equivalently, consider a plarve in space not passing through either of the two camera centers
(cf. Figure2.13. The ray passing through the first camera center corresponding to thexpoint
meets the plane in a pointX. This pointX is then project to a point’ in the second images.
This procedure is known as transfer via the pland he fundamental matrix can then be given as
F ~ [¢'|«H,, whereH is the transfer mapping from one image to another via any pigraend
[€'] is the image of the camera center of the first camera as seen in the second camera.

A special case arises when the reference transfer plane is the plane at infimtyd.&l.. In

this case, the transfer mapping i.e. the homography between the two images is given as

H, ~KRK™, (2.11)

whereR is the relative rotation between the cameras Higl_ is called the infinite homogra-

phy. And the fundamental matrix is then given A${R01]:

F ~ [e/],Hy (2.12)
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2.6.1 Kruppa’s Equations

Originally, the auto-calibration method by Faugeras et BLM92] involved the computation of
the fundamental matrix, which encodes epipolar geometry between two infeae32] LF96].
Each fundamental matrix generates two quadratic constraints involving only the five elements of
w*, wherew* is the dual image of the absolute conic (DIAC). From three views a system of
polynomial equations is constructed called Kruppa’s equatiknsl3].

Kruppa’'s equations are based on the relationship between the image of the absolutesxonic (
and the epipolar geometry. If an epipolar lingié tangent taw, then the corresponding epipolar
line (1) is also tangent ta.

the infinite homograph¥if;  gives constraints ow* in the form of

w* ~ How HL

Using the relation in EquatioR.12and multiplyingw* on left and right byje'] ., we obtain:

e w'e]x ~ [¢]xHuw *xHE €],

~ Fw*FT (2.13)

Thus the fundamental matrix gives constraintsudn However,F andw* are only defined
up to a non-zero scaling and cross multiplying to remove the unknown scale gives quadratic con-

straints on the elements af*. Each pair of views gives two quadratic equations containing the
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elements olv, and, given three camera displacements (four independent pairs of views), they form

an overdetermined set of simultaneous polynomial equations.
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CHAPTER 3
DISSECTING THE IMAGE OF ABSOLUTE CONIC

The absolute coniS2.,, and its perspective projectian, known as the Image of the Absolute
Conic (IAC), are among the most important concepts in defining the camera geometry. The im-
portance of2_, arises from the fact that it lies on the plane at infinlil,,, and hence is invariant

under Euclidean transformations. This implies that the relative positidd.ofvith respect to a
moving camera is fixed. As a result its image, IAC, remains fixed if the camera internal parameters
do not vary. Therefore IAC can be used as a calibration object, i.e. for recovering the intrinsic
camera parameters. Knowing the IAC, the camera pose, and the Euclidean geometry of the scene
[HZ04] can be recovered directly from image measurements up to a similarity.

In this chapter, we revisit the role of IAC in determining the camera geometry, and propose new
constraints that are intrinsic to it, reflecting its invariant features. We investigate the application of
these new constraints in camera calibration. We show that a more general camera model than the
one proposed bydT9(q and formalized in [Z99] can be recovered from a single view, given an
input of three orthogonal vanishing points.

Next, we recall some preliminary notions on the relation between the camera geometry and
the IAC. We then dissect the IAC into its constituent components, and provide their geometric
meaning and importance. This is followed by an extensive set of experimentations and evaluation
of the performance of calibration under noise, and experimental results on real data and comparison

with [LZ99].
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Figure 3.1:The geometry of a pinhole camera. The absolute cbhis a conic on the plane at
infinity that is projected into the image plane as the cenjavhich depends only on the intrinsic
parameters of the camera.

3.1 The Role Of IAC

The geometry of imaging the absolute conic in a pinhole camera is shown in RBdurdhe

general pinhole camera projects a 3D pdito an image poinin via

fosou
m~KR[[|-CIM, K=| 0 Af o, |- (3.1)
0O 0 1

where~ implies equality up to an unknown non-zero scale fackiis the rotation matrix
from the world coordinate frame to the camera coordinate fr&ns,the inhomogeneous camera
projection center, an& is the camera intrinsic matrix containing the focal lengththe aspect
ratio ), the skews, and the principal poinp ~ [u, v, 1]T.

The role of IAC in defining the camera geometry is better understood by examining the action

of a finite camera on points that lie on the plane at infility,. A point onII, can be written as
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M, ~ [d 0]T, where the 3-vectod defines the direction of the ray obtained by connecting the
image ofM, and the camera projection center. Substituliig, in (3.1), one can readily verify
thatm,, ~ KRM,,. It therefore follows that the absolute conic, which is the cdRic = I on

IT., maps to the image conic
w~ (KR)TI(KR) ' ~K 'K (3.2)

known as the image of the absolute conic (IAC). Conversely, two image pantndm, back-
project to two rays with directiond, = K~'m; andd, = K 'm, in the camera coordinate

system, where the angle between the two rays is given by the familiar cosine formula

d’d, mTwms,

0 = =
o vdfd;y/dld, v/mfwm;/mfwm,

(3.3)

This shows that known angles between vanishing points can be used to impose constraints on
the IAC to obtain the camera intrinsic matrix. For instance, given the images of three infinite
pointsv;,i = 1,..., 3 along known directions, and assuming zero skew and unit aspect ratio, one
can recover the remaining unknown camera intrinsic parameters. In particujaré the vanish-
ing points along three orthogonal directions then one can write three linear equations of the form
vifwv; = 0,1 # j to calibrate the camer&£['90, CDR99 LZ99, Zha0Q Stu99 WMCO03, CBP04.

This is essentially the core idea behind calibration using the vanishing points, which was formal-
ized by LZ99]. These works showed that only a simplified camera model with three unknown
intrinsic parameters can be recovered from the vanishing points of three orthogonal directions, un-

less additional information is available (e.g. more images or the circular paB#(Q5 LZ99]).
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Table 3.1:Scene and internal constraints on IAC.

Condition Constraint type # constraints
Orthogonality v{'wv; =0,i+#j linear 1
Pole-polar lxwv =0 linear 2
Homography hfwh, =0 linear 2

hTwh; = hlwh,
zero skew wip = wy =0 linear 1
unit aspect ratiav;; = wos linear 1

Generally speaking, in recovering the camera geometry from a single view three sources of in-
formation have been commonly used in the past to impose constraints on the image of the absolute

conicw:

e metric information about a plane with a known world-to-image homography;

¢ vanishing points and lines corresponding to known (usually orthogonal) directions and planes;

e a priori constraints, such as unit aspect ratio, or zero skew.

These constraints are summarized by Hartley and Zisserman (Table 8.1, page RZO4h),[
which is also reproduced in Tab&l
In this section, we re-examine the problem of recovering the camera geometry from a single

view, when three vanishing points along world orthogonal directions are known.

3.2 Dissecting IAC

In the existing literature on camera calibration the role of IAC is primarily investigated in terms of
its relationship with other geometric entities in the image plane, i.e. the vanishing points and the

vanishing line. The relation between IAC and the internal parameters is often limited to equation
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(3.2). In this section and the following one, we present some new constraints and their geometric

meaning that are more intrinsic to the IAC, i.e. relate to the internal geometry of camera.

Theorem 3.2.1 (Invariance)

Letw be the image of the absolute conic. The principal ppisatisfies

wp ~ 1y (3.4)

wherel,, ~ [0 0 1]7 is the canonical position of the line at infinity.

The proof is straightforward and follows by performing the Choleskey factorization of the Dual
Image of the Absolute Conic (DIAC)*, and direct substitution g3.
In the next section, we also provide an alternative proof, which reveals the geometric meaning

of the constraint in3.4).

Proposition 3.2.1 (Scale)

Letw, denote the image of the absolute conic. We have

|wss| pTwp — det(w) =0 (3.5)

where|wss| denotes the minor of IAC corresponding to its last componentdand) is the deter-

minant.

Proposition 3.2.2 (Ortho-Invariance)

Letv;,i = 1, ..., 3 denote three vanishing points along mutually orthogonal directions. The image
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of the absolute conic relates these vanishing points via

1 1
— = 3.6
; viwv; pTwp 0 (3.6)

Proofs for all the above results follow by using the Cholesky decomposition of DIAC,
and direct substitution and algebraic simplification. Note that the resul.@ depends on the
orthogonality conditions, and hence is dependent on the familiar linear orthogonality constraints
viwv; = 0,7 # j. However, 8.4) and @.5) reflect some intrinsic properties of the IAC and do
not depend on the scene geometry or the prior knowledge on the camera intrinsics. This is the key

idea presented in this section.

3.2.1 Geometric Interpretation

The result in 8.4) is better understood if we provide its geometric interpretation. Cleal¥) (
is independent of the image points. Therefore, it reflects some intrinsic property of the IAC.
This intrinsic property is better understood if we rewrig4 as the following two independent

constraints

pfw; =0 (3.7)

pTwy =0 (3.8)

wherew; are the rows of the IAC (or equivalently its columns due to symmetry).
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This shows that

P~ w1 X wy (3.9)

which is true for a general camera model, i.e. no particular assumptions made about the aspect
ratio, or the skew.

A geometric interpretation (see Figu3e?) of this result is that the two rows; andw, of the
IAC correspond to two lines in the image plane that always intersect at the principal point regard-
less of the other intrinsic parameters. We may consider three cases: i.e. varying the gkew
aspect ratio\, or the focal lengthf. Although it is highly unlikely for a CCD camera to change
its skew or the aspect ratio, it is useful to evaluate these effects on calibrating a general pinhole

camera or a simplified one.

Varying the skew s: We may assume that we deal with two identical cameras that differ only in

skew: one zero skew and the other non-zero. Let us denote the two corresponding IAC’s by

w W
/
w3 Wi

wherew; andw, i = 1, ..., 3 are the rows of the corresponding IAC’s.
For the IAC with zero skew, i.ew, the two linesw; andw- are parallel to the image x and

y axes respectively, and intersect at the principal point. For the general IAC with non-zeo skew,
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w’, the corresponding two lines| andw/, are not perpendicular anymore. However, they still
intersect at the same image point, i.e. the principal point.

To demonstrate this formally, note that

w/ ~ KlfTKlfl
~ KT7TK'K"K'KK'™'

~ HTwH! (3.11)

Therefore the transformation that maps the IAC with zero skew to the general IAC is given by the

homography

H, ~ K'K! (3.12)

It can be shown that this homography is of the form

_wiz w12
w1l Wil

Hi~ 10 1 0 (3.13)

If we now perform the eigen-decomposition Hi,, we will find that this homography has only
two distinct eigenvectors both of which correspond to unit eigenvalues. The two eigenvectors are
[0 v, 1] and[1 0 0]. Geometrically, this is equivalent to saying that under the transformation

H; (i.e. if the skew of a camera changes from zero to a non-zero value), the[paintl] and
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the vanishing point along the x-axis remain invariant. In other words, these are geometrically
fixed points undeH,. Since any linear combination of these two points is also an eigenvector,
we deduce that the principal poipt which lies on the line joining the two fixed points is also
invariant under this transformation. This shows that equaBof) Conveys an invariant property
of the IAC, i.e. upon changing the skew the principal point should still lie on the intersection of
the image lines defined by the first two rows of the IAC.

Another illuminating feature oH, is that if we do the eigendecomposition of the transposed
homographyH?, we will find that there are also only two distinct eigenvectors,[id. —v,]” and
[0 0 1]7. Geometrically, this implies that the lineé 1 — v,]7 and the line at infinity are invariant
under changes in the skew. Since the principal point lies on the first line, it again confirms that the

principal point is a fixed point under variations in the skew.

Varying aspect ratio \: Interestingly enough, the same process as above can be used to establish
that upon changing the aspect radpthe principal point is also an invariant fixed point on the
intersection of the two image lines defined by the first two rows of the IAC. Again, if the two

IAC’s are denoted bw andw’, then their relationship is defined by a homography of the form

H, ~ KK (3.14)
10 0

~ 10 A u(1=N) (3.15)
00 1
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w2
where)\ = / —11 .
W11Ww22—W7iy

Similar eigen-analysis reveals thHt, shares the same two eigenvectfrs, 1] and[1 0 0]
corresponding to its repeated unit eigenvalue, and a third eigenvector that corresponds to the point
at infinity along the y-axis, i.e[0 1 0] with the eigenvalue equal tv. This shows that the same
two points are again geometric fixed points. However this time the infinite point along the y-axis
is also fixed. Again using the fact that the linear combinations of eigenvectors corresponding to
unit eigenvalues is also an eigenvector, we conclude that the principal point, which lies on the line
joining the first two eigenvectors, is also geometrically a fixed point under variatioks of
Varying the focal length f: Finally, if we let the focal length of a camera vary then the homogra-

phy that relates the two IAC’s is given by

H, ~ KK (3.16)
ror-DE2 (=) (up+u,2)
0 r (1—r)v, (3.17)
0 0 1

wherer is the ratio of two focal lengths.

The eigen decomposition of this homography indicates that the principal point is the eigen-

vector corresponding to the unit eigenvalue, and hence is a fixed point EhdeThe last two

eigenvectors, are repeated and correspond again to the point at infinity along the/ k-&xis

with the eigenvalue equal to
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3/

Figure 3.2:The geometry associated with the IAG;, w,, andws represent the lines associated
with the IAC when the skew is zero, and, w), andwj illustrate the case when the skew is
not zero. In both cases the principal point is on the intersection of the first two lines, providing
two linear constraints on the IAC. The ratio of line segments along the two lines (two rows) are
preserved as the skew changes.

Remark If two cameras differ only by the intrinsic parameters\, or f, then the corresponding
IAC’s, w andw’, satisfy

W X wy ~ w X W) (3.18)

Figure 3.2 illustrates this underlying geometry of IAC for the case of varying skew. As can
be seen in Figur8.2 the third row of IAC also corresponds to a line in the image plane which
intersects the first two lines at two distinct points other than the principal point. These intersection
points together with other points along the two linesandw, can be used to confirm that the
ratio of line segments remain invariant, since all the homographies described above are affine.
Unfortunately, the third row of IAC or the resulting invariant ratios do not provide new independent

constraints.
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Before we close this section, we also formalize the familiar constraint that the principal point

is knowna priori to be close to the center of the imageas the following “soft constraint”

p = argmin(p — ¢)*(p — ¢) (3.19)

This latter constraint is a very practical prior in self-calibration.

3.3 Single-View Calibration

The results of the previous section are both good news and bad news. The bad news is that we can
not find more than two intrinsic constraints on the IAC from its internal geometry. The good news

is that the two constraints that we find can be used to reprameterize the IAC. This is rather very
useful, since it allows us to recover a more general camera model than the existing single-view
calibration techniques such dsZ99]: e.g. recoverf, s and(u,, v,) with three vanishing points,

or recoverf and(u,, v,) with two vanishing points.

For instance, let us assume that the camera skew is zero. The IAC is then of the form

1 0 W13
W~ 0 Wo2 Was (320)

W13 Wa3z Wss

Given three orthogonal vanishing points, we can formulate the single-view calibration problem as
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the solution to the following set of five equations:

ViTij =0, i#j, i,j=1,...,3 (3.21)
pfw; =0, (3.22)
pfwy, =0 (3.23)

These equations are linear in terms of the componends, @ind hence any four of them can be
used to reparameterize in (3.20 in terms of only the principal poinp. Suppose we use the
first four equations for reparameterization then the resultingvhich depends only op should
minimize

p = argminp™Wp where W = wowj (3.24)

We initialize p at the center of the image, and minimize using a standard optimization method
(e.g. Levenberg-Marquardt) in a window around the center of the image. Once the principal point
is obtained, all components of the IAC can be recovered (since they are expressed in tgfms of
and hence the camera intrinsic matikxcan be computed by Choleskey decomposition. Note that
the method recovers a more general camera model of four unknown parameterg, £.gnd

(U, V)-

The three columns of the rotation matrix are then givem by i% - the sign ambiguity
can be removed using the cheirality constratiZ4]. The translation of the camera can also be
recovered up to an unknown global scale, taking an image point as the projection of the world

origin.
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3.4 Results And Noise Resilience

In this section, we show an extensive set of experimental results on both synthetic and real data
using the method described above. We have performed detailed experimentation on the effect of
noise in the estimation error ovéd00 independent trials. The simulated camera has a focal length

of f = 2000, the aspect ratia = % zero skew, and the principal point@tl0, 385), for image

size 0f1024 x 768.

Performance Versus Noise Levelin this experimentation, we compared estimated camera in-
trinsic and extrinsic parameters against the ground truth, while adding a zero-mean Gaussian noise
varying from 0.1 pixels to 1.5 pixels. The results show the average performance over 1000 inde-
pendent trials. Figur8.3 summarizes the results for intrinsic parameters. For noise levebof
pixels, which is larger than the typical noise in practical calibratidmg0Q, the relative error for

the focal lengthf is 0.7%. The maximum relative error for the aspect ratio is less than 0.01%,
while that of the principal point is less than 0.2%. Excellent performance is also achieved for all
extrinsic parameters as shown in FigGrg, i.e. less than 0.4% error for both andt, relative to

f, and absolute errors of less than a tenth of a degree for all rotation angles.

Performance against [Z99]: We performed the comparison using the same setup as above.
Figure3.5summarizes our results.

Performance on Real Data:For real data, in order to evaluate our results, we used an approach
similar to [Zha0Q using the uncertainty associated with the estimated intrinsic parameters charac-
terized by their standard deviation over many images. Figugshows two examples from the set

of real images that were used in this experimentation. Results are summarized i8.2aldlbe
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Figure 3.4:Performance vs noise (in pixels) averaged over 1000 independent trials: (a) absolute
error for the rotation angles, (b) absolute error for the translations along x and y axes.

Table 3.2:Uncertainty in experimental results with real data.

Parameter Mean Std.
f 460.52 5.74
A 1.51 0.24
Uy 318.33 5

Uy 242.77 4.41

uncertainty is reasonable, but could be improved of course if we use more accurate approaches
[MK95, LZ98, Shu99 VMPO04] to finding the vanishing points, rather than using an unreliable

manual point clicking.
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the focal lengthf, (b) & (c) the relative error in the coordinates of the principal point.

Figure 3.6:Two of many images used in evaluation with real data

Table 3.3:Intrinsic constraints of IAC. The first two are related to the invariant properties of the
principal point, the third constraint cross-correlates this property and the orthogonality constraint
(ortho-invariance), and the last one is a “soft constraint” on the position of the principal point in
the image plane.

Condition Constraint Linear
Invariance wp ~ 1l yes
Scale |wssz| pTwp —det(w)=0 no

H H 1 1 _
Ortho-invariance) _, “Tov; ~ pTap =V no
“Soft” p ~ argmin(p — c¢)¥(p —c) no
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3.5 Conclusion

In this chapter, we presented new constraints that are intrinsic to the image of the absolute conic.
The constraints reflect the invariant properties of the IAC, and characterize its geometric structure.
In particular, we showed that the rows of the IAC correspond to very specific image lines whose
intersections bear the invariant properties of the IAC. An immediate application of this geometric
characterization of the IAC is that it can extend our ability to estimate more complete set of camera
parameters from a single view. We therefore propose the following table as an addendum to table
given by Hartley and Zisserman (Table 8.1, page 224HA(4]). Unfortunately, however, as
described in the text, not all the constraints can be used independently. As a result, we believe that
it is unlikely that one can recover all the five intrinsic parameters of the camera from a single view

of three orthogonal vanishing points, unless some additional information is available.
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CHAPTER 4
CAMERA CALIBRATION USING SHADOW PATHS

In this chapter, our main goal is to demonstrate that a camera can be calibrated by using the shadow
trajectory of an object. An object casts its shadow on the ground plane. When observed over a
period of time, this shadow forms a curve or a trajectory, which we refer to as a shadow trajectory.
We require at least two shadow trajectories, i.e. at least a pair of objects. We require at least five
points on this shadow trajectory to perform camera calibration. More object and more trajectory
points can be used for a more robust solution. By fitting conics to these shadow trajectories, we
are able to obtain the vanishing line of the ground plane.

The most related work is that ofCF0§. Cao and ForooshdF0g use multiple views of
the objects. This limits the applicability of their method as having more than one camera is not
always possible. Moreover, they require an object’s bottom and top location to be always visible
in the images, a condition which we have successfully relaxed in our proposed method. Compared
to other methods on camera calibration from shadow trajectories, the proposed method is more
robust and more precise, as it involves using multiple conics for the estimation of unknown camera
calibration matrix HeiOQ.

The main step of our approach is a novel method to extract the vanishing line of the ground
plane from using only the shadow trajectories (Secli@ This step requires at least five images (
> 5 for a robust solution) containing shadow trajectories of at least a pair of objects. The vanishing
line along with an extracted vertical vanishing point is used to estimate camera parameters (Section

4.4). Accordingly, this chapter is divided into corresponding sections addressing each issue.
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4.1 The Setup

Let T be a 3D stationary point anB its footprint (i.e. its orthogonal projection) on the ground
plane. As depicted in Figt.1, the locus of shadow positiors cast byT on the ground plane
is a smooth curve that depends only on the altitude and the azimuth angles of the sun in the sky
and the vertical distance of the object from its footprint. This geometric configuration is rather
interesting, since the object poifit together with the ground plane act as an artificial pinhole
camera, where the camera projection center is the object point, the image plane is the ground
plane, the focal length is the vertical distarigeand the principal point is the footprii.

Without loss of generality, we take the ground plane as the world plane0, and define
the x-axis of the world coordinate frame toward the true north point, where the azimuth angle is
zero. Therefore, algebraically, the 3D coordinates of the shadow position can be unambiguously
specified by their 2D coordinates in the ground plane as

3 B cos f
Si = B; + hjcot ¢ , (4.2)

sin 0
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whereS; = [S;y Siy]T andB; = [Bix Biy}T are the inhomogeneous coordinates of the shadow
position S;, and the object’s footprinB; on the ground planep is sun altitude, and the sun
azimuth. Equation4.1) is based on the assumption that the sun is distant and therefore its rays,
e.g. T;S;, are parallel to each other. It follows that the shad@8y®ndS- of any two stationary
points T; and T, are related by a rotation-free 2D similarity transformatiorSas~ H!2S,,

where
h2/h1 0 B2z - Blth/hl

H~ | 0 hy/hy By — Biyha/l (4.2)

0 0 1

Note that the above relationship is for world shadow positions and valid for any day time.

4.2 Recovering The Vanishing Line

The goal in the calibration step in this chapter is to recover the vanishing line of the ground plane
from the shadow trajectories. Once the vanishing ling s recovered, it is used together with
the vertical vanishing point, found by fitting lines to vertical directions, to recover the image of the

absolute conic (IAC). There are two cases that need to be considered:

4.2.1 When Shadow Casting Object Is Visible

This case requires that the bottom point, and optionally the top point, of the shadow casting object
be visible in the image. An example of this case is the light pole visible in image sequence shown
in Figure4.9. Figure4.2illustrates the general setup for this case. The vertical vanishing point is

obtained by, = (T x B1) x (T2 x Ba)
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Figure 4.2:The setup used when the bottom and the top locations of the object are visible.

The estimation ol is as follows: at time instance= 1, the sun located at vanishing point
vy casts shadow dI'; andT, at pointsS; andS’y, respectively. The sun is a distant object and
therefore its raysI';S; andT.S’,, are parallel to each other. It then follows that the shadow rays,
i.e.S;B; andS’; B,, are also parallel to each other. These rays intersect at the vanishing point
on the ground plane. Similarly, for time instance- 2 and¢ = 3, we obtain the vanishing points
vZ andv?, respectively. These vanishing points all lie on the vanishing line of the ground plane on
which the shadows are cast, is%,Tloo =0, wherei = 1,2,...n andn is number of instances for
which shadow is being observed. Thus a minimum of two observations are required of at least two

vertical objects to obtaih,..

4.2.2 When Shadow Casting Object Is NOT Visible

This is a moregeneralcase. The bottom point and/or the top point of the shadow casting object
might not always be visible in a video sequence. Figueshows a picture of downtown Wash-

ington D.C. One of the shadow casting object is the traffic light (marked with a blue dot) hanging
by a horizontal pole (or a cable). This traffic light does not have a bottom point on the ground

plane. In this setud,, can not be recovered as described above. Also, the vertical vanishing point
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Figure 4.3:Few of the images in one of our data set that were taken from one of the live webcams
in Washington D.C. The objects that cast shadows on the ground are highlighted. Shadows move
to the left of the images as time progresses.

is now obtained by other vertical structures in the scene, not necessarily shadow-casting structures.
Therefore, in order to recovéy,, we have to only work with the shadow trajectories.

Given any five imaged shadow positions of the same 3D point, cast at distinct times during one
day, one can fit a conic through them, which would meet the line at infinity at two points, which
may be real or imaginary depending on whether the resulting conic is an ellipse, a parabola, or a
hyperbola HZ04]. Suppose now we have two world poirily and T, that cast shadows on the
ground plane. Any five distinct shadow positions®f and T define two distinct and unique
conics on the ground plane, which after camera projection yield the image dOpiesid C,,
respectively. These two conics are relatedly~ (HH!?H!)~"TC,(HH!?H!)~!, whereH
is the world to image planar homography with respect to the ground plane. Since the two world
conics are similar, owing to the distance of the sun from the observed objects, these two conics
generally intersect at four points, two of which must lie on the image of the horizon line of the

ground plane.

4.2.3 Computing Intersections

The basic idea of conic intersection is illustrated in Fgd. We now present the method for

computing these intersections and expand on its relation to the recovery of the vanishipg line
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All conics passing through the four points of intersection can be written as

C,u ~ Cl + /JCz. (43)

Equation 4.3) defines a pencil of conics parameterized;hywhere all the conics in the pencil
intersect at the same four poinis;, i = 1, ..., 4. Four such points such that no three of them are
collinear also give rise to what is known as ttemplete quadrangle

It can be shown that in this pencil at most three conics are not full rank. For this purpose note

that any such degenerate conic should satisfy

It can then be readily verified tha4.@) is a cubic equation in terms @f. Therefore upon
solving @.4), we obtain at most three distinct valugs: = 1,...,3, which provide the three

corresponding degenerate conics

C#i ~ C; + ,Mi027 i= 1,...,3. (45)

In the general case (i.e. when the three parametgris= 1,...,3 are distinct), the three

degenerate conics are of rank 2, and therefore can be written as

C, ~LIT+LT i=1,..3 (4.6)

171 )

wherel; andl; are three pairs of lines as shown in Higk
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Ground Plane

Figure 4.4: The two gray conics are fitted by two sets of five distinct shadow positions on the
ground plane cast by two world points. Generally, the two conics intersect at four pejinits=

1, ..., 4 two of which must lie on the line at infinity. The four points form a quadrangle inscribed
to any one of the gray conics. The diagonal triangyke,; vo v is self-polar BK79,.

Now, letC;, be the adjoint matrix o€,,,. It then follows from @.6) that

C.li=C.l=0, i=1,..,3 (4.7)

which yields (by using the property that the cofactor matrix is related to the way matrices distribute

with respect to the cross produ€tf04])

CiLix Coli=C,(Lx1)=0, i=1,.,3 (4.8)

In other words, the intersection poimrf of the pair of lines]; andL, is given by the right null
space ofC,,. Therefore, in practice, it can be found as the eigenvector corresponding to the
smallest eigenvalue of the degenerate cdnjc. The triangle formed by the three verticesv,

andvj is known as theliagonal triangleof the quadrangle§K79.

Theorem 4.2.1 (Self-Polar Triangle)
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Letm;, my, mg andmy be four points on the conic locs,, the diagonal triangle of the quad-
ranglem;mymsmy, is self-polar w.r.t.C,,. Since two of the points lie da,, one of the vertices

of Avyvyvs also lies onl.

This theorem follows directly from the projective geometry and we omit the proof here. Thus the
triangle Av,vavs is the diagonal triangle of the quadrangle composed of peigts = 1,....4
inscribed in a conic. There also exists a harmonic relationship between any two sides of the quad-
rangle andv; of Av,v,vg that meets that side. Exploring this harmonic relationship for obtaining
further constraints is the topic of our future research.

Next, we verify that for any coni€,, in the pencil

Lx1)TC, (4 x ) =0, i#j, ij=1,..3 (4.9)

This means that any pair of right null vectors of the degenerate c@hjcs = 1, ..., 3 are conju-
gate with respect to all conics in the pencil. In other words, their intersections form the vertices of
a self-polar triangle with respect to all the conics in the pencil.

To obtain the intersection points of the two shadow conics, we use the fact that all the conics
in the pencil intersect at the same four points. Therefore, the intersection points can also be found
as the intersection of the linésandl; with the linesl; andl; (i # j). The linesl; andl; can be
simply found by solving

C,, ~ LI} + 11T (4.10)

Equation 4.10 provides 4 constraints dpandl; (5 due to symmetry minus 1 for rank deficiency).
In practice it leads to two quadratic equations on the four parameters of the two lines, which can
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Figure 4.5:The horizon line detected from a sequence of self-polar triangles and the intersection
of the conics fit on shadow trajectories of two objects.

be readily solved. The solution, of course, has a twofold ambiguity due to the quadratic orders,

which is readily resolved by the fact that

L x I ~ null(C,,,) (4.11)

The process can be repeated foandl;, and the intersections of the lines between the two sets

would then provide the four intersection points of the shadow conics.

4.3 Robust estimation ofl,

The shadow cast on the ground plane might not be very accurately localized. This is due to the
nature of the problem, mainly because of the irregularities of the road, for example, or the shadow
not being very sharp due to a cloudy weather. Therefore some scheme needs to be adopted to
minimize the influence of outliers and noise tvae data points so that accurate results may be
obtained.

In our case, since two of the intersection points of the shadow conics are at infinity (without
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loss of generalityj as shown in Figt.4), one of the verticesy,, of the self-polar triangle must

be a vanishing point, and thus also lies on the horizon line,of the ground plane. Therefore

given six or more corresponding image points on the shadow paths of the two objects, we can get
six or more self-polar triangles, from which the horizon line of the ground plane can be recovered.
Since, two of intersection pointg fpoints of the quadrangle) are also on the horizon line of the
ground plane, they can be used together with one vertex of each self-polar triangle to recover the
horizon line. As an example, Figude5illustrates the horizon line fitted to many points obtained
through synthetic experiment, to be described shortly. Therefore, the system of overdetermined set

of equations needed to solve figr can be given as:

P71, =0 (4.12)

where® is a matrix containing the estimated vanishing points. Note that for6 corresponding
points on shadow paths of two objects, we obtain a tot%ll—% vanishing points. For instance,
with only 10 corresponding shadow points, we would get 756 points on the horizon line. This
would allow us to very accurately estimate the horizon line in the presence of dois¢herefore
a(nf—g’)m x 3 matrix and we have tmbustlyestimatd.,,.

The main goals of robust statistics is to recover the best structure that fits the majority of the
model while rejecting the outliers. We need to recover the bestuch thatK is closest to the
actual calibration matrix. The popular standard least squares (LS) estimation, which minimizes

the Euclidean norm of the residuals, is extremely sensitive to outliers i.e. it has a breakdown point

of zero. Total Least Squares (TLS) method, on the other hand, minimizes the Frobenius norm.
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Figure 4.6: Two commonly used minimization cost functions.

Given an over-determined system of equations, TLS problem is to find the smallest perturbation to
the data and the observation matrix to make the system of equations compatible. A suitable func-
tion also needs to be selected that is less forgiving to outliers, one such exampléristtaeed
guadratic[BA96], commonly used in computer vision (c#1.6). The errors are weighted up to
a fixed threshold, but beyond that, errors receive constant penalty. Thus the influence of outliers
goes to zero beyond the threshold.

In order to remove the outlier influence, we use the truncated Rayleigh quotient. The quotients

are estimated as:
N

o) =3 TAX (4.13)

xTx

T
wherex represent the three parameterslgf A = { viovi 1 } [ viovl 1 } contains the
determined vanishing points, atids the threshold. The Rayleigh quotients are estimated from the
observation points and the residual errors are estimated. The thrésbddt to the median of all

the residual errors. Observation points obtained fromZ#2 having residual errors greater than

¢ are removed as outliers. After outlier removal, thelier-freeremaining observation point
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are used to construct the over-determined system of Bgk2( The system is then solved using
the Singular Value Decomposition (SVD). The correct solution is the eigenvector corresponding
to the smallest eigenvalue.

In summary, in order to minimize the influence of noise on our observation ma@triwe
apply the Rayleigh quotient tiiiter out the noisy data points. Once the outliers are removed, the
Total Least Squares method is applied to the remaining observation points to estimate the unknown

parameteiv,; of the IAC.

4.4 Camera Calibration

The computed horizon link,, together with the vertical vanishing point, fitted from vertical
objects, provide two constraints on the image of the absolute conic in the form of the pole-polar
relationshipl,, ~ wv, [HZ04]. Assuming a camera with zero skew, and unit aspect ratio, the IAC

would be of the form r T
1 0 W13

w ~ (w1 we ws] ~ 0 1 woy (4.14)

W13 Wa3z Ws3

In the existing literature on camera calibration the role of IAC is primarily investigated in terms
of its relationship with other geometric entities in the image plane, i.e. the vanishing points and the
vanishing line. The relation between IAC and the internal parameters is often limited to equation
w ~ K-TK~!. In a relation that is more intrinsic to the IAC. Geometric interpretation for this
relation allows us to gain more insight into widely used the “closeness-to-the-center” constraint

[CS05 HZ04).
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Figure 4.7:The geometry associated with the IAG;, w,, andws represent the lines associated
with the IAC when the skew is zero. The principal point is located at the intersection of the first
two lines, providing two linear constraints on the IAC.

4.4.1 Geometric Interpretation

The result in TheorenB(2.]) is better understood if we provide its geometric interpretation. This

intrinsic property of IAC is better understood if we rewri24) as:

pTw; =0 (4.15)
pTws =0 (4.16)

from which, we get
P~ w1 X wy (4.17)

which is true for a general camera model, i.e. no particular assumptions made about the aspect
ratio, or the skew.

A geometric interpretation (see Figude?) of this result is that the two rows; andw, of
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the IAC correspond to two lines in the image plane that always intersect at the principal point
regardless of the other intrinsic parameters.

Using the two constraints provided by the pole-polar relationship, we express the IAC in terms
of only one of its parameters, egss, and solve for it by enforcing the constraint that the principal

point is close to the center of the image by minimizing

W33 = argmin ||wy X wy — | (4.18)

wherec is the center of the image, angs is the optimal solution fowss, from which the other two
parameters are computed to completely recover the 1A@.i4). It must be noted that the pole-
polar relationship could also be used on its own to recover a more simplified IAC without using the
minimization in @.18. Note also that the proposed auto-calibration method is independent of any
scene structureLZ99, Tri98, Zha0qQ, or (special) camera motionslar97, HA97, PKG99. We

only require the vertical vanishing point and that the shadow be cast on a plane without requiring

any further information.

4.5 Experimental Results

We rigorously tested and validated our method on synthetic as well as real data sequences for
self-calibration steps. Results are described below.

Synthetic Data: Two vertical objects of different heights were randomly placed on the ground
plane. Using the online available version of SunAngle Softw&m]| we generated altitude

and azimuth angles for the sun corresponding to our own geo-location with la®igugie. The
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Figure 4.8: Performance averaged ov&n00 independent trials: (a) & (b) relative error in the
coordinates of the principal poiiit,, v, ), (C) the relative error in the focal lenggh

vertical objects and the shadow points were projected by a synthetic camera with a focal length of
f = 1000, the principal point atu,, v,) = (320, 240), unit aspect ratio, and zero skew.

In order to test resilience of the proposed self-calibration method to noise, we gradually added
Gaussian noise of zero mean and standard deviation of U tpixels to the projected points.
The estimated parameters were then compared with the ground truth values mentioned above. For
each noise level, we performad00 independent trials. The final averaged results for calibration
parameters are shown in Figute3. Note that, as explained iT{i98], the relative difference with
respect to the focal length is a more geometrically meaningful error measure. Therefore, relative
error of f, u, andv, were measured w.rftwhile varying the noise from.1 to 1.5 pixels. As shown
in the figure, errors increase almost linearly with the increase of noise in the projected points. For
the noise ofi.5 pixels, the error is found to be less thas% for f, less thard.5% for u, and less
than1% for v,

Real Data: Several experiments on two separate data sets are reported below for demonstrating
the proposed method. In the first sét,images were captured live from downtown Washington
D.C. area, using one of the webcams available onlinettat//trafficland.com/ . As

shown in Figure4.9, a lamp post and a traffic light were used as two objects casting shadows
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Figure 4.9:Few of the images taken from one of the live webcams in downtown Washington D.C.
The two objects that cast shadows on the ground are shown in red and blue, respectively. Shadows
move to the left of the images as time progresses.

on the road. The shadow points are highlighted by colored circles in the figure. The calibration

parameters were estimated as

700.357 0 172

K= 0 700.357 124

4.6 Discussion And Conclusion

The auto-calibration step requires only the shadow trajectories of two objects on the ground plane
to be visible in the images, along with the vertical vanishing point. Unlike shadow-based calibra-
tion methods such a&\B04, CF04, this step does not require the objects themselves to be seen in
the images.

It is, however, important that the shadow trajectories can be used to fit conics. An exception,
which leads to a degenerate case, happens twice a year during equinox, when the lengths of the
day and the night are equal. As a result, it can be shown that, the shadow trajectories degenerate
to straight lines. Two cases may occur: if the two objects casting shadows are not aligned along

the east-west direction, then their shadow trajectories will be two distinct straight lines that are
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parallel in the world. Therefore, their intersection would provide only a single point at infinity,
which is insufficient to determine the horizon line; if the two objects are aligned along the east-
west direction, then the shadow lines will coincide and no vanishing point can be found. In both
cases auto-calibration cannot be performed using our method. However, this degenerate case is

rather rare and happens only twice a yeatr.
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CHAPTER 5
CAMERA CALIBRATION FROM PEDESTRIANS

Observation of human activities from stationary cameras is of significant interest to many appli-
cations. This is mainly due to the fact that the computer vision research has advanced to systems
that can accurately detect, recognize and track objects as they move through a scene. Most of the
video surveillance involves, for instance, monitoring an area of interest (e.g. a building entrance,
or an embassy) using stationary cameras where the intent is to monitor as large an area as possible.
The goal for such a system can be to model the behavior of objects (e.g. cars or pedestrians, de-
pending on the situation). Typically, one can employ path modeling techniques or activity learning
techniques for single or multiple cameras (e.GSR98) and even establish relations between the
camera systemMTO04], as discussed in more detail later. It is known that due to perspective pro-
jection the measurements made from the images do not represent metric data. Thus the obtained
object trajectories and consequently the associated probabilities represent projectively distorted
data, unless we have a calibrated camera. This is evident from a simple observation: the objects
grow larger and move faster as they approach the camera center, or two objects moving in parallel
direction seem to converge at a point in the image. The projective camera thus makes it difficult to
characterize objects - in terms of their sizes, motion characteristics, length ratios and so on - unless
more information is available about the camera being used. This is where the camera calibration
steps in.

This chapter proposes a robust auto-calibration method to estimate camera intrinsics and ex-
trinsics by observing pedestrians in a scene. Many camera calibration techniques exits for different

scenariosiiZ04] but we limit ourselves with related work on camera auto-calibration from observ-

69



ing pedestrians.

Lv et al. [LZNOZ2] were the first to propose calibration by recovering the horizon line and the
vanishing points from observed walking humans. However, their formulation does not handle ro-
bustness issues. Recently Krahnstoever and Mend#i@g] proposed a Bayesian approach for
auto-calibration by observing pedestrians. Foot-to-head homology is decomposed to extract the
vanishing point and the horizon line for calibration. They also incorporate measurement uncer-
tainties and outlier models. However, their method requires prior knowledge about some unknown
calibration parameters and prior knowledge about the location of people; and their algorithm is
also non-linear. We also handle a more general scenario where the pedestrian does not need to
walk on a straight line.

We propose a robust linear solution to estimate camera intrinsic and extrinsic parameters by
observing pedestrians. See Figl for an example of the scenario. The detected head and feet
locations of a person, over at least two instances, are used to estimate two harmonic homologies:
head-to-foot and frame-to-frame. The former is referred to as the vertical homology, vertical van-
ishing points being the vertex. The later is referred to as the horizontal homology as the vertex
lies on the horizon line. Linear constraints on the unknown camera parameters are obtained by
using properties of these homologies. The noise in the data points is minimized by using total least
squares method to solve an over-determined system of equations, where the outliers are removed
by truncating the Rayleigh quotier®[89].

We next discuss the method in detail and provide results for both synthetic and real data.
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Figure 5.1:A homology defined by an axisand a vertexs. See text for more details.

5.1 Harmonic Homologies From Pedestrians

Our auto-calibration method, to be described shortly, is based on using a pair of homologies defined
by a walking pedestrian. A plane projective transformaltbis a homology if it has a line of fixed
points (called theaxis), and a fixed point not on the axis (called tertex [HZ04]. A homology

H is completely specified by its axisits vertexv, and its characteristic invariapfHZ04, SK79,

and is given by:

H=T-(p=1) (5.1)

This is depicted schematically in Fi§.1 Under the homolog¥, the axis is mapped to itself.
Each pointx; off the axis lies on a fixed line through the vertexintersecting the axis at a point
pi,» and is mapped to another poijton the line. As a result, the corresponding poits— x,
the vertexv and the intersection of their joint with the axisgatare collinear. The cross ratio given
by these four collinear points defines the characteristic invariaftthe homology (seeHZ04],

Fig. A7.2, page 630).
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Figure 5.2:Harmonic Homologies Tracking pedestrians over any two frames provides two har-
monic homologies. See text for more details.

As an object or a pedestrian of heightraverses the ground plane, the line joining the top
and bottom points (i.e. head and feet for pedestrian) at different time instances can be intersected
to obtain the vertical vanishing point, (see Figureés.2b), since the pedestrians can be viewed as
vertical objects on a ground plane. Similarly, since the height of a pedestrian does not change (we
ignore the case when a pedestrian might sit or jump), the line joining the head locations at two
instances and similarly for the feet locations, intersect at a common poiyihg on the line at

infinity 1., (see Figuré&.2b). For a simple case of two frames, the head to foot correspondence can

be mapped by a homology. We refer to this homology awvérgcal homology, since the vertical

vanishing pointv, is the vertex of the homology:

v, 1T
H,=1— (u, —1)—21 5.2
(1 )Vlel (5.2)

wherev, andl, are, respectively, the vertex and the axis of the homology. Therdlrenaps

head locations to feet locations about the axis
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Another important geometric relation, so far ignored in existing literature on camera calibration
from pedestrians, is the homology existing between different locations of a pedestrian. As shown
in Fig. 5.2b), since the height of a pedestrian is the same in all the frames, the line joining the
head locationst{ andt,) intersects the line joining the feet locations (@ndb,) at a pointv’ on

the line at infinity {..), forming another homology, which we refer to as Hwizontalhomology:

nT
v'l;

thﬂ—(uh—l)Vle

(5.3)

wherel, andv’ are as depicted in Fidgp.2(b) andyuy, is the invariant of the homology.

In general, a homology has five degrees of freedbtd(4], i.e. two for the axis, two for
the vertex, and one for the characteristic invariant. Therefore, three point correspondences are
sufficient to uniquely determine the homology. A special case occurs when—1, in which
case the homology is said to barmonic[SK79. A simple inspection of the scenario at hand
reveals that the above two homologies defined by a walking pedestrian are indeed harmonic. To
demonstrate this note that in our homologies the vertex is always a vanishing point (i.e. the image
of a point at infinity), and the intersection of the joint of corresponding points with the axis is
always the imaged midpoint of the two corresponding points. As a result, the cross ratio for the

vertical homology is given by

v,b1 . P1b1 _
vt pity

fy = Crosgv,, t1,p1,b1) = ( -1 (5.4)

This last result follows immediately from the fact that the cross ratio is a projective invariant, and

that its value in the 3-D space is -1. Similarly, = Crossv’, t2,q2,t1) = —1 for Hy,. Hence,
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only two point correspondences are sufficient to determine the head to foot mapping, completely.
Moreover, knowing Cross,, t1,p1,b1) = Crosgv’, t2, qz,t1) = —1 can be used to constrain

the head-foot location in presence of noise, as shall be discussed shortly. The metigdH} |
employs only the vertical homology (ntwo harmonic homologigsand therefore requires more
than two point correspondences to solve the problem.

This result is also closely related to the configuration resulting from the perspective image of
an object with a bilateral symmetry, where corresponding points are related by a harmonic ho-
mology about the imaged axis of symmet@gP05 WMCO03, CF044. To demonstrate this note
that any two instances of a walking pedestrian form a rectangle in the world (connect the four red
dots in Figures.2(b)). Since the intersection of lines is preserved under perspective projection, the
intersection of the two diagonals is the center of this rectangjeFor our case of vertical homol-
ogy, and equivalently for the horizontal homology,, along withqs, g2 andv, areharmonici.e.
there exists a representation in which the four points have paranbetetsl andoo, respectively
[SK79, pg.48]. Thus in such case the cross-ratio of the four pqigtgor 14, for the horizontal
case), referred to as the harmonic cross-ratio, is equalltoThe imaged mid-poinin,, is given
by, m, = (b X t2) x (b2 X t1). As shown in Fig.5.2, t;, b, correspond ta., b., respectively
to construct the harmonic homologii{). Similarly, t, ts respectively correspond to,, b, to
determineH, .

Initial homology estimation: H, andH,, are estimated from the detected head/foot location
of an observed pedestrian. To estiméde, v, = (b; x t1) X (bs X t3). The axis of vertical
homology is obtained ds = p; x p2, wherep; = (m;, x v') x (by x t;) and

p2 = (my x V') x (by x tz). Hy, is obtained in a similar manner.

74



(€)

Figure 5.3: (a) shows an instance of a video sequences where a pedestrians is moving in the scene.
(b) and (c) represent the detected pedestrian in two different frames. The head and foot location
are denoted by; andb;. See text for more details.

Determining head/foot locationsThe proposed method requires point correspondences, which
are head/foot positions of the pedestrians. Moving foreground objects (or region of interest), with
shadows removed, can be extracted and tracked fairly accurately with statistical background mod-
els [GSR98 JS02 SM9§|. Lv et al. [LZNO2] perform eigendecomposition of the detected blob to
extract head/feet location. An example of a detected pedestrian is shown b 3ig.

A simpler approach can be adopted to extract the head and foot loc&t®b]. As shown in
Fig. 5.3 these locations can be easily estimated by calculating the center of mass and the second

order moment of the lower and the upper portion of the bounding box of the foreground region (cf.

Fig. 5.3b)(c)).

5.2 Robust Auto-Calibration

The main issue with camera auto-calibration by observing pedestrians is that head/feet detection
is noisy. For example, a pedestrian may walk casually so that the posture might not be straight.
Violations such as these result in measurements that can be viewatliass Thus, some scheme
needs to be adopted to minimize the influence of these outliers and ndisedata points so that

accurate results may be obtained. An elegant way of doing this would be to enforce the constraint
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that the noise-free homologies must be harmoniciwe= 1, = —1.

For this purpose, we express the vanishing points in terms of the IAC, as follows:

\/I\Z ~ 12 X lJ_xy ~ 12 X (.OV/ (55)

Vi o~ x Ll ~ Ly X wvy, (5.6)

wherel | ., is any line orthogonal to they-plane given by the pole-polar relationshig, = wv’

[HZ04].

Therefore, the harmonic cross ratios can be expressed now in terms of the IAC:

({’\zbl) . (plbl)

Crosgv,,t1,p1,b1) +1 = (= : +1=0 (5.7)
vty pit1
~ vt t
Crosgv’, ta, qa, 1) +1 = (=) = (221) 11— ¢ (5.8)
Vits qats

Unfortunately, Egs.%.7) and 6.8) are not independent. Hence, we have only one constraint on
w. Unless we have more information, we can only solve for one unknowr=ndiag(ws 1, w11, 1).
Fortunately, these two equations can be simplified into linear equations of thecﬁmi@?rb{ =0,
where the subscrigtindicates the frame number and the supersgript {1, 2} indicates the two
equations obtained per image pair. Thus from each pair of images we obtain two equations with one
unknown. Consequently, as each combination provides two equations fri@ames,2 x ( Z >
such combinations are possible. Equations obtained from a sequence are used to construct an

over-determined system of equations:
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=0 (5.9)

The main goal of robust statistics is to recover the best structure that fits the majority of the
model while rejecting the outliers. Thus, we need to recover thebgssuch thatK is closest
to the actual calibration matrix. The popular standard least squares (LS) estimation is extremely
sensitive to outliers i.e. it has a breakdown point of zero. Therefore, Total Least Squares (TLS)
method is adopted to solve the system of Exy8)( Given an over-determined system of equations,
TLS problem is to find the smallest perturbation to the data and the observation matrix to make the
system of equations compatible. A suitable function also needs to be selected that is less forgiving
to outliers, one such example is tireincated quadratid BA96], commonly used in computer
vision. The errors are weighted up to a fixed threshold, but beyond that, errors receive constant
penalty. Thus the influence of outliers goes to zero beyond the threshold.

We use the truncated Rayleigh quotient to remove outlier influence. The quotients are estimated

as:
" xTAx
plwi) =Y - < (5.10)
w11 T . . f
wherex = A= [ al b } [ al bl 1 and¢ is the threshold. The Rayleigh quotients

1
are estimated from the observation points and the residual errors are estimated. The tlgreshold

is set to the median of all the residual errors. Observation points obtained frond Bghgving
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residual errors greater thgnare removed as outliers. After outlier removal, thélier-freere-
maining observation poinQ are used to construct the over-determined system of Bd®. The
system is then solved using the Singular Value Decomposition (SVD). The correct solution is the
eigenvector corresponding to the smallest eigenvalue.

In summary, in order to minimize the influence of noise on our observation m@triwe
apply the Rayleigh quotient tiilter out the noisy data points. Once the outliers are removed, the
Total Least Squares method is applied to the remaining observation points to estimate the unknown

parametetv,; of the IAC.

5.2.1 Estimating More Parameters

As described above, we are able to determine only the focal lefi@tly estimatingw,;), along

with extrinsic parameters. The proposed method considers a very general case - making no as-
sumptions about pedestrian movements. However, if more camera parameters are to be obtained,
some additional constraints need to be considered. Lv dtAN(2] assume a pedestrian walking

in different directions for some duration. Thus more than one vanishing point of the ground plane
are obtained, which enables them to calculate Knowing 1., provides additional constraints on

w.

lo ~ wv, (5.11)

Generally this relation provides two linear constraintsumut in our case it is dependent
on Egs. 6.7),(5.8). Moreover, if these different direction of pedestrian movements are mutually

orthogonal, the third vanishing points can be obtained - enabling us to obtain a t8tedofera
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parameters¢DR99.

5.3 Results

The proposed system has been tested on multiple sequences with a variety of motion trajectories.
The sequences have a resolutiors®f x 240 pixels and captured at multiple locations and each
location contained multiple paths of travel. Three test sequences were used for evaluation purposes,
namedSeq+#1, Seq#2, andSeq+#3. Our tracker is able to accurately establish correspondences
over a variety of environmental conditions. Results on synthetic and real data are presented below.
Synthetic data: We rigourously test the proposed method for estimating the camera parameter i.e.
f. Nine vertical lines of same height but random location are generated to represent a pedestrian in
our synthetic data. The ends of the lines indicate the head or the foot locations. We gradually add a
Gaussian noise with = 0 ando < 5 pixels to the data-points making up the vertical lines. Taking

two vertical lines at a time, the four points i.e. two head and two foot location are used to obtain
H, andH,. Vanishing points derived in Eqs5.6),(5.6) are substituted into Eqs5.9), (5.7) to
construct the over-determined system of equations, as described in Se2tigvhile varying the

noise from0.1 to 5 pixel level, we perforni000 independent trials for each noise level, the results

are shown in Fig.5.4. The relative error inf increases almost linearly with respect to the noise
level. For a maximum noise 6fpixels, we found that the error was undéfs. The absolute error

in the estimated rotation angles, i.e. ggrand tilt,, also increase linearly and is well under

degree.

Real Data: The proposed system has been tested on multiple sequences. The image sequences

have a resolution df20 x 240 pixels and captured at multiple locations. Different pedestrians from
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Figure 5.4: Performance of auto-calibration method VS. Noise level in pixels.

Figure 5.5: The figure depicts instances of the data sets used for testing the proposed auto-
calibration method. The estimated head and foot locations are marked with circle. Different frames
are super-imposed on the background image to better visualize the test data.

a single sequences are used to obtain the camera parameters. As repadiealdfly {he mean of

the estimated focal length is taken as the ground truth and the standard deviation as a measure of



Table 5.1: The recovered focal length fostarting from the left column, going clock wise direction
Seq+#1, Seq#2 andSeq#3. Obtained results are compared to the method propose9].

| Seq#2 |Recovered Focal Lengtlf]

| Seq#1 [Recovered Focal Lengtly)| Fig 5.5 F = 2016.06
';'.g' 2552 jﬁ = g‘;gig; from [LZ99] f = 1885.65
ig. 5. = :
Fig. 5.5d = 2295.54 | Seq#gf | Recovered Focal Lengtlf]|
Fig. 5.5 f=2252.24 E_Ig-g- f = 810.68
from [LZ99] f = 2248.56 I9.5.59 f=837.84
from [LZ99] f =1799.68

uncertainty in the results. Additionally, we compare our results to the method propos&t98j.|
This comparison of the results should be a good test of the stability and consistency of the proposed
method.

Three video sequences are used for test®eg#1 contains less than 5 minutes of data. As
shown in Fig.5.5@a)-(e), different pedestrians are chosen for auto-calibration. Using the method
described above, the focal length is determined using the robust TLS method. The results for this
sequence are given in Talel(left column). The standard deviation is low and the estimated focal
length isf = 2307.9324+44.12. Seq#2 is another sequence used for testing, a couple of instances
are shown in Fig5.5f)-(g). The estimated focal lengths are very close to each other, as shown in
Table5.1 (right column - top). Similarly, results fd8eq+#3 are shown in Tabl&.1 (right column
- bottom). The results are also compared to a standard camera calibration method proposed by
Liebowitz and ZissermarlLZ99], shown in the last row for each corresponding sequence in Table
5.1 The focal lengths obtained from both methods are comparable.

The error in the results can be attributed to many factors. One of the main reason is that only

a few frames are used per sequence to emulate a more practical scenario. If a large data sequence
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is used, the system of equations (i.e. E6.9)) becomes more stable and thus better results may
be obtained. The standard deviationfifor all our experiments is found to be less than the results

reported in KMO5].

5.4 Conclusion

This chapter presented a robust and a more general solution to camera calibration by observing
pedestrians. Compared to existing methods, the solution does not assume any special kind of
pedestrian motion. We recognize the special geometry of the problem and present a more gen-
eral and robust formulation than the existing methods. Two harmonic homologies are extracted
from a pair of images containing instances of a pedestrian. Using unique properties of these ho-
mologies, linear constraints are derived to obtain the unknown camera parameters. The detected
head/feet locations are used to robustly estimate the unknown camera parameters. We successfully

demonstrate the proposed method on synthetic as well as on real data.
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CHAPTER 6
SELF-CALIBRATION OF FREELY MOVING CAMERAS

Self-calibration differs from conventional calibration where the camera internal parameters are de-
termined from the image of a known calibration grid or properties of the scene, such as vanishing
points of orthogonal directions. The preBglf-is added as soon as the world’s Euclidean struc-
ture is unknown, which can be seen as a case of “OD” calibration. In self-calibration the metric
properties of the cameras are determined directly from constraints on the internal and/or external
parameters.

The first self-calibration method, originally introduced in computer vision by Faugrals
[FLM92], involves the use of the Kruppa equations. The Kruppa equations are two-view con-
straints that require only the fundamental matrix to be known, and consist of two independent
guadratic equations in the elements of the dual of the absolute conic. Algorithms for computing
the focal lengths of two cameras given the corresponding fundamental matrix and knowledge of the
remaining intrinsic parameters are provided by Hartldg®3. Mendonca Men01] generalized
the results inlHar9g for an arbitrary number of cameras and introduced a built-in method for the
detection of critical motions for each pair of images in the sequence. Thorough analysis of critical
motions which would result in ambiguous solutions by Kruppa-based methods are described in
[Stu97a

An alternative direct method for self-calibration was introduced by Trigg®7T], which es-
timates the absolute dual quadric over many views. The basic idea is to transfer a constraint on
the dual image of absolute conic to a constraint on the absolute dual quadric, and hence determine

the matrix representing the absolute dual quadric, from which a rectifying 3D homography can be
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decomposed that transforms from projective to metric reconstruction. Heyden and AlSth&T [
showed that metric reconstruction was possible knowing only skew and aspect ratio, and Pollefeys
et al. [PKG99 and Heyden and AstromHA99] showed that zero skew alone was sulfficient.

Special motions can also be used for self-calibration. Agagital. [AHRO1] and Seo and
Hong [SH99 solved the self-calibration of a rotating and zooming camera using the infinite
homography constraint. Before their work, Hartldyaf97 solved the special case where the
camera’s internal parameters remain constant throughout the sequence. Frahm arfekkath [
showed it was also possible to solve the problem of generally moving camera with varying intrin-
sics but known rotation information.

In this chapter we focus on extracting internal parameters of a freely moving camera and
present a simple and novel global linear solution. We do not assume any special camera motion or
known camera rotation matrix as used BWHRO01, SH99 FK03, PKG99 Har97. The proposed
method relies only on point correspondences between different views from a single camera. We
test our method on synthetic as well as on real data and present encouraging results.

We allow the camera to vary its internal parameters by zooming in/out. As argu&kIB909
AHRO01, Zha0Q HA97], it is safe to assume zero skew, unit aspect ratio and principal point at the
center of an image for currently available CCD cameras. These general assumption are used to
estimate the varying focal length. The notaticend; represent any two consecutive frames from
a single camera.

Figure6.1 depicts an illustration of two images taken from a camera. Generally, two consec-
utive images from a camera contain some overlapping area. This overlapping area can be used to

obtain the fundamental matrk; ;, which relates a point in imagg to a line in imagel;. As the
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Figure 6.1: lllustration of two views from a camera: Two consecutive images from a camera
contain an overlapping area. This overlapping area can be used to obtain the fundamental matrix
F;;, which relates a point in imagg to a line in imagel;. As the internal parameters change at
each view, the IACv also changes.

internal parameters change at each view, LA@lso changes. Thus needs to be computed for

each image of the camera.

6.1 Linear Solution With Varying Focal Length

Consider an image sequenceroframes and leK; be the intrinsic matirx for a camera &t

frame, therK; is of the form:

fi 00
Ki=1lo0 fio0
0 0 1

wherey =0, A =1, (u, = 0,v, = 0).

For a freely moving camera, the fundamental matrix can be easily obtained from successive
frames and is thus used for self-calibration based on Kruppa equai&ahOp]. In order to
deal with noise in an image, many techniques exist to robustly estimate the fundamental matrix

[CZZz97, BGK9I6]. Once the fundamental matrix is computed between two different viems j
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of a camera, we have (sed¢n01, FLM92)):

F; jwiFY ~ [e].wi[e], (6.1)

J

wherew; andw? represent thelual IAC for two different views,i and j, respectively. If the
intrinsic parameters remain constant over different views thgn~ w? and Eq. 6.1) can be
expressed aB; jw;F} ~ [e/] wie]..

Eg. 6.1) amounts to 3 linearly independent equations with an unknown scale, allowing for the
symmetry and rank deficiency. E.0) is not in a form that can be easily applied and traditional
methods cross multiply to eliminate the unknown sc&l@(4, Men0]. Instead of taking this
approach, we directly solve for the unknown scale involved in the three equations obtained from

Eg. 6.1).

For a camera with unknown focal lengtb? for the j'* frame is given as:

W, 0 0
wi=1 0 W 0 (6.2)
0 0 o

whereW; = ajff. The the unknown scale, i.e;, is different for every image pair. Fos?,
the left hand side of Eq.6(1), the unknown scale is normalized to 1. Hence for a pair of images
the three unknowns are;, W; andV;.

For anyK; Eq. (6.1) gives us only three equations to solve for the three unknowns, owing to

rank deficiency and symmetry. We formulate the problem as:
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T
Ai,jYi,j = BiJ where Yi,j = |: {/[/Z V[/'j Q; :| (63)

andA;; is a3 x 3 matrix containing the coefficients é¥;, W; anda;; and B; ; contains the
knownF;; and[e’].. From the solution vectoY ;, the intrinsic parameters for each view can be

obtained as:

fi= Yija) fi= \/Yid’(z)/o‘j’ ;= Yijg,

A global solution for computing intrinsic parameters for a varying focal length camerakover

frames is given by cascading the above equation into:

Aij 0 . Yij Bi;
0 Aij1j41 e Yii1j1 B
= (6.4)
0 0 Ajkjik Ytk ik Biikj+k
A y B

Eq. 6.4 computes a linear solution for an entire image sequence, which is fairly efficient
and easy to implement. If the intrinsic parameters do not vary, &4) ¢an be reformulated so
that it becomes an over-determined system. This system of equations can then be solved using
least squares method for the entire image sequence. Degenerate configurations for self-calibration
methods are numerous and it is out of the scope of the current work to elaborate on various such

configurations. Sed{Z04, ZLA98] for detailed discussion on critical motion sequences that result
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in degenerate conditions.

6.2 Varying Focal Length With Unknown A\

In the previous section we assumed that the aspect r&fis (nity. Practically,\A remains un-
changed for any single camera through its life span. Eql) can be extended to solve for an
unknown X by selecting a reference frange Three images i.e. two instances of E®.1j are
sufficient to solve for six unknowns. Ed6.Q) for an imagej with respect to the reference frame

can be expressed as:

AW, 0 0 AW, 00
Foi| 0o w, o|Fa~E| 0o w, o |k (6.5)
0 0 1 0 0 a

Thus the first pair introduces four unknowis W,, W;, ;) and every subsequent frame intro-
duces only 2 unknowns (unknown scale and new focal length). Qimsedetermined non-linearly,
it is substituted into Eq.6.1) for improving the estimated focal length. Ed.1) can not be used
to solve for any more unknown intrinsics parameters (s2OH]).

An obvious advantage of the above linear solution is its simplicity and computational efficiency,

making it suitable for many real time applications.

6.3 Experiments And Results

Synthetic Data In order to validate the robustness of the proposed self-calibration method, a point

cloud of 1000 points [AHRO1] was generated inside a unit cube to determine point correspon-
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Figure 6.2:Performance of the self-calibration method VS. noise level in piXalsThe relative

error of the fixed focal length when the noise is increased wpstpixels is plotted in blue, while

the relative error when the focal length randomly changes between views is plotted in @reen.
Depicts the relative error of the aspect ratio relative to the focal length whemains fixed(c)
Relative error inf estimation when the used number of views increase. The more views we use,
the lesser the error rate.

dences. The synthetic camera parameters were chosgn-=ast000,\ = 1,y = u, = v, = 0.
Gaussian noise with zero mean and standard deviation<08 was added to the data points used
for computing the fundamental matrix. Rotation and translation between views was chosen sub-
jectively to avoid degenerate configurations. As argued iy98, Zha0Q, the relative difference
with respect to the focal length rather than the absolute error is a more geometrically meaningful
error measure. Therefore, we measure the relative error of estirfiatel respect to trug’ while
varying the noise level fror.01 to 3 pixels. For each noise level, we performgd0 independent
trials and the results are shown in Fig&r@.

The relative error inf increases almost linearly with respect to the noise level, as shown in
Figure6.2(a). For a maximum noise &f pixels, we found that the error was undgé. The blue
curve in the figure depicts the relative error whewas kept constant. We also test the proposed
method for the case whefiis varying randomly between the views, depicted by the green curve

in Figure6.2(a). For aspect ratio, we measure the relative error w.r.t. itself (cf. Figér&b)),
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Table 6.1:Computed focal length from our method compared with vanishing points based calibra-
tion technique.

| View | Our Method Compared Method
Figure6.3(a) (left) 3048.77 3290.36
Figure6.3(b) (left) 1590.24 1766.74
Figure6.3(b) (right)] 3000.35 3350.17
Figure6.3(a) (right)] 2598.47 2482.24

which is less thar.25%. Relative error in estimating (when the noise is fixed to.5 pixels)
compared to the number of views used for the estimation is plotted in FggHi®. The relative

error reduces as the number of the views increase.

Real Data Using the method described in Secti®d, we tested the proposed camera calibration
algorithm on a number of sequences. In the first data set, two cameras, lahetkd are located

on the second and third floor of a building monitoring a lobby entrance. The cameras are zooming
infout while translating and rotating at the same time. The height and motion of each camera is
subjectively selected to allow observation of the specified area. We compared our method to the
standard three parameter estimation technique using three orthogonal vanishing haods |
Results obtained from the two methods are compared in Tablend the images used are shown

in Figure6.3. The results obtained from the two methods are comparable to each other.

The second data set consist of a zooming in/out video taken from a driving car while looking
at some houses. Figufe5 depicts four such instances from the sequences taken from a camera
different from the one used in above data set. The focal length for each instance is shown below
each image of Figuré.5. Another set of test data is shown in Fige&. The camera in this

situation has fixed focal length. The figure shows only two images from the dataset with computed
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(c) Recovered 3D Geometry of cameras  (d) Recovered 3D Geometry of cameras

Figure 6.3:(a) and (b) are views taken from two disjoint FOV cameras looking at a lobby entrance.
The two cameras are free to rotating and translating. The 3D rendering in (c) and (d) demonstrates
the computed dynamic geometry of the network. This network geometry is unique at each instance

of time.

Camera# 2- Estlmateﬂleft to rlght) 1121.14,1124.35,1103.436, 1181.191, 1190 05,1171.96

Figure 6.4:Some images from a test sequence using two cameras. The cameras are translated as
well as rotated. The green line indicate the knowledge of a line in world. In this particular case,
the line in one camera is orthogonal to the corresponding line in the second camera.

focal lengths.

Some of the images from another test sequence are shown in biguféde top row of the Fig-
ure depicts images from camera 1, while the bottom from camera 2. Self-calibration is performed

on the sequence and the results are shown below the images in Eigurée fundamental matrix
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£ = 1146.01 f = 843.92 f=1184.21 f=1723.93

Figure 6.5:Four instances from a video sequence taken from a road while looking at some houses.

\

- / |
e ’/ ~
|

a) — 2067.1957 (b) f = 2074.483

Figure 6.6: (a) Two of the many images taken from a camera inside a lab, with lines used for computing
the vertical vanishing points superimposed.

is computed between consecutive frames obtained from each single camera to determine the cali-
bration matrix. As reported by Zhangha0(Q, the mean of the estimated focal length is taken as
the ground truth and the standard deviation as a measure of uncertainty in the results. Thus, with a

low standard deviation = 32.05, f is determined to bé&139.50.

6.4 Conclusion

We have successfully demonstrated a novel global linear solution approach to recovering the intrin-
sic parameters of a camera where each camera is assumed to undergo a general motion. Once the
fundamental matrix is determined, by using just point correspondences, we solve for the internal
parameters linearly. We also provide a non-linear solution for extracting the aspect-ratio for each

camera. Experiments are carried out on several real and synthetic data sequences.
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CHAPTER 7
PTZ CAMERA CALIBRATION

Rotating and zooming cameras are now common tools used in camera networks, with applications
ranging from security and surveillance to tele-conferencing, distant learning, and virtual class-
rooms. A key issue with many of these applications is that the traditional off-line calibration
methods Tsa87 Zha0(Q are not practical due to the dynamic changes in internal and external pa-
rameters of the camera. As a result it is important that one can auto-calibrate the camera online,
when required.

The first auto-calibration method was due to Faugeras eEBMP2] who considered a freely
moving camera with unknown but constant internal parameters. Since then, several methods have
been proposed{ar94 KZRO03, LZ99, HA97, Tri97] some of which consider special camera mo-
tions such as pure translatioM{zP94g or pure rotation Har97. More recent methods also con-
sider auto-calibration under varying internal parametidi$499, HA97, HA99, PKG99 KTAQO].

The most related work to ours is the auto-calibration method for rotating and zooming cameras by
Agapito et al AHRO1], who used the mapping of the image of the absolute conic (IAC) between
two images by the infinite homography to impose constraints on camera internal parameters in a
pair of images. The approach that we propose in this chapter, however, is based on direct matrix
decompositions of the infinite homography. The goal in most matrix decompositions is to reduce
the matrix into some canonical forr®&[89]. For our application, we consider two possible decom-
positions: one which allows to decompose 3he3 infinite homography into a pair of projectively
equivalent upper-triangular matrices, and a second one based on eigen-decomposition and direct

construction of a system of homogeneous equations, which we use for solving degenerate cases.
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Compared to Agapito’s work our method has the advantage that we can solve for a more gen-
eral camera model in the degenerate cases (i.e. solve for 5 unknowns). However, in the degenerate
cases, our method does not provide any constraint on the camera aspect ratio. Also, for the non-
degenerate case, our method can only allow for varying focal length. The remainder of this chapter
consists of a brief description of background and notations, two main sections discussing the gen-

eral case and the degenerate scenarios, and a thorough validation of the results.

7.1 Background and Notations

For a pinhole camera model, a 3D pavtt = [X Y Z 1]T and its corresponding image projection

m = [uv 1]T are related via & x 4 matrix P by

Ay o
m~Krirprgt|M, K=| o ¢ o |, (7.1)
P
0 0 1

where~ indicates equality up to multiplication by a non-zero scale faatoare the columns of
the rotation matrixR, t is the translation vector, anll is a nonsingulaB x 3 upper triangular
matrix known as the camera calibration matrix including five parameters, i.e. the focal [gngth
the skewy, the aspect ratia and the principal point dtug, vo).

The IAC, denoted by, is an imaginary point conic directly related to the camera internal

matrixK, viaw ~ K- TK—1.
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7.2 General Case: Arbitrary Rotation & Varying Focal Length

Our solution for the general case is based on using a sequence of Givens ro@li88s yvhereby
we decompose the infinite homography into a pair of projectively equivalent upper-triangular ma-
trices that provide up to 5 constraints directly on the camera parameters from only two images.
As described inGL8Y], a Givens rotation in the 3D space corresponds to a rotation in the plane
spanned by any pair of coordinate axes. When applied3o<a3 homography, a Givens rota-
tion would rotate each column of the homography counter-clockwise in the plane of the two axes
through an angle defined by Givens rotation matrix. By an appropriate choice of the rotation angle
one can then selectively nullify any one of the entries in a homography.

Now, let K; and K, be the camera calibration matrices for a pair of images obtained by a
fixed rotating and zooming camera. Let alBg, denote the relative rotation between the two
orientations of the camera. As is well-known, independently of the scene structure, the two images

are related by the infinite homography given by

H21 ~ K1R21K2_1, (72)

If we rearrange this homogeneous equation as follows

K1_1H21 ~ R21K2_1= (7.3)

then the right hand side will be merely the camera intrinsic matrix for the second image up to

some unknown rotation. Therefore it can be restored to an upper-triangular matrix by a sequence
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of Givens rotations, as follows: L& ;' = [kI kI kI]”, wherek;, i = 1,2, 3 are the rows of

K;'. LetalsoH = [h; h, hs], whereh;, i = 1,2,3 are the columns of the infinite homography.

Consider the Givens rotation defined by

1 0 0
Gi=|0 cos f, siné,; (7.4)
0 —sinf; cosb,
where
kTh,
cot 91 = ﬁ (75)

It can be verified tha6, rotates each side of equationgd) to align the last two components
of the first column with the x-axis. As a result it would nullify the third element in the first column

on each side of the equation. In a similar manner, we d€linandG; as follows:

costly sinfy 0

G2=| —sin 0y cosbty 0O (7.6)
0 0 1
whered, can be obtained from
kTh,

cot By =

T T T T1, \+ (7.7)
<k2 h1h1 kg + k3 h1h1 kg) 2
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and

Gs= 10 cosf; sinfs (7.8)

0 —sinf3; cosbs
where
k3Th2 sin 64 cos 65 + k{hg cos 01 cos 0,

kghg cos ) — kihy sin 6,
k{hg sin 62

cotf; =

7.9
kghg COS 01 — kghQ sin 91 ( )
Applying the sequence of Givens rotations to both side3 &) (we get
G3G.G K 'Hy, ~ K (7.10)

Thesignificance of Givens rotatiortgere is that the relative rotatidR,; is eliminated from equa-
tion (7.3). As a result, we obtain a homogeneous equality between two upper-triangular matrices

that depend only on the unknown intrinsic parameters. Therefore let

kll k12 k13
GgGQGlKl_ngl = 0 k22 k23 (711)
0 0 ks

Assuming that the principal point remains invariant and that the skew is zero, we get the following
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four independent constraints to solve for the unknown componerKs :of

kig 4 ugky = 0 (7.12)
kaz + vokaa = 0 (7.13)
Kas — M1y = 0 (7.14)

- (7.15)

Although, these equations are non-linear, it turns out that they are all independent of the focal
length f; for the second image, and all lead to low-order polynomials, which can be readily solved
without resorting to optimization methods. This closed-form solution yields the unknown focal
length f;, the aspect ratia. and the principal pointug, v,). To obtain the focal lengtl, for the

second camera, note that the above discussion holds symmetrically if we interchange the role of
K, andK,, and replacdd,; by H,,. Therefore, in the general case, our method recovers five
unknown parameters in closed-form from only two images, i.e. the varying focal length, the aspect

ratio and the principal point.

7.3 Degenerate Cases: Pure Pan & Pure Tilt

An important issue for calibration of a rotating and zooming camera is how a method performs
when the rotation reduces to either pure pan or pure tilt. This is of particular practical importance,
since existing applications such as surveillance, and tele-conferencing use PTZ cameras that are
often operated under these degenerate conditions.

When the camera rotation is reduced to either pure pan or pure tilt, many existing solutions
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[Har97, AHRO]] in the literature, including our general solution based on Givens rotations of the
infinite homography, degenerate. As a result they cannot provide all the unknown parameters from
only two images. Below, we describe a new approach that allows to solve for 4 intrinsic parameters
and the unknown rotation angle from two images in both pure pan and pure tilt.

Pure Pan: We show that the case of pure pan can be solved by direct construction of a set
of homogeneous equations. For pure pan, we obtain 5 independent equations from two images in
terms of the unknown intrinsic parameters using eigendecomposition of the infinite homography
and direct use of equatiof.Q).

The analysis that we present below are similar to Liebowitz and ZissernnZ®9]. However,
we investigate the case when the rotation degenerates and the camera is allowed to vary its fo-
cal length. We then investigate how the degenerate rotations such as pure pan affect the general
analysis. We provide an alternative interpretation of the circular points, by correlating the eigen-
decomposition of the infinite homograpki, to that ofHI, .

As pointed out in [Z99] the eigendecomposition of the infinite homogragfy, provides
three fixed points under the homography given by the eigenvectors: one real eigenyedtarh
corresponds to the vanishing point of the rotation axis, and two complexicares]J that corre-
spond to the imaged circular points of any plane orthogonal to the rotation axis. When the camera
intrinsic parameters are fixed, these points provide four independent constraints on the image of

the absolute conie [LZ99]:

IFwl=0, J'wl=0 1, ~IxJ~wv (7.16)
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Figure 7.1:Constraints on IAC induced by the infinite homography.

where the first two impose the constraints that the circular points of a plane must lie on the IAC
and the third one impose the constraint that the vanishing point of the rotation axis direction has
pole-polar relationship with the vanishing line of any plane orthogonal to the axis of rotation. The
construction is depicted in Figuiel

The question now isvhat happens to these constraints if we allow the focal length to vary,
and let the rotation degenerate to pure pan or.tilio answer these questions we also look at the
line homographyH?,. The homograph¥?, also has one real eigenvector corresponding to a real
eigenvalue, and two complex ones corresponding to a pair of complex conjugate eigenvalues. Let
a, ~ [0 1 0]7 be the axis of rotation for a panning camera. By definition this axis must be invariant
to panning, i.eRJ,a, = Ri2a, = a,. Since the infinite homograpt#l,; is a conjugate rotation

matrix, we have

H; K;"a, ~ K;"Ria, (7.17)

~ K;Ta, (7.18)

Therefore, the vanishing line of the pencil of planes perpendicular to the axis of rotation is also

given byK, "a,,.

100



Proposition 1 For a zero-skew camera, under pure pan, the real eigenvector of the line homogra-
phy HZ, is the vanishing line of the pencil of planes perpendicular to the axis of rotation, if and

only if the focal length and, are fixed, but is invariant to the aspect ratio angl

Proposition 2 For a zero-skew camera, under pure pan, the three eigenvectors of the line homog-
raphy HZ,, given byK; "a,, 1; andl; satisfy the pole polar relationship with the real eigenvector
of Hy;, and the circular points, respectively, if and only if the focal length andre fixed, but is

invariant to the aspect ratio and,.

Thereford; andly may be viewed as the imaged vanishing lines of some imaginary planes that
intersect the absolute conic at the circular points. As a result, the four constraints imposed by the

infinite homography on the IAC are encoded in the following three homogeneous equations:

I, ~KTa, ~wv, L~r~wl lj~wl (7.19)

To see what happens when the rotation degenerates note that these equations areudingad in
upon taking cross-products of both sides as usHalO4], they can reduce to a homogeneous
equation of the form

Ac, =0 (7.20)

wherec,, is the vector of unknown components of IAC arranged in some order. When the rotation

is general it can be shown thAthas a one dimensional null space representing the solution to the
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x"F'x=0

Figure 7.2:Depiction of the classical geometric error function under general camera motion based
on minimizing the reprojection error subject to the epipolar constraint.

four unknowns ofv. However, when the rotation degenerates to pure pan, or pure tilt the null space
becomes 2-dimensional, and only two independent constraints can be imposed on the IAC from the

set of equations inA.19. In particular, one of the constraints applies directly to the principal point:
Proposition 3 In a zero-skew camera, for pure pan the principal point lies on the vanishing line
of the pencil of planes that are perpendicular to the axis of rotation, if and only if the focal length

anduv, are fixed, but is invariant to the aspect ratio angl

To demonstrate this, denote the principal pointy [ug v 1]7. It follows that

agKglp = ag ol =0 (7.22)

which proves the result being sought.

Remark: The above propositions hold for pure tilt if we simply exchange the rotg e¥ith vy.
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In summary:

e Under degenerate rotation the eigenvedtocorresponding to the real eigenvalueldf,

provides one constraint on the location of the principal point in the form

p’l, =0 (7.22)

It is important to note that/ 22 does not hold under general rotation.

e Under degenerate camera rotation the IAC can be written as a one parameter family of conics
given by

w(a) = Wi + owo (723)

wherew; andw, span the right null-space of,. This can be solved linearly by applying an
additional constraint, for instance, by assuming known or fixed aspect ratio. Note that one
could also formulate the problem similarly for DIAC. However, the constraints would then
be quadratic leading to two-fold ambiguity. For degenerate rotations, it can be verified that

the zero-skew constraint cannot resolve the ambiguity.

To conclude this section, in order to solve for a more general camera model under pure pan and
zoom from a minimum set of two images, we resort to a solution based on direct construction of a

set of homogeneous equations. For this purpose, we first verify that under pure pan and zoom the
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imaged circular points of the plane perpendicular to the axis of rotation will become of the form

a=tib

- (7.24)

wherea andb can be written in terms of the unknown intrinsic parameters and the panning angle.
Therefore the real and imaginary parts of the circular points may be used directly to impose con-
straints on the intrinsic parameters and the rotation angle. On the other hand, we can also construct
additional homogeneous equations directly frah®) as follows:

LetHy = [h?, hY hI", K; = [K7,, k%, k%]T, Ry, = [r1, 19, 15)7, andKy = [k, koo, kas),
whereH,; andK; are expressed in terms of their rows, &g andK, are expressed in terms of

their columns. We can then write the following set of homogeneous equations

hiky; ~ ki;r;, i,7=1,...,9 (7.25)

The above equations together with the two constraints derived from the circular points provide
only 5 independent constraints on the unknown rotation angle and the intrinsic parameters. Unfor-
tunately, unlike the general case described earlier, for pure panning and zooming it is not possible
to establish a constraint on the aspect ratiorherefore, assuming that the aspect ratio is known
(e.g.\ = 1), and that except for the focal length all other intrinsic parameters remain invariant, our
constraints lead to low order polynomials, which can be readily solved. Therefore, our solution

provides four unknown intrinsic parameters (other thammnd the rotation angle from only two
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images for pure panning under variable focal length and zero skew.

Pure Tilt: The case for pure tilt is quite similar to pure pan, with minor differences. All the
analyses can be equally applied to tilting. In particular, as in pure pan, it can be proved that for pure
tilt and zooming the principal point must lie on the vanishing line of the pencil of planes that are
perpendicular to the axis of rotation. This provides a constraint similaf.&#(on the principal
point of the camera. Also, the real and the imaginary parts of the imaged circular points depend on
the intrinsic parameters and the rotation angle as before, and can be used to impose constraints on
the unknown parameters. However, the constructioid.ipg is somewhat different for the case of

pure tilt, because the infinite homography in the case of pure tilt is of the form

1 h12 h13

H2’1N 0 h22 h23 (726)

0 h32 h33

providing only 5 equations. Again, it can be shown that in the case of pure tilt, none of the above
constraints depends on the camera aspect katis a result, it is not possible to recoverfor a
purely tilting and zooming camera. Therefore, our solution provides again four unknown intrinsic
parameters (i.e. the two focal lengths, and the principal point) plus the rotation angle from only
two images for pure tilting under zero skew and variable focal length.

Cascading degenerate case®ne interesting and practical solution for the degenerate case
occurs when the camera first pans and then tilts (or vice versa), leading to a minimum case of three

images, with the corresponding infinite homograptiBs andHs,. In such case, the principal
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point can be recovered immediately using

p~ 12! x1¥ (7.27)

wherel?! and1?? are the eigenvectors corresponding to the real eigenvaluds,acindH,.

Therefore, the problem would immediately reduce to the simple case of known principal point,
which in most auto-calibration methods, including ours, simplifies the remaining set of equations.
This scenario can be, for instance, used in a network of PTZ cameras at the cold start, for deter-
mining the principal point once and use it throughout the operation of the network, assuming that it
remains invariant. Note also that in this case our method recovers all camera parameters including
the aspect ratio, since the first and the third image have general rotation, although the other two

pairs of combinations are degenerate.

7.4 Geometrically Optimized Refinement

Most practical auto-calibration methods comprise of two stéfz98 HZ04]: In the first step

an initial solution is found by solving directly a set of algebraic constraints that are often linear -
although in some cases such as ours or Kruppa’'s equations may also be non-linear; In the second
step the initial solution is refined by minimizing an error function, which preferably should reflect

the geometry of the configuratiorlfr98 HZ04]. The most versatile geometric error function is

based on minimizing the reprojection errét404], which aims to simultaneously refine the point
correspondences and the camera parameters. To make the problem tractable and less sensitive to

initialization, under general camera motion the reprojection error is often minimized subject to the
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constraint that the orthogonal distance between a reprojected point and the corresponding epipolar
line is minimized. This is depicted schematically in Figur2

For pure rotation, however, the epipolar geometry does not exist. As a result, in existing litera-
ture the general form of the reprojection error is used. In this section, we derive a novel geometric
error for a purely rotating camera, similar in spirit to the epipolar constraint, which increases noise
resilience and tractability, and reduces sensitivity to initial point correspondences. We first briefly
describe the classical error functions used for pure rotation and then derive our new geometric error

function.

7.4.1 Classical Error Functions

When a set of matcheg < x! are known between a pair of images, it is generally assumed that
there are errors in measurements of batlandx!. In order to minimize this error, one of the first

techniques generally used, specially for a PTZ camera, involves minimizing the cost function:

n—1
Calg = ZH | KK — HiKoKgHY |13 (7.28)

where subscript’ indicates the use of Frobenius norm. This cost function minimizes the algebraic
error. The disadvantage is that the quantity being minimized is not geometrically or statistically
meaningful HZ04]. The solutions based on algebraic distances are generally used as starting
points for other non-linear methods.

Alternative error functions are based on geometric distances in the image plane that usually in-
volve minimizing the error between the measured and the estimated reprojected image coordinates.

Thus we seek a Maximum Likelihood (ML) solution assuming that the error in the measurement is
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Gaussian. For a geometrically meaningful minimization of the overall error and for camera param-
eters refinement, researchefdHR01, SH99 TMH99] have used a bundle adjustment approach.
Givenn images andn corresponding points, the maximum likelihood estimate can be obtained by

minimizing the following error function:

Cont = ZiZIijl | %55 — KiRiX; || (7.29)

Thus the squared error sum between the image measureggnarid the projection of the
true image points for all points across all views is minimized. Minimizid@9 is a non-linear
problem, which is solved by Levenberg-Marquardt iterative minimization metA6@3g. Min-
imizing (7.29 is equivalent to the Maximum Likelihood (ML) estimate. Agapito et #HRO01]
show that prior knowledge of the parameters can also be incorporated for a ML estimate.

The bundle adjustment solution is geometrically meaningful and it can be visualizsit as
justing the bundleof rays between each camera center and a set of 3D points. It provides a ML
solution while being tolerant to missing data. This method can also be viewed as minimizing the
reprojection error between two images. In fact it assumes that the optimal (ML) solution lies close
to the initial solution. Thus it aims to change (or perturb) the estimated points and the camera
parameters such that the cost function is minimized subject to the reprojection model defined by
the homography relationship between the views. Therefore the probability of a true solution will
follow a normal distribution. Formally, the measured locatiois related to the true location by a

Gaussian additive noisg
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x=x+n=FK,R)+n (7.30)

whereF (K, R) is the reprojection model for the true values of the image points given an estimate

of the parameterK andR. Therefore the probability of the true solution is:

px|K,R,0) = N(x|F(K,R),0) (7.31)

which one aims to maximize.

7.4.2 Optimal Geometric Error

In contrast to the above solution, we propose a geometriogliynizederror function. Byopti-
mizedwe mean a cost function tailored specifically to our special camera model i.e. pure rotation
and zoom. We initially explain our cost function for the simple case of single axis rotation and
then extend the results to the more general case of pan-tilt motion.

Pure Pan: For a panning PTZ camera, a powin the first imagd, is related to the corre-

sponding poink’ in the second imagh, via the infinite homography:

x ~ KR, Ky'x (7.32)
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where the rotation matriR, is parameterized aB, = | o 1 (o | wherec = cosf, and

s = sin#,. Using the two linear constraints given by

X' x (KoRyK7'x) =0 (7.33)

we then expressands in terms ofK; and the feature points andx’. Upon substituting: ands
into the Pythagorean identity

A+ —-1=0 (7.34)

and rearranging, we get:

xTQx' =0 (7.35)

whereQ is a conic given by th8 x 3 symmetric matrix,

a b/2 d/2

Q= b/2 ¢ e/2 (7.36)

d/2 e/2 f
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witha = (xy — vo)? (7.37)

b =20 (7.38)
¢ = —f2 — (xx — uo)? (7.39)
d = (duguoxy — 2110X}2, — 2ugv3) (7.40)
e = (2upx2 — 4%, Voug + 2vou? + 2vof?) (7.41)

2.2 2 202 _ 2.2
I = ugXy — 2vougxy + f3vg — fvg

—2fFvpxXy + ffxf, + 2vZugx, — vax2 (7.42)

wheref; and f, are the camera focal lengths in vielysandI,, respectively.

The conicQ, in addition to the camera parameters, is parameterized by the imagexpsint
[ x, xy, 1 ]T. What equation.35 implies is that for every poink in I;, the corresponding
point x’ in I, must lie on the coni®, which is defined by the camera parameters and the point
x. Similarly, for transformation froni, to I, it can be shown that for every poigt in I, the

corresponding point in I; must lie on a coni€':

xTQ'x =0 (7.43)

whereQ/, in contrast tdQ, is defined by the camera parameters and the poiat | X, x| 1 T
inI.

In summary, as a camera pans the points in the image plane trace a conic trajdttmag.be
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(a) viewI; (b) viewI,
Figure 7.3:(a) image points; in I;. (b) For pure pan the corresponding points lie on a conic in
I,.

xT Qx'=0

x'Q'x=0

Figure 7.4:Depiction of the proposed new geometric error function under pure rotation.

readily verified from 7.37)-(7.39 that these conics are in fact hyperbolas. This is demonstrated in
Figure7.3. Points corresponding tq in view I, lie on a hyperbolic trajectory if,. Exactly where

a corresponding point lies on the hyperbola depends on the rotation angle. As shown in the Figure
7.3(b), the blue dots are the corresponding points when the pan anglg wa30° whereas it was

¢, = 35° for the red dots. Therefore, in minimizing the reprojection error, instead of searching in
the neighborhood of a points in all directions, we can minimize the orthogonal distance of points

from the hyperbolic curves.

7.4.2.1 Derivation of the Cost function

While a fundamental matrix for a general camera motion defines a correlation mapping from points

to lines, the discussion above shows that a PTZ camera, undergoing pan motion (or tilt for that
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matter), defines quadratic curves for mapping of the corresponding image pciatg’. Thus,
instead of minimizing the distance of feature points to epipolar lid&$P9, for pure rotation we
can minimize the distance of points to conics.

The geometric distanc® of a pointx to a conicQ’ can be obtained using Sampson’s rule

[HZ04]

D=l (JIT) e (7.44)

wheree = xTQ'x is the cost associated withandJ = | 2xTQx) JoxTQ%) | is a matrix of

Oxx 7  Oxy

partial derivatives.

Using the chain rule, the elementsbare computed as:

o(xTQx) 9(xTQx) ox ,
OXx N 0%y,  Oxyx Q)

and similarly

0xy

where the subscriptsand2 denote the first and the second component of the vector, respectively.

Using (7.44), the distance of a point to a conicQ’ thus reduces to:

_ (XTQ/X)2
A((Qx)T + (Qx)3)

D (7.45)

For symmetric error minimization, the cost function would be then of the form
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L (R Q)? (xTQix))?
2@t (@D T Qe - QD))

= i(p +D) (7.46)

That is, the camera intrinsic and extrinsic parameters and the correct feature point locations must
minimize the sum of distances to the conics (cf. Figue®. The minimum of this non-linear cost
function is sought using the Levenberg-Marquardt algorithm. Thus we have reduced the search
space of true feature locations to quadratic curves.

Tilt Motion : The above discussion equally applies to pure tilt, or in fact to any single axis rotation.

7.4.3 Pan-Tilt Motion

For a PTZ camera undergoing both pan and tilt moti@r82) is modified as:

x' ~ KR RyK;'x (7.47)

whereR, is as defined above, altl, defines rotation around theaxis byéd,. In principle, there

are sufficient number of constraints to eliminate the two angles. However, due to non-linearity,
this is not straightforward. Therefore, we parameteRzeas before in terms of ands, and also
parameterizeR, by ¢ = cosf, ands’ = sinf,. Similar to pan case, we then expresand s

in terms of feature points and the camera parameters to obtain a conic as defin&bin{he
difference now is that the confQ (and similarlyQ’) contains the tilt angle componentsands’,

which are used as additional parameters in the cost funciidb)(
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Our overall algorithm is thus as follow: For a PTZ camera, we solve for the unkidwand
R using the method described in Sectib2. If the camera motion is just pan or just tilt, we use
the method described in Secti@B. We then refine the estimated parameters by minimizing the

new geometric error.

7.5 Experimental Results

In this section, we show an extensive set of experimental results on both synthetic and real data to

evaluate the proposed solutions and compare with the state of the art.

7.5.1 Synthetic Data

We performed detailed experimentation on the effect of noise on camera parameter estimation
over 1000 independent trials. For this purpose, a point cloutha® random points AHRO1]

was produced inside a unit cube to generate image point correspondences. Simulated camera has
a focal length ofl000, aspect ratio o = 1.5, skew~ = 0, and the principal point &tu, vo) =

(512, 384), for image size o024 x 768.

Performance vs. Noise Levelln this experimentation, we compare our results to Agapito et al.
[AHRO1] without performing the refinement proposed in secfioh Errors for estimated camera
intrinsic and extrinsic parameters are measured with respect to the ground truth, while adding
a zero-mean Gaussian noise varying from 0.1 pixels to 3 pixels. The results show the average
performance ovet000 independent trials. As argued byr[98, Zha0qQ, the relative difference

with respect to the focal length rather than the absolute error is a more geometrically meaningful

error measure fof, A and(ug, vy). Figure7.5summarizes the results for intrinsic parameters. For
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Figure 7.5:Performance vs. Noise Level: averaged oM#i0 independent trials. Results without
geometric optimization compared to Agapito et al.

noise level of3 pixels, which is larger than the typical noise in practical calibratioma0Q, the
relative error for the focal lengtli is 0.1%. The maximum relative error for the aspect ratio is
less than 0.2%, the relative errorip is less than 0.35%, and the relative errowjns less than
0.16%. Excellent performance is also achieved for all extrinsic parameters as shown in the figure,
i.e. absolute errors of less than a tenth of a degree for all rotation ahgtgsandd..

Comparison with Agapito et al. [AHRO1]: We perform the comparison using the same setup as
above. Figur&Z.5summarizes our results, where the results of our method are drawn in blue and

those of Agapito et al. AHRO1] in red. Without refinement, the errors for both methods are of the

116



0 0.5 25 3 05 25 3

(pixels)

1 15 2 1 15 2
Noise Level (pixels) Noise Level (pixels)

(a) relative erroriny,  (b) relative errorin,  (c) Relative Error inf

Figure 7.6:Performance vs. Noise Level: averaged oi@00 independent trials. Results after
geometric optimization compared to ML-optimized Agapito et al.

same order, although we obtained slightly better performance for the focal length, while Agapito’s
method did slightly better on other parameters. The main advantage of our method here is that we

obtain more parameters using fewer images, by trading off linearity.

7.5.1.1 Results After Refinement

We refined the results obtained in the previous subsection by minimizing the geometric cost func-
tion that we derived in{.46. We compare our refined results with the ML estimate method
proposed byAHRO1] as defined inT.29. As demonstrated below, our refinement approach con-
sistently outperforms the classical ML refinement.

Pan Motion: The results are shown in Figure6. Figure7.6(a) shows the relative error i,

which is found to be less than2% for a noise of up t@ pixels. Similarly, noise for the, andf is

also very low. The error in the proposed estimated method is comparably lower than the classical
ML estimation method.

Pan-Tilt Motion: For the case when the camera is both panning and tilting, the error curves are
shown in Figure7.7. The error for the parametets, vy, f, and 6, is lower than0.04%,0.1%,

0.04% and0.05°, respectively.
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Figure 7.7:Performance vs. Noise Level: averaged ou&0 independent trials for pan-tilt mo-
tion. Results after geometric optimization compared to ML-optimized Agapito et al.

The above results indicate that minimization based on the optimal geometric error function
derived in this chapter consistently give better results than the traditional ML estimate for the PTZ

camera.

7.5.2 Real Data

Several experiments are performed on real data. The data was obtained by & SDICYRZ30N

PTZ camera with an image resolution 3#0 x 240. Hence the ground truth rotation angles are
known. Image features and correspondences are obtained by using the SIFT alglooi0d] |

In order to evaluate our results, we use an approach similaZhtadQ, i.e. use the uncertainty
associated with the estimated intrinsic parameters characterized by their median deviation over
many images, while taking into account the ground truth rotation angles. We deliberately keep

f1 and f, same so that we can estimate the accuracy of parameters estimations in the absence of
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[Combination] 6, [ wo [ wo [ /1 | f2 ]
Cy 0.971196.185 | 206.07 | 682.07 | 678.01
Co 0.91| 120.5 |187.91|637.81|635.98
Cs 1.02| 195.35 |210.89|785.97 | 774.81
Ca 0.88 | 124.24 |147.58 |662.13 | 659.43
Cs 1.26 | 187.33 |198.13|759.02 | 756.57
Ce 0.8 | 128.92 |179.62| 768.4 |765.42
Cr 1.08 | 130.96 |188.92|662.13|659.43
Csg 0.93| 135.49 |155.49|786.22 | 778.48
Co 1.16 | 165.89 | 182.02|786.22 | 778.48
Cio 0.89| 141.03 | 194.5 |673.24 | 668.83
C11 1.19| 118.52 | 198.93|666.35 | 660.04
Ci2 0.94| 196.9 |198.13|756.17 | 755.07
Cis 1.05| 184.08 | 181.48|770.77 | 775.22
Cia 0.87| 175.58 |200.17 | 662.59 | 660.79
Cis 0.97| 153.52 |162.65| 797.4 | 790.03
Mean 0.99| 156.97 |186.17|723.77|719.77
M. Deviation [ 0.08 | 29.28 9.29 | 41.23 | 34.95

(b)
Figure 7.8:Sample images from pan sequence. Estimated parameters and their statistics.

ground truth for intrinsic camera parameters.

Pan Motion: Around 15 images were captured while panning the camera. The rotation between
the successive framesliis. In order to further investigate the stability of the proposed method, we
apply it to all the combinations df4 images out of thé5 images. The results are shown in Figure
7.8b). A few of the images are shown in Figufe3(a). The second column depicts the estimated
rotation angles to b&9°, which is almost equal to the ground truth rotation angle. Camera zoom
remained constant in the sequences; hence coluamd6 i.e. f; and f, are very close to each
other. The results also demonstrate low median deviation for the estimated parameters.

Tilt Motion: Another sequence for the degenerate condition, i.e. tilt, was taken while keeping
the focal length the same. Arour2d images were captured with a tilt rotation Bf. We apply

our method to all the combinations 26 images out of the totall images, as in the pan case.

The results are shown in Figure9(b) and a few images are shown in Figur&a). The rotation
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“‘\Comb\el\ w [ w [ A P ]
C1_ ]0.97]196.185]206.07 | 682.07 | 678.01

e g lﬂ C2 ]0.91| 120.5 |187.91|637.81]635.98
l Cs  |1.02] 195.35 |210.89 | 785.97 | 774.81

-] ii “ Cs ]0.88| 124.24 |147.58 |662.13 | 659.43
] Cs |1.26] 187.33 | 198.13 | 759.02 | 756.57

E' B “ Ce | 08| 128.92 |179.62| 768.4 | 765.42
B | Cr |1.08] 130.96 |188.92|662.13 | 659.43
Cs [0.93| 135.49 |155.49 | 786.22 | 778.48

“ Co |1.16| 165.89 |182.02 |786.22 | 778.48
Cio |0.89| 141.03 | 194.5 |673.24 | 668.83
i il | Cyp [1.19] 118.52 |198.93 | 666.35 | 660.04
ii ii “] Ciz |0.94| 196.9 [198.13|756.17|755.07
C1s |1.05| 184.08 |181.48 | 770.77 | 775.22

Cia |0.87| 175.58 |200.17 | 662.59 | 660.79
Cis |0.97| 153.52 | 162.65 | 797.4 | 790.03

'i ii “ Mean [0.95] 178.26 |222.07 | 823.62 | 844.33
o ..ﬁm M.Dev.|0.15| 17.95 | 34.62 | 9.44 | 49.8

@ (b)

Figure 7.9: (a) sample images. (b) Results obtained from the tilt sequence and their statistics.

angle is estimated to k&95° and the two estimated focal lengths are very close to each other as
expected.

Pan-Tilt Motion: Another sequence for evaluating the general rotation, as described in Section
7.2, is taken while panning with, = 2° and tilting with6, = 2°, and keeping the focal length

fixed for the camera. We apply the method to all the combinatiottsmfiges from the total Gf

images. The results are shown in Figidt&Q The pan anglé, is estimated at.84°, whereas the

tilt angle 6, was estimated &&06°. The aspect ratia is estimated a$.06, the two focal lengths
between the images are also very close to each other. The principal point is also estimated to be

close to the center of the image.

7.6 Discussion and Concluding Remarks

This chapter makes three main contributions to auto-calibration of rotating and zooming cam-

era: (i) By successive rotations of the infinite homography and axis alignments, we derive a new
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[Comb.] N[ w [ wo [ /i [ fo [6a]86y]

C1 1.97|185.98 | 127.21 | 588.98 | 610.06 | 2.34 | 1.15
Ca 0.36|118.65| 166.2 |676.78 | 738.141.94 | 1.16
C3 0.85|164.27 | 121.88 | 827.88 | 765.56 | 2.69 | 1.58
Ca 0.61]171.69|168.06 | 892.77 | 780.88 | 1.24 | 2.98
Cs 1.45|261.95|150.47 | 942.02 | 1021.1 | 1.85 | 1.84
Ce 0.56|177.80|139.42 | 672.32 | 696.32 | 2.76 | 2.2
Cr 1.62(152.92|168.65|821.43 | 837 |1.58|1.95

Mean |1.06 |176.17|148.84 | 774.6 |778.44(2.06 | 1.84
M. Dev.|0.49 | 14.29 | 17.59 |120.59 | 63.29 | 0.4 | 0.36

(b)

Figure 7.10:(a) Sample images from pan-tilt sequence. (b) Estimated parameters and their statis-
tics.

non-linear solution that provides five intrinsic parameters (fiefs, ug, vo, A) from only two im-

ages; (ii) we focus on PTZ camera applications by performing thorough analysis of degenerate
single-axis rotations; (iii) we derive a new geometric error function for refinement of solution that
outperforms classical ML reprojection error. Although Agapito et AHRO1] use more images

than required by our method, they do provide a linear solution, whereas our solution is non-linear
but in terms of low-order polynomials.

On the other hand, pure pan or tilt are unstable cases for their method. Thereforey using
constraint is not sufficient and they have to assume knbwAithough assuming a non-zero skew
introduces instability in our method as well, we are able to solvelfmtrinsic parameters (i.e.
f1, f2,u0, v0) and the rotation angled{ or 6,) using only an image pair. We have investigated
the effect of increasing/non-zero skew on the stability of estimating other parameters. Results are
shown in Figure7.11 Except forvg, error in other estimated parameters increases non-linearly
when we have a panning camera, as seen in Figure The error in parameter estimation while

the camera is tilting is linear, except fog (cf. Figure7.11). A particular remark to be made here
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Figure 7.11:Effect of non-zero skew on the error in estimation of other parameters.

is thatu, is less sensitive to non-zero skew for pan, and convergelyless sensitive to non-zero
skew in tilt. Also, we found that other parameters were in general less sensitive to non-zero skew

under panning.
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CHAPTER 8
CONFIGURING A NETWORK OF CAMERAS

In Part I, we addressed the problem of calibrating any individual camera in the network. Our goal
in this chapter is to demonstrate that one can establish a common world reference frame to recover
absolute and relative camera orientations even with non-overlapping FoVs.

The main motivation for deploying networked cameras is that a single camera, even if allowed
to rotate or translate, is not sufficient to cover a large area. Figdrshows an active example
of a configuration where two fixed cameras are monitoring one particular area. A more general
case with a wide range of applications is when the deployed disjoint FOV cameras may be allowed
to move freely in 3D space, e.g. on roaming security vehicles. By employing multiple cameras
with non-overlapping or disjoint FoV, we would like to maximize the monitoring area in addition
to inferring the network configuration. By network configuration we mean the absolute and the
relative orientations of cameras in the network assuming that their relative location is determined
by either GPS or surveyed points in the 3D world. We propose a framework for auto-configuration
of such a dynamic network, thereby obtaining the dynamic geometry of the network along with
self-calibrating each camera in the network. By configuring such a camera network we can (i)
direct cameras to follow a particular obje®@z01], (ii) calibrate cameras so that the observa-
tions are more coordinated and perform measurements (with known scale) and possibly construct
a 3-D world model MK04, CT04, (iii) solve the camera hand-over problem i.e. establish corre-
spondence between tracked objects in different cameras (iv) generate image/video scene mosaic
(v) infer network topology MEQY5], and (vi) build terrain model@T9§ or do spatial learning for

navigation YB96, Tan94.
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8.1 Related Work And Our Approach

For a general configuration, each camera in the network needs to be self-calibrated by any of the
method described in Part Il, depending on scenario restrictions. Recently, tracking across multi-
ple non-overlapping cameras, for video surveillance as well as topology inference, has attracted
considerable amount of attention. Makris et #MT[04] estimate camera topology from observa-

tions by assuming Gaussian transition distribution. Departures and arrivals within a chosen time
window are assumed to be corresponding. Recently, Tieu eTBIGDY generalized the work in

[MTO04] to a multi-modal transition distributions, and handled correspondences explicitly. Cam-
era connectivity is formulated in terms of statistical dependence, and uncertain correspondences
are removed in a Bayesian manner. Javed et #SD% demonstrate that the brightness trans-

fer functions from a given camera to another camera lie in a low dimensional subspace. Their
method learns this subspace of mappings for each pair of cameras from the training data. Using
the subspace of brightness transfer functions, the authors attempt to solve the camera hand-over
problem. Kang et al. HCMO3] use an affine transform between each consecutive pair of images

to stabilize moving camera sequences. A planar homography computed by point correspondences
is used to register stationary and moving cameras. Zhao eZAKQ5] formulate tracking in a

unified mixture model framework. Ground-based space-time cues are used to match trajectories
of objects moving from one camera to another. It is well known that due to perspective projection
the measurements made from the images do not represent metric data. Thus the obtained object
trajectories and consequently the associated probabilities, used in most of the work cited above,

represent projectively distorted data, unless we have a calibrated camera. For example, a person
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Figure 8.1:Two cameras in a network several blocks apart from each other.

moving slowly but close to a camera induces large image motion compared to person walking at
a distance with a quicker pace. Also, appearance based features exhibit undesirable results under
varying lighting conditions. On the other hand, inter-camera relationships can not be correctly
established unless dynamic positions and orientations between cameras are known at any point in
time.

The most related work is that of Jaynemy04. Assuming a common ground plane for all
cameras, relative rotation of each camera to the ground plane is computed independently. The
motion trajectories of objects tracked in each camera are then reprojected on to a plane in front
of the camera frame in order to compute corresponding unwarped trajectories. Camera-to-ground-
plane rotation and plane-to-plane transform computed from the matched trajectories is then used to
compute relative transform between a pair of cameras. This method assumes that all cameras are
calibrated, requires motion trajectories on objects, and each camera is considered to be stationary
looking at a common ground plane.

We present a more general solution for registering a network of disjoint cameras. We do not
assume any special camera motion or known camera rotation matrix, as usEidm®g1, SH99
FKO03, PKG99 Har97. Instead of relying only on the color features for performing video surveil-

lance or inferring network configuration, computed metric information from the calibrated cameras
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can be used to determine correct correspondences. We present a novel technique to configure the
network as a whole. The target is that each calibrated camera should be able to communicate its
intrinsic and extrinsic parameters with other cameras in the network. We demonstrate that a (ver-
tical) vanishing point and the knowledge of a line in a plane orthogonal to the vertical direction is
sufficient to perform this task.

Our key contributionincludes a method to compute the relative orientation between non-
overlapping cameras using only vertical vanishing point, and a novel approach to calculate the
infinite homography between a pair of cameras in the network. As an application, we apply our

method to configure a Mixed Reality(MR) environment (Chafithr

8.2 Geometry Of Networked Cameras

Our goal in this section is to demonstrate that one can establish a common world reference frame
to recover absolute camera orientations even with non-overlapping FoVs. The key to establishing
a common reference frame is the fact that all cameras share the same plane at infinity and, in our
case, also the same vertical vanishing point. In addition, we require a line to be visible in each
image in order to completely determine the orientation between the cameras with disjoint FoV.
The lines in each image need not to be parallel in the world; orthogonal lines can be used as well
(explanation follows in the next subsection).

Assuming that each camera as a unit has been calibrated in the network using the method
described in Part Il, we would like the entire camera network to recover its own configuration.
That is, each camera should learn its relative orientation with respect to every other camera.

Figure8.2(a) shows a typical configuration of a camera network. Cameras are moving freely in
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(b)

Figure 8.2: A typical configuration (a) Dynamic Epipolar Geometryfigure demonstrates a
dynamic camera network where each camera is moving with respect to itself and with respect to
all the cameras in the network thereby inducing a different epiploar geometry at each time instance.
For a camera at any time instance its center is labeled as!. The camera can be looking at a
planar as well as non planar scene while translating and rotating. Each camera has an associated
FoV and all the cameras in the network have disjoint FoVs. The relative orientation between
cameras is denoted kiii}ij and the translation bgl‘fd.. (b) shows an instance of the dynamic
epipolar geometry. The figure contains two cameras having disjoint FoVs with some rotation and
translation between each camera.

space, inducing a unique epipolar geometry at each time instance. For any ¢atigna instance

t, its center is labeled a8!. Figure8.3 shows a broader picture of the camera network. Each
camera is mounted on a moving or a stationary platform while varying its intrinsic and extrinsic
parameters. Each camera has an associated FoV and all the cameras in the network have disjoint
FoVs. The relative orientation between cameras at any time instaaaenoted b)REJ. and the

relative translation bgl‘}ij. We assume that the relative translatidfig can be computed either by

a set of surveyed points in the scene, or given by GPS. From here on we omit the supétscript

keep the notation simple.

8.2.1 Relative Orientation Estimation Using Vanishing Points

Vertical vanishing point4’) [CT90 can be readily obtained from most naturally occurring or

man-made scenes, e.g. scenes containing buildings or other structures. Similarly, people or objects
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Networked Cameras %p

i@ﬂ;

Figure 8.3: A Network of CamerasThe figure shows a general view of the network where each
camera may be mounted on a moving platform while detecting/tracking objects.

in the FoV of each camera can be used to determin&Several researchersZN02, KM05] and
recently we presented a methadFp6K where motion of a tracked pedestrian is used to obtain the
vertical vanishing point. For a camerat any time instance, given a vertical vanishing peint

the vanishing liné’_ can be determined by using the pole-polar relationsHg0d4:

I = wv (8.1)

I'_ intersects théAC w; at two complex points called the circular points.

In addition, we require that a line be visible in each image. This line can lie on any plane that is
orthogonal to the vertical direction, and may be specified either by the user, extracted by registering
to architectural plans or maps, or determined by other vision-based me®Red9§ BZ99]. For
example, checkered tiles on the floor, or brick lining on the wall, or other lines abundant in indoor

and outdoor setting, can be used to serve our purpose. Two situations, simplified to two-image
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Figure 8.4:Views from two non-overlapping cameras: A pair of parallel lines intergcit a
vanishing point’, in the left image and’ in the right image, respectively. Above, the vanishing
line for each view is drawn in black while the parallel lines, an example of tasee drawn

in green. The green line in each view intersect the vanishing line at a point. This point is the
corresponding vanishing point between the two views. As an example foRctseblue line in

right image is orthogonal to the green line in the left image. Red color is selected to denote lines
used for estimating the vertical vanishing point.

cases, can occur with such a configuration, as shown in F&ydre

1 When the visible lines are parallel to each other in woildthis case, intersection of the imaged

line, 1;, with thel’  yields a vanishing point orthogonal 9:

v~ x (8.2)

wherev’, without loss of generality, is taken as the vanishing point along the x-axis for an

image:.

2 When the visible lines are perpendicular to each other in woflde intersection of the imaged
line with the line at infinity yields vanishing point in each image that represent mutually

orthogonal directions in the world. In addition to B2, for the second imagg) we get:

v~ x (8.3)
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As an example for caske(cf. Figure8.4), note that; (i.e. green line) is visible in the leftimage
andl; (i.e. green line) is visible in the right image only (since we are dealing with non-overlapping
FOV). But sincel; andl; are parallel in the world, they intersectt andv? , respectively. These
two points are the corresponding vanishing points in the two views. As an example f@; tase
blue line in right image is orthogonal to the green lihg (n the left image, hence the vanishing
point v is orthogonal to the vanishing poin},.

Absolute rotation w.r.t. the world reference frame: Given two vanishing points’ andv’ from
each view of a single camera, the rotation of camievéh respect to a common world coordinate

system can be computed as:

K; 'vi K; "ol T3 X Ty

:l:f, T = To = (84)
(enrch S

'S fr— —_—
’ |73 x o’

wherer, r, andr; represent three columns of the rotation matrix. The sign ambiguity can be
resolved by the cheirality constrairtdZ04] or by known world information, like the maximum
rotation possible for the camera.

Relative orientation is obtained from the obtained absolute orientation for each camera view.
Care must be taken in using Eg8.2) and Eq. 8.3). Based on the obtained vanishing points
(v, Or v,), appropriate equations from Eq8.4) must be selected for determining the absolute

orientations.

8.2.2 Alternate Solution: Using Infinite Homography Relationship

An alternate solution is to use the infinite homography. A rotating and/or a zooming camera in-

duces an infinite homographI{s, which relates two camerasand j via the plane at infinity

ij?
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(II). For such a case, infinite homography may be calculated directly from point or line cor-
respondences using EqR2.11) using the method described IAHRO1] (see EZH94, HIL8Y for
more on pose estimation). But for a camera undergoing a general motion the correspondences can
not be obtained as the FoV is disjoint. However, by determining points or lines lying,oit is
possible to estimatel?; from such ideal point/line correspondences. The idea is as follggs:
(2.17) should be simplified so that instead of solvingt;, we only solve for the relative rotation
matrix R; ; between two camerasandj.
Any point, let us sayv’, lying onl’_, for a camera satisfies the orthogonality constraint
vl w;vl = 0. Thusv’ is chosen as a vanishing point orthogonabfo Any such point in camera

i is transformed vidl,, to a pointv’ on another cameraas:

Hjv, ~ vy, (8.5)
and similarly
H5v, ~ vl (8.6)

whereHYs is the infinite homography between camérand j; and v’ is obtained from the
method described in the last subsection.

We need more constraints if we are to solve for a gerldgglas it contains 8 unknowns (nine
minus the scale). However, we only need to compute the relative orienfatipbetween each
camera since the calibration matrix for each camera is already computed. Therefdeg) Eqr(

be simplified to:
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1, j
KiRijK{ v, ~ v

orRi,jr; ~ rg (8.7)

Kglos
1K< vg]|

wherer§ = with s = {4, j}. The third column of the rotation matrix thus computed

can provide two unknown angles for each camera as follows.

s —1/.s
sin (r3(2>)

s . —1/.s s _
0, = sin (r3(1)) and 65 = cos(63)

Eqg.@.5) is also simplified to:

Ri ;K Mol ~ Kl (8.8)

whereK; andK; are the computed calibration matrices for cameaad;, respectively.
The third angleg: for each camera need not be computed explicitly in order to get the relative

rotation between cameras. The relative rotation matrix is simplified to,

Ri; = R Ry,R,;R;RIR]

orRij = RxRyR, Ry RY (8.9)

whereR, Ry, R, represents rotation aroundaxis, y-axis andz-axis, respectively, for a camera
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Replacingsine and cosine with unknownz andy respectively, we solve Eq.8(9) linearly
w.r.t. z andy. Scale ambiguity is removed by taking the cross ratio of the left and right hand side
of Eq. 8.9) while substitutingRy,, Ry,, R"yfj andR,Tj with the angles calculated above. Singular
Value Decomposition is applied to obtain the unknown relative afigleKnowing all the angles
allows us to recover relative orientation between each pair of cameras in the network.

The two methods described above require same informatiowj.andwv., and provide sim-
ilar results. The methods are indeed alternate: in first method the relative camera orientations is
obtained from absolute camera orientation whereas in the second method we directly solve for the

relative rotation matriR; ;. For experimental validation, the method described in Subsegtibh

is chosen due to its simplicity.

8.3 Singularities

The camera or network calibration algorithms, like any other algorithms, $iagelarities This
is also often referred to asegenerate configuratiortsy some researchers. It is important to be
aware of such situations in order to get an insight into the problem and obtain reliable results.

By degenerate configurations we mean situations where a particular camera motion does not
result in any constraint on the camera intrinsics. For exampl&304] shows that it is possible to
obtain a closed-form solution for the only unknowifor a fronto-parallel or panning configuration
of a rotating camera. But it is not possible to obtain a closed-form solution f@hen f, \ are
unknown parameters for a panning camera. Note that for rotating fixed cameras or freely moving

cameras it is always favorable to have large rotations. If there is no rotation between views then the
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Kruppa equations do not provide any constraint.gras for such cask = [¢']. and the equation
is reduced tde’| wie']x ~ [e]xwi]e]«.

It is beyond the scope of the current work to expound on all degenerate configurations for self-
calibration. Therefore, we only focus on critical configuration for ofieof two parametersf( \)
estimations. Zisserman et aZLl[A98] examine ambiguities arising from motions with single di-
rection of the rotation axis when all the parameters are unknown but constant. When the axis of
rotation is perpendicular to the image plane, specified skew, principal point and aspect ration are
not sufficient to remove the ambiguity. For variable focal length came®&is9§ derives condi-
tions under which it is not possible to calculate the valug.dfle shows that critical configuration
arises when: optical centers of stereo cameras are collinear, optical centers lie on ellipse/hyperbola
pair, or when the optical axes are parallel. Kahl etl&l.A00] generalize $tu99 to include cases
when other parameters vary as well and show that criticality is independent of the values of the
intrinsic camera parameters. For methods based on Kruppa’'s equations, whegnsatknown,
motions are criticaifff the optical axes of the two cameras intersect or when the optical axes planes
are orthogonal.

We now consider critical configuration for the proposed method. We showed that it is possible
to determine absoulte/relative rotations for cameras comprising a network and that only one van-
ishing point is required. Critical configuration occurs only when we are unable to determine the

vanishing point for image sequences. Projection of the vertical vanishing point is given as:
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assuming known aspect ratid)( Degenerate configuration occurs when:

1. rg = cosf, cosf, = 0: This happens when eith@y = 90° andf, = 90°. This is the case

when our camera viewing direction is perpendicular to the vertical direction (

T
2. v, = { 000 } i.e. 0, = 90° andf, = 0°: This situation occurs when camera is located

on the vertical axis with viewing direction perpendicular to the y plane. In this case.

coincides with the principal point (since our principal point i$@0) ).

3. f — oo: The camera becomes an instance of affine camera. In such a configuration it

IS not possible to measure any vanishing points as parallel lines are invariant under affine

transformations. An example would be that of distant aerial imagery.

Although of significant theoretical importance, the above cases do not commonly occur in

general settings.

8.4 Results

In this section we present some experimental results with synthetic as well as real data.
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Figure 8.5:Performance of network configuration method VS. Noise level in pixeddt - Ab-

solute error in angles obtained by using the method described in S&&#dh Right - Absolute

error in errors obtained from the method described in Se&i2ri Notice that while the curve for

0. is somewhat different, the curve for the other two angles is exactly the same. This is due to the
fact that we are using the same vertical vanishing point to estifhatadd, for both the methods.

Synthetic Data We rigourously test the proposed method for estimating the relative angles
between different cameras. Hundred vertical lines of random length and random location are gen-
erated to approximate the vertical vanishing points. Similarly, we chose hundred points (arbitrary
number) to represent the ling)(which is visible in image (see Sectio8.2). We gradually add
a Gaussian noise with = 0 ando < 3 to the data points making up the vertical lines. Vertical
vanishing point is obtained usirfg@vDon the vertical lines. Similarh&VDis applied to the points
making upl; to obtain the point of intersection &f andl;. Translation and rotation are selected
subjectively to avoid degenerate configurations. While varying the noise(frbio 3 pixel level,
we perform1000 independent trials for each noise level, the results are shown in Fegr&he
absolute error is found to be less thiaR° for the maximum noise df pixel in our tests using both
the methods described in Secti®r2.1and Sectior8.2.2as shown in Figur8.5.

Real Data-Using PTZ Camera for ground-truthin order to obtain ground truth for relative

camera rotations, we employ a SORYSNC-RZ30N PTZ cameras. The purpose of this demon-
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Figure 8.6:Outline map of the test sequence setup. Two cameras, initially with orthogonal FoV,
are translated and rotated. A camera is representatfbwherek is a camera label andis a
frame or an instance number. See text for more details.

Camera # 2 EstlmateﬁKIeft to rlght) 1121. 14 1124 35, 1103 436, 1181.191, 1190 05,1171.96

Figure 8.7:Some images from a test sequence using two cameras. The cameras are translated as
well as rotated. The green line indicate the knowledge of a line in world. In this particular case,
the line in one camera is orthogonal to the corresponding line in the second camera.

stration is to verify the accuracy and applicability of the proposed method. The outline of the test
sequence is shown in Figude6. Two PTZ cameras are used for the demonstration. The cameras
are represented l§<, wherek is a camera label ands a frame number.

Some of the images from the test sequence are shown in Rigaréhe top row of Figure
depicts images from camera 1, while the bottom from camera 2. The ground truth rotation for
the shown images is known by controlling the PTZ cameras. Self-calibration is performed on the

sequence and the results are shown in Figure The fundamental matrix is computed between
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Table 8.1:Ground Truth 6, Vs. Estimatedd,: Column represent Camera # 1 denotedBy
and rows represent Camera # 2 denote@hySince the orientation between cameras is symmet-
ric(only a sign change), values of the lower left triangle of the table are denoted by *.

CAMERA#1
Ci Cz Cs Ci Cs Co
(023 Qz) (ez; 92) (9z§ 92) (9z§ ez) (QZ; ez) (925 Qz)

; C% (900; 90.660) (1050; 100.590) (1200; 117.60) (1350; 132.220) (1500; 150.940) (1650; 157.560)
§ Cg * (900; 96.910) (1050; 113.920) (1200; 124.540) (1350; 137.260) (1500; 153.890)
E Cg * * (90°;92.69°) |(105°;108.29°)|(120°;123.02°)|(135°; 133.64°)
5 CZ * * * (900; 96.560) (1050; 111.910) (1200; 121.530)

Cg * * * * (90°; 88.26°) (1050; 103.820)

C2 * * * * * (90°; 89.64°)

consecutive frames obtained from each single camera to determine the calibration matrix. The

computed fundamental matrix is decomposed to obtain the relative translation and relative rotation

between the two frames. The technique presentetldy(4] automatically detects scene features

that can be used to robustly compute the fundamental matrix. If the scene contains moving objects,
the vertical vanishing point can be obtained automatically, as demonstrat&/iop [ JFO6H and

Lv et al. [LZNO2]. As reported by Zhanggha0q, the mean of the estimated focal length is taken

as the ground truth and the standard deviation as a measure of uncertainty in the results. Thus, with
a low standard deviatios = 32.05, f is determined to b&139.50.

As is evident from Section8.2, the most difficult angle to obtain is thelative 6, (we omit
superscriptsg;), as it can not be obtained from alone. Therefore, we set up the experiment to
vary 6.. Initially, the two cameras are separated by an angte ef 90°(pan angle) i.e. fo€;] vs.

C? (see Figures.6). While translating, the cameras are rotated by some known angle. The images

shown in FigureB.7 are selected such that the rotation angle between different instances/frames is
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R,
(c) Recovered 3D Geometry of cameras (d) Recovered 3D Geometry of cameras

Figure 8.8:(a) and (b) are views taken from two disjoint FOV cameras looking at a lobby entrance.
The two cameras are free to rotating and translating. The 3D rendering in (c) and (d) demonstrates
the computed dynamic geometry of the network. This network geometry is unique at each instance
of time.
6. = 15°(an arbitrary angle). For example, the difference between the orientat®hafdC; is
0, = 15°. After self calibration, the method described in SecBah 1is used to obtain the relative
camera orientation. The obtained results are presented in §dble

Table8.1 compares the obtainet] with the ground trutl¥,. Each column of the table repre-
sents an instance from camera 1, while each row represents an instance from camera two. For ex-
ample, intersection of row and columrs represented the orientation betwexthframe/instance
of each cameré&; andC3. Since the relative rotation between two cameras is symmetric, we de-
note the lower left triangle of the table By The mean error in estimated angle and the standard
deviation is found to b8.53° and2.5°, respectively, which is very low.

Errors can be attributed to many factors. Main source of error in a PTZ camera is the radial

distortion, as visible in the test images. Another important factor is the inherent error present in

localizing pixels for determining vanishing points.
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(a.) Neighboring Cameras (b) Recovered 3D Geometry (C) Neighboring Cameras (d) Recovered 3D Geometry

Figure 8.9:(a) and (c) are instances from a data sequence looking from inside a hallway. The two
cameras have disjoint FoV as they are looking in almost opposite direction. At each time instance
the camera network has a unique geometry. The 3D rendering in (b) and (d) only demonstrates the
computed dynamic geometry of the network and the images inside the rendering do not represent
registered images.

Real Data-Moving CamerasFor further experimental validation, two sequences of real data
were obtained from two pairs of moving cameras fitted with GPS receivers. GPS data is required
to pinpoint exact camera location allowing us to compute the translation between each camera.
Unlike the results demonstrated in the previous subsection, the ground-truth is not available for
this experimentation and visual inspection is the only goodness of measure.

The data was collected over a long period of time and two instance from the first sequence are
shown in Figure8.8. The left camera is denoted by its centérand the right camera is denoted by
C,, omitting the superscript used to indicate different time instances. Using computed vanishing
points, inter-camera rotation matr, . is computed, which is then used to compute Hig.

The resulting angles obtained are presented in Taldérow 1 and2). Figure8.8(c) and Figure
8.8(d) render the recovered network geometry, which is intended to help visualize the obtained
results; and the rendered scene images are only texture maps and do not depict the actual image

registration.
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Table 8.2:External Parameters obtained from test dataset.

| Views |Recovered Relative Rotatiofii{, 0/, 07/) in degrees

Figure8.8a) (12.84,11.56,44.99)
Figure8.8(b) (13.58,13.51,134.99)
Figure8.9(a) (—154.25, —1.04, 45.04)
Figure8.9(c) (—176.42, —1.7,94.96)
Figure6.6 (9.53,3.748, —86.22)

The second data sequence contains cameras looking in opposite directions in a hallway. In-
stances of this data sequence are shown in Fi§l@) and Figure8.9(c). The cameras are in
continuous motion at every time instance; the network geometry is rendered in Bi§{eand
Figure8.9(d). Generally, scenes containing abundant architectural structures are well desirable if
we are to compute the vanishing points.

The rotation angles calculated from the second data sets are presented in row 3 and 4 of table
8.2 Since the cameras are looking in opposite directigrs close to—180°.

The errors could be attributed to several sources. Besides noise, non-linear distortion and
imprecision of the extracted features, one source is the causal experimental setup using minimal
information, which is deliberately targeted for a wide spectrum of applications. Despite all these
factors, our experiments indicate that the proposed algorithm provides good results.

SPECIAL CASE - PURE ROTATION: The proposed self-calibration method (Chaieis
based on the Kruppa equations. However, these equations rely on accurate estimation of the funda-
mental matrix. For a special case when no translation occurs, the fundamental matrix degenerates
and our self-calibration technique would not be applicable.

In order to self-calibrate a pure rotating camera, without loss of generality, the projection matrix
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(c) Ground Truth Angle$0°,0°,80°) : Calculated Angle$1.08°,1.79°, 78.15°)

(d) Ground Truth Angle$10°, 0°,45°) : Calculated Angle$15.04°,0.73°,44.8184°)

Figure 8.10: Four of the many test sequences taken from a PTZ camera. The ground truth relative
rotation angles are compared to the obtained rotation angles. Green line indicates a common lines
parallel in real world) while the lines used to compute the vertical vanishing point are drawn in
red.

for the first view can be formulated & = K;[R;|0], where the translatioty = —R;C = 0. The
projection of any scene poidt onto an image plane is expressedcas K;R;X.

For a scene point projected onto two different images, a 2D projective transfornkdgion
relates the corresponding pointsss= H; ;x;, whereH;; = K;R;;K;'. This 2D projective

transformation maybe calculated directly from point or line correspondences between images.

Using the propertyR = R~7T, the definition ofH; ; leads to some constraints on A& :
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Ground Truth(0°, 0°,55°) : Calculated Angle$1.08°, 3.78°,54.49°)

Figure 8.11: A test sequence taken from a PTZ camera with people walking. The ground truth
relative rotation angles are compared to the obtained rotation angles. See text for more details.

(K;Kj') = Hi (KK )H) (8.11)

wherew; = (K;K")™" andw; = (K;K{')~*. Linear constraints on the unknownsfare
obtained by further assuming zero skew and unit aspect ratio. A#e(1], [BR97] for further
details and discussions about calibrating rotating and zooming cameras.

Some test sequences are performed for this special case of camera motion. Four of the test cases
are shown in Figur&.1Q0 The ground-truth relative rotation angles are compared to the obtained
relative rotation angles. Two PTZ cameras are used for this sequence. The lines which are parallel
in the world are drawn in green, while the lines used for the vertical vanishing point are drawn in
red. After self-calibrating each rotating camera, as described above, the angles are estimated as
described in Sectiof.2 The estimated rotation angles are shown below the figure. Another set of
a test sequence captured with a PTZ camera is shown in R8gLiteHere pedestrians are walking
in the FoV of each camera. Different frames are supperimposed on one image as shown in the
Figure. The method proposed by Lv et dlZN02] is used to extract the vertical vanishing point.

The results obtained are very encouraging and close to the ground truth.

Effect of Principal Point on Camera Parameters: The proposed method assumes the princi-
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Figure 8.12:Intrinsic and extrinsic camera parameters when the principal points is not exactly at
the center of the image.

pal point is located at the center of an image. The image is then transformed so that the principal
point lies at(0, 0). Although this is a very reasonable assumption for currently available cameras,
we analyze the effect of deviation from this assumption on both intrinsic and extrinsic camera
parameters.

A random Gaussian noise pf= 0 ando = 9 pixel was introduced to a point cloud containing
250 points. The error curves for the obtained focal length,, 0, andd, are shown in Figur8.12
The error curves for all the estimated parameters are near linear. For a displacefneinets off
the image center, the relative errorfins close t00.03% (cf. Figure8.12). Similarly, the absolute
errors ford,, 0, andd, are also very small, see FiguBelZb) and FigureB.12c), respectively.

Thus a displaced principal point does not significantly affect the proposed method.

8.5 Conclusion

We have successfully demonstrated a novel approach to recover dynamic network geometry. Each
camera, having a disjoint FoV, is assumed to undergo a general motion. Such a network could

be, for instance, deployed for surveillance applications comprising of both stationary PTZ cameras

144



and cameras mounted on a roaming security or reconnaissance vehicle€0g])[ Another

application could be in an urban battlefield setting with soldiers carrying head mounted cameras.
Our contribution includes (i) computing the relative rotation matrix betw&erameras using

only vertical vanishing point, and (ii) calculating ti#3 for non-over lapping cameras and using

it to obtain absolute rotation of each camera with respect to a common world coordinate system

without overlapping FoV. We have successfully demonstrated the proposed method on several se-

guences and discussed possible degenerate configurations. The proposed network calibration tech-

nique is tested on synthetic as well as on real data. Encouraging results indicate the applicability

of the proposed system.
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CHAPTER 9
EUCLIDEAN PATH MODELING

We consider the problem of monitoring an area of interest, e.g. a building entrance, parking lot,
port facility, an embassy, or an airport lobby, using stationary cameras. Our goal is to model the
behavior of objects of interest, e.g. cars or pedestrians, with the intent to cover as large areas as pos-
sible by generally deploying non-overlapping cameras. In path modeB&rpP8 JHI5 JIS04

for surveillance, the goal is to build a system that, once given an acceptable set of trajectories of
objects in a scene, is able to learn the routes or paths most commonly taken by objects in order to
classify incoming trajectories as conforming to the model or as unusual and anomalous.

The definition of an unusual behavior might be different for different applications. For exam-
ple, a person walking in a region not used by most people, a car following a zigzag path or a person
running in a region where most people simply walkpath or route can be defined as any estab-
lished line of travel or access. This is the region that is most used by the objeajsctorycan
be defined as a path followed by an object moving through the space. Most objects tend to follow
a common trajectory while entering or exiting a scene due to presence of pavements, benches, or
designated pathways. Our approach can model the usual trajectories of the object and perform
measurements to indicate atypical trajectories that might call for further investigation through any
higher level event recognition. Thus, given an unusual or anomalous behavior, we are able to dis-
tinguish it from acceptable ones. Moreover, as common pathways are detected by clustering the
trajectories, we can efficiently assign detected trajectory to its associated path model. Hence, the
vision system needs only to store the path label and the object labels instead of the whole trajectory

set, resulting in a significant compression for storing surveillance data.
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It is, however, known that due to perspective projection the measurements made from the im-
ages do not represent Euclidean information. Thus the obtained object trajectories and conse-
qguently the associated probabilities represent projectively distorted data, unless we have a cali-
brated camera. This is evident from simple observations: an object grows larger and moves faster
as it approaches the camera center, or two objects moving in parallel directions seem to converge
at a point in the image plane. Or, for example, a person walking at a distance from a camera will
be in the field of view for a longer period of time compared to a person walking very close to the
camera. Similarly, for a person walking towards a camera, the obtained trajectory contains a fewer
number of overlapping data points and it is not possible to obtain accurate object motion from such
a trajectory. The projective camera thus makes it difficult to characterize object characteristics and
behaviors - in terms of their sizes, motion, length ratios and so on - unless camera is calibrated, in
which case one can perform Euclidean measurements directly from images. For this purpose, we
use the method described in Chagier

In a nutshell, this chapter addresses a comprehensive set of problems for building a path mod-
eling system, by proposing novel methods to use the calibrated camera to (i) perform metric rec-
tification of the input sequence, (ii) register the sequence to the aerial imagery, (iii) obtain metric
information about the objects from the rectified and registered images, and hence (iv) build Eu-
clidean path models to monitor and characterize behavior of the objects by observing and perform-

ing measurements on trajectories. Remainder of chapter is organized accordingly.
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9.1 Related Work

We divide the task of path modeling for surveillance in a single camera into three steps. The first
step involves detecting and tracking objects in the video frames. Through this process, one can
extract image plane trajectories of moving objects, which provide projectively distorted 2D repre-
sentation of the true path in the 3D scene. In the second step, projective distortions are removed
from the extracted trajectories to provide a Euclidean model of the path in the 3D space. Finally,
a scene path model is built, whereby anomalous behaviors are detected by matching incoming tra-
jectories to the model path for the area under surveillance. The system is able to log the behavior
of an object from the moment it enters the camera’s field of view until it exits, and enables the user
to determine its conformity to the path model.

The first step of tracking is essentially a correspondence problem and is not the primary focus
of this section; correspondence needs to be established between an object seen in the current frame
and those seen in previous frames. Tracking is a widely studied problem in computer vision, and
many suitable trackers exist for our purpo€&MO03 SMOQ, Ver99, KCM03, KS03. We used the
tracker presented by Javed et dlSP3 to validate our method.

The second step, i.e. removal of the projective distortion, is very essential. As argued above, in
order to obtain undistorted and real world information from any video sequence, the camera needs
to be calibrated. Calibration is a necessary process in computer vision in order to obtain Euclidean
information about the scene (up to a global scale), and to determine the rigid camera motion. We
used the camera calibration methods based on pedestrians as described in%hapter

Given a calibrated camera, object trajectories can be metric rectified. We can, thus, construct
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a path model for the scene, incorporating various metric characteristics such as curvature and ve-
locity. Although path modeling is a relatively new problem, we briefly survey some of the related
work. Grimson et al. GSR98 use a distributed system of cameras to cover a scene, and em-
ploy an adaptive tracker to detect moving objects. A set of parameters for each detected object
are recorded, like the position, direction of motion, velocity, size, and aspect ratio of each con-
nected region. Tracked patterns (e.g. aspect ratio of a tracked object) are used to classify objects
or actions. Tracks are clustered using spatial features based on the vector quantization approach.
Once these clusters are obtained the unusual activities are detected by matching incoming trajec-
tories to these clusters. Thus, unusual activities are outliers in the clustered distributions. Boyd
et al. BMV99] demonstrate the use of network tomography for statistical tracking of activities
in a video sequence. The method estimates the number of trips made from one region to another
based on the inter-region boundary traffic counts accumulated over time. It does not track an ob-
ject through the scene but only logs the event when an object crosses a boundary. The method
only determines the mean traffic intensities based on the calculated statistics and no information is
given about trajectories. Johnson et alHPg use a neural network to model the trajectory dis-
tribution for event recognition and prediction. Recent;T[04], and [TDGO0Y proposed methods
for determining topology of a multi-camera network, aldf05 used the 3D structure tensor for
representing global patterns of local motion.

The most related work to ours is that of Makris and EIMHO02], where they develop a spatial
model to represent the routes in an image. Once a trajectory of a moving object is obtained, it is
matched with routes already existing in a database using a simple distance measure. If a match is

found, the existing route is updated by a weight update function; otherwise a new route is created
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for this new trajectory having some initial weight. Spatially proximal routes are merged together
and a graph representation of the scene is generated. One limitation of this approach is that only
spatial information is used for trajectory clustering and behavior recognition. The system cannot
distinguish between a person walking and a person lingering around, or between a running and a
walking person, since their models and measurements are not Euclidean. There exist no stopping
criteria for merging of routes.

Our approach provides a Euclidean path modeling based on calibrated measurements. We then
propose a multi-feature path modeling method that allows us to discriminate between trajectories
with confidence. Innovative use of normalized-cuts makes possible to employ an unsupervised
training phase for path modeling. Unlike existing methods, we not only look at the spatial infor-
mation, but also the velocity and the curvature characteristics of trajectories. We test our system

on real-world sequences with pedestrians passing through

9.2 Training Phase - Camera Calibration & Trajectory Rectification

Our framework is divided into two phases: the training phase and the testing phase. During train-
ing phase, our goal is tbrst used the calibrated camera to metric rectify the extracted object
trajectories. Secondto cluster the input trajectories and build a model based on our features (Sec-
tion 9.2.1). Once we have our path model, we can test the incoming trajectories and check for
conforming behavior (as described in Sectt8).

Trajectory And Image Rectification Once the camera is calibrated, the object trajectories ob-
tained in the training phase can be metric rectified. As argued above, metric rectified data presents

a more accurate picture of the original data. The line at infihjtyntersectsv at two complex
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conjugate ideal points andJ, called thecircular points[HZ04]. The conic dual to the circular
points is given byC* = IJT + JIT whereC?_is a degenerate conic invariant under similarity
transformation. Under a point transformati@ry, transforms as:
, . KKT KKTv
CL = (HpHA)C (HpHa)™ =
vIKKT vTKKTv
whereHp andH, are respectively the projective and affine components of the projective trans-
formation. Itis clear that the affind<() and the projectivey) components are determined directly
from the image ofC*.. OnceC?, is identified, a suitable rectifying homography is obtained by

using the SVD decomposition:

100
CL=U|g10|U" 9.1)
00 0

where U is the rectifying projectivity. A stratified solution is also proposed by Liebowitz
[LZ98]. More results are provided in Sectiérb.1

Fig. 9.1 depicts some results obtained by rectifying the obtained training trajectories from
two of our three test sequences - each column represents a different sequen@I1(&jghows
the training trajectories superimposed on the images plane. %ifc) is the rectified image,
representing rectified trajectories, obtained by performing metric rectification o8 H(g).

From here on, all references to 2-D image coordinates and trajectories ieqpiffed 2-D

image coordinates anéctifiedtrajectories, respectively. For simplicity and better visualization,
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Figure 9.1: Rectified Trajectories for two sequences (column wisdlk) represents reconstructed
trajectories foiSeq+#2, while (d) representSeq+#3. Jagged dots at end points of the trajectories,
in (d), are due to noisy tracking. See text for more details.

the results are still shown on un-rectified image plane in subsequent sections.

9.2.1 Model Building

Another important step during the training phase is to identify the different paths traversed by
pedestrians in a scene. This section elaborates on how the extracted trajectories are used to create
a path model.

Typical Setup: A typical setup consists of a single camera mounted on a wall or on a tripod looking

at a certain location.For our training, we let people walk around the monitored scene and the object
tracker gives the trajectories for the objects moving across the scene. Generally the trackers are
able to uniquely label objects appearing in the sequence. Therefore, it is possible to maintain a
history of the route taken by an object. For any objectacked through frames, the 2-D image

coordinates for the trajectory obtained can be give'as {(x1,y1), (X2,¥2), -, (Xn, ¥n) }-
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Note that the trajectories will be of varying lengths, depending on the location and velocity of
the person. The trajectory of an object moving slowly will have more points (or pixels) compared
to a fast moving object. For most tracking systems, it suffices to track the centroid of an object.
But this might not be a good measurement for our system as we are dealing with physical path-
ways where the position of an object is very important. Thus, we track the feet of the objects for
more precise measurements. The trajectories obtained through the tracker are sometimes noisy;

therefore, trajectory smoothing is performed.

9.2.2 Trajectory Clustering

Once we have rectified trajectories from our training set, the next task is to cluster the trajectories
into different paths. Clustering has to be based on some kind of similarity criteria. Perceptually,

humans tend to group trajectories based on their spatial proximity. Since we are trying to create
a path model, it is essential that we perform clustering using the spatial characteristics of the
trajectories. Thus, we choose the Hausdorff distance as our similarity measure. For two trajectories

T; andT}, the Hausdorff distanc® (T;, T;), is defined as:

D(Ti,Tj) = max{d(Ti,Tj),d(Tj,Ti))}, (92)
max min
whered(T;, T;) = lla—Db||
acT; be Tj

The advantage of using Hausdorff distance is that it can compare two sets of different car-
dinality. Thus it allows us to compare two trajectories of different lengths. In order to cluster

trajectories into different paths, we formulate a complete graph. Each node of the graph represents
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Possible
Cut

Figure 9.2:A complete graph of five nodes with Hausdorff distance as the edge weights. The red
line may be a possible normalized-cut partitioning the graph into two subgraphs.

(@) (b) (©) (d)

Figure 9.3:Results of trajectory clustering using normalized-cuts. (a) all the trajectories in our
training setSeq#2 . After applying normalized-cuts, the clustered paths are shown in (b), (c) and

(d).

a trajectory. The weight of each edge is determined by the Hausdorff distance between the two
trajectories. The constructed complete graph needs to be partitioned. Each partition corresponds
to a unique path, having one or more trajectories. To perform such a partition accurately and au-
tomatically, normalized-cutsSMOQ| are used recursively to partition the graph. An example of
graph formulation is given in Figd.2

Spatially proximal trajectories will have small weights because of lesser Hausdorff distance,
and vice versa. This novel usage of normalized-cuts for trajectory clustering has certain advantages

over other graph cut techniques. First, it avoids bias for partitioning out small sets of points.
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Second, the problem is reduced to finding the eigenvectors of the system, which is very easy to
compute. This technique makes it possible to perform recursive cuts by using special properties of
the eigenvectors. We refer the reader $d/00, SM9§ for details on normalized-cuts. Fi@.3

shows the results obtained by clustering one of our data set.

9.2.3 Envelope And Mean Path Construction

At this stage, trajectories have been clustered into different paths by applying normalized-cuts.
Each path is represented by trajectories that make up that particular path. These trajectories, rep-
resenting their corresponding paths, are used to create a path envelope and a mean path represen:
tation. Anenvelopecan be defined as the spatial extent of a path (see &#). Applying the

Dynamic Time Warping (DTW)Keo03 algorithm, with column representing a trajectakyand

the row representing a trajectoB point-wise correspondences between the two trajectories is

determined. Using DTW, distance at each instance is given by:

(=x(id) (=)

where the distance measureyig, j) = 5", ij represents the Euclidean distance,

0. represent the standard deviation in spatio-temporal curvature (explained lates), eapte-
sents a suitable standard deviation parameter for the trajectory (in pixels). Thus, this distance
measure merges trajectories based on the spatial as well as spatio-temporal curvature similarity.
This algorithm is applied to the trajectories of all the obtained paths.

By pair-wise application of the above mentioned algorithm on each pair of trajectories from

an obtained path, an envelope is created to represent the spatial extent of the path, and a mean

155



Trajectory B
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Figure 9.4:(a) Standard construction for DTW algorithm for matching two trajectohiesdB.
(b) represents a typical scene where an object is traversing an existing path. An average trajectory
and an envelope boundary are calculated for each set of clustered trajectories.

trajectory (using DTW) to represent all trajectories in the path. As shown in &ig.for two
trajectories, the point-wise matching between the two trajectories is carried out usif§ the
measure defined above. Connecting the mid-points of the lines joining the matched corresponding
points is taken as the mean path. And consequently, for these sample cases, the two trajectories,

represented in green and red color, show the spatial extent of the path.

9.3 Test Phase: Scene Modeling And Verification

This section describes thest phaseA path model is developed that distinguishes between trajec-

tories that are:
e Spatially unlike
e Spatially proximal, but of different speeds
e Spatially proximal but crooked

e or spatially proximal, but exceeding a maximum physical speed limit.
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Figure 9.5:Dynamic Time Warping: An example of an average trajectory obtained by applying
DTW on two sample trajectories. Blue lines connect corresponding matched points between the
two trajectories.

To achieve these goals, first the usual paths are learned by applying normalized-cuts to cluster
trajectories, as mentioned above. Once we have detected all paths in a scene, we apply our testing
measure to verify the conformity of a candidate trajectory.

Validity of the candidate trajectory is tested based on its spatial, velocity and spatio-temporal
curvature properties. Each of these tests serves a distinctive purpose. The usage of spatial proper-
ties for testing is to guarantee that the candidate trajectory is spatially close to our path i.e. to the
envelope of our model. An anomalous trajectory can be discarded right away if it is considerably
distant from the model. Using velocity characteristics allows us to distinguish between objects
moving at different speeds e.g. a person walking compared to a person running, or recognize
exceeding the expected physical speed limit. The spatio-temporal curvature measure makes it pos-
sible to distinguish between motion characteristics of our data and that of the candidate trajectory.

For example, if our training data consists of pedestrians walking in straight line, then we can eas-
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ily distinguish someone walking in a zigzag manner using our model, and hence classify it as an
anomalous behavior.

Spatial Proximity: To verify spatial similarity, membership of the test trajectory is verified to the
developed path model. All points on the candidate trajectory are compared to the envelope of the
path model. The result of this process is a binary vector Witihen a trajectory points is inside the
envelope and (zero) otherwise. This information is used to make a final decision for a candidate
trajectory along with the spatio-temporal curvature measure. If all candidate trajectory points are
outside the envelope, then this is an outright rejection.

Motion Similarity: The second step is essential to discriminate between trajectories of varying
motion characteristics. The trajectory whose velocity is similar to the velocity characteristics of
an existing route is considered similar. Velocity for a traject®ryx;, yi, t;) , i = 0,1, , N — 1, is

calculated as:

V;:(Xi+1_Xi}’i+1_Yi)7i:0’17.”7N_1 (9.4)
tivs —ti bt — 6

Mean and the standard deviation of the motion characteristics of the training trajectories are
computed. A Gaussian distribution is fitted to model the velocities of the trajectories in the path

model. The Mahalanobis distance measure is used to decide if the test trajectory is anomalous.

= V=m0 v mp) < ©.9)

Wherevy is velocity from the test trajectoryn;, is the meany a distance threshold, a}d is

the covariance matrix of our path velocity distribution.
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Spatio-Temporal Curvature Similarity: The third step allows us to capture the discontinuity in
the velocity, acceleration and position of our trajectory. Thus we are able to discriminate between
a person walking in a straight line and a person walking in an errant path. The veloeitd
accelerationv!, first derivative of the velocity, is used to calculate the curvature of the trajectory.

Curvature is defined as:

YO Ry ()~ Xy () ©6)

(VX'(6)2 +y'(t)2 +1)3

Wherex’ andy’ are the velocity components inandy direction, respectively. Mean and stan-
dard deviation of’s is determined to fit a Gaussian distribution for spatio-temporal characteristic.
We compare the curvature of the test trajectory with our distribution using the Mahalanobis dis-
tance, bounded by a threshold. By using this measure we are able to detect irregular motion. For
example, a drunkard walking in a zigzag path, or a person slowing down and making a u-turn.
True Physical Velocity: This measure is obtained by registering the ground-based surveillance
cameras to aerial imagery. It is known that under projective imaging, a plane is mapped to the
image plane by a perspective transformation. One way to uniquely identify this projective trans-
formation is when the Euclidean world coordinates of four or more points are known. Thereafter,
the images can be rectified to one that would have been obtained from a fronto-parallel view of the
plane for a good registration to the aerial imagery. However, this imposes too many restrictions on
the image rectification process as the knowledge of the world points is not always readily available,
and the process can not be automated. To make this process automatic (i.e. without having to man-

ually specify the Euclidean world coordinates of points), the estimated affine and the perspective
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Figure 9.6:Image Rectification and Registration:(a) An image fronSeq # 3 where as (b) is the

metric rectified image for the same sequence. The metric rectified image is then registered to the
satellite image as shown in (c). A rectified frame fr&eq # 2andSeq # lare shown in (d) and (f),
respectively. The satellite images for these sequences are shown in (e) and (g), respectively. Since
the satellite imagery (i.e. (e) and (g)) is different from the test sequences (due to new construction),
the test images (i.e. (d) and (f) are not registered.

transform can be combined together to efficiently metric rectify the video sequence such that the
only unknown transformation is the similarity transformation. We then use the method presented
in [SS06 SGJ0%to perform image registration.

Fig. 9.6 shows an example of our automatic registration to aerial imagery. Once, a video
sequence is registered to an aerial image, it is possible to retrieve metric information from the
input video sequence, e.g. the true physical velocity. Generally, aerial images contain the world-
to-image scale information, for instance in F&9, where140 pixels correspond ta0 yards. We

use this estimated velocity to test if an object violates any established speed restrictions in a scene.
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Given the spatial, and spatio-temporal measures computed as described above, we can examine
the conformity of any incoming sequence. Thus, initially we detect non-conforming trajectories on
the basis of spatial dissimilarity. In case the given trajectory is spatially similar to one of the path
models, the similarity in the velocity feature of the trajectories in that path and the given trajectory
is computed. If the motion features are also similar then a final check on spatio-temporal curvature
is made. In addition to these similarity measures, we also determine the true physical speed to
verify if a maximum permitted speed is violated. The trajectory is deemed to be anomalous if it

fails to satisfy any one of the spatial, velocity or spatio-temporal curvature constraints.

9.4 Handling Occlusions

For object detection and tracking, we use the method proposed3®3] When an occlusion
occurs the accurate position and velocity of the occluded object can not be determined. Few cases

of occlusion are:

Inter-object occlusion occurs when one object blocks the view of other objects in the field of
view of the camera. The background subtraction method gives a single region for occluding
objects. If two initially non-occluding objects cause occlusion then this condition can be

easily detected.

Occlusion of objects due to thin scene structuredike poles or trees causes an object to break
into two regions. Thus more than one extracted region can belong to the same object in such
a scenario.

Occlusion of objects due to large structurescauses the objects to disappear completely for a
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Figure 9.7: Some cases of trajectories resulting from occlusion during the training phase and
the test phase. (a) and (c) shows some trajectories obtaining due to occlusion not included in the
training set foiSeq # landSeq # 2 respectively. (b), (d) and (e) show some incomplete trajectories
obtained due to occlusion which were rejected during the test phase.

certain amount of time, that is there is no foreground region representing such objects.

More details on how we handle these occlusions during the tracking process can be found in
[JS03. Although our tracking can handle occlusions to a great degree, not all cases can be han-
dled correctly. As a result, we obtain incorrect trajectories, which affects our trajectory clustering

method. During our training phase, two cases are considered:

1. When Inter-Object occlusion occurs: This kind of occlusion generates incomplete trajecto-
ries, i.e. a trajectory starts from one end of the image and ends before reaching the image
boundary (possibly an exit point). We ignore this trajectory and do not use in our path build-

ing phase.

2. A new trajectory is generated not at the boundary of the image, but rather well inside the
image plane. This generally occurs when scene structures causes an object to break, or when
the tracker assigns new trajectories to objects emerging from occlusion. We also ignore this

type of trajectory.

Some cases of trajectories resulting from occlusions are shown in Fgur€urrently, oc-
cluding trajectories are not used in the training phase. Mainly because using partial or incomplete
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trajectories would in general lead to an incorrect path model. However, some user-defined cases
may be included if required.

During the testing phase, trajectories resulting from occlusion are not treated specially. If
such a trajectory does satisfy the spatial proximity feature, it fails the motion and spatio-temporal
features. This happens because there is no information regarding velocity and the curvature of the

trajectory at the missing sections of the trajectory.

9.5 Results

The proposed system has been tested on multiple sequences with a variety of motion trajecto-
ries. The sequences have a resolutiofa2sf x 240 pixels and captured at multiple locations and
each location contained multiple paths of travel. Three test sequences were used for evaluation
purposes, name8leq#1, Seq+#2, andSeq+#3. Our tracker is able to accurately establish cor-
respondences over a variety of environmental conditions. Some test results and examples were
provided throughout this chapter to clarify and illustrate the steps. Below, we present additional

experimental evaluations.

9.5.1 Evaluating Registration To Aerial Imagery

Registration to aerial imagery gives a global view of the scene that is under observation, and allows
for measuring physical quantities such as speed for determining conformity of incoming trajecto-
ries. The results obtained by rectifying the test sequences are shown hé-ig.frame from the

test sequencBeq # 3is rectified by using the line at infinity which is obtained &s:= wv,. The

obtained circular points are used to construct the c@ijcin order to obtain the rectifying projec-
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Figure 9.8:Six test cases used to retrieve metric information. See text for more.

tivity, as described in Sectioh2.1 The rectified image is shown in Fi§.6(b), and the registered
image is shown in Fig9.6(c). Similar computation foBeq # 2andSeq # 1produce the rectified
images as shown i8.6(d) and9.6(f), respectively. Due to some newly constructed structures, the
aerial imagery foiSeq # 2andSeq # lis somewhat different from the test sequences, hence the
images are not perfectly registered.

Five cases are shown in Fi§.8 for computing physical speed. Fi§.8@a) shows a golf cart
that takes only two seconds to move across the scene - the true speed obtained from the registered
image is found to b&0.369 km/hr. The velocity of the bicycle, as shown in F@.8b), is found
to be 12.22 km/hr, whereas for three cases of pedestrians (i.e. Bigc)-(e)) the velocity is
determined to be.58 km/hr, 3.66 km/hr, and4.22 km/hr, respectively, which is very close to the
average human walking speed. A case of a person riding a skate board is showrQigBignd
the retrieved velocity i9 km/hr.

Registration of multiple cameras to the aerial image is shown in&&.Three cameras were
placed at three different locations along the path shown in the figure. Behavior of objects in the re-
gions covered by the three cameras can be modeled by the proposed method and gives, in essence,
the global behavior of the objects. Moreover, after metric rectification, the data obtained from mul-

tiple cameras can be used to obtain correct object correspondences across multiple non-overlapping
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Figure 9.9: Multiple cameras registered to the corresponding satellite image: The input images
have a few new structures compared to the old satellite image.

cameras i.e. the problem of object hand-over across multiple camera& (&3, JISS0%). For
example, the true velocity of an object, or the height of an object can be extracted (once the camera
is calibrated) and used as an additional feature for obtaining the correct correspondences across

multiple non-overlapping camera.

9.5.2 Evaluating Path Modeling

As described above, during the training phase, normalized-cuts are applied to the trajectories in
order to extract different paths in the scene. Once the different paths are determined, various
characteristics are extracted form the trajectories in each path (S8c3oi hree test sequences
of varying length used:

Seq#1: This is a short sequence 8730 frames with 15 different trajectories forming two
unique paths. The clustered trajectories are shown inFid)

Trajectories obtained for the training sequence are depicted irPHif(a)(b)(c), representing
different behavior of the pedestrians. One test case is shown i® Hid). The training sequence

only contained people walking in the scene. But the cyclist shown in (d) has motion character-
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Figure 9.10:(b)(c) show three clustered path 8eq#1 while (a) shows all the trajectories in the
training phase. (d) demonstrates a test case where a bicyclist crosses the scene at a velocity greater
than the pedestrians observed during the training phase.

(@) (b) ()

Figure 9.11:Results obtained frorBeq+#2. Image (a),(b) and (c) show instances of a drunkard
walking, a person running, and a person walking, respectively. Red trajectories denote unusual
behavior while the black trajectories are the casual behavior.

istics different (containing faster movement) than the training cases, hence detected as abnormal
behavior (displayed in red).

Seg#2: Areal sequence o284 frames with27 different trajectories forming different paths
after clustering. The length of the trajectories varies frzis points to almosB00 points. The
trajectories clustered into paths are shown in Bi§. The sequence contained pedestrians walking
in either a straight line, or move left/right at the junction.

Three test cases are depicted in FidL1 A person walking in a zigzag fashion (Fig.11(a)),
and a person running (Fig9.11(c)) are flagged for an activity that is considered as an unusual
behavior. Fig.9.11(b) demonstrates a case where a person walks at a normal pace in conforming

behavior.
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Figure 9.12:Results from the training sequence3¥q+#3: (a) shows all the trajectories used in
the training set. (b)-(d) are thepaths clustered from the input data.

e
(e)

(©)

Seq#3: The training sequence contains oRérminutes of data forming ovei00 trajectories
of people walking around in the scene. The trajectories are clusteretipath models: horizontal
movement, people coming from the upper part of the scene and going to the right, people coming
from the upper region and coming to the lower right, and people coming from the left region and
moving towards the lower part of the image. Trajectories clustered into different paths are shown
in Fig. 9.12

Some of the test cases are shown in &3 (column wise). Two cases F@13a,e) and
Fig.9.13b,f) contain people walking at normal pace - following the path model constructed in
the training phase, hence flagged with a black trajectory i.e. acceptable behavior. Third column
Fig.9.13c,d) is flagged unacceptable as the person moves left, which is not contained in the model.
Similarly, 4* column contains a golf cart driven across the scene.

The system gives satisfactory results for all our experiments and is fairly efficient. Although
some existing methods do incorporate model update, we believe this is what leadedelalrift

That is, after a number of updates the model can become general enough to accommodate any be-
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Figure 9.13:Results forSeq+#3. Column1 and2 demonstrate normal behavior, while column
and4 demonstrate two examples of unacceptable behaviors. See text for more details.

havior considering it as acceptable behavior. But certainly, the applicability of the proposed system
lies in the spheres where there is a defined behavior, differentiable from certain other unacceptable

behavior for, lets say, security reasons.

9.6 Conclusion

This chapter proposes a unified method for path modeling, detection and surveillance. The trajec-
tory data is metric rectified to represent a truer picture of the data. Metric rectified observed scene
is registered to aerial view to extract metric information from the video sequence, for example, the
actual speed of an object. Normalized-cuts are then used to cluster metric rectified input training
trajectories into various paths. We extract spatial, velocity and spatio-temporal curvature based
features from the clustered paths and use it for unusual behavior detection. The proposed path
modeling method has been extensively tested on a number of sequences and have demonstrated
satisfactory results. Recognizing more complex events by attaching meanings to the trajectories is

also one of our future goals.
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CHAPTER 10
ESTIMATING GPS COORDINATES FROM IMAGES

In Chapter4, we described how to calibrate a camera by presenting two different methods for
estimatingl,,. As described below, in order to perform geo-temporal localization, we need to
estimate the azimuth and the altitude angle of the sun. For this, it is necessary that the object
bottom and top be visible in the image. However, if by some other technique the above mentioned
two angles are readily available, then it is not necessary for the object to be visible.

In ICCV 2005 a contest was run on a collection of color images acquired by an already cali-
brated digital camera. The photographs were taken at various locations and often shared overlap-
ping fields of view, or had certain objects in common. More importantly, the GPS locations for a
subset of these images were provided in advance. The goal of the contest was to guess, as accu-
rately as possible, the GPS locations of the unlabeled images. This chapter pushes the limits in the
state of the art beyond what is currently known to be feasible from images in terms of geo-temporal
localization solely based on computer vision techniques.

The cue that we use to geo-localize the camera and to determine the date of acquisition is
the shadow trajectories of two stationary objects during the course of a day. Shadows have been
used in multiple-view geometry in the past to provide information about the shape and the 3-
D structure of the scend8P98 CWO0€@|, or to recover camera intrinsic and extrinsic parameters
[ABO4, CS09Y. Shadows are also recognized as useful tools for determining the time of the day.
The use of shadow trajectory of a gnomon to measure time in a sundial is reported to as early as
1500 BC by Egyptians, which surprisingly requires sophisticated astronomical knowlelégéq

11194, Wau73. Determining the GPS coordinates and the date of the year from shadows in images
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is a new concept that we introduce in this chapter.

In terms of applications, it is clear that the ability to determine geo-temporal information di-
rectly from visual cues, and without using any special instruments, opens new opportunities for the
use of camera systems, or processing of visual data. Numerous applications may be envisioned,
amongst which forensics, intelligence, security, and navigation are perhaps the most important
ones. To demonstrate the power of the proposed method we downloaded images from online traf-

fic surveillance webcams, and determined accurately the geo-locations and the date of acquisition.

10.1 The Geo-temporal Localization Step

After auto-calibration, we can determine the geo-location up to longitude ambiguity, and specify
the day of the year when the images were taken up to, of course, year ambiguity. This is possible
by using only three shadow points, compared teequired for the camera calibration. The key
observation that allows us to achieve this is the fact that a calibrated camera performs as a direction
tensor, capable of measuring direction of rays and hence angles, and that the latitude and the day
of the year are determined simply by measuring angles in images.

Latitude: An overview of the proposed method is shown in Fif).1 Lets;, i = 1,2,3 be the

images of the shadow points of a stationary object recorded at different times during the course of
a single day. Lev; andv’;, i = 1, 2,3 be the sun and the shadow vanishing points, respectively.

For a calibrated camera, the following relations hold for the altitude afgad the azimuth angle
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Figure 10.1:The setup used for estimating geo-temporal information.

0, of the sun orientations in the sky, all of which are measured directly in the image domain:

T
vV, wWv;

cos ¢; = 10.1
VVITwvi\/vTwy, (101)

T
viwv;
sing; = z (10.2)
T T
\/Vz WV, \/Vi wVv;
vIwv

cost; = g (10.3)

A/ vngyv v'Twv!

vIwv'

sinf; = z (10.4)

1T /
VVIiwv, Vv wv

Without loss of generality, we choose an arbitrary point on the horizon line as the vanishing
point v, along the x-axis, and the image polmbf the footprint as the image of the world origin.
The vanishing point,, along the y-axis is then given by, ~ wv, x wv.. Now, lety; be the
angles measured clockwise that the shadow points make with the positive x-axis as shown in Fig.

10.1 We have
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costy; — Vi &Va (10.5)
VVITwviy/vIwv,
T
sindh; = Vi &Yy i=1,2,3 (10.6)

VvITwv/vIwv,

Next, we define the following ratios, which are readily derived from spherical coordinates, and

also used in sundial constructiodgr67 11194, Wau73:

b = COS (2 cos Yy — cos ¢1cOs Yy (10.7)
sin ¢y — sin ¢4

py = COS P2 slln Uy — C'OS ¢15in Yy (10.8)
sin ¢y — sin ¢y

by = COS C?S Uy — C?S (3 cos g (10.9)
sin ¢y — sin ¢g

- oS ¢ Si.ﬂ Y — cos 3 8in Py (10.10)
sin ¢ — sin ¢

(10.11)

For our problem, it is clear froml1Q.1)-(10.6 that these ratios are all determined directly in
terms of image quantities. The angle measured at world origin between the positive y-axis and the

ground plane’s primary meridian (i.e. the north direction) is then given by

a = tan~! <Zl - Zz) (10.12)
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from which we can determine the GPS latitude of the location where the pictures are taken as
A = tan"'(p; cosa + pysin a) (10.13)

For n shadow points, we obtain a total ?J% estimations of latitude(). In presence of
noise, this leads to a very robust estimatior\of
Day Number:Once the latitude is determined frorh0(13, we can also determine the exact day
when the images are taken. For this purpose) @¢note the declination angle, i.e. the angle of
the sun’s rays to the equatorial plane (positive in the summer). Lethademote the hour angle
for a given image, i.e. the angle the earth needs to rotate to bring the meridian of that location to
solar noon, where each hour time correspond§ tiadians, and the solar noon is when the sun is
due south with maximum altitude. Then these angles are given in terms of the latjtindesun’s

altitude¢ and its azimuti# by

sin hcosd — cospsinf = 0 (10.14)

cosdcos Acosh +sindsin A —sing =0 (10.15)

Again, note that the above system of equations depend only on image quantities defir@d)in (
(10.9. Upon finding the declination and the hour angles by solving the above equations, the exact

day of the year when the pictures are taken can be found by

N = ""sin™! (—) — N, (10.16)
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whereN is the day number of the date, with Januatytaken asV = 1, and February assumed of
28 daysy,, ~ 0.408 is the maximum absolute declination angle of earth in radians)\and 284

corresponds to the number of days from the first equinox to Jarifary

Longitude: Unfortunately, unlike latitude, the longitude cannot be determined directly from ob-
serving shadows. The longitude can only be determined either by spatial or temporal correlation.
For instance, if we know that the pictures are taken in a particular state or a country or a region in
the world, then we only need to perform a one-dimensional search along the latitude determined by
(10.13 to find also the longitude and hence the GPS coordinates. Alternatively, the longitude may
be determined by temporal correlation. For instance, suppose we have a few frames from a video
stream of a live webcam with unknown location. Then they can be temporally correlated with our
local time, in which case the difference in hour angles can be used to determine the longitude.

For this purpose, lgt; andy; be our own local hour angle and longitude at the time of receiving

the live pictures. Then the GPS longitude of the location where the pictures are taken is given by

=+ (h—h) (10.17)

In the next section, we validate our method and evaluate the accuracy of both self-calibration

and geo-temporal localization steps using synthetic and real data.
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Figure 10.2:The Cylindrical of Sun Path Diagram (Mazria, Edward, The Passive Solar Energy
Book). The shadow of an object throughout the course of a day follows a curve on the ground

plane.

10.2 Using only two shadow points

For any location on the globe, the relationship between the location of the sun and the shadow is
unique. This relationship can be graphically represented through sun-path diagrams. The exact
position of the sun can be determined for any given time of the day using only the azimuth and
altitude angle of that site. Figur0.2 shows an example of vertical projection of sun-path as
observed from earth. The vertical axis denotes the altitude and the horizontal axis denotes the
azimuth angle. This plot is an earth base view of the sun’s movement across the celestial sphere.
The exact form of the curve depends on the location (latitude and longitude) and the time of the
year. The question now is, can we estimate the GPS coordinates from just two points, whereas in
previous sections we used three points?

The method presented in Sectitf.1 requires azimuth and altitude anglésand ¢ respec-
tively, of at least three shadow points. We also need to estimate the four ratio$0i4-(10.10,
which depends on the angle, This angley is measured between the shadow paihéind the

+wve z-axis, as shown in Figl0.1 Therefore, we need fiirst, estimate the azimuth and altitude
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Figure 10.3:A 2"¢ — degree polynomial fitted to the estimated altitude and azimuth angles.

angle of the sun for any time of the day, asgtondestimate the vanishing point of the shadows
cast at that particular time.

It becomes clear upon observing Fi0.2that the sun-path curve is symmetric. The axis of
symmetry is exactly at80° azimuth angle. This corresponds to the solar noon, that is, when the
sun is at its highest point. Now consider the case when we have only two images i.e. we have
only two shadow points. This is shown in Fif§0.3 The axis of symmetry is plotted by a vertical
line atd = 180°. The two shadow points obtained from the images are plotted on the left of this
axis. These two points are then reflected across the axis, as shown in the figure. The problem now

reduces to fitting a polynomial curve to these four points. A polynomial’oflegree is given as:

y=ay+az+...az" (10.18)

where the goal is to minimize the residual

n

R = Z[yz — (ap + a1w + ... apa®))?

=1
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to fit the model as close to the data as possible. In matrix notation, the solution to the polynomial

fitis given by:

y = Xa (10.19)

wherey contains the LHS 0f%0.18 evaluated for all data points, the mattk contains ther
values of the data points from the RHS df0(18, anda contains the unknown parameters

[PFT8§. (10.19 can be solved as:

a=(XTX)'XTy (10.20)

In our experiments, the polynomial that best fits the shadow data is that of degidws is
plotted in Fig.10.3as a dotted green curve. Once this curve is obtained, altfiyidéany azimuth
05 of our choice can be estimated and vice versa.

Once (3, 65) are obtained from the fitted shadow curve, the shadow pdiig obtained by

solving the two equations:

vTle =0 (10.21)
vTwv!
cosfly = vaj o (10.22)

Oncev’ is obtained, 10.5 is used to estimate to determine the four ratios i.€1@.7)-(10.10.

This enables use to used the method described in Seldidrio estimated the GPS coordinates.
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10.3 Experimental Results

We rigorously test and validate our method on synthetic as well as real data. Results are described
below.

Synthetic Data: Two vertical objects of different heights were randomly placed on the ground
plane. Using the online available version of SunAngle Softwa&m]| we generated altitude and
azimuth angles for the sun corresponding to our own geo-location with latudé°. The data

was generated for th&15" day of the year i.e. thé1" of November2006 from 10:00am to

2:00pm . The solar declination angle for that time period+$7.49°. The vertical objects and the
shadow points were projected by a synthetic camera with a focal length-0f000, the principal

point at(u,, v,) = (320, 240), unit aspect ratio, and zero skew.

Averaged results for latitude, solar declination angle, and the day of the year are shown in
Figure10.4 The error is found to be less thar®%. For a maximum noise level df5 pixels, the
estimated latitude i88.21°, the declination angle is17.932°, and the day of the year is found to
be314.52.

Real Data: Several experiments on two separate data sets are reported below for demonstrating the
power of the proposed method. In the first §étimages were captured live from downtown Wash-
ington D.C. area, using one of the webcams available onlih&@t/trafficland.com/

As shown in Figurel0.5 a lamp post and a traffic light were used as two objects casting shadows
on the road. The shadow points are highlighted by colored circles in the figure.

Since we had more than the required minimum number of shadow locations over time, in order

to make the estimation more robust to noise, we took all possible combinations of the available
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Figure 10.4:Performance averaged ovEI00 independent trials: Result for average error in lati-
tude, solar declination angle, and day of the year.

Figure 10.5:Few of the images taken from one of the live webcams in downtown Washington D.C.
The two objects that cast shadows on the ground are shown in red and blue, respectively. Shadows
move to the left of the images as time progresses.

points and averaged the results. For this first data set the images were capturethhNiosem-

ber at latitude38.53° and longituder7.02°. We estimated the latitude 88.444°, the day number

as316.293 and the solar declination angle ad49.258° compared to the actual day of 319, and

the declination angle of18.62°. The small errors can be attributed to many factors e.g. noise,

non-linear distortions and errors in the extracted features in low-resolution images af240.

Despite all these factors, the experiment indicates that the proposed method provides good results.
In order to evaluate the uncertainty associated with our estimation, we then divided this data set

into 11 sets of 10-image combinations, i.e. in each combination we left one image out. We repeated
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Table 10.1:Results for 11 sets of 10-image combination, with mean value and standard deviation.

C1 Ca Cs Ca Cs Ce Cr Cs Co Ci0 C11 Mean | STD
33.73| 35.70| 37.03| 36.1 | 35.72| 38.21| 39.23 | 45.78 | 41.84| 40.88 | 41.96 || 38.743| 3.57
-14.47| -15.78| -15.93| -16.54| -17.25| -16 |-16.70|-18.94|-15.87|-16.99|-16.24| -16.43| 1.11
N | 328.64] 332.26| 331.09| 326.87| 330.15| 331.37| 331.32| 332.56| 326.81| 331.72| 326.72|| 329.95| 2.28

S| >

Figure 10.6:Few of the images in the second data set that were temporally correlated with our local
time, taken also from one of the live webcams in Washington D.C. The objects that cast shadows
on the ground are highlighted. Shadows move to the left of the images as time progresses.

the experiment for each combination and calculated the mean and the standard deviation of the
estimated unknown parameters. Results are shown in T@hleThe low standard deviations can
be interpreted as small uncertainty, indicating that our method is consistently providing reliable
results.

A second data set is shown in Figut8.6 The ground truth for this data set was as follows:
longitude77.02°, latitude38.53°, day number of 331, and the declination-eZ1.8°. For this data
set we assumed that the data was downloaded in real-time and hence was temporally correlated
with our local time. We estimated the longituderasi61°, the latitude ag7.791°, the day number

as323.0653, and the declination angle as29.65°.

10.4 Conclusion

This chapter describes a novel method based entirely on computer vision to determine the geo-

location of the camera up to longitude ambiguity, without using any GPS or other instruments,

180



and by solely relying on imaged shadows as cues. We also describe situations where longitude
ambiguity can be removed by either temporal or spatial cross-correlation. Moreover, we determine
the date when the pictures are taken without using any prior information. The method is tested on

synthetic as well as on real data, and the results are promising.
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CHAPTER 11
APPLICATION TO MR ENVIRONMENT

A Mixed Reality (MR) system combines the real scene viewed by the user/agent and the virtual
scene generated by the computer that augments the scene with some additional information. In
order to successfully accomplish this task, the position and orientation of each user is tracked by
the means of inertial sensors attached to the video see-through head mounted displays (HMDSs) in
a controlled MR environment. Se¥\VC05] for pose estimation in an augmented/mixed reality
scenario. Figurd1.1(a)(b) shows images of such a scenario. A video see-through HMD consist
of small mounted cameras that capture the surrounding environment. On the inside of the HMD,
the captured video is played to the user in real-time possibly with some virtual information. While
sufficient for indoors, this approach is not feasible for outdoor scenarios. The reason is that active
tracking sensors (transmitter, receiver) systems are not portable and can only operate indoor under
fixed and expensive setups. The costinvolved is very high. Since HMDs contain mounted cameras,

henceforth we simply use camera when referring to a HMD.

11.1 Estimating Relative Orientation

In order to successfully merge virtual information with real, each user’s position and orientation has
to be tracked continuously. For our experiments, we had two users wearing Canon Coastar video
see-through Head-Mounted Displays HMDs walk in a family size room equipped with Polhemus
magnetic tracker and an Intersense IS-900/PC hybrid acoustical/inertial tracker. In order to verify
our method, described in Chapt&rwe compute the absolute rotation of each HMD w.r.t. the

world co-ordinate system. We compared our results with the ground-truth from active sensors.
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(b)

Figure 11.1(a) shows a general setup of a MR environment. (b) is a picture taken of a user with an
HMD mounted on his head. (c) Instances of the test data set. These images are taken from HMDs
mounted on two users. See text for details.

Table 11.1: Error in degree for the angles calculated. See text for details.

| Instance #Error (¢,)|Error (¢,) |Error (0.)]

1 2.13 0.747 1.9
2 2.09 0.868 2.25
3 1.735 0.17 2.34
4 2.18 0.133 2.47
5 1.35 0.228 2.57
6
7
8
9

2.15 0.148 2.66
2.047 0.48 2.74
0.808 0.39 2.76
0.32 3.71 1.38

10 1.78 2.51 1.79
11 3.82 0.9 2.49
12 4.8 3.35 2.16
13 1.87 1.36 1.25
14 0.16 2.72 3.55

Absolute orientation angles were obtained at each instance for each HMD. A long data sequence
was used for testing and a few instances are shown in Fiblu¥c). Tablel1.1 presents the
absolute error in degred (0,,0.) for each instance. The results are encouraging and angles are
very close to the ground truth. For our dataset, we found the mean erroRtodelegrees with

standard deviation of.87°.
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11.2 Conclusion

We have successfully demonstrated a novel approach to recover dynamic network topology for
configuring a MR environment. Each camera or HMD, having a disjoint FoV, is assumed to un-
dergo a general motion. Our contribution includes computing the relative rotation matrix between
N cameras using only vertical vanishing point; and calculatingikefor non-overlapping cam-

eras and using it to obtain absolute rotation of each camera with respect to a common world coor-
dinate system in a MR environment. Thus, instead of expensive tracking and positioning systems
that are currently being used in VR environments, the proposed method does the same task satis-
factorily with inexpensive cameras. We successfully demonstrate the proposed method on several

sequences.
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CHAPTER 12
CONCLUSIONS

In this thesis, we have successfully demonstrated a novel approach to self-calibrate a dynamic cam-
era network. Each camera, possibly having a disjoint FoV, can be permitted to undergo a general
motion. Such a network could be, for instance, deployed for surveillance applications comprising
of both stationary PTZ cameras and cameras mounted on a roaming security or reconnaissance
vehicles (e.g. CMO03]). Another application could be in an urban battlefield setting with soldiers
carrying head mounted cameras.

Our contribution includes (i) a global linear solution to self-calibrate a moving camera in the
dynamic network using only the fundamental matrix, (i) a camera calibration based on scene con-
straints (i.e. vanishing points and vanishing lines) by enforcing new constraints on the 1AC, (iii)
calibrating a PTZ camera from only two images, (iv) calibrate a camera observing shadow tra-
jectories, (v) using only pedestrians for camera calibration, (vi) computing the relative rotation
matrix betweenV cameras using only vertical vanishing point, and (vii) calculatinghige for
non-overlapping cameras and using it to obtain absolute rotation of each camera with respect to a
common world coordinate system without overlapping FoV. In addition, we demonstrated appli-
cations of our method (i) to configure a network of HMDs in a MR environment, (ii) to perform
surveillance by constructing a path model based on behavior of the observed objects in a scene,
and (iii) to estimate the GPS coordinates of the camera using only shadow trajectories of objects
in the scene. We have successfully demonstrated the proposed method on several sequences anc
discussed possible degenerate configurations. The proposed camera calibration and network cali-

bration technique are tested on synthetic as well as on real data. Encouraging results indicate the
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applicability of the proposed system.
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