491 research outputs found

    Investigating the learning potential of the Second Quantum Revolution: development of an approach for secondary school students

    Get PDF
    In recent years we have witnessed important changes: the Second Quantum Revolution is in the spotlight of many countries, and it is creating a new generation of technologies. To unlock the potential of the Second Quantum Revolution, several countries have launched strategic plans and research programs that finance and set the pace of research and development of these new technologies (like the Quantum Flagship, the National Quantum Initiative Act and so on). The increasing pace of technological changes is also challenging science education and institutional systems, requiring them to help to prepare new generations of experts. This work is placed within physics education research and contributes to the challenge by developing an approach and a course about the Second Quantum Revolution. The aims are to promote quantum literacy and, in particular, to value from a cultural and educational perspective the Second Revolution. The dissertation is articulated in two parts. In the first, we unpack the Second Quantum Revolution from a cultural perspective and shed light on the main revolutionary aspects that are elevated to the rank of principles implemented in the design of a course for secondary school students, prospective and in-service teachers. The design process and the educational reconstruction of the activities are presented as well as the results of a pilot study conducted to investigate the impact of the approach on students' understanding and to gather feedback to refine and improve the instructional materials. The second part consists of the exploration of the Second Quantum Revolution as a context to introduce some basic concepts of quantum physics. We present the results of an implementation with secondary school students to investigate if and to what extent external representations could play any role to promote students’ understanding and acceptance of quantum physics as a personal reliable description of the world

    Investigating Abstract Algebra Students' Representational Fluency and Example-Based Intuitions

    Get PDF
    The quotient group concept is a difficult for many students getting started in abstract algebra (Dubinsky et al., 1994; Melhuish, Lew, Hicks, and Kandasamy, 2020). The first study in this thesis explores an undergraduate, a first-year graduate, and second-year graduate students' representational fluency as they work on a "collapsing structure", quotient, task across multiple registers: Cayley tables, group presentations, Cayley digraphs to Schreier coset digraphs, and formal-symbolic mappings. The second study characterizes the (partial) make-up of two graduate learners' example-based intuitions related to orbit-stabilizer relationships induced by group actions. The (partial) make-up of a learner's intuition as a quantifiable object was defined in this thesis as a point viewed in R17, 12 variable values collected with a new prototype instrument, The Non-Creative versus Creative Forms of Intuition Survey (NCCFIS), 2 values for confidence in truth value, and 3 additional variables: error to non-error type, unique versus common, and network thinking. The revised Fuzzy C-Means Clustering Algorithm (FCM) by Bezdek et al. (1981) was used to classify the (partial) make-up of learners' reported intuitions into fuzzy sets based on attribute similarity

    Complex, but in a good way? How to represent encryption to non-experts through text and visuals – Evidence from expert co-creation and a vignette experiment

    Get PDF
    An ongoing discussion in the field of usable privacy and security debates whether security mechanisms should be visible to end-users during interactions with technology, or hidden away. This paper addresses this question using a mixed-methods approach, focusing on encryption as a mechanism for confidentiality during data transmission on a smartphone application. In study 1, we conducted a qualitative co-creation study with security and Human-Computer Interaction (HCI) experts (N = 9) to create appropriate textual and visual representations of the security mechanism encryption in data transmission. We investigated this question in two contexts: online banking and e-voting. In study 2, we put these ideas to the test by presenting these visual and textual representations to non-expert users in an online vignette experiment (N = 2180). We found a statistically significant and positive effect of the textual representation of encryption on perceived security and understanding, but not on user experience (UX). More complex text describing encryption resulted in higher perceived security and more accurate understanding. The visual representation of encryption had no statistically significant effect on perceived security, UX or understanding. Our study contributes to the larger discussion regarding visible instances of security and their impact on user perceptions

    Learning Opportunities 2019/2020

    Get PDF
    The graduation requirements of the Illinois Mathematics and Science Academy are established by the IMSA Board of Trustees. Each semester students must take a minimum of five academic courses (2.5 credits) for a letter grade (not Pass/Fail) not including Fine Arts, Wellness, SIR, Internship, and Independent Study. Students may enroll in a maximum of nine courses each semester including academic courses, Fine Arts,Wellness, SIR, Internship, and Independent Study. Only courses taken for a letter grade will count towards graduation credit

    Learning Opportunities 2018/2019

    Get PDF
    The graduation requirements of the Illinois Mathematics and Science Academy are established by the IMSA Board of Trustees. Each semester students must take a minimum of five academic courses (2.5 credits) for a letter grade (not Pass/Fail) not including Fine Arts, Wellness, and Independent Study courses. Students may enroll in a maximum of nine courses each semester including academic courses, Fine Arts, Wellness, SIR, and Independent Study. Only courses taken for a letter grade will count towards graduation credit

    Learning Opportunities 2020/2021

    Get PDF
    The graduation requirements of the Illinois Mathematics and Science Academy are established by the IMSA Board of Trustees. Each semester students must take a minimum of five academic courses (2.5 credits) for a letter grade (not Pass/Fail) not including Fine Arts,Wellness, SIR, Internship, and Independent Study. Students may enroll in a maximum of nine courses each semester including academic courses, Fine Arts, Wellness, SIR, Internship, and Independent Study. The College and Academic Counselor approves enrollment for students in all courses and experiences. Only courses taken for a letter grade will count towards graduation credit

    Processes and diagrams: an integrated and multidisciplinary approach for the education of quantum information science

    Get PDF
    The background to this thesis is the παιδέια , the education. To educate is a dialecti- cal process that moves from an abstract line of thought, through scientifically designed techniques, into concrete action; and vice versa. We believe that educating today means enabling teachers first and their students second, to be able to read and interpret the complexity of phenomena, to teach them a model for observing this complexity, describing it, analyzing it and, finally, making it their own. In this thesis, we attempt to make sense of these needs by describing an integrated and multidisciplinary pathway, whose diagram- matic language pushes towards the search for a universal approach to science. An initial educational contribution is thus made to the understanding of the dialectic between disciplines: theoretical physics, experimental physics, computer science, mathe- matics and mathematical logic are presented in their mutual influence, in an attempt to clarify the informational viewpoint on modern physics. The search for this dialectic for educational purposes is, in our opinion, the most significant contribution of the present work. To address this issue, we sought to build a community of practice on the topics of the second quantum revolution. Guided by the Model of Educational Reconstruction (MER), we built a first course for teacher professional development that would enable teachers to be introduced to quantum computation and quantum communication. The emergence and development of quantum technologies provides the impetus for a deep conceptual change: “a paradigm shift from quantum theory as a theory of microscopic matter to quantum theory as a framework for technological applications and information processing”. This shift is supported, theoretically, by the informational interpretation of the postulates of quantum mechanics: preparation, transformation and measurement are reinterpreted com- putationally as the encoding, processing and decoding of information; and vice versa. In this interpretation, what changes between classical and quantum theory? From a logical point of view, the transition from bit to qubit, from a physical point of view, the laws of composition of systems. We therefore present monoidal categories as a natural theoretical framework for the description of physical systems and processes for quantum and non- quantum computation and communication, demonstrating how this language is suitable for an integrated and multidisciplinary approach. The cultural impact of the proposal, the fruitful interaction between researchers in physics education and those in the area of theoretical research, and the passion of some teachers made it possible to start a collaboration to build an educational sequence for students. The result of this collaboration is a teaching leaning sequence on quantum technologies for students, led by the MER and based on inquiry-based learning and the modelling- based teaching. Supported by these methodological frameworks, we produced lessons and worksheets all along the way that had the dual task of supporting teachers’ work and students’ learning. They also made it possible to experimentally verify the positive and critical effects of the proposal. The instructional materials constructed, the data analysis and the constant monitoring with the teachers involved, determined the development of a second course for teacher professional development, inspired by the first, based entirely on research. We hope that this attempt at integrated and multidisciplinary approach for the education of quantum information science, based on the concept of compositionality and the diagrammatic model, can be increased and provide inspiration for future educational paths in other disciplines as well

    Learning Opportunities 2017/2018

    Get PDF
    The graduation requirements of the Illinois Mathematics and Science Academy are in concert with those maintained by the State of Illinois with additional requirements as established by the IMSA Board of Trustees. Each semester students must take a minimum of five courses (2.5 credits) for a letter grade (not Pass/Fail) not including Fine Arts, Wellness, and Independent Study courses. Only courses taken for a letter grade will count towards graduation credit
    • …
    corecore