
SUPPORTED BY

Computing Scotland
Subject Knowledge covering

the transition from Primary to Secondary

In 2017, Education Scotland revised the computing science
content within the Broad General Education, with significant
input from Computing At School Scotland (CAS Scotland),
to reflect the developing worldwide understanding of the
importance of the subject.

We recognise that there is a large increase in the computing
science content to be covered in both primary and early
secondary compared to the old Experiences and Outcomes
(Es & Os) for computing science. In secondary schools, with
our current computing teacher numbers, many teachers from
related subjects may be asked to deliver teaching at the lower
levels. It is important, then, that materials are available for
such teachers to enable them to prepare for these classes.

This QuickStart resource is the first to support early
secondary teaching, and it particularly focusses on the
necessary subject knowledge for teachers. It is not full of
teaching activities and pedagogical advice – we will shortly be
extending the primary teacher guide available at http://teachcs.
scot, developed by CAS Scotland, to include these. That guide
explains well the particular structure of the new Es & Os, and
so is essential reading too.

This resource is an adjusted version of one originally
developed by CAS for the English curriculum. Such sharing
between the nations is valuable, and should be effective since
the subject knowledge required for both the English and
Scottish curricula is similar. We have largely removed direct
reference to the English curriculum, although connections
may still be apparent. Most importantly, the structuring of
the two curricula is significantly different, and so the chapter
structure in this resource does not readily follow the Scottish
curriculum. For this reason, we have provided a mapping from
the Es & Os, and the Benchmarks, to the relevant sections
of the resource, which will help you to find the descriptions
and explanations you need. This appears right after the main
Contents page.

We are acutely aware of the huge effort it has taken in recent
years to teach the new computing science qualifications,
and also how much it will take to teach to the new Es &
Os. Be assured that the best international research evidence
in computing science education has been incorporated
into these Es & Os. As such, we are confident that the
combination of foundational work in the early years and
primary, as well as the overall structure and extended time
in secondary, will enable all pupils to succeed in the subject,
correcting the imbalance in background and gender to which
our subject has long been prone.

A word about sponsorship. The QuickStart project was
funded by Microsoft, with matched funding from the English
Department for Education, and further funding from Education
Scotland, and it is heartening to see such tangible support
for teachers, both from business and from government. I
would like to thank them warmly and to emphasise that
the QuickStart resources were developed for teachers by
a Computing At School working group, without the direct
influence of the sponsors.

It’s an exciting time for computing science! We are a subject
coming of age, with great relevance to every one of our pupils.
We hope very much that you find this QuickStart resource of
value in underpinning your delivery of great experiences for
your pupils.

Quintin Cutts
Chair, Computing At School Scotland

Every effort has been made to trace copyright holders and obtain their
permission for the use of copyright materials. The author and publisher will
gladly receive information enabling them to rectify any error or omission in
subsequent editions.

Although every effort has been made to ensure that website addresses
are correct at time of going to press, Computing At School cannot be held
responsible for the content of any website mentioned. It is sometimes
possible to find a relocated web page by typing in the address of the home
page for a website in the URL window of your browser.

© Crown Copyright 2017. Published 2017

Author: Miles Berry. Adjusted for Scotland: Bill Sargent

To reference this work, please use the following citation: Berry, M. (2017)
QuickStart Computing –Subject Knowledge Enhancement for Scottish
Secondary Teachers. Swindon: BCS.

 This content is free to use under the Open Government Licence v3.0.
A catalogue record for this title is available from the British Library. ISBN:
978-1-78017-441-9

We would like to thank the following people for their invaluable advice as
members of the Academic Standards Committee:

•	 Professor Jeff Magee FREng, Dean of the Faculty of Engineering, Imperial
College

•	 Professor Simon Peyton-Jones FRS, Principal Researcher, Microsoft
Research Cambridge, and Chair of CAS

•	 Professor Paul Curzon, School of Electronic Engineering and Computer
Science, Queen Mary University of London

•	 Professor Michael Kölling, School of Computing, King’s College London

•	 Dr Nick Cook, School of Computing Science, the University of
Newcastle

•	 Roger Davies, CAS Master Teacher, Queen Elizabeth School, Kirkby
Lonsdale

•	 Chidi Iweha, CAS Master Teacher, Ernest Bevin College, London

•	 Peter Marshman, CAS Master Teacher, Leighton Park School, Reading

•	 Dr Bill Mitchell, Director of Education, BCS, the Chartered Institute
for IT

Computing At School is grateful to the following reviewers and contributors:

CAS Barefoot Computing, CAS Computational Thinking Working Group,
Sunrise Setting Ltd, Burville Riley Partnership, Tomcat Design, Julia Briggs,
Lee Goss, Miles Ellison, Department for Education, Microsoft and all of
the parties that have kindly made their work available to share within
this document.

Acknowledgements

Foreword

1

Digital technology has come to play a huge part in
the lives of individuals and our society: there seems
hardly any sphere of work, leisure or study that has
not been transformed by computers, the internet
or smartphones. The changes we've seen in our
lifetimes show no signs of slowing down. If we take
seriously our responsibilities to prepare the next
generation for the opportunities, responsibilities
and experiences of their later lives, then that must
involve empowering them not only to use the
technologies that will be part of their future, but
also to understand these technologies, and perhaps
develop them further still.

Computing is about more than using or
understanding technologies though. The principles
of computer science which lie at the foundation of
digital technology have wide applications beyond
this. An understanding of these principles (things
like logic, computability and the properties of
information) certainly helps to make sense of
current technology and looks likely to be necessary
for a grasp of future technology, but it also offers
unique insights into the nature of the world.

In thinking about the purpose of education, surely
part of this is that school should help young people
develop an understanding of the world in which
they find themselves, and equip them to make a
difference to that world. This vision is reflected in
the opening sentence of the 2014 English computing
curriculum:

A high-quality computing education
equips pupils to use computational
thinking and creativity to understand and
change the world.

Reflecting the advice of The Royal Society’s Shut
down or restart? report (Furber, 2012), the Scottish
curriculum includes two distinct but inter-related
aspects of the subject: computing science, and digital
literacy. These are perhaps best thought of as the
foundations of the discipline, and its applications
to getting useful things done, and the wider
personal, cultural, ethical and societal implications
of the subject. Computing science provides a unique
way of looking at the world, like mathematics and
the natural sciences; digital literacy is a creative

1	 http://barefootcas.org.uk/
2	 http://primary.quickstartcomputing.org/

discipline with much in common with expressive
arts, but also might include links with the personal
and social aspects of health and wellbeing, social
studies and even religious and moral education.

The computing science and digital literacy
experiences and outcomes are unashamedly
ambitious. For a school to deliver on the promise
of these experiences and outcomes and do the best
that it can for its pupils, there needs to be enough
time to teach the programmes of study, plus good
resources, robust connectivity, effective pedagogy
and crucially, knowledgeable, enthusiastic teachers.

With primary teachers, CAS (Computing At
School) developed CPD (continuing professional
development) programmes such as Barefoot
Computing(1) and Primary QuickStart Computing(2)
to help address the subject knowledge gap, and
alongside initiatives such as PLAN C, these have
generally been regarded as effective. At secondary
level, subject knowledge professional development
has unsurprisingly often focussed on those new to
teaching exam courses with relatively little in place
to equip teachers to rise to the challenge of the
Level 3 programme of study.

This new QuickStart guide has therefore been
developed with Level 3 teachers particularly in
mind. I have taken as a starting point the structure
of the primary guide and have included much of
the content from that to provide a starting point
for getting to grips with computing in lower
secondary schools. But this guide goes much
further, covering, in more or less depth, the subject
knowledge needed to teach the whole of the Level
3 programme of study.

I have broken the curriculum up into six, unequal
but inter-related parts: computational thinking,
programming, computer systems, networks,
productive and creative IT, and the safe and
responsible use of technology. In each chapter,
I discuss the ideas that the curriculum is built
on, weaving in some thoughts on how these can
best be taught. I have added in a good scattering
of footnotes pointing to original sources and
further examples, and each section includes a few
suggestions for relevant teaching activities and a list

Introduction

Acknowledgements

http://barefootcas.org.uk/
http://primary.quickstartcomputing.org/

2

of further resources for those who want to learn
more or draw on alternative perspectives.

This is not a guide on how to plan, teach or
assess computing, important as these elements
are. There’s good advice on these things in the
original secondary QuickStart guide,(3) as well as
CAS’s guidance notes on the secondary computing
curriculum(4) and the more-recent guide to
computational thinking.(5) Those looking to go
rather further in their understanding of computing
than an introduction like this can cover, might
be interested in pursuing the BCS Certificate in
Computer Science teaching,(6) enrolling in one or
more of the excellent online computing MOOCs
(massive, open, online courses)(7) or attending CAS’s
new Tenderfoot Computing CPD programme.(8)

Miles Berry,
Roehampton,
November 2017.

3	 www.quickstartcomputing.org/secondary/
4	 www.computingatschool.org.uk/data/uploads/cas_secondary.pdf
5	 https://community.computingatschool.org.uk/files/6695/original.pdf
6	 www.computingatschool.org.uk/certificate
7	 For example, Harvard’s CS50: www.edx.org/course/introduction-computer-science-harvardx-cs50x
8	 www.computingatschool.org.uk/custom_pages/56-tenderfoot

References
Furber, S. (2012) Shut down or restart? The way
forward for computing in UK schools. London: The
Royal Society.

http://www.quickstartcomputing.org/secondary/
http://www.computingatschool.org.uk/data/uploads/cas_secondary.pdf
https://community.computingatschool.org.uk/files/6695/original.pdf
http://www.computingatschool.org.uk/certificate
http://www.edx.org/course/introduction-computer-science-harvardx-cs50x
http://www.computingatschool.org.uk/custom_pages/56-tenderfoot

3

Contents
Introduction	 1
References	 2

Computational Thinking	 9
Logical Reasoning	 12
Algorithms	 16
Decomposition	 24
Abstraction	 27
Patterns and Generalisation	 31
Evaluation	 34
How does Software get written?	 38
References	 43

Programming	 45
How do you program a Computer?	 48
Visual Programming Languages	 51
Text-based Programming Languages	 53
What’s inside a Program?	 59
Data Structures	 73
Can we fix the Code?	 81
References	 84

Systems	 85
Binary	 86
Logic Circuits	 100
Hardware Components	 104
Software Components	 108
Physical Computing	 110
References	 116

4

Computer Networks	 117
How does the Internet work?	 117
What can you do with the Internet?	 120
What is the World Wide Web?	 122
How do you make a Web Page?	 124
How does a Search Engine work?	 127
References	 128

Productivity and Creativity	 129
What can pupils do with Data? 	 135
How can we best support Collaboration?	 137
References	 142

Safe and Responsible Use	 143
Privacy, Security and Identity	 148
References	 157

5

Benchmarks – Third Level Technologies

Curriculum
Organisers

Experiences and
Outcomes for planning
learning, teaching and
assessment

Benchmarks to support practitioners’ professional
judgement

Page
reference

D
ig

it
a
l

Li
te

ra
cy

Using
digital
products and
services in
a variety of
contexts to
achieve a
purposeful
outcome

I can explore and use the
features of a range of
digital technologies,
integrated software and
online resources to
determine the most
appropriate to solve
problems.
TCH 3-01a

•	 Uses the most appropriate applications and software tools to
capture, create and modify text, images, sound, and video to
present and collaborate.

•	 Demonstrates an understanding of file handling, for example,
uploading, downloading, sharing and permission-setting, for
example within Glow or other platforms.

129 - 135

154 - 157

Searching,
processing
and managing
information
responsibly

Having used digital
technologies to search,
access and retrieve
information, I can justify
my selection in terms of
validity, reliability, and
have an awareness of
plagiarism.
TCH 3-02a

•	 Gathers and combines data and information from a range of
sources to create a publication, presentation or information
resource.

•	 Uses applications to analyse data and identify trends / make
predictions based on source data.

•	 Demonstrates efficient searching techniques, for example using
‘and’, ‘or’, ‘not’.

 129 - 135

135 - 137

127 - 128

Cyber
resilience and
internet safety

I can keep myself safe and
secure in online
environments and I am
aware of the importance
and consequences of
doing this for myself and
others.
TCH 3-03a

•	 Demonstrates an understanding of the legal implications and
importance of protecting their own and others’ privacy when
communicating online.

•	 Evaluates online presence and identifies safeguards.
•	 Presents relevant ideas and information to explain risks to

safety and security of their personal devices and networks,
including encryption.

•	 Applies appropriate online safety features when becoming
involved with online communities such as online gaming, chat
rooms, forums and social media.

•	 Demonstrate an understanding of different cyber threats,
for example, viruses, phishing, identity theft, extortion and
sextortion.

•	 Demonstrates understanding of device security including
personal and domestic devices.

143 - 157
for all aspects

here

Benchmarks highlighted in red are covered in the materials on the pages indicated. Benchmarks in blue are not
covered in any detail by the materials.

6

Benchmarks – Third Level Technologies

Curriculum
Organisers

Experiences and
Outcomes for planning
learning, teaching and
assessment

Benchmarks to support practitioners’ professional
judgement

Page
reference

C
o

m
p

u
ti

n
g
 S

ci
e
n

ce

Understanding
the world
through
computational
thinking

I can describe different
fundamental information
processes, and how they
communicate and can
identify their use in solving
different problems.
TCH 3-13a

I am developing my
understanding of
information and can use
an information model to
describe particular aspects
of a real-world system.
TCH 3-13b

•	 Recognises and describes information systems with
communicating processes which occur in the world around them.

•	 Explains the difference between parallel processes and those
that communicate with each other.

•	 Demonstrates an understanding of the basic principles of
compression and encryption of information.

•	 Identifies a set of characteristics describing a collection of
related items that enable each item to be individually identified.

•	 Identifies the use of common algorithms such as sorting and
searching as part of larger processes.

106 - 108

96 - 100
(compression)

151 - 153
(encryption)

75 - 81

19 - 21

Understanding
and analysing
computing
technology

I understand language
constructs for representing
structured information.
TCH 3-14a

I can describe the
structure and operation of
computing systems which
have multiple software and
hardware levels that
interact with each other.
TCH 3-14b

•	 Understands that the same information could be represented in
more than one representational system.

•	 Understands that different information could be represented in
exactly the same representation.

•	 Demonstrates an understanding of structured information in
programs, databases or web pages.

•	 Describes the effect of mark-up language on the appearance
of a webpage, and understands that this may be different on
different devices.

•	 Demonstrates an understanding of the von Neumann
architecture and how machine code instructions are stored and
executed within a computer system.

•	 Reads and explains code extracts including those with
variables and data structures.

•	 Demonstrates an understanding of how computers
communicate and share information over networks, including
the concepts of sender, receiver, address and packets.

•	 Understands simple compression and encryption techniques
used in computing technology.

90 - 100

90 - 100

75 - 81

123 - 126

48 - 49

73 - 81

117 - 121

96 - 100

(compression)
151 - 153

(encryption)

Designing,
building and
testing
computing
solutions

I can select appropriate
development tools to
design, build, evaluate and
refine computing solutions
based on requirements.
TCH 3-15a

•	 Designs and builds a program using a visual language
combining constructs and using multiple variables.

•	 Represents and manipulates structured information in
programs, or databases; for example, works with a list data
structure in a visual language, or a flat file database.

•	 Interprets a problem statement, and identifies processes and
information to create a physical computing and/or software
solution.

•	 Can find and correct errors in program logic.
•	 Groups related instructions into named subprograms (in a

visual language).
•	 Writes code in which there is communication between parallel

processes (in a visual language).
•	 Writes code which receives and responds to real-world inputs

(in a visual language).
•	 Designs and builds web pages using appropriate mark-up

languages.

59 - 73

75 - 78

38 - 43

81 - 83
68 - 73

110 - 116

123 - 126

7

Benchmarks – Fourth Level Technologies

Curriculum
Organisers

Experiences and
Outcomes for planning
learning, teaching and
assessment

Benchmarks to support practitioners’ professional
judgement

Page
reference

D
ig

it
a
l

Li
te

ra
cy

Using
digital
products and
services in
a variety of
contexts to
achieve a
purposeful
outcome

I can select and use digital
technologies to access,
select relevant information
and solve real-world
problems.
TCH 4-01a

•	 Demonstrates an understanding of how digital literacy will
impact on their future learning and career pathways.

•	 Consistently uses a range of devices and digital software
and applications and services to share, create, collaborate
effectively and publish digital content online.

137 - 141

Searching,
processing
and managing
information
responsibly

I can use digital
technologies to process
and manage information
responsibly and can
reference sources
accordingly.
TCH 4-02a

•	 Gathers, evaluates and combines data and information from
a range of sources to create a publication, presentation or
information resource.

•	 Evaluates applications to analyse data and identify
trends / make predictions based on source data.

•	 Evaluates efficient searching techniques, for example using
‘and’, ‘or’,’not’.

129 - 135

135 - 137

127 - 128

Cyber
resilience and
internet safety

I can explore the impact of
cyber-crime for business
and industry and the
consequences this can
have on me.
TCH 4-03a

•	 Demonstrates understanding of how industry collects and uses
personal data ethically and how this relates to data security
legislation.

•	 Demonstrates understanding of how cyber security breaches in
industry can impact on individuals.

•	 Evaluates the digital footprint of industry and identifies good
practice.

•	 Identifies the main causes of security breaches in industry.
•	 Demonstrates understanding of safe disposal of data and

devices.

148 - 157

148 - 157

8

Benchmarks – Fourth Level Technologies

Curriculum
Organisers

Experiences and
Outcomes for planning
learning, teaching and
assessment

Benchmarks to support practitioners’ professional
judgement

Page
reference

C
o

m
p

u
ti

n
g
 S

ci
e
n

ce

Understanding
the world
through
computational
thinking

I can describe in detail the
processes used in
real-world solutions,
compare these processes
against alternative
solutions and justify which
is the most appropriate.
TCH 4-13a

I can informally compare
algorithms for correctness
and efficiency.
TCH 4-13b

•	 Identifies the transfer of information through complex systems
involving both computers and physical artefacts, for example,
airline check-in, parcel tracking and delivery.

•	 Describes instances of human decision making as an
information process, for example, deciding which check-out
queue to pick, which route to take to school, how to prepare
family dinner / a school event.

•	 Compares alternative algorithms for the same problem and
understands that there are different ways of defining “better”
solutions depending on the problem context, for example, is
speed or space more valuable in this context?

36 - 38

Understanding
and analysing
computing
technology

I understand constructs
and data structures in a
textual programming
language.
TCH 4-14a

I can explain the overall
operation and architecture
of a digitally created
solution.
TCH 4-14b

I understand the
relationship between high
level language and the
operation of computer.
TCH 4-14c

•	 Understands basic control constructs such as sequence,
selection, repetition, variables and numerical calculations in a
textual language.

•	 Demonstrates an understanding of how visual instructions and
textual instructions for the same construct are related.

•	 Identifies and explains syntax errors in a program written in a
textual language.

•	 Demonstrates an understanding of representations of data
structures in a textual language.

•	 Demonstrates an understanding of how computers represent
and manipulate information in a range of formats.

•	 Demonstrates an understanding of program plans expressed
in accepted design representations, for example pseudocode,
storyboarding, structure diagram, data flow diagram, flow chart.

•	 Demonstrates an understanding of the underlying technical
concepts of some specific facets of modern complex
technologies, for example, online payment systems and sat-nav.

•	 Demonstrates an understanding that computers translate
information processes between different levels of abstraction.

59 - 73

59 - 73

81 - 83

73 - 78

78 - 81

17

108 - 110

Designing,
building and
testing
computing
solutions

I can select appropriate
development tools to
design, build, evaluate and
refine computing solutions
to process and present
information whilst making
reasoned arguments to
justify my decisions.
TCH 4-15a

•	 Analyses problem specifications across a range of contexts,
identifying key requirements.	

•	 Writes a program in a textual language which uses variables
and constructs such as sequence, selection and repetition.

•	 Creates a design using accepted design notations, for example,
pseudocode storyboarding, structure diagram, data flow
diagram, flow chart.

•	 Develops a relational database to represent structured
information.

•	 Debugs code and can distinguish between the nature of
identified errors e.g. syntax and logic.

•	 Writes test and evaluation reports.
•	 Can make use of logical operators – AND, OR, NOT.
•	 Writes a program in a textual language which uses variables

within instructions instead of specific values, where appropriate.
•	 Designs appropriate data structures to represent information in

a textual language.
•	 Selects an appropriate platform on which to develop a physical

and/or software solution from a requirements specification.
•	 Compares common algorithms, for example, those for sorting

and searching, and justify which would be most appropriate for
a given problem.

•	 Design and build web pages which include interactivity.

59 - 73

17

81 - 83

13 - 16
59 - 73

73 - 77

18 - 21

I

Computational Thinking

Computational
Thinking

How do we think about problems so that
computers can help?

9

Computational Thinking

Computational
Thinking
HOW DO WE THINK ABOUT
PROBLEMS SO THAT COMPUTERS
CAN HELP?

Computers are incredible devices: they extend
what we can do with our brains. With them, we
can do things faster, keep track of vast amounts of
information and share our ideas with other people.

What is computational
thinking?

Getting computers to help us to solve problems is
a two-step process:

1.	 First, we think about the steps needed to
solve a problem.

2.	 Then, we use our technical skills to get the
computer working on the problem.

Take something as simple as using a calculator
to solve a problem in maths. First, you have to
understand and interpret the problem before the
calculator can help out with the arithmetic bit.

Similarly, if you’re going to make a presentation, you
need to start by planning what you are going to
say and how you’ll organise it before you can use
computer hardware and software to put a deck of
slides together.

In both of these examples, the thinking that is
undertaken before starting work on a computer is
known as computational thinking.

Computational thinking describes the processes
and approaches we draw on when thinking about
problems or systems in such a way that a computer
can help us with these. Jeanette Wing puts it well:

1	 The Barefoot Computing developed by Computing At School (CAS) for primary teachers refers to 'patterns' here, but the 	
	 term 'generalisation' was used in CAS's Computational Thinking Working Group (see Czismadia et al., 2015).

Computational Thinking is the thought
processes involved in formulating
problems and their solutions so that
the solutions are represented in a form
that can be effectively carried out by an
information-processing agent. (Wing,
2010)

The apparently clumsy term ‘information-
processing agent’ is there because Wing wants us
to understand that it’s not just computers that
can execute algorithms. People can (following
instructions to make a cake), bees can (finding the
shortest path to nectar), termites can (building a
mound), and cells can (DNA is the program that
cells execute).

Computational thinking is not thinking about
computers or like computers. Computers don’t
think for themselves. Not yet, at least!

 When we do computational thinking, we use the
following concepts to tackle a problem:

●● logical reasoning: predicting, analysing and
explaining (see pages 12 - 16);

●● algorithms: making steps and rules
(see pages 16 - 24);

●● decomposition: breaking problems or systems
down into parts (see pages 24 - 27);

●● abstraction: managing complexity, sometimes
through removing unnecessary detail
(see pages 27 - 31);

●● generalisation:(1) spotting and using patterns and
similarities (see pages 31 - 34);

●● evaluation: making judgements
(see pages 34 - 38).

This is not an exhaustive list, but it gives some
helpful structure to the umbrella term of
‘computational thinking’. Here is a picture that may
help to clarify (Figure 1.1):

10

Computational Thinking

What can you do with
computational thinking?

Although computational thinking describes the sort
of thinking that computer scientists and software
developers engage in, plenty of other people think
in this way too, and not just when it comes to using
computers. The thinking processes and approaches
that help with computing are really useful in many
other domains too.

For example, the way a team of software engineers
goes about creating a new computer game, video
editor or social networking platform is really not
that different from how you and your colleagues
might work together to plan a scheme of work or
to organise an educational visit.

In each case:

●● You think about the problem – it’s not just trying
things out and hoping for the best.

●● You take a complex problem and break it down
into smaller problems.

●● It’s necessary to work out the steps or rules for
getting things done.

●● The complexity of the task needs to be managed,
typically by focussing on the key details.

●● The way previous projects have been
accomplished can help.

●● It’s a good idea to take stock at the end to
consider how effective your approach has been.

How is computational thinking
used in the curriculum?

Ideas like logical reasoning, step-by-step approaches
(algorithms), decomposition, abstraction,
generalisation and evaluation have wide applications
for solving problems and understanding systems
across (and beyond) the school curriculum. As pupils
learn to use these approaches in their computing
work, you and your colleagues should find that they
become better at applying them to other work too.

During their time at primary school, pupils will
already have used lots of aspects of computational
thinking, and will continue to do so across the

Figure 1.1
Barefoot would like to acknowledge the work of Julia Briggs and the eLIM team at Somerset County Council for their contribution to this poster and Group DRP for their work on the design.

11

Computational Thinking

curriculum in secondary education. It’s worth making
these connections explicit during computing lessons,
drawing on the applications of computational
thinking that your students will already be familiar
with, as well as discussing these ideas with your
colleagues teaching other subjects. For example:

●● In English, students are encouraged to plan their
writing, to think about the main events and
identify the settings and the characters.

●● In art, music or design and technology, students
think about what they are going to create and
how they will work through the steps necessary
for this, by breaking down a complex process
into a number of planned phases.

●● In maths, pupils will identify the key information
in a problem before they go on to solve it.

Where does computational
thinking fit in the new
computing curriculum?

The Benchmarks for Technologies have
computational thinking as one of the key curricular
organisers from Early Years to Level 4:

Understanding the world through
computational thinking (Education
Scotland 2017)

At all levels, one element of very good practice is:

As their digital literacy becomes more
sophisticated they embed computation to
solve problems.

Whilst programming (see pages 45 - 84) is an
important part of the new curriculum, it would be
wrong to see this as an end in itself. Rather, it is
through the practical experience of programming
that the insights of computational thinking can best
be developed and exercised. Not all students will
go on to get jobs in the software industry or make
use of their programming in academic studies, but
all are likely to find ways to apply and develop their
computational thinking.

Computational thinking should not be seen as
just a new name for ‘problem-solving skills’. A key
element of computational thinking is that it helps us
make better use of computers in solving problems
and understanding systems. It does help to solve

problems and it has wide applications across other
disciplines, but it is most obviously apparent, and
probably most effectively learned, through the
rigorous, creative processes of writing code – as
discussed in the next section.

 Classroom activity ideas

●● Traditional IT activities can be tackled from
a computational thinking perspective. For
example, getting students to create a short
video presentation might begin by breaking the
project down into short tasks (decomposition),
thinking carefully about the best order in which
to tackle these and drawing up a storyboard for
the video (algorithms), learning about standard
techniques in filming and editing and recognising
how others’ work could be used as a basis or
even included here (generalisation), learning
about – but not being overly concerned about
– technical elements of cameras and file formats
(abstraction).

●● If your school has cross-curricular projects or
theme days, see if you can adopt a computational
thinking approach to one of these. Take, as an
example, putting on an end of year play: students
could break the project down into a set of sub-
tasks, consider the order in which these need
to be accomplished, assign tasks to individuals
or groups and review how work is progressing
towards the final outcome.

●● There are strong links between computational
thinking and the design–make–evaluate approach
that’s common in design and technology, and
sometimes in other subjects.

 Further resources

Barba, L. (2016) Computational thinking: I do not think
it means what you think it means. Available from
http://lorenabarba.com/blog/computational thinking-
i-do-not-think-it-means-what-you-think-it-means/

Barefoot Computing (n.d.) Computational
thinking. Available from http://barefootcas.org.uk/
barefoot-primary-computing-resources/concepts/
computational thinking/ (free, but registration
required).

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking/

12

Computational Thinking

BBC Bitesize (n.d.) Introduction to computational
thinking. Available from www.bbc.co.uk/education/
guides/zp92mp3/revision

Berry, M. (2014) Computational thinking in
primary schools. Available from http://milesberry.
net/2014/03/computational-thinking-in-primary-
schools/

Computer Science Teachers Association (n.d.)
CSTA computational thinking task force/Computational
thinking resources. Available from http://csta.acm.org/
Curriculum/sub/CompThinking.html

Computing At School (n.d.) Computational thinking.
Available from http://community.computingatschool.
org.uk/resources/252

Curzon, P., Dorling, M., Ng, T., et al. (2014)
Developing computational thinking in the classroom: A
framework. Computing At School. Available from http://
community.computingatschool.org.uk/files/3517/
original.pdf

Google for Education (n.d.) Exploring computational
thinking. Available from www.google.com/edu/
computational-thinking/index.html

Google's MOOC on Computational Thinking
for Educators (n.d.) Available from https://
computationalthinkingcourse.withgoogle.com/unit

Harvard Graduate School of Education (n.d.)
Computational thinking with Scratch. Available from
http://scratched.gse.harvard.edu/ct/defining.html

Pólya, G. (1945) How to solve it. Princeton, NJ:
Princeton University Press.

Selby, C. and Woollard, J. (2013) Computational
thinking: The developing definition. University of
Southampton. Available from http://eprints.soton.
ac.uk/356481/

Wing, J.M., 2008. Computational thinking and
thinking about computing. Philosophical transactions
of the royal society of London A: mathematical, physical
and engineering sciences, 366(1881), pp.3717-3725.

Logical Reasoning
Can you explain why
something happens?

At its heart, logical reasoning is about being able to
explain why something is the way it is. It’s also a way
to work out why something isn’t quite as it should be.

If you set up two computers in the same way, give
them the same instructions (the program) and the
same input, you can pretty much guarantee the
same output. Computers don’t make things up as
they go along or work differently depending on how
they happen to be feeling at the time. This means
that they are predictable. Because of this we can
use logical reasoning to work out exactly what a
program or computer system will do.

It’s well worth doing this in school: as well as
writing and modifying programs, have pupils
read programs that you give them; get them to
explain a program to another student; encourage
them to predict what their own or others'
programs will do when given different test data;
when their program doesn’t work, encourage them
to form a hypothesis of what is going wrong, and
then devise a test that will confirm or refute that
hypothesis; and so on. All of these involve logical
reasoning.

At a basic level, pupils will draw on their previous
experience of computing when making predictions
about how a computer will behave, or what a
program will do when run. They have some model
of computation, a ‘notional machine’ (Sorva, 2013)
which may be more or less accurate: one of our
tasks as computing teachers is to develop and refine
pupils’ notional machines. This process of using
existing knowledge of a system to make reliable
predictions about its future behaviour is one part of
logical reasoning.

As far back as Aristotle (1989; qv Chapter 22
of Russell, 1946), rules of logical inference were
defined; these were expressed as syllogisms, such as:

●● All men are mortal.
●● Socrates is a man.
●● Therefore Socrates is mortal.

http://www.bbc.co.uk/education/guides/zp92mp3/revision
http://www.bbc.co.uk/education/guides/zp92mp3/revision
http://milesberry.net/2014/03/computational-thinking-in-primary-schools/
http://milesberry.net/2014/03/computational-thinking-in-primary-schools/
http://milesberry.net/2014/03/computational-thinking-in-primary-schools/
http://csta.acm.org/Curriculum/sub/CompThinking.html
http://csta.acm.org/Curriculum/sub/CompThinking.html
http://community.computingatschool.org.uk/resources/252
http://community.computingatschool.org.uk/resources/252
http://community.computingatschool.org.uk/files/3517/original.pdf
http://community.computingatschool.org.uk/files/3517/original.pdf
http://community.computingatschool.org.uk/files/3517/original.pdf
http://www.google.com/edu/computational-thinking/index.html
http://www.google.com/edu/computational-thinking/index.html
https://computationalthinkingcourse.withgoogle.com/unit
https://computationalthinkingcourse.withgoogle.com/unit
http://scratched.gse.harvard.edu/ct/defining.html
http://eprints.soton.ac.uk/356481/
http://eprints.soton.ac.uk/356481/

13

Computational Thinking

This approach to logic, as an early sort of
computational thinking, formed part of the trivium
of classical and medieval education: it provides a
grounding in the mechanics of thought and analysis,
which is as relevant to education now as then.

Boolean logic

Irish mathematician George Boole (2003) took
the laws of logic a step further in the 19th century,
taking them out of the realm of philosophy and
locating them firmly inside mathematics. Boole saw
himself as going under, over and beyond Aristotle’s
logic, by providing a mathematical foundation to
logic, extending the range of problems that could
be treated logically and increasing the number of
propositions that could be considered to, arbitrarily
many.

Boole’s system, subsequently named ‘Boolean
logic’ after him, works with statements that are
either true or false, and then considers how
such statements might be combined using simple
‘operators’, most commonly AND, OR and NOT. In
Boolean logic:

●● (A AND B) is true if both statement A is true
and statement B is true, otherwise it’s false.

●● A OR B is true if A is true, if B is true or if
both A and B are true.

●● NOT A is true if A is false, and vice versa.

Boole went on to establish the principles, rules
and theorems for doing something very much
like algebra with logical statements rather than
numbers. It’s a powerful way of analysing ideas, and
worth some background reading; it’s a mark of
Boole’s success that this system of logic remains in
use today and lies at the heart of computer science
and central processing unit (CPU) design.

One way of visualising Boole’s operators is the
combination of sets on Venn diagrams, where the
members of the set are those that satisfy the
conditions A or B.

X AND Y is the intersection of the two sets is
where both condition X and condition Y are
satisfied (Figure 1.2):

Figure 1.2

X OR Y is the union of the two sets is where either
condition X or condition Y (or both) are satisfied
(Figure 1.3):

Figure 1.3

NOT X is the complement of the set, that is those
elements that don’t satisfy the condition X (Figure
1.4) -

Figure 1.4

14

Computational Thinking

Sometimes we use Boolean operators like this
when refining search results, for example results for
(‘computing’ OR ‘computer science’) AND ‘CPD’
AND (NOT (‘primary’ OR ‘elementary’)), although
to be fair this sophistication is seldom needed these
days – check out Google or Bing’s advanced search
pages to see how something similar to Boolean
operators is used in modern search engines.

In computing, we can think of Boole’s operators as
gates, producing output depending on the inputs
they are given – at a simple level, current flows
through the gate depending on whether voltage
is applied at the inputs, or the gate produces a
binary 1 as output depending on the binary values
provided at the inputs (see pages 100 - 103). There
are standard symbols for the different gates, making
it easy to draw diagrams showing how systems of
gates can be connected. We can use truth tables
to show the relationship between the inputs and
the outputs. These are the logic equivalents to times
tables, listing all the possible inputs to a gate, or a
system of gates, and the corresponding outputs.

AND:

A B Output Q

False False False

False True False

True False False

True True True

OR:

A B Output Q

False False False

False True True

True False True

True True True

NOT:

A Output

False True

True False

It is possible to wire up simple electrical circuits
to model the behaviour of these logic gates, using
nothing more sophisticated than batteries, bulbs
and switches: two switches in series model the
behaviour of an AND gate, in parallel an OR gate,
and a switch in parallel with a bulb would behave as
a NOT gate, shorting the circuit when closed.

Boolean operators are also part of most
programming languages, including Scratch, Python,
Javascript and Small BASIC. They are used in
conjunction with selection (if… then… else…)
statements to control the flow of a program’s
execution. It is in this context that pupils are initially
likely to encounter and make use of them. For
example, game programming might make use of
selection statements such as:

if (have candle) and (have match) then (show room)

Or

if (time remaining < 0) or (health < 0) then (game
over)

When used in combination with binary
representation, logical operators can be applied to
each bit in binary numbers – we call these ‘bitwise’
operators – and this can be used in quickly isolating
particular parts of a byte or word.

How is logical reasoning used
in computing?

Logic is fundamental to how computers work: deep
inside the computer’s CPU, every operation the
computer performs is reduced to logical operations
carried out on binary digits, using electrical signals.
We return to these ideas in the section on
technology. Operations at CPU level, from binary
addition upwards, can be carried out by digital circuits
made from just combining AND, OR and NOT gates.

15

Computational Thinking

It is because everything a computer does is
controlled by logic that we can use logic to reason
about program behaviour.

Software engineers use logical reasoning all the
time in their work. They draw on their internal
mental models of how computer hardware, the
operating system (such as Windows 10, OS X)
and the chosen programming languag all work, in
order to develop new code that will work as they
intend. They will also rely on logical reasoning when
testing new software, and when searching for and
fixing the ‘bugs’ (mistakes) in their thinking (known
as debugging – see page 39 & 81 - 83) or in their
coding when these tests fail.

Boolean operators are useful in many contexts
beyond the digital circuits controlling CPUs,
including refining sets of search results and
controlling how programs operate.

There is a long history of getting computers to
work with logic at a more abstract level, with
these ideas laying the foundation for early work
in artificial intelligence. The programming language
Prolog is perhaps the best known and most
widely used logical programming language and has
applications in theorem proving, expert systems and
natural language processing.

Where does logical reasoning fit
in the computing curriculum?

At primary school, pupils at Level 1 are expected
to use logical reasoning to predict the behaviour
of simple programs. This can include the ones
they themselves write, but it might also include
predicting what happens when they play a computer
game or use a painting program. Pupils at Level 2
are expected to ‘use logical reasoning to explain
how some simple algorithms work and to detect
and correct errors in algorithms and programs’.

At Levels 3 and 4, pupils continue to use logical
reasoning when thinking about programs, including
‘to compare the utility of alternative algorithms
for the same problem’. They also encounter
Boolean logic, although some will have had a little
experience of using logical operators in Scratch or
other programming at primary school. They should
‘understand simple Boolean logic [for example,
AND, OR and NOT]’.

Logic has played a part in the school curriculum
from classical times onwards, and your colleagues
can do much to develop and build on pupils’
logical reasoning. For example, in science, pupils
should explain how they have arrived at their
conclusions from the results of their experiments;
in mathematics, they reason logically to deduce
properties of numbers, relationships or geometric
figures; in English, citizenship or history, they might
look for logical flaws in their own or others’
arguments.

 Classroom activity ideas

●● Give pupils programs in Scratch, Python or other
programming languages and ask them to explain
what the program will do when run. Being able
to give a reason for their thinking is what using
logical reasoning is all about. Include some
programs using logical operators in selection
statements.

●● In their own coding, logical reasoning is key to
debugging (finding and fixing the mistakes in
their programs). Ask the pupils to look at one
another’s Scratch or Python programs and spot
bugs, without running the code. Encourage them
to test the programs to see if they can isolate
exactly which bit of code is causing a problem. If
pupils’ programs fail to work, get them to explain
their code to a friend or even an inanimate
object (for example, a rubber duck).

●● Provide an opportunity for pupils to experiment
with logic at a circuit level, perhaps using
simple bulb/switch models, or using LEDs and
logic gates on simple integrated circuits on a
breadboard.

●● Encourage pupils to experiment with the
advanced search pages in Google or Bing,
perhaps also expressing their search query using
Boolean operators.

16

Computational Thinking

●● Pupils should make use of logic operators in
selection statements when programming – game
programs, for example text-based adventures,
provide many opportunities for this. Pupils could
also experiment with bitwise logical operators
in Python or TouchDevelop, or create blocks for
other logical operators such as NAND and XOR
in Snap!

●● Ask pupils to think carefully about some
school rules, for example those in the school’s
computer Acceptable Use Policy. Can they
use logical reasoning to explain why the rules
are as they are? Can they spot any logical
contradictions in the policy?

●● There are many games, both computer-based and
more traditional, that draw directly on the ability
to make logical predictions. Organise for the
pupils to play noughts and crosses, Nim or chess.
As they are playing, ask them to predict their
opponent’s next move. Let them play computer
games such as Minesweeper or SimCity, as
appropriate. Ask them to pause at certain points
and tell you what they think will happen when
they move next. Consider starting a chess club if
your school doesn’t already have one.

 Further resources

Barefoot Computing (n.d.) Logic: Predicting and
Analysing. Available from http://barefootcas.org.uk/
barefoot-primary-computing-resources/concepts/
logic/ (free, registration required).

Boole, G. (1853) An investigation of the rules of
thought. Mineola, NY: Dover Publications.

Bragg, M., Grayling, A. C., Millican, P., Keefe, R., (2010)
Logic. BBC Radio 4 In Our Time. Available from
www.bbc.co.uk/programmes/b00vcqcx

Carroll, L. (1896) Symbolic logic and the game of logic.
Mineola, NY: Dover Publications.

Cliff, D. (2013) The joy of logic (for BBC Four). Vimeo.
Available from https://vimeo.com/137147126

Computer Science for Fun (n.d.) The magic of
computer science. Available from www.cs4fn.org/
magic/

Computer Science Unplugged (n.d.) Databases
unplugged. Available from http://csunplugged.org/
databases

Cryan, D., Shatil, S. and Mayblin, B. (2008) Introducing
logic: A graphic guide. London: Icon Books Ltd.

McInerny, D. (2005) Being logical: A guide to good
thinking. New York, NY: Random House.

McOwan, P. and Curzon, P. (n.d.) Brain-in-a-bag:
Creating an artificial brain. Available from www.cs4fn.
org/teachers/activities/braininabag/braininabag.pdf

The P4C Co-operative (n.d.) A co-operative providing
resources and advice on philosophy for children.
Available from www.p4c.com/

PhiloComp.net (n.d.) Website highlighting the strong
links between philosophy and computing. Available
from www.philocomp.net/

Algorithms
What is the best way to

solve a problem?

An algorithm is a sequence of instructions or a set of
rules to get something done.

You probably know the fastest route from school
to home; for example, turn left, drive for five miles,
turn right. You can think of this as an ‘algorithm’ – as
a sequence of instructions to get you to your chosen
destination. There are plenty of routes that will
accomplish the same goal, but some are better (that is,
shorter or faster) than others.

Indeed, we could think of strategies (that is, algorithms)
for finding a good route, such as might be programmed
into a sat-nav. For example, taking a random decision
at each junction is unlikely to be particularly efficient,
but it will (perhaps centuries later) get you to school.

One approach to this problem could be to list all
the possible routes between home and destination
and simply choose the fastest. This isn’t likely to be
a particularly fast algorithm, as there are many, many
possible routes (such as via Edinburgh, or round the
M25 a few times), many of which can be immediately
ignored.

Another algorithm would be to take the road closest
to the direction you are heading; this will do a bit
better, but might involve some dead ends and lots of
narrow lanes.

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/logic/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/logic/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/logic/
http://www.bbc.co.uk/programmes/b00vcqcx
https://vimeo.com/137147126
http://www.cs4fn.org/magic/
http://www.cs4fn.org/magic/
http://csunplugged.org/databases
http://csunplugged.org/databases
http://www.cs4fn.org/teachers/activities/braininabag/braininabag.pdf
http://www.cs4fn.org/teachers/activities/braininabag/braininabag.pdf
http://www.p4c.com/
http://www.philocomp.net/

17

Computational Thinking

Dijkstra's algorithm does a much better job of
finding the shortest route, and, subject to some
reasonable assumptions, there are even faster
algorithms now.(2)

It’s worth noting a couple of things here: calculating
the shortest routes quickly comes not through
throwing more computing power at the problem
(although that helps) but through thinking about
a better solution to the problem, and this lies at
the heart of computer science. Also, Dijkstra’s
algorithm (and others like it) isn’t just about finding
the shortest route for one particular journey; it
allows us to find the shortest path in any network
(strictly, a graph), whether between places on a road
network, underground stations, states of a Rubik’s
Cube or film stars who have acted alongside one
another.(3)

How algorithms are expressed

There is sometimes confusion between what an
algorithm is and the form in which it is expressed.
Algorithms are written for people to follow rather
than computers, but even so there is a need for a
degree of precision and clarity in how algorithms
are expressed. It is quite good enough to write out
the steps or rules of an algorithm as sentences, as
long as the meaning is clear and unambiguous, but
some teachers find it helpful to have the steps of an
algorithm written as a flow chart, such as in Figure
1.5:

Figure 1.5 An example of a flow chart

2	 See https://en.wikipedia.org/wiki/Shortest_path_problem
3	 See https://oracleofbacon.org/how.php

Algorithms can also be expressed in pseudocode,
which is perhaps best thought of as a halfway
house between human language and a programming
language, borrowing many of the characteristics of
the latter, whilst allowing some details to be left as
implicit:

Repeat 10 times:
	 Ask a maths question
	 If the answer is right then:
		 Say well done!
	 Else:
		 Say think again!

At least one awarding organisation has developed
its own more-formal pseudocode for GCSE and
A Level, allowing programming questions to be set
and answered without preferring one programming
language to another.

How are algorithms used
in the real world?

There are plenty of day-to-day situations in which
life can be made a little simpler or more efficient
through algorithmic thinking, from deciding where
to park, to finding socks in a drawer (Christian and
Griffiths, 2016).

Search engines such as Bing or Google use
algorithms to put a set of search results into order,
so that more, often than not, the result we are
looking for is at the top of the front page (Brin and
Page, 1998; qv Peng and Dabek, n.d.).

Your Facebook news feed is derived from your
friends’ status updates and other activity, but it only
shows that activity which the algorithm (EdgeRank)
thinks you will be most interested in seeing. The
recommendations you get from Amazon, Netflix
and eBay are algorithmically generated, based in
part on what other people are interested in. There
are even algorithms which can predict whether a
movie or song will be a hit.

Credit ratings, interest rates and mortgage
decisions are made by algorithms. Algorithmic
trading now accounts for large volumes of the
stocks and other financial instruments traded on
the world’s markets, including by pension funds.

https://en.wikipedia.org/wiki/Shortest_path_problem
https://oracleofbacon.org/how.php

18

Computational Thinking

Given the extent to which so much of their lives
is affected by algorithms, it is worth pupils having
some grasp of what an algorithm is.

Where do algorithms fit in the
computing curriculum?

At primary school, the computing curriculum
expects pupils at Level 1 to construct an algorithm
to solve a task. Often young pupils will be
introduced to the idea of an algorithm away from
computers, in ‘unplugged’ classroom contexts. Pupils
will go on to recognise that the same algorithm can
be implemented as code in different languages and
on different systems, from Bee Bots to Scratch Jr
(Figure 1.6).

Figure 1.6 Scratch Jr programming for drawing a
square

Level 2 builds on this: pupils are expected to design
programs with particular goals in mind, which will
draw on their being able to think algorithmically,
as well as being able to use logical reasoning to
explain algorithms and to detect and correct errors
in them. Sometimes this will be through acting out
or writing down what happens when an algorithm
is followed, rather than always through writing a
program in Scratch to implement it.

In developing your pupils’ understanding of key
algorithms, you might start with ‘unplugged’
approaches, in which pupils get a good feel for how
an algorithm operates, for example by playing ‘guess
the number’ games or by sorting a set of masses
into order using a pan balance. It can also be very
useful for pupils to work through the steps of an
algorithm for themselves, perhaps expressed as
flow charts or pseudocode, using pencil and paper.
This was the approach advocated by Donald Knuth
(1997) in The Art of Computer Programming, when
he wrote that:

An algorithm must be seen to be
believed, and the best way to learn what
an algorithm is all about is to try it. The
reader should always take pencil and
paper and work through an example
of each algorithm immediately upon
encountering it.

Don’t shy away from having pupils implement
algorithms as code, in whatever programming
language they are most familiar with. They’re likely
to understand the algorithm better, and be able to
recall it more clearly, if they have to work out for
themselves how it can be implemented, and debug
any mistakes that they make. It is also important
that pupils maintain good habits of thinking about
the algorithms they want to use before writing
code to implement them. Think of the coding as
being like an experiment in science.

Sorting and searching

The programme of study talks of ‘key algorithms’,
particularly for search and sort, so we will look at
some of these now. Why are sorting and searching
distinguished in this way? For three reasons. First, it is
particularly easy to explain what sorting and searching
algorithms do and to explain why they are useful.
Second, they are ubiquitous inside computer systems,
so knowledge of sorting and searching algorithms
is particularly useful. Third, there is an astonishingly
large number of algorithms known for sorting and
searching, each useful in different circumstances.
People write entire books about them!

19

Computational Thinking

Search

Imagine trying to find the definition of a word
in a dictionary – we have a number of possible
approaches:

●● we could pick a word at random, check if it’s the
right word, and repeat this until we get the one
we want; or

●● we could start at the beginning, checking each
word in turn until we get to the word we want;
or

●● we could pick a word in the middle, decide
whether our word is before or after that, pick
a word in the middle of that half, and keep
narrowing down until we get to the word we
want.

These three approaches provide three possible
algorithms for search – that is, for finding a
particular item in a list of data: a random search, a
linear search and a binary search.(4)

You can demonstrate these in class by taking three
different approaches to a ‘guess my number’ game,
thinking of a number and asking the class to use
one or other of these algorithms to work out what
it is (Figures 1.7–1.9):

Figure 1.7 Random search

4	 See, for example, David J. Malan's demonstration for Harvard's CS50: https://youtu.be/zFenJJtAEzE?t=16m35s

Figure 1.8 Linear search

Figure 1.9 Binary search

After only a few goes at the game, or perhaps just
by reasoning logically about the flow charts here, it
should be evident that the first two are much slower
than the third one, unless you happen to be very
lucky. If we are trying to guess a number between,
say, 0 and 127, the first two algorithms would take,
on average, 64 steps to get there, sometimes more,
sometimes less. If we use the binary search algorithm,
we get there in just seven goes – try it! The efficiency
gains get even more dramatic with a bigger range of
starting numbers – guessing a number between one
and a million would take an average of 500,000 goes
with either of the first two algorithms, but we would
narrow down on the number in just 20 steps with
binary search – try it!

Notice the recursive nature of the binary search:
we take the problem of finding a number between
0 and 127 and reduce it to a simpler, but
identically structured problem of finding a
number between 0 and 63 or between 64 and 127.
We then apply the same binary search algorithm to
solving this new problem.

https://youtu.be/zFenJJtAEzE?t=16m35s

20

Computational Thinking

This recursive technique of reducing a problem
to a simpler problem, and then applying the same
algorithm to that, is called divide and conquer,
and it is an excellent example of an algorithmic
pattern that can be applied in lots of different
contexts, including: classical search problems like
this; finding highest common factors (see Euclid’s
algorithm on page 68); sorting a list of numbers (see
quicksort and merge sort on page 21); and parsing
algebraic expressions, computer code or even
natural language.(5)

It is worth noting that binary search only works
if the list is already in order: finding a word in a
dictionary this way is only possible if the dictionary
is already in alphabetical order. For an unsorted list
it would be hard to do better than starting at the
beginning and working through to the end using
linear search. Similarly, for the guess-a-number
game, we can use this method because numbers are
in order and we can ask the ‘is it less than’ question.

The problem of searching for information on the
web (see page 127 - 128) is obviously much more
complex than simply finding a word in a dictionary
or a secret number in a game but, even here, one
of the problems a search engine needs to solve is
looking up the results in its index of the web for
each of the keywords typed in by the user.

Sort

In order to find things in a list quickly, time after
time, it’s really helpful if that list is in order. Imagine
the problem of finding an email if all your messages
were in some random sequence; or of finding a
document on a computer if there was no way to
sort a folder’s contents into order, or of finding a
contact on your phone if, each time, you had to
look through a randomly-ordered list of everyone
you knew; or of finding a book in the school library
if they had never been put into any order. There are
many, many areas where a list in some natural order
seems an intuitive way to organise information.
Notice that, once a list is in order, adding a new
item into the list is easy – you just search for the
right place, add the item and shuffle everything
afterwards along a place. Getting the list into order
in the first place is another matter.

5	 See https://en.wikipedia.org/wiki/Divide_and_conquer_algorithms
6	 See the Harvard CS50 demonstration at www.youtube.com/watch?v=f8hXR_Hvybo
7	 9+8+7+6+5+4+3+2+1=45.

It is well worth getting pupils to think about this
problem for themselves, perhaps initially as an
unplugged activity, sorting a group of their peers
into height order or by birthday, or using numbered
slips of paper, or a pan balance and pots with hidden
masses. You can do this as a programming task, once
pupils have learnt how to manipulate a list in the
programming language you are teaching, but, as with
any programming, it’s wise to have planned how to
solve the problem (that is, the algorithm) before
working with code.

There is quite a variety of sort algorithms around.
Some are much more efficient than others, and
some are certainly easier to understand than
others. For computing, it’s worth teaching at least
a couple so that pupils can use logical reasoning to
compare them. Selection sort or bubble sort are
good starting points, but ideally include quicksort
or merge sort so that pupils can see how some
algorithms are more efficient than others for the
same problem.

Selection sort

This is quite an intuitive approach.

●● Start with a list.
●● Find the smallest item* and swap it with the item

in the first place.
●● Now, starting with the second item, look for the

next smallest and swap it with the item in the
second place.

●● Starting with the third item, look for the next
smallest and swap it with the item in the third
place.

●● Keep doing this until you get to the last item.

* Finding the smallest at each step involves
comparing the smallest-so-far with all the other
items after it, until the end of the list, at which point
the smallest-so-far must be the smallest of the
group.

Try it for yourself!(6) Can you use logical reasoning
to work out how this works? Could you explain the
idea here to your pupils? Could you work out how
many comparisons you would have to make to sort
a list of ten things?(7)

https://en.wikipedia.org/wiki/Divide_and_conquer_algorithms
http://www.youtube.com/watch?v=f8hXR_Hvybo

21

Computational Thinking

Bubble sort

Bubble sort has quite a lot in common with
selection sort, but we make swaps as we go rather
than just swapping the next smallest into the right
place.

●● Start with a list.
●● Compare the first and the second item: if they are

in the right order, that’s fine, if not, swap them.
●● Compare the second and the third item: if they

are in the right order, that’s fine, if not, swap
them.

●● Keep doing this until the end of the list: the last
item should now be the largest of all.

●● Now use the method above to work through
everything up to the item before the last, to find
the second largest; then the list up to everything
two items before the end, to get the third
largest; then three items before the end, and so
on until there’s only one thing left.

●● The list is now sorted.

Try it yourself!(8) Again, can you explain how this
works? Could you explain it to a class? Can you
predict how many comparisons it would take to
sort a list of ten things?(9)

Quicksort

The quicksort algorithm wasn’t discovered (or
invented) until 1959 (published in 1961: Hoare,
1961), but it is still quite an intuitive method – it’s
also much faster, although it can be a bit trickier to
program if the language does not support functions
(see page 70). The idea is:

●● Start with a list.
●● If there’s only one thing (or nothing) in the list,

stop, as that’s already sorted!
●● Pick one item in the list, which we will call the

‘pivot’. Any item will do as the pivot, so you may
as well choose the first item.

●● Compare all the other items with the pivot,
making two lists: one of things smaller than the
pivot, the other of things larger than (or equal
to) it.

●● Now use this method to sort both of the
unsorted lists.

8	 See the Harvard CS50 demonstration at www.youtube.com/watch?v=8Kp-8OGwphY
9	 Also 45.
10	See the Harvard CS50 demonstration at www.youtube.com/watch?v=aQiWF4E8flQ
11	This depends on the choice of pivot at each stage, but could be as low as 9+4+4+1+1+1+1=21.
12	See the Harvard CS50 demonstration at www.youtube.com/watch?v=EeQ8pwjQxTM

●● Your sorted list is made up of the sorted smaller
items, the pivot, then the sorted larger items.

Again, try this!(10) Did you notice it was quicker
than selection sort or bubble sort? Can you explain
how this works? Can you think of a way to program
this in a language you are familiar with? How many
comparisons would it take to sort ten things into
order?(11)

Merge sort

Whereas quicksort works top down, partitioning
the list and then sorting each part, merge sort can
be thought of as working from the bottom up.

Break the list into pairs, and then sort each pair
into order. Now look at groups of four; that is, two
pairs, sorting them into order. This is quite easy as
each of the pairs is already ordered, and so the next
item in the sorted group has to come from the
beginning of each pair. Now look at groups of eight,
sorting them into order by looking at the beginning
of each sub-group of four, and so on until the whole
list is sorted. Here’s an example:

Original list: 		 3 – 1 – 4 – 1 – 5 – 9 – 2 – 7

Sorting pairs:		 1 3 – 1 4 – 5 9 – 2 7 	
(4x1 comparisons)

Sorting quads: 	 1 1 3 4 – 2 5 7 9
(2x3 comparisons)

Sorting all eight:	 1 1 2 3 4 5 7 9
(1x7 comparisons)

Again, to really get a feel for this, you need to try
it for yourself!(12) Merge sort is as fast as quicksort,
and is quite amenable to being run in parallel
processing situations, where the work of a program
is divided between multiple processors.

Other algorithms
It would be wrong to leave pupils with the
impression that the only interesting algorithms
are about searching for things or sorting lists into
order. Mathematics provides some rich territory for

http://www.youtube.com/watch?v=8Kp-8OGwphY
http://www.youtube.com/watch?v=aQiWF4E8flQ
http://www.youtube.com/watch?v=EeQ8pwjQxTM

22

Computational Thinking

pupils to experiment with algorithmic thinking for
themselves, and exploring mathematical problems
from a computer science standpoint seems likely to
help develop pupils’ mastery of mathematics.

Testing for primes

Take as an example checking whether or not a
number is prime (that is, it cannot be divided by
any number other than itself and one). A naive
algorithm for this would be to try dividing by any
number between 1 and the number itself; if none of
them go in then the number must be prime. We can
do much better than this though, by thinking more
carefully about the problem:

●● We don’t need to go up to the number –
nothing past the half-way point could go in
exactly.

●● We don’t need to go past the square root of the
number – if something bigger than the square
root goes in, then something less than the square
root goes in as well (for example, because
50 goes into 1,000, we know 20 does too, as
50x20=1000).

●● If two doesn’t go in, then no even numbers go
in either; if three doesn’t go in, no multiples of
three can go in either; and so on.

So, a quicker test for whether a number is prime is
to try dividing by all the primes up to the square
root of the number: if none of them go in, the
number must be prime. (Try it!)

Big (well, very big) prime numbers play an important
role in cryptography, and so algorithms to find
and test whether numbers are prime have some
important applications, but despite efficiencies such
as the above algorithm, this is still a hard problem,
without a guaranteed fast solution (as yet). There
is, though, an algorithm that can tell if a number is
probably prime, and you could run this many times
to check whether a number is almost certainly
prime or not (Miller, 1976).(13) Is this an algorithm?
After all, it only says ‘almost certainly prime’? Yes, it
is an algorithm in the sense that it defines a precise
sequence of steps that a computer can carry out.
And how likely is it that you would conclude ‘N is
prime’ and be wrong? With a couple of hundred
iterations, it is far more likely that an asteroid will
strike the earth tomorrow than it is for N to be
non-prime.

13	qv Simon Peyton Jones for CAS TV: https://youtu.be/ixmbkp0QEDM?t=12m30s
14	Sieve programs in many languages: http://c2.com/cgi/wiki?SieveOfEratosthenesInManyProgrammingLanguages

Finding a list of primes

Finding a list of all the primes up to a certain limit
has an interesting (and old) algorithmic solution. We
could simply start at the beginning of our list and
test each number in turn using the above algorithm.
It’s a bit slow, but it would get there, although we
would have to watch out for the subtlety of needing
a list of the primes up to the square root of each
number, to try dividing by.

We can do better than this though, using a method
called the Sieve of Eratosthenes:

●● Start with your list of numbers from 1 up to and
including your limit.

●● Cross out 1, as it’s not prime.
●● Take the next number not crossed out (initially

2) and cross out all its multiples – you can do
this quickly by just counting on (initially in steps
of 2).

●● Repeat this step until the next number not
crossed out is more than the square root of the
limit.

●● Anything not yet crossed out is a prime number.

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

This is a really nice programming challenge too.(14)

Finding the highest common factor

One more number theory problem, and
again something with wide applications, from
implementing fractions arithmetic on a computer to
internet cryptography, is to be able to find quickly
the largest number which divides into a pair of
numbers; that is, the highest common factor or
greatest common divisor.

A slow, naive algorithm would be to find all the
numbers which divide into both and simply take
the largest of these. A somewhat faster method is

https://youtu.be/ixmbkp0QEDM?t=12m30s
http://c2.com/cgi/wiki?SieveOfEratosthenesInManyProgrammingLanguages

23

Computational Thinking

Finding a list of primes

Finding a list of all the primes up to a certain limit
has an interesting (and old) algorithmic solution. We
could simply start at the beginning of our list and
test each number in turn using the above algorithm.
It’s a bit slow, but it would get there, although we
would have to watch out for the subtlety of needing
a list of the primes up to the square root of each
number, to try dividing by.

We can do better than this though, using a method
called the Sieve of Eratosthenes:

●● Start with your list of numbers from 1 up to and
including your limit.

●● Cross out 1, as it’s not prime.
●● Take the next number not crossed out (initially

2) and cross out all its multiples – you can do
this quickly by just counting on (initially in steps
of 2).

●● Repeat this step until the next number not
crossed out is more than the square root of the
limit.

●● Anything not yet crossed out is a prime number.

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

This is a really nice programming challenge too.(14)

Finding the highest common factor

One more number theory problem, and
again something with wide applications, from
implementing fractions arithmetic on a computer to
internet cryptography, is to be able to find quickly
the largest number which divides into a pair of
numbers; that is, the highest common factor or
greatest common divisor.

A slow, naive algorithm would be to find all the
numbers which divide into both and simply take
the largest of these. A somewhat faster method is

the ‘ladder’ algorithm that is sometimes taught in
schools:

●● Put the numbers side by side.
●● Find the smallest number (bigger than 1) that

divides evenly into both.
●● Replace the numbers with how many times that

number goes in.
●● Repeat until there is no number that can divide

both.
●● The highest common factor is then simply the

product of the common prime factors.(15)

Better still is Euclid’s algorithm for this, which dates
back to c.300 BCE.

The modern version of this uses modular
arithmetic – that is, finding the remainder on
division by a number, but you can do this with
nothing more sophisticated than repeated
subtraction; it is also really fast:

●● Start with two, non-zero numbers.
●● Is the smaller number zero? If so, the highest

common factor is the larger number (this won’t
happen the first time around).

●● Replace the larger – number with the remainder
you get when you divide by the smaller.

●● Now repeat this process.

So, if we start with, say, 144 and 64, we get 16 and
64, then 0 and 16, so 16 is the highest common
factor. Try it with some other numbers, then have a
go at writing a program to implement this.

Estimating pi

Another very nice algorithm, to estimate pi, is this:

●● throw a dart at a 2r x 2r board;
●● see if it lands in the inscribed circle radius r.

The proportion of darts thrown, that land in the
circle, should be equivalent to the area of the circle
divided by the area of the board, which allows you
to estimate pi! So, in programmatic terms:

●● Choose two random numbers, x,y in -r to r.
●● See if x2 + y2 is less than r2. If so, the dart

landed in the circle.
●● Keep doing this, keeping track of how many

landed inside and how many outside.

15	See www.youtube.com/watch?v=oKfwT-5DqsA for one presentation of this.

Figure 1.10 Scratch snippet to estimate pi, (see
https://scratch.mit.edu/projects/61893848/)

 Classroom activity ideas

●● It is worth starting with problems rather than
solutions, to encourage algorithmic thinking: set
pupils the challenge of finding an algorithm that
can find a short path through a graph, or search a
list or sort some numbers, or test if a number is
prime. Challenge them to find better algorithms
to do this (see the evaluation on page 34).

●● There’s much scope here for using ‘unplugged’
activities, i.e. activities that teach algorithmic
thinking and some of these key algorithms
without going near computers. You could play
the ‘guess my number’ game as a class, trying to
find a winning strategy, or ask pupils to write
instructions for finding a book in the library or
for sorting out a set of masses. There are some
great ideas online from CAS Barefoot, CS4FN
and CS Unplugged.

●● There’s much scope for algorithmic thinking in
games and puzzles – can pupils work out the
set of rules for playing an unbeatable game of
noughts and crosses, Nim or Mastermind, or
completing a knights’s tour of a (possibly small)
chess board?

●● Get pupils to think about when there are formal
sets of rules or sequences of steps in other
subject areas or in school life. In cookery, recipes
have much in common with algorithms. In
science, experimental methods do too. Challenge
them to think of better algorithms for the same
tasks (see the evaluation on page 34).

http://www.youtube.com/watch?v=oKfwT-5DqsA
https://scratch.mit.edu/projects/61893848/

24

Computational Thinking

●● Don’t be afraid to get pupils implementing their
algorithms as programs: it is the thinking that we
are focussing on here, but there is much to be
said for linking algorithms and coding together.

 Further resources

Bagge, P. (2014) Flow charts in primary computing
science. Available from http://philbagge.blogspot.
co.uk/2014/04/flow-charts-in-primary-computing-
science.html

Cormen, T. (2013) Algorithms unlocked. MIT Press.

CS Field Guide (n.d.) Algorithms. Available from
http://csfieldguide.org.nz/en/chapters/algorithms.
html

CS Unplugged (2016) Available from http://
csunplugged.org/

CS4FN (n.d.) Available from http://www.cs4fn.org/

Du Sautoy, M. (2015) The secret rules of modern living
(for BBC Four).

Khan Academy (n.d.) Algorithms. Available from
www.khanacademy.org/computing/computer-
science/algorithms

Peyton Jones, S. (2010) Getting from A to B: Fast route-
finding using slow computers. Microsoft. Available
from www.microsoft.com/en-us/research/video/
getting-from-a-b-fast-route-finding-using-slow-
computers/

Peyton Jones, S. (2014) Decoding the new computing
programmes of study. Computing at School. Available
from http://community.computingatschool.org.uk/
resources/2936

Slavin, K. (2011) How algorithms shape our world. TED.
Available from www.ted.com/talks/kevin_slavin_
how_algorithms_shape_our_world?language=en

Steiner, C. (2013) Automate this: How algorithms came
to rule our world. New York, NY: Portfolio Penguin.

Decomposition
How do I solve a problem by

breaking it into smaller parts?

The process of breaking down a problem
into smaller manageable parts is known as
decomposition. Decomposition helps us solve
complex problems and manage large projects.

This approach has many advantages. It makes a
complex process or problem a manageable or
solvable one – large problems are daunting but a
set of smaller related tasks is much easier to take
on. It also means that the task can be tackled by
a team working together, each bringing their own
insights, experience and skills to the task.

In modern computing, massively parallel processing
can be used to significantly speed up some
computing problems if they are broken down
into parts that each processor can work on semi-
independently of the others, using techniques such
as MapReduce (Dean and Ghemawat, 2004).

How is decomposition used
in the real world?

Decomposing problems into their smaller parts is
not unique to computing: it is pretty standard in
engineering, design and project management.

Software development is a complex process and
so being able to break down a large project into
its component parts is essential – think of all the
different elements that need to be combined to
produce a program like PowerPoint.

The same is true of computer hardware (see Figure
1.11): a smartphone or a laptop computer is itself
composed of many components, often produced
independently by specialist manufacturers, which
are assembled to make the finished product, each
under the control of the operating system and
applications.

Figure 1.12

Notice that when we thought about the algorithm
for quicksort earlier, we took for granted that we
could partition (split) a list into those things smaller
than our pivot and those which are larger than or
equal to it. In implementing quicksort as code, we
would need to implement this function too, if it is
not already present in the programming language
we are using.

Figure 1.13

‘Divide and conquer’ algorithms like binary search
and quicksort also use decomposition, but the
distinctive feature of these is that the smaller
problems have essentially the same structure as
the larger one. This idea of the parts of a system
or algorithm being similar to the whole is known
as recursion: it is a very powerful way of looking

http://philbagge.blogspot.co.uk/2014/04/flow-charts-in-primary-computing-science.html
http://philbagge.blogspot.co.uk/2014/04/flow-charts-in-primary-computing-science.html
http://philbagge.blogspot.co.uk/2014/04/flow-charts-in-primary-computing-science.html
http://csfieldguide.org.nz/en/chapters/algorithms.html
http://csfieldguide.org.nz/en/chapters/algorithms.html
http://csunplugged.org/
http://csunplugged.org/
http://www.cs4fn.org/
http://www.khanacademy.org/computing/computer-science/algorithms
http://www.khanacademy.org/computing/computer-science/algorithms
http://www.microsoft.com/en-us/research/video/getting-from-a-b-fast-route-finding-using-slow-computers/
http://www.microsoft.com/en-us/research/video/getting-from-a-b-fast-route-finding-using-slow-computers/
http://www.microsoft.com/en-us/research/video/getting-from-a-b-fast-route-finding-using-slow-computers/
http://community.computingatschool.org.uk/resources/2936
http://community.computingatschool.org.uk/resources/2936
http://www.ted.com/talks/kevin_slavin_how_algorithms_shape_our_world?language=en
http://www.ted.com/talks/kevin_slavin_how_algorithms_shape_our_world?language=en

25

Computational Thinking

Figure 1.11 A tablet can be broken down
(decomposed) into smaller components

You will have used decomposition to tackle big
projects at school, just as programmers do in
the software industry. For example, delivering
your school’s curriculum: typically this would be
decomposed into years and subjects, and further
decomposed into terms, units of work and
individual lessons or activities. Notice how the
project is tackled by a team working together (your
colleagues) and how important it is for the parts to
integrate properly.

Where does decomposition fit in
the new computing curriculum?

In primary school, pupils should have learnt to
‘Simplify problems by breaking them down into
smaller more manageable parts’ (Education
Scotland 2017).

At Level 3, there is an expectation that pupils
will use modularity in their programming, using
subroutines, procedures or functions (see page 67).
If their programs are to use a modular approach,
this is something that they will need to take into
account at the design stage too. For example,
creating a complex turtle graphics figure such as in
Figure 1.12 almost demands that pupils recognise
that this is built up from a repeated square, and
their program must include a set of instructions to
draw a square. Similarly, a turtle graphics program
to draw a house is likely to include routines
(perhaps as procedures) to draw doors, windows, a
roof and so on.

Figure 1.12

Notice that when we thought about the algorithm
for quicksort earlier, we took for granted that we
could partition (split) a list into those things smaller
than our pivot and those which are larger than or
equal to it. In implementing quicksort as code, we
would need to implement this function too, if it is
not already present in the programming language
we are using.

Figure 1.13

‘Divide and conquer’ algorithms like binary search
and quicksort also use decomposition, but the
distinctive feature of these is that the smaller
problems have essentially the same structure as
the larger one. This idea of the parts of a system
or algorithm being similar to the whole is known
as recursion: it is a very powerful way of looking

26

Computational Thinking

at systems, with wide applications; for example,
the internet can be thought of as a network of
networks, and each of those networks might be
composed of still further networks. Recursive
patterns occur in nature too: look for example
at ferns, broccoli and other fractals. Pupils could
draw representations of these using turtle graphics
commands in Scratch, TouchDevelop, Small Basic or
Python (see Figures 1.14–1.15):

Figure 1.14

Figure 1.15

Recursive procedure in Scratch to draw Figure 1.15.(16)

def tree(level,size):
 if level > 0:
 forward(size)
 left(20)

16	See https://scratch.mit.edu/projects/72176670/
17	See https://trinket.io/python/8996e36dda

 tree(level-1,size*0.5)
 right(35)
 tree(level-1,size*0.9)
 left(15)
 forward(-size)
 else:
 return

Python turtle code for the same fractal.(17)

As pupils plan their programs or systems,
encourage them to use decomposition: to work out
what the different parts of the program or system
must do, and to think about how these are inter-
related. For example, a simple educational game is
going to need some way of generating questions, a
way to check if answers are right, some mechanism
for recording progress such as a score, and some
sort of user interface, which in turn might include
graphics, animation, interactivity and sound effects.
Thinking of the game like this is essential to the
planning process.

On larger projects, decomposition also makes
it possible for pupils to work as a collaborative
team, as team members can take responsibility
for implementing each of these features and
then ensuring that they will work properly when
combined. Plan opportunities for pupils to get some
experience of working as a team on a software
development project, and indeed other projects
in computing. This could be media work such as
animations or videos, shared online content such as
a wiki, or a challenging programming project such as
making a computer game or a mobile phone app.

	

 Classroom activity ideas

●● Organise for the pupils to tackle a large-
scale programming project, such as making a
computer game, through decomposition. Even
for a relatively simple game, the project would
typically be decomposed as follows: planning,
design, algorithms, coding, animation, graphics,
sound, debugging and sharing. A project like this
would lend itself to a collaborative team-based
approach, with development planned over a
number of weeks.

 https://scratch.mit.edu/projects/72176670/
https://trinket.io/python/8996e36dda

27

Computational Thinking

●● Take the case off an old desktop computer
and show the pupils how computers are made
from systems of smaller components connected
together. Depending on the components
involved, some of these can be disassembled
further still, although it is likely to be better to
look at illustrations of the internal architecture
of such components.

●● Organise for the pupils to carry out a
collaborative project online, for example,
developing a multi-page wiki site. Pupils could
take the broad topic of e-safety, decompose this
into smaller parts and then work collaboratively
to develop pages for their wiki, exploring each
individual topic. The process of writing these
pages can be further decomposed through
planning, research, drafting, reviewing and
publishing phases.

●● Introduce pupils to ‘divide and conquer’
approaches, as well as other applications of
recursion, through binary search, quicksort and
experimenting with simple fractals using turtle
graphics. Encourage them to look out for other
occasions on which this powerful technique can
be used.

 Further resources

Apps for Good (n.d.) Available from
www.appsforgood.org/

Barefoot Computing (2014) Decomposition. Available
from http://barefootcas.org.uk/sample-resources/
decomposition/ (free, but registration required).

Basecamp (n.d.) Professional project management
software that can be used by teachers with their
class (free). Available from https://basecamp.com/
teachers

BBC Bitesize (n.d.) Decomposition. Available from
http://www.bbc.co.uk/education/guides/zqqfyrd/
revision

(2011) Ratatouille: Rats doing massively parallel
computing. Available from www.cs4fn.org/
parallelcomputing/parallelrats.php

Gadget Teardowns (n.d.) Teardowns. Available from
www.ifixit.com/Teardown

NRICH (n.d.) Planning a school trip. Available from
http://nrich.maths.org/6969; Fractals. Available from
http://nrich.maths.org/public/leg.php?code=-384

Project Management Institute Educational
Foundation (2011) Project management toolkit for
youth. Available from https://pmief.org/library/
resources/project-management-toolkit-for-youth

Abstraction
How do you manage complexity?

For American computer scientist Jeanette Wing,
credited with coining the term ‘computational
thinking’, abstraction lies at the heart of it:

The abstraction process – deciding
what details we need to highlight and
what details we can ignore – underlies
computational thinking. (Wing, 2008)

Abstraction is about simplifying things; identifying
what is important without worrying too much
about the detail. Abstraction allows us to manage
complexity.

We use abstractions to manage the complexity of
life in schools. For example, the school timetable is
an abstraction of what happens in a typical week:
it captures key information such as which class is
taught what subject where and by whom, but leaves
to one side further layers of complexity, such as
the learning objectives and activities planned in any
individual lesson.

Pupils use abstraction in mathematics, when
solving ‘real world’ problems, but mathematical
abstractions are typically numerical, algebraic or
geometrical, whereas in computing they can be far
more general. In computing, abstractions are also
multi-layered: computer systems are made up of
boxes within boxes within boxes. We are able to
tackle complex problems because others have built
the components on which our solution depends
– at one level we may be interested in playing a
game but unconcerned with how that game has
been programmed; at another level we might
be interested in the program but less so in the
interpreter or compiler which converts that into
machine code; at yet another, in that machine code
but less so in how this is executed on the CPU or
stored in physical memory. Wing puts it well:

http://www.appsforgood.org/
http://barefootcas.org.uk/sample-resources/decomposition/
http://barefootcas.org.uk/sample-resources/decomposition/
https://basecamp.com/teachers
https://basecamp.com/teachers
http://www.bbc.co.uk/education/guides/zqqfyrd/revision
http://www.bbc.co.uk/education/guides/zqqfyrd/revision
http://www.cs4fn.org/parallelcomputing/parallelrats.php
http://www.cs4fn.org/parallelcomputing/parallelrats.php
http://www.ifixit.com/Teardown
http://nrich.maths.org/6969;
http://nrich.maths.org/public/leg.php?code=-384
https://pmief.org/library/resources/project-management-toolkit-for-youth
https://pmief.org/library/resources/project-management-toolkit-for-youth

28

Computational Thinking

In computing, we work simultaneously
with at least two, usually more, layers of
abstraction: the layer of interest and the
layer below; or the layer of interest and
the layer above. Well-defined interfaces
between layers enable us to build large,
complex systems. (Wing, 2008)

Programming also makes use of abstraction – in
modular software design, programmers develop
procedures, functions or methods to accomplish
particular goals, sometimes making these available
to others in libraries. What matters is what the
function does and that it does this in a safe and
reliable way; the precise implementation details are
much less important.

Where does abstraction fit in
the new computing curriculum?

Abstraction is part of the overarching aims for the
computing curriculum, which seeks to ensure that
pupils are capable of:

Understanding the world through
computational thinking (Education
Scotland 2017)

At primary school, pupils will have encountered the
idea of abstractions in maths as ‘word problems’
represented in the more-abstract language of
arithmetic, algebra or geometry; or in geography
where the complexity of the environment is
abstracted into maps of different scales. In their
computing lessons, pupils may have learnt about
the process of abstraction from playing computer
games, particularly those that involve interactive
simulations of real-world systems; most pupils will
have experienced writing computer games or other
simulations themselves.

The multi-layered nature of abstraction in computing
is well worth discussing with pupils as they learn
about how computers work. For example, ask
pupils to work out the detail of what’s happening
inside a computer when they press a key and the
corresponding letter appears on-screen in their
word processor or text editor. Similarly, pupils’
knowledge of how search engines work, or how web
pages are transmitted across the internet, is going to
draw on their understanding of the many different
layers of systems on which these processes depend.

At Level 3, abstraction is an intrinsic part of
developing computational solutions to real-world
problems, as pupils focus attention on the detail
of the real-world problem or system, deciding for
themselves what they won’t need to take account
of in the algorithms, data structures and programs
that they develop.

As well as understanding the algorithms that
describe systems or allow us to compute solutions
to problems, designing and using computational
abstractions also means that we need the right
data structure to describe the state of the
system. Niklaus Wirth famously argued that
programs are made up of algorithms and data
structures (Wirth, 1976) and, more recently, Greg
Michaelson has described solutions as consisting
of computation plus information (Michaelson,
2015). Whilst most pupils will be familiar with the
concept of algorithms, from their primary school,
few will have spent long considering the information
or the data that they need to take into account
when designing an abstraction of a problem or
system, and how this can be best represented in a
computer.

The programme of study talks of modelling ‘the
state and behaviour of real-world problems and
physical systems’, and this provides one approach to
thinking about the relationship between algorithms
and data, with the algorithm describing the set of
rules or sequence of steps that the system obeys,
and the data structure describing the state in which
the system is.

Take for example the process of shuffling a deck of
cards. A ‘perfect’ riffle shuffle could be described by
the following algorithm:

●● Split the pack in two, calling these smaller packs
the top and the bottom.

●● Take cards sequentially, one from the top, one
from the bottom, to assemble a new pack.

●● Repeat until there are no cards remaining in the
top or bottom.

29

Computational Thinking

This describes the behaviour of our system, but
any abstraction also needs to include the state of
the system, which is simply an ordered list of the
cards in the pack. Working with a deck of just eight
cards, we might start with:

A, 2, 3, 4, 5, 6, 7, 8

Applying the above algorithm once would change
this to:

A, 5, 2, 6, 3, 7, 4, 8

Card games are rich territory for thinking about
computational abstractions: the rules of the game
describe (perhaps only in part) the behaviour
of the system – they are its algorithm; the cards
in the pack and in individual hands describe the
state of the system. Games in general, from snakes
and ladders or noughts and crosses to chess and
Go, can be typically thought of as sets of rules
(algorithms) for legally-valid moves, and some data
structure (often counters or pieces on a board,
plus perhaps a random element such as a dice) to
define the state of the game at any time. The same
is true of computer games: Minecraft could be
thought of as a complex system of rules governing
the interaction of blocks and other game elements,
as well as a three-dimensional data structure (and
some random elements).(18)

Mathematician J H Conway created a simple
computational abstraction, his ‘Game of Life’
(Berlekamp et al., 2004),(19) that opened up a rich
field of research in mathematics, computer science
and biology into the behaviour of cellular automata.
In Conway’s Game of Life, the state of the world
is a two-dimensional grid (or an array) where each
cell is either alive or dead. The algorithm (or rules
of the game) describe its behaviour. For each cell:

●● Any live cell with fewer than two live neighbours
dies.

●● Any live cell with two or three live neighbours
lives on to the next generation.

●● Any live cell with more than three live
neighbours dies.

●● Any dead cell with exactly three live neighbours
becomes a live cell.

18	Things in Minecraft are somewhat more-sophisticated than this. See http://minecraft.gamepedia.com/Chunk_format
	 for details of the data structure used, or explore this in Minecraft for the Raspberry Pi:
	 www.raspberrypi.org/learning/getting-started-with-minecraft-pi/worksheet/
19	Computer implementations of Life include Golly: http://golly.sourceforge.net/

Thus, for example, the pattern

Figure 16a		 becomes Figure 16b

which becomes

Figure 16c

and so on.

You can play the game on a grid using counters to
represent live cells, but it’s quicker on a computer
and not too challenging an abstraction for Level
3 pupils to be able to program for themselves.
Despite this relatively simple description and ease
of implementation, complex, unexpected and subtle
behaviour emerges in this system: for example,
Life can itself be ‘programmed’ to perform any
computation.

http://minecraft.gamepedia.com/Chunk_format
http://www.raspberrypi.org/learning/getting-started-with-minecraft-pi/worksheet/
http://golly.sourceforge.net/

30

Computational Thinking

As well as the list that represents the state of a
pack of cards and the two-dimensional array that
represents the state of cells in Life, a graph is a
particularly useful data structure that can be used
in a wide variety of computational abstractions.
A graph consists of nodes connected by edges. (A
graph, in this sense, is quite different from the sort
of statistical charts or diagrams which pupils might
be familiar with. The same technical term ‘graph’ is
used for two completely different things.)

Figure 1.17

The classic example of a graph as a computational
abstraction is the London Underground Map, which
simply shows which stations connect with which
others. This sort of abstraction allows us to work
out quite easily the route to take from one station
to another without concerning ourselves with
the physical location of stations or the detail of
underground engineering such as track gradients
or curve radii. Note that different abstractions of
the same underlying reality are useful for different
purposes: for example, the underground map is
useless for estimating how far apart on the surface
two stations are or (if you were a maintenance
engineer) how much track-cleaning fluid you would
need to clean the track between Russell Square and
Covent Garden.

Graphs like this can also represent the ‘friendship’
links in social networks such as Facebook, or links
between scientists co-authoring papers (Newman,
2001), or actors who have co-starred.(20)

In most cases we attach values or labels to the
nodes, as in these examples. In some cases the

20	See http://oracleofbacon.org/how.php
21	Conversely, graphs can be represented as lists of edges or arrays of node connections.
22	From CS Unplugged: http://csunplugged.org/wp-content/uploads/2014/12/unplugged-11-finite_state_automata.pdf

edges connect nodes in one direction but not the
other – for example, the links between web pages
or followers on Twitter. In some cases we attach
numbers or weights to the edges, for example so
that we can work out the shortest path between
two nodes, as in the sat-nav example earlier (page
16). There are many examples of problems which
appear initially very complex (such as the knight’s
tour in chess [Curzon, 2015]), but become very
much simpler to solve using standard algorithms
when represented as graphs. Graphs are particularly
general sorts of structures: lists, arrays and trees
(such as in our binary search example on page 19)
can all be thought of as special sorts of graphs.(21)
Languages such as Snap!, Python and Mathematica
have libraries available for working with graphs.

Another interesting, and important, way of
modelling state and behaviour is through ‘finite-
state machines’. A graph is a very useful way to
visualise this sort of abstraction, representing the
states of the system as nodes and the transitions
between states as the edges. It is possible to think
of the grammatical structure of languages this way.
For example this from CS Unplugged (Figure 1.18)
generates grammatically correct sentences (notice
the double circle on the right, used to show the
exit or ‘accept’ state of the machine).

Figure 1.18(22)

This sort of abstraction is very useful when thinking
about interface design – from toasters and kettles
through digital watches and cash-point machines
to websites and sophisticated apps. Thinking of the
states of a system such as an app, and how the app
moves between these states, can be helpful in the
design process. Notice the similarities between a
graph and the state transition diagram for a finite-
state machine – this isn’t coincidental and means that
we can use the algorithms and techniques for graphs
to explore the properties of finite-state machines.

http://oracleofbacon.org/how.php
http://csunplugged.org/wp-content/uploads/2014/12/unplugged-11-finite_state_automata.pdf

31

Computational Thinking

At Level 3, there is the expectation that pupils will
be drawing on the ideas of decomposition and
abstraction by developing software with a modular
architecture using procedures or functions, or drawing
on procedures or functions developed by others.
Procedures and functions are covered on pages 67 -
69.

 Classroom activity ideas

●● Without using computers to think about
programming, set pupils the challenge of
designing interesting playable games, thinking
carefully about the state (typically, board, card
deck, die) of their game and its behaviour (the
rules or algorithm, according to which play
takes place). Pupils might start by adapting the
state and behaviour of games they are already
familiar with (noughts and crosses, Nim, draughts,
pontoon).

●● In programming, you might ask pupils to create
their own games. If these are based on real-
world systems then they will need to use some
abstraction to manage the complexity of that
system in their game. In a simple table tennis
game, for example Pong, the simulation of the
system’s behaviour includes the ball’s motion in
two dimensions and how it bounces off the bat,
but it ignores factors such as air resistance, spin
or even gravity: the state of the system might be
modelled by coordinates to specify the position
of the ball and the bats, as well as each player’s
score.

●● Whilst developing an app is an ambitious project
at Level 3, designing apps is accessible to most
pupils: they can take the idea of a finite-state
machine and apply it to designing the screens
of their app and the components of the user
interface which allow the app to move from one
screen to another.

 Further resources

Barefoot Computing (2014) Abstraction. Available
from http://barefootcas.org.uk/barefoot-primary-
computing-resources/concepts/abstraction/ (free,
but registration required).

BBC Bitesize (n.d.) Abstraction. Available from www.
bbc.co.uk/education/guides/zttrcdm/revision

BBC Cracking the Code (2013) Simulating the
experience of F1 racing through realistic computer
models. Available from www.bbc.co.uk/programmes/
p016612j

Computerphile (2013) The art of abstraction –
Computerphile. Available from www.youtube.com/
watch?v=p7nGcY73epw

CS Fieldguide (2016) Formal languages. Available
from http://csfieldguide.org.nz/en/chapters/formal-
languages.html

CS4FN (n.d.) Download our computer science
magic books! Available from www.cs4fn.org/magic/
magicdownload.php

CS4FN (2016) Computational thinking: Puzzling
tours. Available from https://cs4fndownloads.files.
wordpress.com/2016/02/puzzlingtours-booklet.pdf

Google for Education (2013) Solving problems at
Google using computational thinking. Available from
www.youtube.com/watch?v=SVVB5RQfYxk

Kafai, Y. B. (1995) Minds in play: Computer game
design as a context for children’s learning. Mahwah, NJ:
Lawrence Erlbaum.

Patterns and
Generalisation

How can you make things
easier for yourself?

There is a sense in which the good software engineer
is a lazy software engineer, although this isn’t the
same as saying that all lazy software engineers are
good software engineers! In this case, being lazy
means looking for an easier way to do something:
partly this is about efficient algorithms, for example
looking for a quicker way for the computer to do
something, but it’s also about not doing unnecessary
work yourself.

In the long run it can save lots of time to come
up with a solution to a general class of problems
and apply this to all the individual problems in
that class, rather than solving each of these as an
entirely separate problem. For example, in learning
about area, pupils could find the area of a particular

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/abstraction/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/abstraction/
http://www.bbc.co.uk/education/guides/zttrcdm/revision
http://www.bbc.co.uk/education/guides/zttrcdm/revision
http://www.bbc.co.uk/programmes/p016612j
http://www.bbc.co.uk/programmes/p016612j
http://www.youtube.com/watch?v=p7nGcY73epw
http://www.youtube.com/watch?v=p7nGcY73epw
http://csfieldguide.org.nz/en/chapters/formal-languages.html
http://csfieldguide.org.nz/en/chapters/formal-languages.html
http://www.cs4fn.org/magic/magicdownload.php
http://www.cs4fn.org/magic/magicdownload.php
https://cs4fndownloads.files.wordpress.com/2016/02/puzzlingtours-booklet.pdf
https://cs4fndownloads.files.wordpress.com/2016/02/puzzlingtours-booklet.pdf
http://www.youtube.com/watch?v=SVVB5RQfYxk

32

Computational Thinking

rectangle by counting the centimetre squares on the
grid on which it is drawn. It’s better to realise that,
in each case, all we need do is multiply the length by
the width: not only is this quicker, it’s also a method
that will work for all rectangles, including really small
ones and really large ones. Although it takes a while
for pupils to understand this formula, once they do
it’s so much faster than counting squares.

In computing, this method of looking for a
general approach to a class of problems is called
‘generalisation’. It is dependent on the ability to
spot patterns in the class of problems that you are
working with: in the areas example, a child might
well come to spot the relationship between the
length and width of the rectangles and the number
of centimetre squares they contain, suggesting a rule
they can use for other rectangles too. In computing,
in the early days of the web, directories of all the
best sites were compiled to help people discover
the pages they needed. The general rule for these
lists might be to include those websites which
lots of people use or link to, and that’s a pattern
which can be used to produce a general solution
to the problem, automatically, by search engines
such as Google or Bing. Rather than individual
editors compiling long lists of relevant web pages, an
algorithm can apply, automatically, the general rule of
finding pages most linked, with a particular phrase,
to its indexed cache of the web.

In computer science, the field of machine learning
has taken this idea of recognising patterns and
made this something which computers can do.
With a large enough database, it is possible for
algorithms to spot patterns in the data which appear
to be related to particular outcomes. For example,
Amazon’s algorithms can spot the patterns in the
data of all their customers’ buying and browsing
habits, to suggest which products another customer
might be interested in. We are already starting
to see these ideas being applied in education –
with enough data available, the patterns in pupils'
interactions with online questions can be used
to suggest helpful activities for pupils to try next,
in much the same way that teachers might make
‘intuitive’ judgements based on past experience
of how best to teach a topic to the individuals in
their class. Of course, these judgements aren’t really
‘intuitive’; because it’s time-consuming to think
every situation through logically, in such a way that
we can give a rational explanation for our decision,
we create our own ‘rules of thumb’ based on the

patterns we spot in our day-to-day professional
experience.

The term ‘pattern’ has another meaning in software
engineering: it also refers to common approaches to
solving the same problem. Taking inspiration from ‘A
Pattern language’ by Alexander et al. (1977), which
sought to document good solutions to common
problems in architecture and urban design, Gamma
and three colleagues (‘The Gang of Four’) published
a very influential set of 23 classic software design
patterns for object-oriented programming (Gamma
et al., 1994). Examples of these design patterns
include ‘iterator’, which accesses the elements of an
object sequentially without exposing its underlying
representation, and ‘memento’, the ‘undo’ behaviour
which provides the ability to restore an object to
its previous state. Further design patterns have
been written up since and the approach has been
applied to other domains too, including teaching
(Laurillard, 2012).

One particularly useful design pattern for developing
software, including apps and games, is the ‘model-
view-controller’ pattern. The model here is the part
of the program that captures the computational
abstraction of the state and behaviour of the system;
the view is the part of the program which displays
the state of the system to the user; the controller
is the part that allows the user to control the
behaviour of the system. This pattern is the basis for
most software that relies on user interaction via a
graphical user interface (GUI) (Michaelson, 2016).

Generalisation is one of the reasons why
computational thinking is so important beyond
the realms of software engineering or computer
science. Wing argues that computational thinking for
everyone includes being able to:

Apply or adapt a computational tool or
technique to a new use,

Recognize an opportunity to use
computation in a new way, and

Apply computational strategies such as
divide and conquer in any domain. (Wing,
2010)

All of which are directly linked to this element of
computational thinking.

33

Computational Thinking

How are patterns and
generalisation used in the

Scottish curriculum?

When at primary school, pupils are likely to have
encountered the idea of generalising patterns in
many areas of the curriculum. From an early age,
they will become familiar with repeated phrases in
nursery rhymes and stories; later on they will notice
repeated narrative structures in traditional tales or
other genres. In maths, pupils typically undertake
investigations in which they spot patterns and
deduce generalised results. In English, pupils might
notice common rules for spellings themselves, as
well as being taught these and their exceptions.

Draw pupils’ attention to the opportunities to use
the same or similar techniques or approaches in
computing, for example, highlighting where pupils
can apply a ‘divide and conquer’ algorithm to solving
a problem, or where lists, arrays or graphs would be
the best way of thinking about the state of a system
they wish to model, or where decomposition or
abstraction provide effective strategies for dealing
with a problem.

In computing, always encourage pupils to look for
simpler or quicker ways to solve a problem or
achieve a result, particularly where they can draw
on the idea of patterns or generalisation to help
them do this. One example might be developing
a quiz program in Scratch or Small Basic – each
question could be coded by hand, but pupils might
also create a general form of the question, using
repetition to ask variations of this a number of
times.

In turtle graphics, pupils might create programs
to draw equilateral triangles, squares, regular
pentagons and so on with sides of particular
lengths, before generalising this pattern to create
a procedure to draw any regular polygon with
arbitrary length sides (Figure 1.19):

Figure 1.19 A Scratch block to draw a general
regular polygon

def polygon (sides, length):
 for i in range (sides):
 fd (length)
 rt (360./sides)

Python turtle code for drawing a general regular polygon

As the above examples illustrate, as pupils become
familiar with more programming languages, they
might start to notice and draw on how patterns
they’ve used in one programming language can be
applied in another. For example, when working in
Scratch, pupils might often find that they need to
keep count of the number of times they go round
a repeating loop, using a structure like this (Figure
1.20):

Figure 1.20

Subsequently, they will notice how the same idea is
accomplished in, say, Snap! using the standard tools
(Figure 1.21):

Figure 1.21

34

Computational Thinking

Or in Python:

for i in range(10):
 some_code_using(i)

Part of a pupil’s learning to program is building up
a portfolio of such patterns that they can draw
on fluently in a range of different contexts for
solving quite different problems. This fluency comes
through reading and remixing code written by
others (Rajlich and Wilde, 2002), as much as it might
through writing a program from scratch.

Pupils also learn common ways of operating a range
of different programs: one indication of pupils’
developing IT capability is that they can generalise
from their way of using one piece of software
to working with a completely different piece of
software, or from working with one computer
system to a different platform.

 Classroom activity ideas

●● In computing, encourage pupils to always
look for simpler or quicker ways to solve a
problem or achieve a result. Ask pupils to
explore geometric patterns using turtle graphics
commands in languages like Scratch, Logo
or TouchDevelop to create ‘crystal flowers’
Emphasise how the use of repeating blocks of
code or procedures is much more efficient than
writing each command separately, and allow
pupils to experiment with how changing one or
two of the numbers used in their program can
produce different shapes.

●● In programming, set pupils the challenge of
completing the same task in two different
programming languages, perhaps one block-based
and the other text-based. Can they see the
similarities between the two implementations of
the same algorithm?

●● When programming games or simple apps,
encourage pupils to adopt, or at least to think
in terms of, the model-view-controller design
pattern.(23)

●● Teach pupils to use graphics software to create
tessellating patterns to cover the screen. As
they do this, ask them to find quicker ways of
completing the pattern, typically by copying
and pasting groups of individual shapes, or

23	See, for example, https://svn.python.org/projects/python/trunk/Demo/turtle/tdemo_nim.py for an example of this approach to
implementing the game of Nim.

alternatively by writing a turtle graphics program
to do this.

●● Teach pupils to create rhythmic and effective
music compositions using simple sequencing
software in which patterns of beats are repeated;
encourage them to experiment with repeating
and changing the patterns of notes in their
composition.

 Further resources

Barefoot Computing (n.d.) Patterns. Available
from http://barefootcas.org.uk/barefoot-primary-
computing-resources/concepts/patterns/ (free, but
registration required).

Basawapatna, A., Koh, K. H., Repenning, A.
Webb, D. and Marshall, K. (2011) Recognizing
Computational Thinking Patterns.
In: Proceedings of the 42nd ACM Technical Symposium
on Computer Science Education (SIGCSE '11).

Hoover, D. and Oshineye, A. (2009) Apprenticeship
patterns: Guidance for the aspiring software craftsman.
Sebastopol, CA: O’Reilly.

Isle of Tune app (n.d.) Available from http://isleoftune.
com

Pattern in Islamic Art (n.d.) Available from www.
patterninislamicart.com

Pysnap (n.d.) Design patterns explained with Python
examples. Available from www.pysnap.com/design-
patterns-explained/

Evaluation
How good is our solution?

Whereas other aspects of computational thinking are
focussed on looking at problems or systems in such a
way that computers can help us solve or understand
them, evaluation is more concerned with checking
that we have a solution and about considering
qualities of that solution, from algorithmic efficiency
through to design of the user interface.

https://svn.python.org/projects/python/trunk/Demo/turtle/tdemo_nim.py
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/patterns/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/patterns/
http://isleoftune.com
http://isleoftune.com
http://www.patterninislamicart.com
http://www.patterninislamicart.com
http://www.pysnap.com/design-patterns-explained/
http://www.pysnap.com/design-patterns-explained/

35

Computational Thinking

In the Computing At School guide to computational
thinking, the authors write:

Evaluation is the process of ensuring that
a solution, whether an algorithm, system,
or process, is a good one: that it is fit for
purpose. Various properties of solutions
need to be evaluated. Are [they] correct?
Are they fast enough? Do they use resources
economically? Are they easy for people
to use? Do they promote an appropriate
experience? Trade-offs need to be made, as
there is rarely a single ideal solution for all
situations. There is ... attention to detail in
evaluation based on computational thinking.
(Csizmadia et al., 2015)

Evaluation, though, isn’t just for computer scientists
or software engineers. As users of technology, it’s
important that everyone considers whether the
software and hardware available is fit for purpose,
and recognises the limits of what computers can
do. Wing argues that computational thinking means
that everyone should be able to:

Evaluate the match between
computational tools and techniques and a
problem [and] understand the limitations
and power of computational tools and
techniques. (Wing, 2010)

The multi-layered abstraction common to
computational thinking provides one way of thinking
through the evaluation of a computational solution.

At the most fundamental level, the algorithms that
lie at the heart of the solution must be correct, and
here logical reasoning can be used to provide proof
that, given the correct input data, the algorithm will
produce the correct output data. Alongside the
algorithms governing the behaviour of the solution,
the underlying abstraction must also reflect the
state of the problem or system we are working
with. In the process of developing a computational
abstraction, some information is put to one side,
reducing the complexity of the problem: the
process of evaluation involves considering whether
the choices in reducing complexity have been well
made. Computational abstractions also involve
choices over how data are to be structured and
represented, and again evaluation should consider
whether such choices are correct and optimal.

Evaluation needs to consider the implementation of
the algorithm and associated data structures as code.
Part of this involves carefully and logically reviewing
the code to ask whether it does what it should do,
but also whether it’s good code. Good code is likely
to be well formatted and commented, so that it’s
easier for others to read and review. Variables and
functions or procedures will have useful, sensible
names. It’s likely to make use of decomposition and
abstraction through a modular approach. Good code
is likely to use a simple, sensible, obvious way to get
things done, drawing perhaps on some of the classic
design patterns; it shouldn’t make a reviewer wonder
‘Why did they do it like that?’ Good code is also likely
to make good use of the features of the language it is
written in, particularly the available function libraries.
Knuth argues for literate programming, in which
programmers document the logical argument and
design decisions of their programs, illustrating these
with the source code (Knuth, 1992).

As well as reasoning about and understanding code,
evaluation also has to involve testing code. Good
practice, in programming if not always in education, is
to test early and often: as each part of a program is
written, it should be tested to see that it does exactly
what it’s supposed to do. Modular programming,
typically involving functions or procedures, makes it
easier to test code as it’s being developed, as each
function or procedure can be tested independently of
the rest of the program.

Test-driven development (TDD) is an agile
programming methodology in which the tests for
features are written first before the new features
are developed. There’s a three-phase cycle here
(Figure 1.22): at first the test should fail (as the new
feature hasn’t been implemented yet); then the test
should pass (as the feature has been implemented
successfully); and then there’s often the need to
refactor the already-working code so that it’s better
integrated or more efficient. There are parallels here
with assessment for learning in schools: check first
what pupils don’t know; teach them; check again that
they’ve learnt it (providing evidence of progress); then
ensure that they develop fluency and mastery in the
new content. These tests are typically automated – we
work out in advance what a function or procedure
should do, given different input data, and then check
that it does indeed return the expected output.

36

Computational Thinking

Figure 1.22 The mantra of test-driven development
(TDD) is ‘red, green, refactor’

Above this attention to the detail in implementing
functions and procedures in code, it’s important
that those evaluating computational artefacts don’t
lose sight of the big picture. Typically, programs are
written to solve problems and a crucial element of
evaluation is checking that the program does indeed
solve the problem. Evaluation might also take into
account how good the solution is. Is it an efficient
one? Is it an elegant one? Is it one that meets the
needs of its users? Does it meet all the overarching
criteria in the design specification?

Typically, software is developed with users in
mind, and part of evaluation is about looking to
see how well the software meets the needs and
expectations of these users: whether it lets them
get things done effectively and efficiently. This
would include considerations such as user interface
design, accessibility and appeal, and could draw
on rigorous analytical techniques, A/B testing of
different interfaces on live websites, observations of
users’ interactions with the software, and feedback
surveys or focus groups.

There is another level of reflection here, which is
important in education and software craftsmanship.
Useful as it is to evaluate the artefacts produced,
it’s also helpful to reflect on what has been learnt
through the process of making the artefact,
and indeed on how new knowledge, skills and
understanding have been acquired.(24)

24	See, for example, https://educationendowmentfoundation.org.uk/evidence/teaching-learning-toolkit/meta-cognition-and-self-	
	 regulation/

There is relatively little attention to formal evaluation
at Level 2. Pupils should have learnt to be discerning
in evaluating digital content whilst at primary school:
this might have involved their reflecting critically on
their own work or that of their peers, but would
also have involved their forming judgements about
content produced by others and shared via the web.
In primary school, pupils will also have learnt about
evaluating data and information, and these evaluation
skills can be built on in secondary school as pupils
learn to evaluate algorithms, programs and other
digital artefacts.

The Benchmarks at Level 3 expect pupils to
evaluate computing solutions. This need not
be computational abstractions of their own design,
and the skills of evaluation can perhaps best be
developed by looking at the abstractions made by
others. Evaluating abstractions starts by considering
whether an abstraction does model the original
system; it then considers whether the abstraction
is at the right level of detail, and then whether the
abstraction is actually a helpful one for solving the
problem at hand, or understanding the original
system. Looking at different ways in which the same
problem can be represented can soon make it
clear that some abstractions are more useful than
others (see, for example, Curzon, 2015). Finite-
state machines (see page 30) provide rich territory
here, as pupils can consider the extent to which the
abstraction does capture the relevant detail of the
state and behaviour of the system it models, but they
can also be used for evaluating interface design – e.g.
how many transitions/clicks are needed to get back
to the home page or to find a company’s phone
number on its website.

The curriculum also expects pupils to use
logical reasoning to compare the utility of
alternative algorithms for the same problem.
An algorithm is only useful if it solves the problem
it sets out to do; can pupils justify why an algorithm
must work? How do they know that linear search
will eventually find the right item or that bubble
sort will produce a correctly ordered list?

Evaluation in the curriculum

https://educationendowmentfoundation.org.uk/evidence/teaching-learning-toolkit/meta-cognition-and-self-		regulation/
https://educationendowmentfoundation.org.uk/evidence/teaching-learning-toolkit/meta-cognition-and-self-		regulation/

37

Computational Thinking

Evaluating the utility of an algorithm is also about
judging the algorithm’s efficiency. The ‘random
driver’ approach to finding a path through a
graph may eventually work, but it is unlikely to be
much help when driving to Birmingham in time
for a meeting. The examples earlier, of different
algorithms for searching, sorting or other problems,
provide ample scope for pupils to learn about this.
Notice that the curriculum talks here of using
logical reasoning: evaluating algorithms should start
with thinking about them, rather than by rushing to
implement them as code. Can pupils explain to you
or to one another why a binary search will be more
efficient than a linear search? Can they explain why
quicksort gets its name? There’s something to be
gained by letting pupils implement these algorithms
as code and to see for themselves the difference in
how long their programs take to complete – bubble
sort and quicksort programs in Snap! will have
appreciably different run times if given lists of 100
random integers to sort.

As well as evaluating abstractions and algorithms,
pupils should also learn to evaluate the digital
artefacts that they make. When pupils develop,
create, reuse, revise and repurpose digital
artefacts, they do so for a given audience, and
evaluation should consider the extent to which
they have met the needs of these known users.
These needs should feed into the design process
from the start, perhaps in terms of specifications
or criteria against which the eventual product or
prototype might be judged; but also perhaps as
the ‘user stories’ which play a similar role in agile
development (see page 41- 43), often expressed in
the form ‘As a __, I want __ so that __.’ It’s worth
giving pupils a genuine experience of developing
for actual users at some point – perhaps for
their peer group, for parents at the school or for
younger children.(25) Evaluation in terms of meeting
the needs of known users can then involve trying
out the product or prototype with these users,
observing their interactions and listening to their
feedback.

The programme of study expects attention to be
paid to trustworthiness, design and usability
when using or developing digital artefacts. Evaluating
trustworthiness can help develop pupils’ logical
and critical reasoning, as they come to consider
internal and external consistency, logical flaws in

25	Some great examples via www.appsforgood.org/
26	See also www.vitsoe.com/gb/about/good-design and www.gov.uk/design-principles

arguments, unsubstantiated claims, vested interests
and other forms of bias. Whilst there are perhaps
inevitably some subjective elements to evaluating
the design of a digital artefact, there are also
principles which seem common to much, if not
all, good design: simplicity, symmetry, consistency,
proportion, attention to detail, fitness for purpose,
honesty, inclusion and sustainability.(26) Evaluating
usability is about considering how well an artefact
meets the needs of its intended users; doing
this demands some empathy with those users.
Encourage pupils to take an inclusive approach to
usability, considering how well an artefact would
meet the needs of a diverse group of users – e.g.
those whose first language isn’t English, those who
are visually impaired, or those for whom fine motor
control is difficult or impossible.

 Activities

●● Get pupils to do code reviews for one another.
Given a problem, pupils should write programs
to solve it, and add comments to their code.
They should then review a solution written by
one of their peers, evaluating how well they have
solved the problem and providing constructive,
critical feedback on their solution.

●● Again in programming activities, pupils should be
able to create tests for the correctness of their
code, determining by hand what output should
follow from particular input data and then testing
to see whether their code performs correctly.

●● Encourage pupils to be constructively critical of
websites, software and systems that they use –
how might these be improved? Have they found
any bugs? In many cases, particularly open-source
software projects, users can play an important
role in software development by submitting bug
reports or feature requests.

●● Using keyboard-only input, using just a screen
reader for output, or swapping a program’s
language settings into another language would
give pupils an insight into the challenges of
designing and developing with accessibility in
mind.

http://www.appsforgood.org/
http://See also www.vitsoe.com/gb/about/good-design
http://www.gov.uk/design-principles

38

Computational Thinking

 Further resources

Barefoot Computing (2014) Evaluation. Available
from http://barefootcas.org.uk/barefoot-primary-
computing-resources/concepts/evaluation/ (free
registration required).

BBC Bitesize (n.d.) Evaluating solutions. Available
from www.bbc.co.uk/education/guides/zssk87h/
revision

Bragg, M. (2015) P v NP. BBC Radio 4: In Our
Time. Available from www.bbc.co.uk/programmes/
b06mtms8

CAS TV (2016) Simon Peyton Jones on algorithmic
complexity. YouTube. Available from www.youtube.
com/watch?v=ixmbkp0QEDM

CS Field Guide (2016) Complexity and tractability.
Available from http://csfieldguide.org.nz/en/
chapters/complexity-tractability.html

CS Field Guide (2016) Human computer interaction.
Available from http://csfieldguide.org.nz/en/
chapters/human-computer-interaction.html

Peyton Jones, S. (2010) Getting from A to B: Fast route-
finding using slow computers. Microsoft. Available
from www.microsoft.com/en-us/research/video/
getting-from-a-b-fast-route-finding-using-slow-
computers/

Programming challenges that are particularly good
at encouraging pupils to look for more-efficient or
elegant solutions: Project Euler: https://projecteuler.
net/, Cargo Bot (iPad only) https://itunes.apple.com/
gb/app/cargo-bot/id519690804?mt=8, Code Hunt
(Java and C++) www.codehunt.com/

Teaching London Computing (n.d.) Evaluation.
Available from https://teachinglondoncomputing.
org/resources/developing-computational-thinking/
evaluation/

TryEngineering (n.d.) Lesson plan introducing ideas
of algorithms and complexity. Available from http://
tryengineering.org/lesson-plans/complexity-its-
simple

How does
Software get
written?
Features of a highly effective curriculum include:

All children and young people have the
opportunity to develop and apply more-
sophisticated computational thinking skills.

Learners are able to challenge the status
quo constructively and generate ideas,
including, if appropriate, digital solutions
to improve it.

Whilst the above concepts of computational
thinking help with understanding the world, it
would be wrong to see them as separate from
the processes of computational doing that
have resulted in the profound changes to our
world through the applications of computer
science to digital technology. These approaches
can be applied in computing but, as with the
concepts of computational thinking, have wide
applications beyond this (see also the discussion of
computational thinking practices and perspectives
in Brennan and Resnick, 2012).

Computational doing

Tinkering

There is often a willingness to experiment and
explore in computer scientists’ work. Some
elements of learning a new programming language
or exploring a new system look quite similar to
the sort of purposeful play that’s seen as such an
effective approach to learning in the best nursery
and reception classrooms. Tinkering is also a great
way to learn about elements of physical computing
on platforms such as the BBC micro:bit and the
Raspberry Pi.

Open-source software makes it easy to take
someone else’s code, look at how it’s been
made and then adapt it to your own particular
project or purpose. Platforms such as Scratch and
TouchDevelop positively encourage users to look
at other programmers’ work and use this as a basis
for their own creative coding.

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/evaluation/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/evaluation/
http://www.bbc.co.uk/education/guides/zssk87h/revision
http://www.bbc.co.uk/education/guides/zssk87h/revision
http://www.bbc.co.uk/programmes/b06mtms8
http://www.bbc.co.uk/programmes/b06mtms8
http://www.youtube.com/watch?v=ixmbkp0QEDM
http://www.youtube.com/watch?v=ixmbkp0QEDM
http://csfieldguide.org.nz/en/chapters/complexity-tractability.html
http://csfieldguide.org.nz/en/chapters/complexity-tractability.html
http://csfieldguide.org.nz/en/chapters/human-computer-interaction.html
http://csfieldguide.org.nz/en/chapters/human-computer-interaction.html
http://www.microsoft.com/en-us/research/video/getting-from-a-b-fast-route-finding-using-slow-computers/
http://www.microsoft.com/en-us/research/video/getting-from-a-b-fast-route-finding-using-slow-computers/
http://www.microsoft.com/en-us/research/video/getting-from-a-b-fast-route-finding-using-slow-computers/
https://projecteuler.net/
https://projecteuler.net/
https://itunes.apple.com/gb/app/cargo-bot/id519690804?mt=8
https://itunes.apple.com/gb/app/cargo-bot/id519690804?mt=8
http://www.codehunt.com/
https://teachinglondoncomputing.org/resources/developing-computational-thinking/evaluation/
https://teachinglondoncomputing.org/resources/developing-computational-thinking/evaluation/
https://teachinglondoncomputing.org/resources/developing-computational-thinking/evaluation/
http://tryengineering.org/lesson-plans/complexity-its-simple
http://tryengineering.org/lesson-plans/complexity-its-simple
http://tryengineering.org/lesson-plans/complexity-its-simple

39

Computational Thinking

In class, encourage pupils to experiment with a new
piece of software, sharing what they discover about
it with one another, rather than you explaining
exactly how it works. Also, look for ways in which
pupils can use others’ code – from you, their
peers or online – as a starting point for their own
programming projects.

Creating

Programming is a creative process. Creative work
involves both originality and making something of
value: typically, something that is useful, or at least
fit for the purpose intended.

Encourage pupils to approach tasks with a creative
spirit, and look for programming tasks that allow
some scope for creative expression rather than
merely arrival at the right answer.

Encourage pupils to reflect on the quality of the
work they produce, critiquing their own and others’
projects. The process of always looking for ways
to improve on a software project is becoming
common practice in software development.
Look for projects in which artistic creativity is
emphasised, such as working with digital music,
images, animation, virtual environments or even 3D
printing.(27)

Creating need not be confined to the screen: there
is ample scope to introduce pupils to electronic
circuits, microcontrollers, wearable electronics
and simple robotics. Platforms such as the BBC
micro:bit and the Raspberry Pi make this sort of
activity more accessible than ever at school, and
there are many extra-curricular opportunities
for pupils such as hack days, Coder Dojos(28) and
Raspberry Jams.(29)

Debugging

Because of its complexity, the code programmers
write often doesn’t work as intended.

Getting pupils to take responsibility for thinking
through their algorithms and code, to identify and
fix errors, is an important part of learning to think
and work like a programmer. It’s also something
to encourage across the curriculum: get pupils
to check through their working in maths or to
proofread their stories in English. Ask pupils to

27	For a survey of young people’s digital making see Quinlan (2015).
28	https://coderdojo.com/
29	www.raspberrypi.org/jam/

debug one another’s code (or indeed proofread one
another’s work), looking for mistakes and suggesting
improvements. There’s evidence that learning
from mistakes is a particularly effective approach,
and the process of pupils debugging their own
or others’ code is one way to do this. A positive
attitude towards mistakes as learning opportunities,
and taking responsibility for fixing them, can help
develop pupils’ resilience and contribute towards
a ‘growth mindset’ (Dweck, 2006; qv Cutts et al.,
2010), as Papert observed:

The question to ask about the program
is … if it is fixable. If this way of looking
at intellectual products were generalised
to how the larger culture thinks about
knowledge and its acquisition, we all might
be less intimidated by our fears of ‘being
wrong’. (Papert, 1980)

Keep an eye on the bugs that your pupils do
encounter, as these can sometimes reveal particular
misconceptions that you may need to address.

Debugging is discussed in more detail on pages 81
- 83.

Persevering

Computer programming is hard. This is part of
its appeal – writing elegant and effective code
is an intellectual challenge requiring not only
an understanding of the ideas of the algorithms
being coded and the programming language you’re
working in, but also a willingness to persevere with
something that’s often quite difficult and sometimes
very frustrating. There’s evidence that learning
is more effective when there are challenges to
overcome, in part because we then have to think
more (Bjork and Bjork, 2011).

Carol Dweck’s work on ‘growth mindsets’ suggests
that hard work and a willingness to persevere in the
face of difficulties can be key factors in educational
outcomes. Encourage pupils to look for strategies
they can use when they do encounter difficulties
with their programming work, such as working
out exactly what the problem is, searching for the
solution on Google or Bing, or on Stack Overflow
or Stack Exchange, or seeking help from a friend.

https://coderdojo.com/
http://www.raspberrypi.org/jam/

40

Computational Thinking

Collaborating

Software is developed by teams of programmers and
others, working together on a shared project. Look
for ways to provide pupils with this experience in
computing lessons too. Collaborative group work has
long had a place in education, and computing should
be no different.

Many see ‘pair programming’ as a particularly
effective development method, with two
programmers sharing a screen and a keyboard,
working together to write software (Williams and
Kessler, 2000). Typically one programmer acts as the
driver, dealing with the detail of the programming,
whilst the other takes on a navigator role, looking at
the bigger picture.

The two programmers regularly swap roles, so each
gain a grasp of both detail and big picture. Working
in a larger group develops a number of additional
skills, with each pupil contributing some of their
own particular talents to a shared project. However,
it’s important to remember that all pupils should
develop their understanding of each part of the
process, so some sharing of roles or peer-tutoring
ought normally to be incorporated into such
activities.(30)

Software engineering(30)

There’s much more to software development than
algorithms and coding: the process of developing
software has much in common with other
engineering disciplines, and so there are some close
parallels with design–make–evaluate projects in
design and technology on the school curriculum, and
it’s through projects such as these that the above
approaches of computational doing are perhaps best
developed.

The first stage of developing any software project
isn’t coding, it’s planning. To plan the project as
a whole, and to plan how the computer will be
programmed, draws on the set of computational
thinking concepts discussed above.

Typically, developers need to understand problems or
a system before they have any chance of being able
to develop some software for this, and that’s likely
to draw on processes such as logical reasoning,

30	Based on an earlier blog post, http://milesberry.net/2014/11/software-engineering-in-schools/

to identify the relationships between cause and
effect; abstraction, where they will focus on the key
features of the problem or system, leaving others
to one side; and generalisation, where they might
think of other projects which have something in
common with the current project, looking to see
if there are aspects of the approaches or solutions
to those which could be reused. Decomposition
is really important for breaking big projects down
into manageable tasks, and algorithmic thinking is
necessary to plan how these will be tackled.

Developers will also need to draw on computational
thinking in first designing their programs before they
start coding. How formal this design stage is will vary
from one development methodology to another, but
there’s always some thinking and planning necessary
before the actual coding can begin.

Waterfall

Figure 1.23

In traditional ‘waterfall’ software development, a
single path is planned through the project from
beginning to end (see Figure 1.23). If a bespoke
solution is being developed for a particular client,
the project will start with the client working
with analysts to specify requirements for what
the software needs to do. A more-detailed
specification can then be worked up, which will
include much of the technical planning for how
to program a solution, including consideration of
systems, language, algorithms and data structures
but no actual code. The specification then gets
implemented as code in whatever language for
whatever system has been decided – often this
will be by a team of developers, each weighing in
on one or more particular parts of the project in
parallel with others. The next stage is to test the

http://milesberry.net/2014/11/software-engineering-in-schools/

41

Computational Thinking

code rigorously, making sure that it has no bugs and
that it meets the detail outlined in the specification
and the original requirements. There’s usually a fifth
stage in commercial waterfall development, in which
the software house undertakes to maintain the
program, updating it if necessary to meet changing
requirements. Waterfall methods are still used for
some big, public-sector software deployments.

This approach has something in common
with curriculum development – moving from
requirements that children should be taught
computer science, IT and digital literacy, through a
detailed specification of programmes of study, to
implementation through schemes of work, lesson
plans and activities, and on to testing and evaluation,
with further support there if necessary.

Iterative development

Figure 1.24

In iterative development, the process of designing,
coding, testing and evaluating becomes a cycle
rather than once and for all (see Figure 1.24).
Most modern software development fits into this
pattern or a variant of it, hence new versions of
software are regularly released which fix bugs
that only became apparent once the software
was released, or which implement new features
in response to customer suggestions, technical
innovations or market pressures. Often, developers
will release an early ‘beta’ version of their software,
perhaps to a limited number or quite openly, to
get help with testing and evaluating the software
before committing to an official final release. This
is common practice in open-source development,
where the users of the software are positively
encouraged to help with fixing as well as finding
bugs, or adding code for new features themselves.

31	 http://agilemanifesto.org/

There are parallels between the design–code–
test–evaluate cycle of iterative development
and the plan–teach–assess–evaluate cycle for
teaching that many teachers and schools now use
routinely (Figure 1.25). Similarly, just as assessment
for learning has produced a tight loop between
teaching and assessing, so that the results of
formative assessment feed directly into how the
rest of the lesson or unit of work proceeds, so in
iterative development, there’s a tight loop between
coding and testing – as bugs become apparent in
testing, they get fixed through more coding.

Figure 1.25

Agile methods

Figure 1.26

Whilst recognising the importance of things such
as planning, agreeing requirements and producing
documentation, agile software development moves
the focus of the effort to producing working, usable
code typically much earlier in the process (see
Figure 1.26). It also emphasises the importance of
collaboration with users and responsiveness to
change.(31) Whilst by no means universally accepted,
the effectiveness of agile methods in getting to a

http://agilemanifesto.org/

42

Computational Thinking

‘minimum viable product’, and then developing this
further in response to changing needs and rapidly
developing technologies, has made this approach
popular with many working in technology-based
start-ups, as well as for developing new online tools
and apps for tablets or smartphones.

The emphasis in agile methods on individuals and
interactions, collaborating with customers, and on
responsiveness to change, might put us in mind
of the ‘child-centred education’ pedagogies of an
earlier generation, but perhaps even today there’s
scope in some computing lessons for supporting
and encouraging pupils as they pursue individual,
independent projects or their own lines of
investigative enquiry.

So which approach should we use in class?

One of the aims of the programme of study is that
pupils:

can design, build and test computing
solutions

At Level 2, pupils should already have had some
experience of working on larger software projects,
rather than just learning the key programming
concepts of sequence, selection and repetition, so
that they can:

create, develop and evaluate computing
solutions in response to a design challenge

At Level 3, pupils are taught to:

group related instructions into named
subprograms

and to:

identify processes and information to
create a physical computing and/or
software solution.

These points allow plenty of scope for larger
software development projects alongside shorter
programming tasks.

The way you go about this though is up to you!
Choose the approach which would work best with
your pupils, and for the particular project you (or
they) have in mind.

It’s perhaps best to let pupils have some experience
of all three of these methodologies. For some

programming projects, you may only have time
to work through from planning to debugging
and evaluation once, in which case guiding pupils
through the waterfall process may make most
sense. Other times, it would be worth taking a
more iterative approach, getting pupils to look for
ways in which they could add further features to
their programs, improve the user interface or refine
their algorithms, as well as emphasising repeated
coding, testing and debugging as part of the
programming process itself.

Pupils who find that they really enjoy coding and
choose to do this independently, outside of formal
lessons, might often adopt an approach having
much in common with agile methods – there is
anecdotal evidence that this is often the case for
those contributing to the Scratch community or
pursuing their own project ideas on the Raspberry
Pi. You might like to look for ways to facilitate this
approach in curriculum time too: you could perhaps
set very open challenges to pupils, for example,
‘make an educational game’, providing support and
challenge as needed, as well as encouraging pupils
to help support one another as they rise to meet
the challenge. There is anecdotal evidence that girls
seem to find programming projects where there’s
a clear purpose and scope for creativity more
engaging than relatively closed, abstract coding
challenges such as ‘implement bubble sort’.

 Further resources

Apps for Good (n.d.) Available from www.
appsforgood.org/

Bagge, P. (2015) Eight steps to promote problem
solving and resilience and combat learnt helplessness in
computing. Available from http://philbagge.blogspot.
co.uk/2015/02/eight-steps-to-promote-problem-
solving.html

Barefoot Computing (2014) Computational thinking
approaches. Available from http://barefootcas.
org.uk/barefoot-primary-computing-resources/
computational-thinking-approaches/ (free, but
registration required).

Briggs, J. (2013) Programming with Scratch software:
The benefits for year six learners. MA dissertation.
Bath Spa University.

http://www.appsforgood.org/
http://www.appsforgood.org/
http://philbagge.blogspot.co.uk/2015/02/eight-steps-to-promote-problem-solving.html
http://philbagge.blogspot.co.uk/2015/02/eight-steps-to-promote-problem-solving.html
http://philbagge.blogspot.co.uk/2015/02/eight-steps-to-promote-problem-solving.html
http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking-approaches/
http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking-approaches/
http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking-approaches/

43

Computational Thinking

Brooks, F.P. (1975) The mythical man-month. Reading,
MA: Addison-Wesley.

CS Field Guide (n.d.) Software engineering. Available
from http://csfieldguide.org.nz/en/chapters/
software-engineering.html

DevArt: Art Made with Code (n.d.) Available from
https://devart.withgoogle.com/

Dweck, C. (2012) Mindset: How you can fulfil your
potential. London: Hachette.

Harel, I. and Papert, S. (1991) Constructionism. New
York, NY: Ablex Publishing Corporation.

Education Endowment Foundation (n.d.)
Teaching and learning toolkit. Available from http://
educationendowmentfoundation.org.uk/toolkit/

Kafai, Y. and Burke, Q. (2014) Connected code: Why
children need to learn programming. Boston, MA: MIT
Press.

Peha, S. (2011) Agile schools: How technology saves
education (just not the way we thought it would).
InfoQ. Available from www.infoq.com/articles/agile-
schools-education

Philbin, C.A. (2015) Adventures in Raspberry Pi.
Hoboken, NJ: John Wiley & Sons.

References
Alexander, C., Ishikawa, S. and Silverstein, M. (1977)
A pattern language: Towns, buildings, construction.
Oxford: OUP.

Aristotle (350 BCE, translated by Smith, R. 1989)
Prior analytics. Indianapolis, IN: Hackett.

Berlekamp, E.R., Conway, J.H. and Guy, R.K. (2004)
Winning ways for your mathematical plays (volume
4, 2nd edition). Boca Raton, FL: Taylor and Francis
Group.

Bjork, E.L. and Bjork, R.A. (2011) Making things hard
on yourself, but in a good way: Creating desirable
difficulties to enhance learning. In: Psychology and the
real world: Essays illustrating fundamental contributions
to society. 56–64.

Boole, G. (2003) [1854] An investigation of the laws of
thought. Amherst, NY: Prometheus Books.

Brennan, K. and Resnick, M., 2012, April.
New frameworks for studying and assessing
the development of computational thinking.
In Proceedings of the 2012 annual meeting of the
American Educational Research Association, Vancouver,
Canada (pp. 1-25).

 Brin, S. and Page, L. (1998) The anatomy of a large-
scale hypertextual web search engine. Computer
Networks and ISDN Systems 30:1-7. 107–117.

Christian, B. and Griffiths, T. (2016) Algorithms to live
by: The computer science of human decisions. London:
William Collins.

Csizmadia, A., Curzon, P., Dorling, M., et al.
(2015) Computational thinking: A guide for teachers.
Cambridge: Computing at Schools. Available from
http://community.computingatschool.org.uk/
files/6695/original.pdf

Curzon, P. (2015) Computational thinking: Puzzling
tours. London: Queen Mary University of London.

Cutts, Q., Cutts, E., Draper, S., et al. (2010)
Manipulating Mindset to Positively Influence
Introductory Programming Performance. In: SIGCSE
'10 Proceedings of the 41st ACM Technical Symposium
on Computer Science Education. Milwaukee, USA,
10–13 March 2010. 431–443.

http://csfieldguide.org.nz/en/chapters/software-engineering.html
http://csfieldguide.org.nz/en/chapters/software-engineering.html
https://devart.withgoogle.com/
http://educationendowmentfoundation.org.uk/toolkit/
http://educationendowmentfoundation.org.uk/toolkit/
http://www.infoq.com/articles/agile-schools-education
http://www.infoq.com/articles/agile-schools-education
http://community.computingatschool.org.uk/files/6695/original.pdf
http://community.computingatschool.org.uk/files/6695/original.pdf

44

Computational Thinking

Dean, J. and Ghemawat, S., 2008. MapReduce:
simplified data processing on large
clusters. Communications of the ACM, 51(1), pp.107-
113.

DfE (2013) National curriculum in England:
Computing programmes of study. London: DfE.

Dweck, C.S. (2006) Mindset. New York: Random
House.

Gamma, E., Helm, R., Johnson, R., et al. (1994) Design
patterns: Elements of reusable object-oriented software.
Boston, MA: Addison Wesley.

Hoare, C.A.R. (1961) Algorithm 64: Quicksort.
Comm. ACM., 4 (7). 321.

Knuth, D.E. (1992) Literate programming. California:
Stanford University Center for the Study of
Language and Information.

Knuth, D.E. (1997) The art of computer programming
(volume 1: Fundamental algorithms). Boston, MA:
Addison Wesley.

Laurillard, D. (2012) Teaching as a design science.
Abingdon: Routledge.

Michaelson, G. (2015) Teaching programming with
computational and informational thinking. Journal of
Pedagogic Development 5 (1). 51–66.

Michaelson, G. (2016) Some reflections on the state
we’re in. Switched On, Spring 2016, 22–23.

Miller, G.L. (1976) Riemann's hypothesis and tests
for primality. Journal of Computer and System Sciences
13 (3). 300–317.

Newman, M.E.J. (2001) The structure of scientific
collaboration networks. Proceedings of the National
Academy of Sciences of the United States of America,
98 (2). 404–409.

Papert, S. (1980) Mindstorms: Children, computers and
powerful ideas. New York: Basic Books.

Peng, D. and Dabek, F. (n.d.) Large-scale incremental
processing using distributed transactions and
notifications. Available from www.usenix.org/legacy/
event/osdi10/tech/full_papers/Peng.pdf

Quinlan, O. (2015) Young digital makers. London:
Nesta.

Rajlich, V. and Wilde, N. (2002) The Role of
Concepts in Program Comprehension. In:
Proceedings of the 10th International Workshop on
Program Comprehension. 271–278.

Russell, B. (1946) A history of western philosophy.
Crows Nest, NSW: George Allen and Unwin.

Sorva, J. (2013) Notional machines and introductory
programming education. ACM Transactions on
Computing Education 13 (2). 8:1-8:31.

Williams, L.A. and Kessler, R.R. (2000) All I really
need to know about pair programming I learned
in kindergarten. Communications of the ACM, 43 (5).
108–114.

Wing, J. (2008) Computational thinking and thinking
about computing. Phil. Trans. R. Soc. A., 366:1881.
3717–3725.

Wing, J. (2010) Computational thinking: What and
why? Available from www.cs.cmu.edu/~CompThink/
resources/TheLinkWing.pdf

Wirth, N. (1976) Algorithms + data structures =
programs. Upper Saddle River, NJ: Prentice-Hall.

http://www.usenix.org/legacy/event/osdi10/tech/full_papers/Peng.pdf
http://www.usenix.org/legacy/event/osdi10/tech/full_papers/Peng.pdf
http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf
http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf

AS

Computational Thinking

Programming

What is programming?

45

Programming

Programming
WHAT IS PROGRAMMING?
Programming is the process of designing and writing
a set of instructions (a program) for a computer in
a language it can understand.

This can be really simple, such as the program to
make a robot toy trace out a square; or it can be
incredibly sophisticated, such as the software used
to forecast the weather or to generate a set of
ranked search results.

Programming is a two-step process:

●● First, you need to analyse the problem and
design a solution. This process will use logical
reasoning, decomposition and generalisation
to develop computational abstractions which
capture the right level of detail about the
state and behaviour of the system, as well as
algorithms that can solve the problem correctly
and efficiently.

●● Second, you need to express these ideas
in a particular programming language on a
computer, making use of data structures so the
program can manipulate information. This might
sometimes be called coding, and we can refer to
the set of instructions that make up the program
as ‘code’.

Coding provides the motivation for learning
computer science – there’s a great sense of
achievement when a computer does just what you
ask it, because you’ve written the precise set of
instructions necessary to make something happen.
Coding also provides the opportunity to test out
ideas and get immediate feedback on whether
something works or not.

What should programming be
like in schools?

It is possible to teach computational thinking
without coding and vice versa, but the two seem to
work best hand-in-hand.

Teaching computational thinking without giving
pupils the opportunity to try out their ideas as
code on a computer is like teaching science without
doing any experiments. Similarly, teaching coding

without helping pupils to understand the underlying
processes of computational thinking is like doing
experiments in science without any attempt to
teach pupils the theories which underpin them.

This relationship is reflected in the new computing
curriculum, which states that pupils should not
only know the principles of information and
computation, but should also be able to put this
knowledge to use through programming. One of
the aims of the Scottish curriculum for computing is
for pupils to be able to:

analyse problems in computational terms,
and have repeated practical experience
of writing computer programs in order to
solve such problems.

At primary school, pupils will have been taught how
simple algorithms are implemented as programs
on digital devices, from floor turtles to distant
web servers. They will have had the opportunity to
create and debug their own programs, as well as
to predict what a program will do. They will have
been taught to design and write programs that
accomplish specific goals, which should include
controlling or simulating physical systems. They
should have learnt to use sequence, selection and
repetition in their programs, as well as variables
to store data. They should have learnt to use
logical reasoning to detect and fix the errors
in their programs. All this is likely to have been
in the context of device-specific languages for
programmable toys such as the Bee Bot and then
visual, block-based programming languages such as
Scratch.

The Benchmarks at Level 3 build progressively on
those from Levels 1 and 2. There will be initial
challenges as the Benchmarks are fully implemented
at primary level, but these will decrease over time.

Programming at Level 3 should include working
with real-world problems and physical systems,
with an emphasis on teaching pupils how to
develop computational abstractions which model
the state and behaviour of such systems. Pupils are
also expected to solve a variety of computational
problems: look to provide as diverse a range as
possible here of contexts for pupils' programming,
including cross-curricular opportunities arising out
of the other subjects pupils are studying.

46

Programming

Moving beyond the visual programming pupils will
have studied at primary school, at Level 4 they are
taught at least two programming languages, at least
one of which should be text based (see pages 49 -
58 for some thoughts on the choice of language).

It’s fine to continue to work in Scratch for Level
3, although anecdotal evidence suggests that some
pupils have become somewhat bored with Scratch
after much focus on this in primary computing
lessons. Other visual languages are available which
extend Scratch’s functionality, such as Snap! or the
semi-visual TouchDevelop.

There seems evidence to suggest that it is effective
to introduce a text-based language alongside a
visual language during Level 3 (Dorling and White,
2015), using the familiar blocks to scaffold pupils’
understanding of the semantics of their programming
whilst they become increasingly fluent in the
syntax of the text-based language (Shneiderman
and Mayer, 1979). There are very few things in the
expectations for programming or computational
thinking at Level 3 that cannot be accomplished
in a visual programming language, so a sensible
approach would be to avoid rushing to take on the
additional cognitive load of programming in a text-
based language, until pupils’ understanding of the
underpinning ideas is very sound (qv Robins, 2010).

Strange as it may sound, teaching pupils to program
need not always involve them programming. It is vital
that pupils think about their solution before they
start coding it, perhaps documenting their solution
as pseudocode or a flow chart. Evidence from higher
education, and emerging models of effective practice
in schools, suggest that pupils need to be able to
understand code before they can write code – give
them programs in block- or text-based languages
and ask them to trace them through, using logical
reasoning to predict what would happen when the
code is run. For pupils, it is often less daunting for
to be given skeleton code to edit, or buggy code to
fix, than to have to start from a blank screen. Pair
programming is a proven, effective development
methodology in the software industry and is likely
to have its place in the classroom too. Similarly,
reviewing code written by peers helps develop
evaluation skills and gives pupils more experience of
reasoning about code (see Grover, 2016).

1	 Pupils often try to debug programs by making random changes, unsupported by any reasoning, and running the changed 		
	 program to see if it behaves better. This isn’t computational thinking; it’s simply guesswork.

In his guide to Decoding the programmes of study for
computing document, Simon Peyton Jones suggests
the following approaches to teaching programming
(Peyton Jones, 2014):

●● Simply experiment with the medium.
Programming environments like Scratch and
Kodu make it easy to try things out in a playful,
exploratory way: ‘I wonder what happens if I
press that button/drag that shape?’ At this stage
the goal is to experiment, gain confidence that
nothing bad will happen, and gain intuition about
what happens. It’s rather like a toddler playing
with building bricks.

●● Simply copy an existing program, run it
and then start making small changes to it.
The program solves the ‘blank sheet of paper’
problem. Some changes are limited but fun (for
example, change the colour of the monster).
As confidence builds, pupils will become more
ambitious (for example, can we have more than
one monster?).

●● Start to predict what a change will do.
One important aspect of computational thinking
is to be able to predict what a program will do
or what effect a change to the program will
have. For simple, straight-line programs (that is,
a simple sequence of instructions) this is pretty
easy; the more complicated the program, the
harder it gets. But at every level the ability to
reason logically about the program is key.

●● Debug a program that is not working
properly. For example, if you want to draw a
square with a floor turtle, you might forget to
put the pen down, so the turtle crawls around
but doesn’t draw anything. Debugging always
involves coming up with a guess (or hypothesis)
about what is going wrong, performing
experiments to confirm the guess and making a
change that you predict will fix it.(1)

●● Explain to someone else how/why your
program works. The simple act of explaining
often reveals latent bugs in your program or
potential simplifications to your code.

47

Programming

●● Read a program and figure out its purpose.
For example
T := 0
for I = 1..N { T := T+I }

●● You could talk about loops and variables, but an
experienced programmer would say ‘oh, that just
adds up the numbers between 1 and N, and puts
the total in T’. That is, she has worked out the
purpose of the code, rather than just following
the individual steps it takes.

●● Starting from an idea of what you want
your program to do, write a program from
scratch to do it.

 Classroom activity ideas

●● Get pupils to ‘reverse engineer’ some of the
programs they use. For example, they might
think through the different states in which a
simple system, such as a smart TV remote or
a digital microwave oven, can be, and how one
links to another (an example of a finite-state
machine, see page 30). They could think through
what algorithms have been coded into simple
or more-complex games they play. Pupils could
think about how complicated the code would
have to be for familiar application software such
as Word or PowerPoint. Draw their attention to
how the model-view-controller design pattern
has been applied to many of these examples.

●● Look for (or create) some simple programming
exercises which focus on particular learning
objectives. For example, when teaching pupils
how a sequence of steps in an algorithm can
be translated into code, give pupils a simple
algorithm (for example, to draw a regular
pentagon) and set them the challenge of
implementing this as code.

●● Set some extended programming projects in
which pupils can work through the process
of software development, from original design
through writing code to testing and debugging
their programs.

●● Here are some ideas for extended programming
projects:

»» Year 7: turtle graphics in two languages;
creating an animated dance routine;
developing a game for the BBC micro:bit;
developing a maths quiz for primary pupils in
a feeder school.

»» Year 8: write a program to encrypt and
decrypt text using a shared key; program a
robot to find a path through a maze; create
a simple chat bot; investigating recursion (for
example, fractals using turtle graphics).

»» Year 9: composing music; storing and
retrieving information in a database; analysing
a large public data set; mobile phone app
development (Dorling and Rouse, 2014).

 Further resources

Barefoot Computing (2014) Programming. Available
from http://barefootcas.org.uk/barefoot-primary-
computing-resources/concepts/programming/ (free,
but registration required).

BBC Bitesize (n.d.) Controlling physical systems.
Available from www.bbc.co.uk/guides/zxjsfg8

BBC Cracking the Code (n.d.) For examples of source
code for complex software systems such as robot
footballers and a racing car simulator. available from
www.bbc.co.uk/programmes/p01661pj

Computing at School (2016.) CAS Chair, Prof. Simon
Peyton Jones’ explanation of some of the computer
science that forms the basis for the computing
curriculum. Available from http://community.
computingatschool.org.uk/resources/2936

Code.org (n.d.) For activities and resources. Available
from http://code.org/educate

Ford, P. (2015) What is code? Business Week,
Bloomberg. Available from www.bloomberg.com/
graphics/2015-paul-ford-what-is-code/

Norvig, P. (2014) Teach yourself programming in ten
years. Available from http://norvig.com/21-days.html

Rushkoff, D. (2010) Program or be programmed:
Ten commands for a digital age. New York, NY: OR
Books.

http://barefootcas.org.uk/barefoot-primary- computing-resources/concepts/programming/
http://barefootcas.org.uk/barefoot-primary- computing-resources/concepts/programming/
http://www.bbc.co.uk/guides/zxjsfg8
http://www.bbc.co.uk/programmes/p01661pj.
http://community.computingatschool.org.uk/resources/2936
http://community.computingatschool.org.uk/resources/2936
http://code.org/educate
http://www.bloomberg.com/graphics/2015-paul-ford-what-is-code/
http://www.bloomberg.com/graphics/2015-paul-ford-what-is-code/
http://norvig.com/21-days.html

48

Programming

How do you
program a
Computer?

Programming a computer
involves writing code

The code is the set of instructions needed to make
the computer do what you want, and this has to
be written in a programming language which the
computer understands. There are many languages
to choose from. Some of these will work on only
particular devices, or are only intended for a small
set of particular purposes. Some languages have been
developed specifically with children or other new
programmers in mind, whereas others would be best
left to professional software developers working on
complex projects (although some more-confident
and motivated pupils might relish the challenge of
mastering such a language). In some languages, you
write a program as a sequence of commands for the
computer to execute; in others, you might create
classes of objects with particular properties that can
interact with one another, or sets of functions, each
of which will produce certain output from given input.

Programming languages are formal and have to be
used in precise ways. Programs are made up of
precise, unambiguous instructions – there’s no room
for interpretation or debate about the meaning of a
particular line of computer code. You are only able to
write code using the clearly defined vocabulary and
grammar of the language, but typically you do so using
words taken from English, so code is something which
people can write and understand but the computer
can also follow. Each programming language will have
its own compiler or interpreter, written, or at least
customised, for the particular system on which it
runs. This takes the code written in the programming
language and converts that, either in one go or a
bit at a time, into the sort of instructions which
the computer’s central processing unit (CPU) can
follow. We call these instructions ‘machine code’: the
commands here are very simple ones but modern
processors can execute these at very, very high speed.

2	 www.touchdevelop.com/docs/touch-develop-in-208-bits
3	 From www.microbit.co.uk/offline

At Level 3, the details of compilers and interpreters
are unlikely to feature significantly, and often other
layers of abstraction are present between the
programming language itself and the CPU – Scratch
programs run inside a Flash runtime environment
within the web browser; and Snap!, TouchDevelop
and the Trinket version of Python are all interpreted
as JavaScript, itself being executed within the web
browser that runs on the CPU itself.

Programming the BBC micro:bit perhaps gives
pupils more of an insight into the detail here, with
programs in TouchDevelop, Code Kingdoms and the
blocks editor being converted to runtime machine
code (the .hex file) by a JavaScript compiler running
in the web browser.(2) Python on the micro:bit
works a little differently: it flashes a micro-Python
interpreter onto the micro:bit, which then reads
and interprets the Python source code that’s
flashed to the micro:bit.

Figure 2.1(3)

How are instructions stored
and executed?

You can get a feel for what machine code is like
through emulators such as the Little Man Computer
(LMC). This abstraction captures the fundamental
architecture of modern computers well, in which
data and instructions are stored side by side in
main memory, with a central processor fetching
instructions, executing them and then receiving
or outputting data depending on what those
instructions are – called Von Neumann architecture,
after the designer of ENIAC (Electronic Numerical
Integrator And Computer), one of the first
electronic stored-program computers which, like
most computers after it, adopted this approach.

http://www.touchdevelop.com/docs/touch-develop-in-208-bits
http://www.microbit.co.uk/offline

49

Programming

The LMC abstraction models a computer as if it
were a ‘little man’ in a closed room with just 100
mailboxes (the memory) at one end of the room
and two further mailboxes, input and output, at the
other end. In the middle of the room, a calculator
(the accumulator) allows addition and subtraction
to be done, and there’s a resettable counter which
points to the mailbox where the next instruction
will come from. Normally, the counter increases
by one each time, so instructions are worked
through in sequence, although branch and repeat
instructions can change this. Programming the LMC
involves putting a sequence of instructions, plus the
data into the mailboxes, setting the counter to zero
and letting the LMC work through the instructions
given.(4) A number of online LMC implementations
are available.(5)

Modern processors are somewhat more complex
than this and obviously run significantly faster, but
the essential ideas of data and instructions being
stored in memory, and simple instructions being
executed one after another, remain the same.
Between fetching and executing instructions, the
instructions are decoded, routing the data that
follows to one of the many logic circuits which
make up the CPU. Neil Brown puts it like this:

The processor runs a fetch – execute
cycle. It fetches a single instruction from
memory, which is then executed. For
example, a LOAD instruction loads a value
from memory into a processor register,
an ADD instruction adds two registers,
and a STORE instruction stores a value
from a register back into memory. Once
an instruction has been executed, the
next instruction is fetched and executed.
The number of instructions that can be
executed in a second is known as the clock
speed, so 1MHz is one million instructions
per second.(6)

However, he goes on to explain that modern
processors are in practice somewhat more
complex. Apart from the simplest microprocessor-
controlled devices, modern computers are multi-
core devices, with a number of CPUs each able
to execute instructions independently of and, in
parallel with, the others. Parallel computing, using

4	 https://en.wikipedia.org/wiki/Little_man_computer
5	 For example www.peterhigginson.co.uk/LMC/
6	 https://academiccomputing.wordpress.com/2012/04/29/the-computer-is-a-lie/
7	 Prof. Steve Furber discussing the SpiNNaker spiking neural net computer at www.youtube.com/watch?v=wnSjR04qang

many CPU cores simultaneously, can be used for
applications such as graphics rendering, search and
even simulating the brain.(7)

What programming languages
should you use?

There are many languages to choose from. The
majority are more complex than necessary
for those still getting to grips with the ideas of
programming, but there are plenty of simple, well
supported, general-purpose languages that can
be used very effectively in the lower secondary
classroom. Try to pick a language that you will find
easy to learn or, better still, know already.

Consider these points when choosing a
programming language:

●● Not all languages run on all computer systems.
●● Choose a language that is suitable for your

pupils. There are computer languages that are
readily accessible to lower-secondary pupils – in
some cases this will mean one that has been
written with pupils in mind, or at least adapted
to make it easier to learn, but well constructed
general-purpose languages should not be ruled
out.

●● Choose a language supported by a good range of
learning resources. It’s better still if it has online
support communities available, both for those
who are teaching the language and those who
are learning it.

●● It is beneficial to the pupils if they can continue
working in the language on their home computer
or, even better, if they can easily continue to
work on the same project via the internet.

●● Think carefully about primary to secondary
transition. If many of your pupils have been
learning, for example, Scratch whilst at primary
school, then they can hit the ground running with
some ambitious projects for S1 without having
to learn the commands and interface of a new
language. On the other hand, they might perhaps
have become somewhat jaded with Scratch and
be ready for something different, now they are at
‘big school’.

https://en.wikipedia.org/wiki/Little_man_computer
http://www.peterhigginson.co.uk/LMC/
https://academiccomputing.wordpress.com/2012/04/29/the-computer-is-a-lie/
http://www.youtube.com/watch?v=wnSjR04qang

50

Programming

●● Aim for depth rather than breadth – the
computing curriculum is about learning the
principles of computer science through practical
programming, rather than learning lots of
different languages. Mastering one or two
languages will mean pupils can start to tackle
authentic problems, perhaps from elsewhere in
the curriculum, with a degree of independence.
Fluency in a couple of languages is far more
useful than a vague familiarity with a dozen.
There is value in learning multiple languages
and, particularly, different language paradigms,
but there’s no need to rush into this at Level
3 or Level 4. Few of your pupils will become
professional software developers but all ought to
understand the basics of programming.

(8)

8	 Sentence, S (2016) Computing At School Annual Survey 2016. Available at http://community.computingatschool.org.uk/		
	 files/8106/original.pdf (accessed 28/12/16)
	 http://ishallteach.org/index.php/2016/05/18/survey-results-what-programming-languages-are-being-taught-in-classroom-		
	 edtech-ict-computing-education/
9	 Online at http://cacm.acm.org/blogs/blog-cacm/203554-five-principles-for-programming-languages-for-learners/fulltext; qv 		
	 https://computinged.wordpress.com/2016/06/20/how-to-choose-programming-languages-for-learners/

Mark Guzdial recently blogged about his own set of
principles for choosing a programming language for
teaching:(9)

	 (1) Connect to what learners know.
	 (2) Keep cognitive load low.
	 (3) Be honest.
	 (4) Be generative and productive.
	 (5) Test, don't trust.

There’s a view that some languages are better at
developing good programming ‘habits’ than others.
Good teaching, in which computational thinking is
stressed alongside coding, through an emphasis on
planning and reasoning about code, should help to
prevent pupils developing bad coding habits at this
stage.

Figure 2.2 CAS survey of 1,159 teachers of computing, 2015(8)

http://community.computingatschool.org.uk/files/8106/original.pdf
http://community.computingatschool.org.uk/files/8106/original.pdf
http://ishallteach.org/index.php/2016/05/18/survey-results-what-programming-languages-are-being-taught-in-classroom-			edtech-ict-computing-education/
http://ishallteach.org/index.php/2016/05/18/survey-results-what-programming-languages-are-being-taught-in-classroom-			edtech-ict-computing-education/
http://cacm.acm.org/blogs/blog-cacm/203554-five-principles-for-programming-languages-for-learners/fu
https://computinged.wordpress.com/2016/06/20/how-to-choose-programming-languages-for-learners/

51

Programming

 Further resources			
	

CS Field Guide (2016) Programming languages.
Available from http://csfieldguide.org.nz/en/
chapters/programming-languages.html

Iry, J. (2009) A brief, incomplete, and mostly wrong
history of programming languages. Available from
http://james-iry.blogspot.mx/2009/05/brief-
incomplete-and-mostly-wrong.html

Rosettacode.org (n.d.) Many programming languages
compared for different problems and algorithms.
Available from http://rosettacode.org/wiki/Rosetta_
Code

Utting, I., Cooper, S., Kolling, M., et al. (2010)
Alice, Greenfoot, and Scratch – A discussion.
University of Kent. Available from http://kar.kent.
ac.uk/30617/2/2010-11-TOCE-discussion.pdf

Visual
Programming
Languages
There is a number of graphical programming
toolkits available; these make learning to code
easier than it’s ever been. In most of these,
programs are developed by dragging or selecting
on-screen blocks or icons which represent
particular instructions in the programming language.
These can normally only fit together in ways that
make sense, and the amount of typing – and thus
the potential for spelling or punctuation (syntax)
errors – is kept to an absolute minimum.

With toolkits like these it’s easy to experiment
with creating code. By letting the programmer
focus on the ideas of their algorithm, rather than
the particular vocabulary and grammar of the
programming language, programming and learning
to program become easier and often need less
teacher input.

Kodu

Microsoft’s Kodu (Figure 2.3) is a rich, graphical
toolkit for developing simple, interactive 3D games.

Each object in the Kodu game world can have its
own program. These programs are ‘event driven’:
they are made up of sets of ‘when [this happens],
do [that]’ conditions, so that particular actions are
triggered when certain things happen, such as a key
being pressed, one object hitting another, or the
score reaching a certain level.

Figure 2.3 Kodu interface

Programmers can share their games with others in
the Kodu community, which facilitates informal and
independent learning. There’s also plenty of scope
for pupils to download and modify games developed
by others, which many find quite an effective way to
learn the craft of programming. This can also offer
pupils a sense of creating games with an audience
and purpose in mind.

Scratch

In Massachusetts Institute of Technology’s Scratch
(Figure 2.4), the programmer can create their own
graphical objects, including the stage background on
which the action of a Scratch program happens, and
a number of moving objects (‘sprites’), such as the
characters in an animation or game.

Figure 2.4 Screenshot of a Scratch program

http://csfieldguide.org.nz/en/chapters/programming-languages.html
http://csfieldguide.org.nz/en/chapters/programming-languages.html
http://james-iry.blogspot.mx/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.mx/2009/05/brief-incomplete-and-mostly-wrong.html
http://rosettacode.org/wiki/Rosetta_Code
http://rosettacode.org/wiki/Rosetta_Code
http://kar.kent.ac.uk/30617/2/2010-11-TOCE-discussion.pdf
http://kar.kent.ac.uk/30617/2/2010-11-TOCE-discussion.pdf

52

Programming

Each object can have one or more scripts, built up
using the building blocks of the Scratch language. To
program an object in Scratch, you drag the colour-
coded block you want from the different palettes
of blocks, and snap this into place with other blocks
to form a script. Scripts can run in parallel with one
another or be triggered by particular events, as in
Kodu.

A number of other projects use Scratch as a
starting point for their own platforms. For example,
ScratchJr is a tablet app designed for very young
programmers. There’s a great online community
for Scratch developers to download and share
projects globally, making it easier for pupils to
pursue programming in Scratch far beyond what’s
needed for the Scottish curriculum. There’s also
a supportive educator community, which has
developed and shared high-quality curriculum
materials.

The current version of Scratch (2.0) allows users
to create their own new blocks built from Scratch’s
commands, and allows parameters to be passed to
these blocks. These custom blocks can display text
on screen, change sprite or global variables and so
on, but they cannot return values – that is, they are
procedures rather than functions, and this can be a
limiting factor with Scratch.

Scratch is available as a free web-based editor
or as a standalone desktop application. Files can
be moved between online and offline versions.
There’s some support for interfacing with hardware
components, including webcams, and a way to
extend Scratch functionality via an application
programming interface (API).(10)

Snap!

Berkeley’s Snap!(11) started life as Build Your Own
Blocks (BYOB) – a fork of the Scratch code which,
unsurprisingly, allowed users to create their own
blocks. Scratch now has this functionality, albeit in
a somewhat limited way, but Snap! has continued
development, focussing on implementing some
more-sophisticated computer science ideas in a
block-based language: perhaps the most immediate

10	http://scratchx.org/
11	 Introduction by John Stout for CAS TV at www.youtube.com/watch?v=7tjNnF4fAgI
12	http://snapapps.github.io/
13	http://bjc.berkeley.edu/

offers proper functions that can return values to
the program or function that called them (see
Figure 2.5).

Snap!’s functions, though, are ‘first class’ citizens;
that is, functions can be passed as arguments to
other functions. It’s relatively easy in Snap! to
implement new control structures (such as ‘for’
loops) or functional programming ideas (such as a
map function which applies the same user-specified
function to each of a list of elements). Snap! also
supports anonymous ‘lambda’ functions. Snap! has
better support for lists too, which can be useful
when teaching data structures, including the ability
to have lists of lists.

Snap! is implemented in JavaScript so runs in any
browser, including those without Flash support,
such as tablet computers. Like Scratch, there’s a
number of extensions and modifications available,
including tools to import (but not export) Scratch
projects, an exporter to create standalone
applications, and Edgy,(12) a version of Snap!
designed for programming with graphs. On the
downside, there is nothing like the vibrant, global
user community of Scratch, and far fewer teaching
resources are available. However, it is used as the
teaching language for Berkeley’s Beauty and Joy of
Computing course, which is also offered to US high-
school students as an APCS (advance placement
computer science) Principles course.(13)

Figure 2.5 Recursive implementation of quicksort in
Snap!

http://scratchx.org/
http://www.youtube.com/watch?v=7tjNnF4fAgI
http://snapapps.github.io/
http://bjc.berkeley.edu/

53

Programming

 Classroom activity ideas

●● Pupils could develop a game in Kodu, taking
inspiration from some of the games on the Kodu
community site. As a starting point, tell them to
create a game in which Kodu (the player’s avatar
in the game) is guided around the landscape
bumping into (or shooting) enemies.

●● Pupils could take photographs of one another
in a variety of dance poses, then use Scratch
to create a program which animates these
to choreograph a simple (or complex) dance
routine. They could add music to their program,
either by importing an MP3 or by composing
music in Scratch.

●● Scratch lends itself to game programming and
it can be a good platform for pupils to work on
projects like this quite independently. Start by
asking pairs or groups to plan their games very
carefully, thinking through the rules of their
games, which will be the algorithms used as the
basis for their programs. As well as working
creatively to design the media used in their
games, pupils will need to think through how
the user’s interaction with the game will work,
tweaking their game to provide just the right
level of challenge to the player. Games based
on classic arcade names such as Pong, Pacman
and Duck Shoot can be programmed in Scratch
without too much difficulty.

●● Pupils could implement fractions arithmetic in
Snap!, treating fractions as lists with just two
members. They would need to write helper
functions to find highest common factors and
simplify fractions, which could then be used
in other functions to implement addition,
subtraction, multiplication and division.

 Further resources

Armoni, M. and Ben-Ari, M. (2013) Computer science
concepts in Scratch. Available from http://docplayer.
net/14600408-Computer-science-concepts-in-
scratch.html.

Bagge, P. (2015) How to teach primary programming
using Scratch. Buckingham: The University of
Buckingham Press.

Brennan, K., Balch, C., Chung, M. (2014) An
introductory computing curriculum using Scratch.

Harvard, MA: Harvard Graduate School of
Education. Available from http://scratched.gse.
harvard.edu/guide/ [29/12/16]

Harvey, B. and Mönig, J. (2011) Snap! reference
manual. Available from http://snap.berkeley.edu/
SnapManual.pdf

Kelly, J. (2013) Kodu for kids. Indianapolis, IN: Que
Publishing.

Kodu Game Lab Community (n.d.) Available from
www.kodugamelab.com/

Malan, D. (2007) Scratch for budding computer
scientists. Available from http://cs.harvard.edu/malan/
scratch/printer.php

Scratch (n.d.) Available from http://scratch.mit.edu/

ScratchEd (n.d.) Online community for educators.
Available from http://scratch.mit.edu/educators/

Snap! (n.d.) Available from http://snap.berkeley.edu/

Text-based
Programming
Languages
Most software development in academia and
industry takes place using text-based languages,
where programs are constructed by typing the
commands from the programming language at a
keyboard.

Historically, text-based programming has been a
real barrier for children when learning to code,
and there’s no need to rush into text-based
programming for Level 3. Python is by far the most
common text-based programming language in
secondary schools at the moment, and this offers
many advantages, as it is relatively easy to learn and
sufficiently flexible to be used for general-purpose,
real-world development. However, it’s worth looking
at some of the alternatives as well.

Logo

Logo was developed by Seymour Papert and others
at MIT as an introductory programming language
for children. It’s probably best known for its use of

http://docplayer.net/14600408-Computer-science-concepts-in-scratch.html.
http://docplayer.net/14600408-Computer-science-concepts-in-scratch.html.
http://docplayer.net/14600408-Computer-science-concepts-in-scratch.html.
http://scratched.gse.harvard.edu/guide/
http://scratched.gse.harvard.edu/guide/
http://snap.berkeley.edu/SnapManual.pdf
http://snap.berkeley.edu/SnapManual.pdf
http://www.kodugamelab.com/
http://cs.harvard.edu/malan/scratch/printer.php
http://cs.harvard.edu/malan/scratch/printer.php
http://scratch.mit.edu/
http://scratch.mit.edu/educators/
http://snap.berkeley.edu/

54

Programming

‘turtle graphics’ – an approach to creating images in
which a ‘turtle’ (either a robot or a representation
on screen) is given instructions for drawing a shape,
such as:

REPEAT 4 [
	 FORWARD 100
	 RIGHT 90]

Repetition can be nested, allowing relatively
complex figures to be programmed quite easily:

REPEAT 10 [
 REPEAT 5 [
 FD 100
 RT 72
]
 RT 36
]

Figure 2.6

Papert saw Logo as a tool for children to think
with, just as programming is both the means to and
motivation for computational thinking.

In Logo programming, more-complex programs
are built up by ‘teaching’ the computer new words.
These are called procedures. For example, you
could define a procedure to draw a square of a
certain size using the key words of the language.
Once this is defined, typing it in will then result in
the turtle drawing a square.

TO SQUARE :SIDE
	 REPEAT 4 [
		 FORWARD :SIDE
		 RIGHT 90]
	 END
SQUARE 50

14	The classic introduction to programming in Logo beyond the realm of turtle graphics is Harvey (1997).

Many associate Logo with these sorts of turtle
graphics programs. Turtle graphics are supported
by most programming languages, including Scratch,
Snap!, TouchDevelop, Small Basic and Python. Logo
is, however, capable of more-general programming
so, for example, factorials (the product of the
integers up to and including a number, for example
5!=1x2x3x4x5=120) can be calculated using a
recursive function in Logo:

TO FACTORIAL :NUMBER
 IF :NUMBER = 1 [OUTPUT 1]
 OUTPUT :NUMBER * FACTORIAL :NUMBER - 1
END

Logo’s original development grew out of Lisp,
and thus it also has good support for lists.(14)
Whilst not a popular choice at present, the text-
based programming requirements of the Scottish
curriculum could be met with Logo.

Microsoft Small Basic

Microsoft Small Basic is a simplified version of
Microsoft’s Visual Basic programming language and
associated environments, and indeed Small Basic
programs can be exported to form the basis of
more-complex Visual Basic code. The language is
text based, but has a development studio designed
to help with many of the difficulties of text-
based programming: thus, there’s a built-in visual
environment in which programs can be run, and
‘IntelliSense’ is used to help suggest and complete
the keywords of the language as you type. The
language is kept deliberately small (just fourteen
keywords), although these are supplemented through
an extensive standard library, with support for turtle
graphics, as in Logo, as well as external resources
such as Flickr. For example, the program to draw a
square in Small Basic would look something like:

Turtle.Show()
For i = 1 to 4
 Turtle.Move(100)
 Turtle.TurnRight(90)
EndFor

As with Kodu and Scratch, there’s an online gallery
in which programmers can share the source code
for their programs, with others using these as a
starting point for their own work.

55

Programming

TouchDevelop

Typing code on a tablet computer or a smartphone
is not easy, and this can be problematic for schools
that use these devices extensively.

Developed by Microsoft Research, TouchDevelop
is a programming language and environment which
takes into account both the challenges posed and
the opportunities offered by touch-based interfaces
such as those on tablets and smartphones.

TouchDevelop makes it quite easy to develop an
app for a smartphone or tablet on the smartphone
or tablet itself.

Although TouchDevelop is a text-based language,
programmes aren’t typed but are created by
choosing commands from the options displayed
in a menu system. In this way, TouchDevelop is a
halfway house between graphical and text-based
programming. Those who have become familiar with
drag-and-drop or keyboard-based programming
sometimes find it hard to adapt to the touch-
optimised interface of TouchDevelop.

As with Logo, turtle graphics commands are
available as standard. On some platforms
TouchDevelop can also access some of the
additional hardware built into the device, such as
the accelerometer or global positioning system
(GPS) receiver, allowing more-complex apps to
be developed: these can be hosted online as web-
based apps, or installed directly on the device if
it’s a Windows phone. TouchDevelop is one of the
program editors provided for the BBC micro:bit
(Figure 2.7).

Figure 2.7 TouchDevelop for the BBC micro:bit –
the function shown implements a decimal-to-binary
converter

A particularly nice feature of TouchDevelop is
the use of interactive tutorials to scaffold pupils’
learning of the language.

Microsoft Excel

Whilst few would immediately think of it as a
programming language, the Excel spreadsheet
package is a text-based programming language,
although admittedly a rather strange one (Peyton
Jones et al., 2003). In Excel, rather than creating a
sequence of instructions, you write code (Excel
formulae) to create a system of interlinked
functions, which take values in the spreadsheet cells,
and return the results of performing computation
on those functions. This provides some introduction
to functional programming, as well as being
really useful in all sorts of situations where a large
amount of numerical data needs to be processed,
or where mathematical functions provide a good
way to model a complex real-world problem. The
way in which an Excel spreadsheet shows the values
in each cell can help pupils visualise how this sort of
computation is performed.

Computational thinking processes such as
logical reasoning, abstraction, decomposition and
generalisation apply just as much to developing
a spreadsheet in Excel as they do to writing
imperative programs in Scratch, Small Basic or the
other languages discussed here. There are many
real-world problems for which a spreadsheet
may be the most efficient solution. It would be a
shame for pupils to miss out on developing some
fluency with this approach to solving computational
problems.

Python

For many secondary teachers and their pupils,
Python seems a great introductory text-based
programming language. Papert argued that a good
teaching language should have ‘low floors, wide
walls and high ceilings’, and Python seems to offer
all three:

●● Whilst text-based programming inevitably
introduces additional cognitive load over
graphical languages, Python allows pupils to write
programs with a similar structure to that which
they would write in Scratch, at least in the case

56

Programming

of Scratch programs made up of just one script
and some custom blocks – support for multi-
threading, which is easy in Scratch, is much less
straightforward in Python.

●● Python has a good set of standard libraries to
extend the functionality of the language, including
a great implementation of turtle graphics,(15)
game libraries(16) and support for developing
programs with graphical user interfaces. There
are many other libraries available publicly via
the internet, together with tools to install these
without too much difficulty. There is very good
support for science, maths and statistics, plus
libraries for natural-language processing, working
with graphs and many, many other specialised
areas. Python is installed as standard on the
Raspberry Pi and Macs, and it can be run on
Android phones and the BBC micro:bit. There’s
also a good culture of folk sharing Python
programs for a wide range of applications via
Github.

●● Python is a proper, grown-up programming
language used for real-world software
development in a range of domains. Whilst not
an entirely functional programming language,
Python supports functional programming., and
whilst not an entirely object-oriented language,
it supports object-oriented programming. There
is lots of interest in it in academic computing,
including as a teaching language for computer
science degrees as well as for science and
humanities. It can be used for developing server-
driven web applications, and is used by Google,
Facebook, Yahoo, EventBrite, Reddit and NASA.
Python programming skills are in demand for
jobs in software development.

Here’s an example of a simple Python program to
do a drill-and-practice tables test, which illustrates
some of the features of the language:

import random
for i in range(10):
 a = random.randint(1,12)
 b = random.randint(1,12)
 question="What is "+str(a)+" x "+str(b)+"? "
 answer = int(input(question))
 if answer == a*b:
 print("Well done!")
 else:
 print("No.")

15	https://docs.python.org/3/library/turtle.html
16	http://www.pygame.org/docs/ref/pygame.html and (more usefully) https://pygame-zero.readthedocs.io/en/latest/

If you’ve never seen Python code before, this might
be a bit daunting, but spend a couple of minutes
reading through the code and you should get a
reasonable feel of what’s going on here.

A few things to mention:

●● The nice, indented layout here is a feature of
the language – repeated code in the ‘for’ loop
is indented, as are the different bits of code
that get executed in the ‘if … else’ selection
statement. Similarly, the ‘:’ which precedes these
indented blocks is part of the language.

●● The randint command (which picks a random
integer from the given range) isn’t part of the
Python language itself, and so needs to be
imported as part of the random library.

●● Variables in Python have implied types – ‘a’ and
‘b’ are integers, ‘question’ is a string. Functions
allow variables to be converted between one
type and another.

●● In the print command, the text to be printed is
inside (brackets). This was one of the significant
changes from Python 2 to Python 3, so it’s worth
double-checking which version of Python is
running on your computer.

Don’t be too ambitious as you introduce pupils to
programming in Python: learning any text-based
language demands concentration and attention to
detail, and this makes it hard for pupils to give lots
of attention to mastering complex algorithmic ideas
at the same time.

Starting with something familiar, such as turtle
graphics, offers a nice way in. The Logo program on
page 54 can be implemented in Python very easily,
using the standard Turtle library:

from turtle import *

for i in range(10):
 for j in range(5):
 forward(100)
 right(72)
 right(36)
done()

This is very similar to the same program in Scratch
(Figure 2.8):

https://docs.python.org/3/library/turtle.html
http://www.pygame.org/docs/ref/pygame.html

57

Programming

Figure 2.8

Many pupils will be able to see the connections
between the algorithm for their pattern and its
expression as code in the two languages.

Another good introductory project is to get pupils
to recreate the ‘choose your own adventure’
games of old (Jackson and Livingstone, 1982),
perhaps providing pupils with the skeleton code of
a procedure for an individual ‘room’ and allowing
them to adapt and expand on this:

def room0():
 print ("""You are in room 0.
There are exits here to room 1 and room 2.""") 	
 choice = input ("Choose 1 or 2: ")
 if choice == "1" :
 room1()
 elif choice == "2":
 room2()
 else:
 print("That's not one of the choices!")
 room0()

Adventure games are based on a binary tree graph
as the computational abstraction, with the nodes
being the rooms (the states), and the edges the
choices between them (the behaviour) at each
point. With minor adjustments the same program
could be turned into a ‘branching database’
classification key for a group of plants or animals.

17	See http://community.computingatschool.org.uk/resources/446 for a discussion of some of the school infrastructure issues 	
	 associated with providing pupils with access to programming tools.
18	For example https://trinket.io/, https://codio.com/ and https://c9.io/
19	For example Notepad ++, Atom or Mu.
20	 Integrated development environments, for example PyCharm Edu or Visual Studio Python Tools for Windows.
21	Or using the Jupyter/iPython interactive notebook package.

Some practicalities

Python is a free download and can be installed on
Windows and Linux systems; Python is pre-installed
on OS X. Python itself does not introduce any
security risks to a properly configured system or
network – it doesn’t need to run with administrator
or root permission and thus can only modify files
or directories to which the user already has write-
access.(17) An alternative to installing Python locally
is to access a Python interpreter and editor via the
web:(18) this is useful for learning the language, but
can make it difficult to access particular libraries or
develop more-complex software.

Downloading and installing Python brings you the
Python interpreter itself and a simple integrated
development environment (IDE) called IDLE.
You can use IDLE to write, save and edit Python
programs and to run them – the output of the code
appears in another window (Figure 2.9).

Figure 2.9 IDLE showing program editor, console
and turtle graphics output on a Mac

You don’t have to use IDLE to use Python. You can
write Python code in any text editor,(19) running
the program you save at the command prompt or
shell, or you can use more sophisticated IDEs.(20)
You can also use Python in interactive mode, either
in IDLE’s console or at the command prompt/shell
after just typing ‘python’.(21) This can be useful for
just experimenting with the syntax of the language
rather than for writing programs.

http://community.computingatschool.org.uk/resources/446
https://trinket.io/
https://codio.com/ and https://c9.io/

58

Programming

Other languages

Other programming languages are available, which
could be used as introductory text-based languages
in secondary schools, for example: JavaScript, Ruby,
Pyret, Visual Basic, Swift (OS X only) and Java
(perhaps using Greenfoot).

 Classroom activity ideas

●● Revisit the turtle graphics activities you
might have been using for programming in
the old information and communication
technology (ICT) curriculum. Whilst these can
be accomplished using the motion and pen
commands in Scratch, projects such as drawing
regular polygons, a simple house or complex
repeating patterns like ‘crystal flowers’ are
usually well enough understood for pupils to
get to grips with the additional challenges of
text-based languages – there’s evidence that it
can be effective for pupils to work in a visual-
and a text-based language, side by side, for this
(Dorling and White, 2015).

●● Explore some of the commands and functions
available in these languages for working with text.
For example, can pupils write a program which
takes any sentence and converts it into capital
letters, or reverses the sentence, or removes all
the vowels from the sentence, or reverses each
word in the sentence?

●● Explore how one or more of these programming
languages could be used to simulate dice being
rolled. In Excel, could pupils simulate rolling
100 dice at the same time and then draw a bar
chart of the results? Ask them to think how
they would do that in Scratch. Can pupils create
an app in TouchDevelop which simulates rolling
a dice when the phone, tablet or micro:bit
is shaken? Ask pupils to think about how
deterministic computers can simulate random
events such as these.

●● On the Raspberry Pi, Python can be used as a
scripting language for Minecraft or for simple
physical computing activities, using the Raspberry
Pi’s general-purpose input/output (GPIO) pins.

 Further resources

Code Club (n.d.) Python projects. Available from
www.codeclubprojects.org/en-GB/python/

DfES (1998) Archived lesson plan for creating
crystal flowers. Available from http://webarchive.
nationalarchives.gov.uk/20090608182316/
http://standards.dfes.gov.uk/pdf/primaryschemes/
itx4e.pdf

Downey, A. (2012) Think Python. Sebastopol, CA:
O'Reilly Media (qv http://greenteapress.com/
thinkpython/html/index.html).

Horspool, N. and Ball, T. (2013) TouchDevelop:
Programming on the go. New York, NY: Apress.
Available from www.touchdevelop.com/docs/book

Logo (n.d.) Available from www.calormen.com/
jslogo/ and elsewhere.

Papert, S. (1980) Mindstorms: Children, computers,
and powerful ideas. New York, NY: Basic Books Inc.

Python (n.d.) Available from www.python.org/ and
online via trinket.io

Raspberry Pi (n.d.) Teaching and learning resources,
many of which include Python programming.
Available from www.raspberrypi.org/resources/
for example www.raspberrypi.org/learning/python-
intro/

Shaw, Z.A. (2013) Learn Python the hard way: A very
simple introduction to the terrifyingly beautiful world of
computers and code. Boston, MA: Addison-Wesley
(qv http://learnpythonthehardway.org/book/).

Small Basic (n.d.) Available from www.smallbasic.
com/

TouchDevelop from Microsoft Research (n.d.)
Available from www.Touchdevelop.com

Tranter, M. (2014) Ten Python lessons. CAS. Available
from http://community.computingatschool.org.uk/
resources/2155

http://www.codeclubprojects.org/en-GB/python/
http://webarchive.nationalarchives.gov.uk/20090608182316/
http://webarchive.nationalarchives.gov.uk/20090608182316/
http://standards.dfes.gov.uk/pdf/primaryschemes/itx4e.pdf
http://standards.dfes.gov.uk/pdf/primaryschemes/itx4e.pdf
http://greenteapress.com/thinkpython/html/index.html
http://greenteapress.com/thinkpython/html/index.html
http://www.touchdevelop.com/docs/book
http://www.calormen.com/jslogo/
http://www.calormen.com/jslogo/
https://www.python.org/
http://trinket.io
http://www.raspberrypi.org/resources/
http://www.raspberrypi.org/learning/python-intro/
http://www.raspberrypi.org/learning/python-intro/
http://learnpythonthehardway.org/book/
http://www.smallbasic.com/
http://www.smallbasic.com/
http://www.Touchdevelop.com
http://community.computingatschool.org.uk/resources/2155
http://community.computingatschool.org.uk/resources/2155

59

Programming

What’s inside a
Program?
Whilst the detail will vary from one language
to another, there are some common structures
and ideas which programmers use over and over
again, from one language to another and from one
problem to another:

●● Sequence: running instructions in order (see
below).

●● Selection: running one set of instructions or
another, depending on what happens (see page
61).

●● Repetition: running some instructions several
times (see page 63).

●● Modularity: building programs from smaller,
independent blocks of code that return values or
do specific things (see page 67).

●● Data structures: organising data so that it can
be stored and retrieved from the computer’s
memory (see page 73).

These are so useful that it’s important to make
sure all pupils learn these. Sequence, selection
and repetition are introduced at Level 2 of the
computing curriculum, where pupils also learn
about variables, simple data structures that handle
just one piece of information.

This Scratch script (Figure 2.10) shows sequence,
selection, repetition and variables. Can you work
out which bit is which before we look at these
ideas in detail?

Figure 2.10

22	 In imperative programming languages such as those discussed here. Declarative languages such as Haskell, F# and Excel work 	
	 rather differently.

This program does the same thing in Python. Can
you see the similarities and differences between
the two? Can you work out how Python deals with
sequence, selection, repetition and variables?

import random
for i in range(10):
 a = random.randint(1,12)
 b = random.randint(1,12)
 question="What is "+str(a)+" x "+str(b)+"? "
 answer = int(input(question))
 if answer == a*b:
 print("Well done")
 else:
 print("Think again")

 Further resources

BBC Bitesize (n.d.) How do we get computers to do
what we want? (Covering sequence, selection and
repetition). Available from www.bbc.co.uk/guides/
z23q7ty

Berry, M. (2014) Tables Test. Scratch program,
available from http://scratch.mit.edu/
projects/26116842/#editor [29/12/16].

Berry, M. (2016) Tables test. Python program,
available from https://trinket.io/library/trinkets/
d15c8f972b [29/12/16].

Bitesize programming materials at www.bbc.co.uk/
education/topics/zhy39j6

Cracking the Code clip (n.d.) Available from www.bbc.
co.uk/programmes/p016j4g5

Sequence
Programs are built up of sequences of
instructions.(22) At Early Years Level and Level 1,
when pupils start programming with floor turtles,
their programs consist entirely of sequences of
instructions, built up as the stored sequence of
button presses for what the floor turtle should do.
As with any program, these instructions are precise
and unambiguous, and the floor turtle will simply
take each instruction (each button press) and turn
that into signals for the motors driving its wheels.

http://www.bbc.co.uk/guides/z23q7ty
http://www.bbc.co.uk/guides/z23q7ty
http://scratch.mit.edu/projects/26116842/#editor
http://scratch.mit.edu/projects/26116842/#editor
https://trinket.io/library/trinkets/d15c8f972b
https://trinket.io/library/trinkets/d15c8f972b
http://www.bbc.co.uk/education/topics/zhy39j6
http://www.bbc.co.uk/education/topics/zhy39j6
http://www.bbc.co.uk/programmes/p016j4g5
http://www.bbc.co.uk/programmes/p016j4g5

60

Programming

Pupils’ first Scratch or Python programs are
also likely to be made up of simple sequences of
instructions. Again, these need to be precise and
unambiguous and, of course, the order of the
instructions matters. In developing their algorithms,
pupils have to work out exactly what order to
put the steps in to complete a task. In more
complex programs involving variables or other data
structures, they will need to think through how the
steps in their programs change the data stored.

Figure 2.11 A simple music program in Scratch

print("Hello!")
name = input("What is your name?")
print("It's a pleasure to meet you, "+name+".")
print("What odd weather it's been of late.")
today = input("What have you been doing today?")
print("What a coincidence! I've been "+today.lower()+" too.")

A simple chat bot in Python.

 Classroom activity ideas

●● Ask pupils to experiment with programming
Scratch to play music, as in Figure 2.11 above.
Take a simple, familiar melody, perhaps in score
notation or just as a list of notes, and have
pupils translate this into a sequence of Scratch
commands. Can pupils tell by ear where there
are mistakes in their code? Pupils could do a
similar exercise using Python’s winsound library
for Windows, or Sonic Pi.

●● Ask pupils to design, plan and code scripted
animations in Scratch, perhaps using a timeline or
storyboard to work out their algorithm before
converting this into instructions for sprites in
Scratch. Animations could be based on historical
events, scenes from a reading book or dialogue
in a foreign language pupils are studying. Scratch
has support for recording and playing back audio.
Pupils might enter their animation for the UK
Schools Computer Animation Competition.

●● Pupils could take the chat bot idea above and
develop this further, either in Python (as shown)
or Scratch, or perhaps using both languages side
by side.

 Further resources

Animation 16 (2015) UK schools computer animation
competition. University of Manchester. Available from
http://animation16.cs.manchester.ac.uk/. YouTube
channel for winning entries www.youtube.com/
user/AnimationComp

Barefoot Computing (2014) Sequence. Available
from http://barefootcas.org.uk/barefoot-primary-
computing-resources/concepts/programming/
sequence/ (free, but registration required).

Barefoot Computing (2014) Viking invasion
animation in Scratch (for upper KS2). Available from
http://barefootcas.org.uk/programme-of-study/
use-sequence-in-programs/upper-ks2-viking-raid-
animation-activity/ (free, but registration required).

Code Club (n.d.) Python activities involving
sequence. Available from https://codeclubprojects.
org/en-GB/python/about-me/ and http://projects.
codeclubworld.org/en-GB/09_python/04/Turtle%20
Power.html

http://animation16.cs.manchester.ac.uk/
http://www.youtube.com/user/AnimationComp
http://www.youtube.com/user/AnimationComp
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/sequence/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/sequence/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/sequence/
http://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/upper-ks2-viking-raid-animatio
http://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/upper-ks2-viking-raid-animatio
http://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/upper-ks2-viking-raid-animatio
https://codeclubprojects.org/en-GB/python/about-me/
https://codeclubprojects.org/en-GB/python/about-me/
http://projects.codeclubworld.org/en-GB/09_python/04/Turtle%20Power.html
http://projects.codeclubworld.org/en-GB/09_python/04/Turtle%20Power.html
http://projects.codeclubworld.org/en-GB/09_python/04/Turtle%20Power.html

61

Programming

Cracking the Code (2013) Clip on programming
a robotic toy car. Available from www.bbc.co.uk/
programmes/p01661yg

Raspberry Pi (n.d.) Python chat bot activity. Available
from www.raspberrypi.org/learning/turing-test-
lessons/lessons/

Selection
Selection is the programming structure through
which a computer executes one or other set of
instructions according to whether a particular
condition is met or not. This ability to do different
things, depending on what happens in the computer
as the program is run – or out in the real world –
lies at the heart of what makes programming such a
powerful tool.

Selection is an important part of creating a game in
Kodu. An object’s behaviour in a game is determined
by a set of conditions, for example: WHEN the left
arrow is pressed, the object will move left. Similarly,
interactions with other objects, variables and
environments in Kodu are programmed as sets of
WHEN … DO … conditions. For example, WHEN
I bump the apple DO eat it AND add 2 points
to score. Scratch can also be programmed in this
event-driven way (Figure 2.12):

Figure 2.12

Many apps and other programs include this sort of
event-driven programming for implementing the
user interface: tapping this button or clicking that
icon causes the program to respond in a particular
way, perhaps changing the stored data and the user’s
view of it.

In Scratch, Python and other languages, you can
build selection into a sequence of instructions,
allowing the computer to run different instructions

depending on whether a condition is met. For
example, this program tests whether a word has
more than five letters (Figure 2.13):

Figure 2.13

answer = input("Type a word ")

if len(answer)>5:
 print("That's a long word!")

Word length tests in Scratch and Python

Notice that the thing which determines whether
‘That’s a long word!’ gets displayed is a test (a
‘condition’) which is either true or false in the
Boolean sense. If it’s true then the next bit of code
(here say… or print…) gets executed; otherwise it
doesn’t.

We can use more complex Boolean conditions, for
example the somewhat contrived (Figure 2.14):

Figure 2.14

answer = int(input("Give me a number! "))
if (answer % 3 == 0) and (not (answer < 1000)):
 print("That's a multiple of three that's not less than a thousand!")

Boolean selection in Scratch and Python

Selection statements such as these are at the core
of most game programs too, for example (Figure
2.15):

Figure 2.15

http://www.bbc.co.uk/programmes/p01661yg
http://www.bbc.co.uk/programmes/p01661yg
http://www.raspberrypi.org/learning/turing-test-lessons/lessons/
http://www.raspberrypi.org/learning/turing-test-lessons/lessons/

62

Programming

It’s worth noting that selection statements can be
nested inside one another, allowing more-complex
sets of conditions to be used to determine what
happens in a program. Look at the way some ‘if ’
blocks are inside others in the following script to
model a clock in Scratch, which also uses repetition
and three variables for the seconds, minutes and
hours of the time (see Figure 2.16):

Figure 2.16

from time import sleep

hours=7
minutes=50
seconds=48

while True:
 sleep(1)
 seconds=seconds+1
 if seconds==60:
 seconds=0
 minutes=minutes+1
 if minutes==60:
 minutes=0
 hours=hours+1
 if hours==24:
 hours=0
 print (hours,minutes,seconds)

Simple clock programs in Scratch and Python

Notice that in the Python code here and above we
use a double == to check for equality; a single = is
used to assign a value to a variable.

Selection statements in programming languages
typically also include the ability to say what should
happen if the condition is false. The usual structure
for this is:

if <some condition> then:
 <do something>
else:
 <do a different thing>

At the core of many educational games are
selection statements like this: if the answer is right
then give a reward, else say the answer is wrong
(see Figure 2.17).

Figure 2.17

answer=input("what is 7x8? ")

if answer=="56":
 print("Well done!")
else:
 print("Think again!")

Tables question in Scratch and Python

See also the Scratch and Python programs for the
times tables game on page 75.

Some programming languages, including Python,
allow multiple conditions to be combined into a
single selection statement, with only the code for
the first condition that’s true being executed:

answer = int(input("What was your mark? "))
if answer >= 70:
 print ("You get an A")
elif answer >= 60:
 print ("You get a B")
elif answer >= 50:
 print ("You get a C")
else:
 print ("You fail!")

Grading program in Python

63

Programming

Other languages, such as the functional
programming language Haskell, implement
something similar through pattern matching:

grade :: Integer->String
grade mark
 | mark >=70 = "A"
 | mark >=60 = "B"
 | mark >=50 = "C"
 | otherwise = "fail"

Grading function in Haskell

 Classroom activity ideas

●● Encourage pupils to explore the different
conditions which the character in Kodu can
respond to in its event-driven programming. Get
pupils to think creatively about how they might
use these when developing a game of their own.
Give them time to design their game, thinking
carefully about the algorithm – that is, the rules –
they are using.

●● Ask pupils to design simple question-and-answer
games in Scratch. Encourage them to first think
about the overall algorithm for their game
before coding this, and then to work to develop
the user interface, making this more engaging
than just a cat asking lots of questions. It’s helpful
if pupils have a target audience in mind for
software like this.

●● Selection can also be used to design computer
simulations for real-world systems. Pupils could
use Scratch to model the outbreak of a disease,
using colours to represent whether a sprite
is infected or not, and then nested selection
statements to determine if a sprite becomes
infected when it touches another carrying the
disease. The simulation can be made more
sophisticated by adding in further selection
criteria, such as natural immunity or whether
a sprite has been vaccinated. This approach to
simulating complex systems is called agent-
based modelling. A more sophisticated approach
could use Python’s Mesa library(23) or Star Logo
TNG.(24)

23	https://pypi.python.org/pypi/Mesa/
24	http://education.mit.edu/portfolio_page/starlogo-tng/

 Further resources

Barefoot Computing (2014) Selection. Available from
http://barefootcas.org.uk/programme-of-study/use-
selection-programs/selection/ (free, but registration
required).

Papert, S. (1998) Does easy do it? Children, games, and
learning. Available from www.papert.org/articles/
Doeseasydoit.html

Raspberry Pi (n.d.) Sorting hat lesson. Available from
www.raspberrypi.org/learning/sorting-hat-lesson/

Berry, M. (2014) Analogue clock. Scratch
program, available from http://scratch.mit.edu/
projects/28742256/#editor [29/12/16].

Berry, M. (2013) Addition race. Scratch
program, available from http://scratch.mit.edu/
projects/15905989/#editor [29/12/16].

Repetition

Repetition in programming means to repeat the
execution of certain instructions. This can make a
long sequence of instructions much shorter, and
typically easier to understand.

Using repetition in programming usually involves
spotting that some of the instructions you want the
computer to follow are the same, or very similar,
and therefore draws on the computational thinking
process of pattern recognition/generalisation. You
will sometimes hear the repeating block of code
referred to as a ‘loop’, that is, the computer keeps
looping through the commands one at a time as
they are executed (carried out).

Think about a simple turtle graphics program for a
square (Figure 2.18):

https://pypi.python.org/pypi/Mesa/
http://education.mit.edu/portfolio_page/starlogo-tng/
http://barefootcas.org.uk/programme-of-study/use-selection-programs/selection/
http://barefootcas.org.uk/programme-of-study/use-selection-programs/selection/
http://www.papert.org/articles/Doeseasydoit.html
http://www.papert.org/articles/Doeseasydoit.html
http://www.raspberrypi.org/learning/sorting-hat-lesson/
http://scratch.mit.edu/projects/28742256/#editor
http://scratch.mit.edu/projects/28742256/#editor
http://scratch.mit.edu/projects/15905989/#editor
http://scratch.mit.edu/projects/15905989/#editor

64

Programming

Figure 2.18

from turtle import *

forward(100)
right(90)
forward(100)
right(90)
forward(100)
right(90)
forward(100)
right(90)

Squares (without repetition) in Scratch and Python

Notice how for each side we move forward and
then turn right. In Scratch or Python, you could use
repetition to simplify the coding for this by using
the built-in repeat command, replacing this code
with, for example (Figure 2.19):

Figure 2.19

from turtle import *

for i in range(4):
 forward(100)
 right(90)

Squares in Scratch and Python

Using repetition reduces the amount of typing and
makes the program reflect the underlying algorithm
more clearly.

Notice that in Python we use a variable to keep
track of how many times we’ve been round the
loop. The Python function ‘range(4)’ is shorthand for
the list of numbers 0, 1, 2, 3. The iterator variable
‘i’ takes each of these values in turn. Thus the
program:

for i in range(12):
 print(7*i)

prints 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77 on
screen.

To do something similar in Scratch, we’d need to
keep track of this ourselves (Figure 2.20):

Figure 2.20

In Snap! this is easier as we have a for loop available
in the standard tools library (Figure 2.21):

Figure 2.21

65

Programming

In Python and Snap! the list for the iteration doesn’t
need to be a sequence of numbers: any list will do.
For example (Figure 2.22):

for day in ["Monday","Tuesday","Wednesday"]:
 print day

Figure 2.22 Snap! using standard tools

In the examples above, the repeated code is run
a fixed number of times, which is the best way to
introduce the idea. You can also repeat code forever
(Figure 2.23):

Figure 2.23

from turtle import *
from random import randint

while True:
 forward(10)
 right(randint(0,3) * 90)

Random walks in Scratch and Python

Notice that the Python code here is a particular
version of a ‘while’ loop (see below), where the
condition is always true, so the code inside the loop
runs forever.

This can be useful in real-world systems, such as
a control program for a digital thermostat, which
would continually check the temperature of a room,
sending a signal to turn the heating on when this
dropped below a certain value. This is a common
technique in game programming. For example, the
following Scratch code (Figure 2.24) would make a
sprite continually chase another around the screen:

25	http://pygame-zero.readthedocs.io/en/latest/hooks.html

Figure 2.24

In event-driven applications, such as a game
programmed in Kodu, you can think of all the
different event conditions as sitting inside one big
‘repeat forever’ loop. It’s easy to program the same
idea in Scratch, as in the following example (Figure
2.25) which uses the W, A, S and D keys to move a
sprite around the screen.

Figure 2.25

Much the same thing happens in PyGame Zero’s
main game loop in Python:(25)

while game_has_not_ended():
 process_input()
 update()
 draw()

You can nest one repeating block of code inside
another. The ‘crystal flower’ programs in Logo use
this idea. For example (Figure 2.26):

http://pygame-zero.readthedocs.io/en/latest/hooks.html

66

Programming

Figure 2.26

from turtle import *

for i in range(6):
 for j in range(5):
 forward(100)
 right(72)
 right(60)

Repetition can be combined with selection, so that
a repeating block of code is repeated as many times
as necessary, until or while a certain condition is
true. There’s a subtle but important distinction here.
The <code> in a ‘repeat until <condition> <code>’
loop is executed when the <condition> is false, but
the code in the ‘while <condition> <code>’ loop is
executed when the <condition> is true.

Compare (Figure 2.27):

Figure 2.27(26)

26	Note that this only works correctly the first time it is run. Can you work out why?

and:

guess = 0
answer="no"

while answer == "no":
 guess = guess+1
 answer=input("Is your number " + str(guess)
+"? (type yes or no)")

print("Your number is " + str(guess) +"!")

Linear search in Scratch and Python

Scratch and Snap! only provide ‘repeat until’ loops,
whilst Python only offers ‘while’ loops, which is
an important teaching point as pupils move from
programming in one language to the other.

Sometimes it can be useful to break out of a loop
before the end, and Python provides break and
‘continue’ commands to allow this. The break jumps
straight out of the loop, running whatever code
comes next:

sentence = input('Give me a sentence: ')
firstword = ''
for letter in sentence:
 if letter==' ':
 break
 firstword = firstword + letter
print ('The first word was ' + firstword)

Finding the first word of a sentence in Python using
break

The continue, on the other hand, skips the rest
of the code inside the loop but then goes back to
beginning of the repeating loop, with the iterator
moved on one point:

sentence = input('Give me a sentence: ')
nospaces = ''
for letter in sentence:
 if letter==' ':
 continue
 nospaces = nospaces + letter
print ('Without spaces, you get ' + nospaces)

Stripping the spaces from a sentence in Python using
continue

67

Programming

 Classroom activity ideas

●● Ask pupils to use simple repetition commands to
produce a ‘fish tank’ animation in Scratch, with
a number of different sprites each running their
own set of repeating motion instructions. This
can be made more complex by including some
selection commands to change the behaviour of
sprites as they touch one another.

●● Encourage pupils to experiment with ‘crystal
flower’ programs in Scratch, Logo, Python or
other languages that support turtle graphics, and
investigate the effect of changing the number of
times a loop repeats, as well as the parameters
for the commands inside the loop. What
combination of numbers produces complete,
symmetrical ‘flowers’? What numbers produce
particularly aesthetically pleasing images? There
are some great opportunities to link computing
with spiritual, social and cultural education here,
noting that traditional Islamic art uses repeated
geometric patterns.

●● Simple game programming in Scratch, Kodu or
PyGame Zero will often use a combination of
repetition and selection. Pupils could program a
simple, one-player squash game by writing scripts
for the ball which make it move repeatedly
around the court until hitting the racquet or
the back wall. The racquet script could use the
event-driven loop above, but restrict movement
to just up and down. Scratch has a built-in (if on
edge bounce) command, so the trickiest thing
here is determining what should happen to the
ball when it hits the bat. Once pupils have a game
like this working, they could adapt it to make a
two-player version like the classic Pong video
game.

 Further resources

Barefoot Computing (2014) Repetition. Available
from http://barefootcas.org.uk/programme-of-
study/use-repetition-programs/repetition (free, but
registration required).

Berry, M. (2014) Scratch 2.0 Fishtank Game (tutorial).
YouTube. Available from www.youtube.com/
watch?v=-qTZ5bFEdC8

Code Club World (n.d.) The Monty Hall problem in
Python. Available from http://projects.codeclubworld.
org/en-GB/09_python_archive/05/Gameshow.html
qv Krauss and Wang, 2003.

Digital Schoolhouse (n.d.) Dance scripts. Available
from www.digitalschoolhouse.org.uk/workshops/
get-algo-rhythm

Raspberry Pi Learning Resources (n.d.) Drawing
snowflakes with Python Turtle. Available from www.
raspberrypi.org/learning/turtle-snowflakes/ (qv
www.youtube.com/watch?v=JO2BTc7s38I).

Modularity
The above ideas of sequence, selection and
repetition are covered at Level 2 in the curriculum,
but remain conceptually and practically important
as pupils continue programming at Level 3 and
beyond. At Level 3, pupils should be introduced
to modularity in their programming, making use of
ideas such as procedures and functions to bring
computational thinking concepts like decomposition
and abstraction into their coding and planning.

Procedures and functions (and other modular
ideas such as classes) allow programs to be written
with a far clearer structure, better reflecting the
decomposition and abstraction that went into their
design: just as we use decomposition to break a
problem down into smaller problems, so modularity
allows us to build programs up out of smaller parts.
Similarly, as abstraction allows us to set to one side
details, so modularity means that we can hide the
details of specific implementation within procedure,
function or class definitions.

Modularity allows for better generalisation too:
often someone else might have written a function
that solves part of a problem – typically we can
simply call that function, perhaps part of a standard
library, from our program without generally
concerning ourselves with how they implemented
this. Useful as it is to know algorithms for search
and sort, most software developers will just take
those as given. Most of the time, sorting a list in
Python involves simply calling the built-in sort
function, rather than writing your own code to
implement bubble sort, quicksort or one of the
other algorithms.

http://barefootcas.org.uk/programme-of-study/use-repetition-programs/repetition
http://barefootcas.org.uk/programme-of-study/use-repetition-programs/repetition
http://www.youtube.com/watch?v=-qTZ5bFEdC8
http://www.youtube.com/watch?v=-qTZ5bFEdC8
http://projects.codeclubworld.org/en-GB/09_python_archive/05/Gameshow.html
http://projects.codeclubworld.org/en-GB/09_python_archive/05/Gameshow.html
http://www.digitalschoolhouse.org.uk/workshops/get-algo-rhythm
http://www.digitalschoolhouse.org.uk/workshops/get-algo-rhythm
https://www.raspberrypi.org/learning/turtle-snowflakes/
https://www.raspberrypi.org/learning/turtle-snowflakes/
http://www.youtube.com/watch?v=JO2BTc7s38I

68

Programming

sorted ([31, 41, 59, 26, 53, 58, 97])

To check if a number is prime or not, you can
write your own function, or you can just use the
‘isprime’ function from the number theory module
in SymPy:(27)

from sympy.ntheory import
isprimeprint(isprime(1301))

Modularity also makes it easy for a programmer to
reuse her own code between different projects,
as well-constructed functions and classes can be
moved between programs quite easily.

Modularity is important for collaborative software
development, as it makes it easy to share out
across a team the work of writing software with
individuals (or pairs) taking responsibility for
implementing the detail of particular elements,
according to agreed specifications.

Modularity helps with testing and debugging too,
as each function, procedure or class can be tested
independently of the others, making sure it does
exactly what it’s supposed to do. For this to work,
it’s important that the modular code doesn’t
introduce unpredictable side effects which affect
how other procedures or the main program itself
operates.

Modularity also makes it easy to maintain a
program, gradually or dramatically improving
efficiency. For example, a function which returns the
highest common factor of a couple of numbers can
be replaced by a more efficient one – the outside
program calling this function will work, irrespective
of which version of the function is used, but one
version is (very much) faster than the other.

Figure 2.28

27	A Python library for symbolic mathematics, www.sympy.org/

def hcf(a,b):
 bestsofar=1
 test=1
 while test <= a:
 if (a % test == 0) and (b % test == 0):
 bestsofar = test
 test = test + 1
 return bestsofar

Inefficient algorithm to find highest common factors in
Snap! and Python

Figure 2.29

def hcf(a,b):
 if a == 0:
 return b
 else:
 return hcf (b % a, a)

Euclid’s (recursive) algorithm to find highest common
factor in Snap! and Python

Procedures

Procedures are a simple way of using modularity.
We group together code with a particular purpose
and give it a name. Then, rather than having to type
the code each time we want to use it, we simply call
the name we’ve given it.

To create a procedure in Scratch we use the ‘Make
a Block’ button; in Python, we write code to define
the procedure:

def procedure:
 <procedure code goes here>

http://www.sympy.org/

69

Programming

Take for example a procedure to draw a square
(Figure 2.30):

Figure 2.30

from turtle import *

def square():
 for i in range(4):
 forward(50)
 right(90)

Procedure for a turtle graphics square in Scratch and
Python

Then, code to draw a pattern of squares becomes
easier to write, and to understand (Figure 2.31):

Figure 2.31

setx(-220)
clear()
for i in range(5):
 pendown()
 square()
 penup()
 forward(100)

Scratch and Python code for drawing five squares
(Figure 2.32) using the above procedure

Figure 2.32

Parameters

You can pass values (numbers or other data such as
strings and lists) to procedures, using generalisation
to make procedures much more flexible. We call
these values ‘parameters’. For example, we can
generalise our square procedure to make another
procedure which draws a regular polygon with sides
of any given length (Figure 2.33):

Figure 2.33

def polygon(sides, length):
 for i in range(sides):
 forward(length)
 right(360./sides)

Procedure for a turtle graphics regular polygon in
Scratch and Python

We can then use this procedure to make more-
complex patterns (Figure 2.34):

Figure 2.34

70

Programming

clear()
edge = 20
for i in range(5):
 polygon(6, edge)
 edge = edge + 20

Scratch and Python code to draw a nest of hexagons
(Figure 2.35) using the above procedure

Figure 2.35

Functions

Simply, functions are procedures that return values
to the code that called them, which might include
another function. Whereas procedures help with
structuring what a program does, functions come
into their own for decomposing and abstracting the
computation that the program performs.

Thus, to print the average (mean) of a list of
numbers with a procedure, we might do:

def mean(list):
 total = 0.
 for item in list:
 total = total + item
 average = total / len(list)
 print('the mean is ' + str(average))

mean([3,4,5,9])

... whereas a function would simply work out the
average and then let the outside program decide
what to do with that; it could be printing, or it
could be updating a record, or using it in another
calculation or whatever. This provides much more
flexibility.

def mean(list):
 total = 0.
 for item in list:
 total = total + item
 return total / len(list)

The inability to create functions that return values
is one of the limitations of Scratch but Snap! allows
this, which makes it useful for a much broader range
of computation. Thus, for example, we can write a
function which takes a decimal number and returns
the binary equivalent (Figure 2.36):

Figure 2.36

def dec2bin(decimal=0):
 if decimal == 0:
 return '0'
 binary = ''
 while decimal > 0:
 binary = str(decimal % 2) + binary
 decimal = decimal // 2
 return (binary)

Snap! and Python functions for converting decimal
numbers to a string of bits as their binary
representation. Note that Python has a built-in function
for this: bin()

Snap! and Python also allow functions to be
passed as arguments to other, higher order,
functions. For example, converting a list of numbers
into binary can be done using the higher order map
function, which takes a function and applies it to
every element of a list, returning a list as a result
(Figure 2.37):

Figure 2.37

list(map(dec2bin,[65,67,83]))

Mapping the decimal-to-binary conversion function
above over a list of three numbers

71

Programming

Functions become important in computer science
and software engineering later on, partly because
it’s easier to reason logically and mathematically
about what a function does, and also because
functions, at least in strict, functional programming
languages such as Haskell, cannot have side effects,
which is important when safety and security are of
primary concern.

Recursion

Procedures and functions can refer back to
themselves.

Fractals are geometrical figures where each part
of the figure is a smaller version of the whole. We
can draw these in Scratch or Python by defining a
procedure which calls itself (Figure 2.38).

Figure 2.38

from turtle import *

def tree(size):
 if size > 1:
 forward(size)
 left(20)
 tree(size*0.5)
 right(35)
 tree(size*0.7)
 left(15)
 forward(-size)
 else:
 return

Procedures to draw fractal ‘trees’ in Scratch and Python

Figure 2.39

We can define functions recursively, for example,
to work out the factorial of a number (that is, the
product of all the integers up to and including it,
represented mathematically as ! – i.e. 4! = 1 x 2 x 3
x 4) we could code (Figure 2.40):

Figure 2.40

def factorial(n):
 if n == 0:
 return 1
 else:
 return n * factorial (n-1)

Functions (or procedures) that call themselves allow
the sort of recursive decomposition of a problem
that divide-and-conquer algorithms are built on –
you could easily implement binary search this way.

In both of the examples above, note that there’s
an exit condition inside the recursive function or
procedure; otherwise the code could keep calling
itself forever.

72

Programming

Whilst recursion is quite a subtle idea, and not one
which all pupils are likely to ‘get’ immediately, once
pupils do understand it and can apply it, it becomes
a very powerful way of thinking about problems
and systems, and can offer a far more elegant way
of expressing computational solutions, both as
algorithms and as code, than iterating over lists or
around loops.

Class

Another example of modularity is the idea of the
‘class’. One way of thinking about a class is as
setting up a new data structure to store the state
or properties of a particular category of things,
together with functions or methods that describe
the behaviours of things in that category, including
how their states might change. A member of the
class is called an object, and this approach to
programming is described as ‘object oriented’.

We might think of a class of cars, and a particular
car as an object in that class. The properties of any
particular car might include things like its position,
its speed, its direction, its engine capacity, its fuel
level, its fuel consumption and so on. We could
define methods which operate on all objects in the
class, such as ‘accelerate’, ‘turn left’ or ‘put petrol
in’, which would change some of the properties of
any object to which they were applied. We’re using
abstraction here as we define the class of objects,
its properties and methods, to implement those
that are relevant for our problem, but also to hide
within the definition of the class the details of the
implementation.

Whilst most teachers are unlikely to want to
teach about classes and objects at Levels 3 and
4, the combination of abstract data structure and
associated methods can be useful. For example, we
can implement fractions arithmetic by defining a
new class in Python and overloading the standard
arithmetic operators so that they become methods
to operate on objects in this class. The properties
of objects in the class are simply the numerator
and denominator (in their simplest terms); methods
could include creating a new fraction, printing the
value of a fraction, adding two fractions together,
finding the difference between two fractions and
so on.

def hcf(a,b):
 if a == 0:
 return b
 else:
 return hcf (b % a, a)

class fraction:

 def __init__(self,top,bottom):
 gcd=hcf(top,bottom)
 self.numerator=top//gcd
 self.denominator=bottom//gcd

 def __str__(self):
 return str(self.numerator)+"/"+str(self.
denominator)

 def __add__(self,other):
 newnum=self.numerator * other.denominator + \
 other.numerator * self.denominator
 newden=self.denominator * other.denominator
 return fraction(newnum,newden)

 def __sub__(self, other):
 return(self + fraction(-
other.numerator,other.denominator))

This implementation of a fraction class in Python
always stores each in its lowest terms, using the helper
hcf (highest common factor) function to simplify by
dividing by the highest common factor of numerator and
denominator. Note also how subtraction is defined using
the addition method

Notice that a person – perhaps another
programmer – using our fraction class can type
things like ‘print(fraction(2,3)+fraction(1,8))’ and
get back the correct response without needing to
know how this calculation is performed.

Activities

Turtle graphics are a great way to introduce pupils
to some of the ideas of procedures. Get pupils
to create custom blocks to draw simple shapes
(rectangles, squares, trapeziums) and then use
these to create a drawing of a house. Get pupils
to generalise their procedure for drawing squares
so that it draws regular polygons of any size, and
explore the repeating patterns which they can use
with this as a building block.

Cryptography is a great way to introduce pupils to
some of the ideas of functions, creating functions
which take plain text (and a key) and encrypt it, or
take cipher text (and a key) and then decrypt it.
Pupils could extend these ideas further by writing
a function which takes a message and converts it
to Morse code, or vice versa. Pupils could write

73

Programming

a function to do frequency analysis on a piece of
text, counting how many times each letter of the
alphabet occurs: one approach would be to write
a function to count how many times a particular
character comes up, and then to use ‘map’ to apply
this to all 26 letters, producing a list as a result.

Pupils could extend the idea of the fractions
arithmetic class to include multiplication, division
and comparisons, or even mixed number arithmetic.

 Further resources

BBC Bitesize (n.d.) Procedures and functions.
Available from www.bbc.co.uk/education/guides/
zqh49j6/revision; and Functions, procedures and
modules. Available from www.bbc.co.uk/education/
guides/z9hykqt/revision

Berry, M. (2016) Fractral tree. Scratch program,
available from https://scratch.mit.edu/
projects/107864391/#editor [29/12/16].

Berry, M. (2016) Trees. Python program, available
from https://trinket.io/python/6ffbb68412
[29/12/16].

Berry, M. (2016) Fractions. Python class fragment,
available https://trinket.io/python/231b9080f3
[29/12/16].

Berry, M. (2016) Fractions2. Snap! functions, availa-
ble from http://snap.berkeley.edu/snapsource/snap.
html#present:Username=mgberry&ProjectName=-
fractions2 [29/12/16].

Berry, M. (2016) Bindec. Snap! functions, available
from http://snap.berkeley.edu/snapsource/snap.htm-
l#present:Username=mgberry&ProjectName=bind-
ec [29/12/16].

Berry, M. (2016) Binary and decimal conversion.
Python functions, available from https://trinket.io/
python/a529b90900 [29/12/16].

Digital Schoolhouse (n.d.) Generating art: Creating
a shape calculator in Scratch. Available from www.
digitalschoolhouse.org.uk/workshops/generating-
art-creating-shape-calculator-scratch

Hofstadter, D. (1999) Gödel, Escher, Bach: An eternal
golden braid. New York, NY: Basic Books Inc.

Papert, S. (1980) Mindstorms: Children, computers and
powerful ideas. New York, NY: Basic Books Inc.

Raspberry Pi Learning Resources (n.d.) Materials
on cryptography in Python. Available from www.
raspberrypi.org/learning/secret-agent-chat/

Raspberry Pi Learning Resources (n.d.) Morse
Code decoder. Available from www.raspberrypi.
org/learning/morse-code-virtual-radio/; qv
an implementation in microPython for the
BBC micro:bit. Available from http://microbit-
micropython.readthedocs.io/en/latest/tutorials/
network.html

Raspberry Pi Learning Resources (n.d.) Resources on
visualising sorting algorithms in Python. Available
from www.raspberrypi.org/learning/visualising-
sorting-with-python/

Data Structures
Alongside the programming control structures
of sequence, selection, repetition and modularity,
implementing any algorithm or computational
abstraction involves deciding how the computer is
going to manage the information to be processed –
how the data on which the program draws are to
be stored and organised.

Not all data structures are available in all
programming languages, although often more-
complex data structures can be built up from
simpler ones. In object-oriented languages,
classes can be created to implement specific data
structures out of more primitive ones, as in the
example of fractions earlier where we implement
a simple fraction data type using Python’s tuples
(essentially, ordered lists of two elements).

Variables
Pupils are introduced to variables at primary school:
a variable is a simple data structure. It is a way of
storing one piece of information somewhere in the
computer’s memory whilst the program is running,
and getting that information back later. There’s a
degree of abstraction involved here – the detail of
how the programming language, operating system
and hardware manage the storing and retrieving of
data from the memory chips inside the computer
isn’t important to us as programmers, just as these

http://www.bbc.co.uk/education/guides/zqh49j6/revision
http://www.bbc.co.uk/education/guides/zqh49j6/revision
http://www.bbc.co.uk/education/guides/z9hykqt/revision
http://www.bbc.co.uk/education/guides/z9hykqt/revision
https://scratch.mit.edu/projects/107864391/#editor
https://scratch.mit.edu/projects/107864391/#editor
https://trinket.io/python/6ffbb68412
https://trinket.io/python/231b9080f3
http://snap.berkeley.edu/snapsource/snap.html#present:Username=mgberry&ProjectName=fractions2
http://snap.berkeley.edu/snapsource/snap.html#present:Username=mgberry&ProjectName=fractions2
http://snap.berkeley.edu/snapsource/snap.html#present:Username=mgberry&ProjectName=fractions2
http://snap.berkeley.edu/snapsource/snap.html#present:Username=mgberry&ProjectName=bindec
http://snap.berkeley.edu/snapsource/snap.html#present:Username=mgberry&ProjectName=bindec
http://snap.berkeley.edu/snapsource/snap.html#present:Username=mgberry&ProjectName=bindec
https://trinket.io/python/a529b90900
https://trinket.io/python/a529b90900
http://www.digitalschoolhouse.org.uk/workshops/generating-art-creating-shape-calculator-scratch
http://www.digitalschoolhouse.org.uk/workshops/generating-art-creating-shape-calculator-scratch
http://www.digitalschoolhouse.org.uk/workshops/generating-art-creating-shape-calculator-scratch
https://en.wikipedia.org/wiki/Douglas_Hofstadter
http://www.raspberrypi.org/learning/secret-agent-chat/
http://www.raspberrypi.org/learning/secret-agent-chat/
http://www.raspberrypi.org/learning/morse-code-virtual-radio/
http://www.raspberrypi.org/learning/morse-code-virtual-radio/
http://microbit-micropython.readthedocs.io/en/latest/tutorials/network.html
http://microbit-micropython.readthedocs.io/en/latest/tutorials/network.html
http://microbit-micropython.readthedocs.io/en/latest/tutorials/network.html
http://www.raspberrypi.org/learning/visualising-sorting-with-python/
http://www.raspberrypi.org/learning/visualising-sorting-with-python/

74

Programming

details aren’t important when we’re using the
clipboard for copying and pasting text. One way of
thinking of variables is as labelled shoeboxes, with
the difference that the contents don’t get removed
when they are used.

The concept of a variable is one that many pupils
struggle with, and it’s worth showing them lots
of examples to ensure they grasp this. A classic
example which pupils are likely to be familiar with,
particularly from computer games, is that of score.

You can use variables to store data input by the
person using your program, and then refer to this
data later on.

Figure 2.41

name = input ('Hello, what is your name?')
print ('Hello, ' + name)
print (name + ' is a very nice name.')

Storing user input in a variable and referring to it in
Scratch and Python

Here (Figure 2.41), ‘name’ is a variable in which we
store whatever the user types in; it is then used a
couple of times in Scratch’s or Python’s response. In
the case of Scratch, ‘answer’ is a special temporary
variable used to store for the time being whatever
the user types in. Notice that variables can store
text as well as numbers. Other types of data can be
stored in variables too, depending on the particular
programming language you are working in.

Variables can also be created by the program,
perhaps to store a constant value so that we can
refer to it by name (Pi below), or the result of a
computation (Circumference in the code below), or
random numbers generated by the computer (for
example Radius below) (Figure 2.42):

Figure 2.42

pi = 3.14
radius = randint (1,10)
circumference = 2 * pi * radius
print ('If a circle has a radius of ' + str(radius) + 'cm.')
print ('Its circumference would be ‘' + str(circumference) + 'cm.')

Random circumference calculator in Scratch and Python

The idea that the contents of the ‘box’ are still
there after the variable is used is sometimes a
confusing one for those learning to program. Have a
look at the following code and decide what will be
displayed on the screen (Figure 2.43):

Figure 2.43

a = 10
b = 20
a = b
print ('a is ' + str(a))
print ('b is ' + str(b))

Variable assignment in Scratch and Python

You should see ‘a is 20’ followed by ‘b is 20’. Try it!
Was it easier to understand in Scratch than Python?
(Dehnadi and Bornat, 2006; but qv Bornat, 2014).

In Kodu and other game programming, variables
are useful for keeping track of rewards, such as a
score, and for introducing some sort of limit, such
as a time limit or health points that reduce each
time you’re hit. Kodu’s event-driven approach allows
particular actions to be done when variables reach
a predetermined level.

75

Programming

One particularly useful example of variables in
programming is as an iterator – this is a way of
keeping track of how many times you’ve been
round a repeating loop and of doing something
different each time you do. To do this in Scratch we
initialise a counter to zero or one at the beginning
of the loop and then add one to it each time we
go round the loop. In Python, we can iterate across
values in a list. For example, the following program
displays the eight times table (Figure 2.44):

Figure 2.44

for i in range (1,13):
 print (str(i) + ' x 8 = ' + str(i*8))

Code for the eight times table in Scratch and Python.
Note that range (1,13) means the integers from 1 up to
but not including 13

As we have seen, you can also use an iterator like
this to work with strings (words and sentences)
one letter at a time, or through lists of data one
item at a time. Take care with the beginning and end,
as it’s all too easy with iterators to start or end too
soon or too late.

 Classroom activity ideas

●● Get pupils to create a mystery function
machine in Scratch or Python, which accepts
an input, stores this in a variable and then uses
mathematical operators to produce an output
shown on screen. Setting the display to full
screen in Scratch, or running at the command
line in Python, pupils can challenge one another
(and you) to work out what the program does
by trying different inputs.

●● Pupils can use variables in their games programs,
in say Scratch or Kodu, using a score to reward
the player for achieving particular objectives
(such as collecting apples) and imposing a time
limit.

 Further resources

Barefoot Computing (n.d.) Variables. Available from
http://barefootcas.org.uk/programme-of-study/
work-variables/variables/ (free, but registration
required).

BBC Bitesize (n.d.) How do computer programs use
variables? Available from www.bbc.co.uk/guides/
zw3dwmn

Berry, M. (2014) How to program a Scratch 2.0 times
table test. YouTube. Available from www.youtube.
com/watch?v=YHGyPfGg1x8

Khan Academy Computing (2013) Teaching variables:
Analogies and approaches. Available from http://cs-
blog.khanacademy.org/2013/09/teaching-variables-
analogies-and.html

Notes and tutorial on variables in Scratch. Available
from http://wiki.scratch.mit.edu/wiki/Variable and
https://wiki.scratch.mit.edu/wiki/Variables_Tutorial

Lists

A list is an ordered collection of data, each element
of which is of the same type (normally), and where
we can reference each by its position in the list.
Remember that this is simply an abstraction
that allows us to store and retrieve data in the
computer’s memory, but often it’s a very helpful
abstraction when we are dealing with lots of related
data, such as marks for pupils in a test, words
in a sentence, scores in a game, notes in a tune,
locations on a route, etc. Just as we might think of
variables as a special sort of shoebox in which a
single piece of information can be kept, so we could
think of a list as a deck of cards, on each of which a
piece of information can be recorded.

In order to work with variables, we need only a few
basic operations – creating the variable, retrieving
information from the variable and storing new
information to it. For lists, things are more complex.
Scratch, which has a relatively basic implementation
of lists as a data structure, allows the following
operations (Figure 2.45):

http://barefootcas.org.uk/programme-of-study/work-variables/variables/
http://barefootcas.org.uk/programme-of-study/work-variables/variables/
http://www.bbc.co.uk/guides/zw3dwmn
http://www.bbc.co.uk/guides/zw3dwmn
http://www.youtube.com/watch?v=YHGyPfGg1x8
http://www.youtube.com/watch?v=YHGyPfGg1x8
http://cs-blog.khanacademy.org/2013/09/teaching-variables-analogies-and.html
http://cs-blog.khanacademy.org/2013/09/teaching-variables-analogies-and.html
http://cs-blog.khanacademy.org/2013/09/teaching-variables-analogies-and.html
http://wiki.scratch.mit.edu/wiki/Variable

76

Programming

Figure 2.45

These allow data to be added to the end of the
list, items to be deleted from the list, items to be
inserted at any position in the list, the shifting of
items within the list, and the replacement of an
item with something else. We can retrieve the data
stored at any item in the list, find out how long the
list is and check whether a list contains a particular
value or not.

The equivalent commands in Python are as follows.
Note that Python numbers list elements from zero.

list.append('thing')
list.pop(0)
list.insert(0,'thing')
list[0]=’thing’
list[0]
len(list)
'thing' in list

Both Snap! and Python extend much further the
range of commands that can be used to operate
on a list. For example, Python includes a function
to sort a list into order (‘sorted’). Both Snap! and
Python allow lists to be made up of other lists,
which is one way of providing a multi-dimensional
data structure, if that’s needed.

To illustrate lists, let’s take the example of a
shopping list:

●● We start with an empty list: [].
●● We add milk: [‘milk’].
●● We add bread: [‘milk’, ‘bread’].
●● We add butter: [‘milk’, ‘bread’, ‘butter’].
●● We add eggs: [‘milk’, ‘bread’, ‘butter’, ‘eggs’].
●● We can sort the list into alphabetical order:

[‘bread’, ‘butter’, ‘eggs’, ‘milk’].

●● We can check if we need to buy quinoa: no, not
on our list, this time.

●● We buy some eggs, removing that from our list:
[‘bread, ‘butter’, ‘milk’].

●● We remember that we should buy low fat
spread rather than butter: [‘bread’, ‘low fat
spread’, ‘milk’].

●● We count up how many things we need to buy:
three.

Figure 2.46

shopping=[]
shopping.append('milk')
shopping.append('bread')
shopping.append('butter')
shopping.append('eggs')
shopping.sort()
print('quinoa' in shopping)
shopping.remove('eggs')
shopping[shopping.index('butter')]='low fat spread'
print (len(shopping))

Implementing the above operations on a shopping list in
Scratch (see Figure 2.46) and Python. Note that Python
allows us to reference elements of the list by their value,
whereas Scratch only references by position

Python provides a useful mechanism for ‘slicing’
a list to extract particular elements or lists of
elements. For example, take a list of the first ten
prime numbers – primes = [2, 3, 5, 7, 11, 13, 17,
19, 23, 29]. We can get the element primes[0], the
last element (primes[-1]) the first three elements
(primes[:3]) the last three elements (primes[-3]) or
the fourth, fifth and sixth (primes[3:6]). Primes[a,b]
is from the a+1 the position (remembering we
start at zero) up to – but not including – the
b-th position. Negative numbers count from the
last item back. It’s worth practising with this, as it’s
simpler than it sounds.

77

Programming

Python also provides ‘list comprehensions’, which
allow new lists with particular properties to be
created. For example, we can create a list of the
first ten square numbers with the code:

squares = [n * n for n in range(1,11)]

We can then filter this list to produce another of
just the even square numbers from the first ten:

evensquares = [s for s in squares if s % 2 == 0]

Returning to the deck of cards analogy for lists, we
might plan how to implement a random shuffle on
a list.

One algorithm would be to swap the last card with
one of the cards up to and including it, chosen at
random. Then, to swap the last but one card with one
of the ones up to and including it; then the last but
two with one of the ones up to and including it, and
so on until we get back to the first card in the pack
(Fisher and Yates, 1948 [1938]: 26–27; qv Knuth, 1969).

In Scratch we would code (Figure 2.47):

Figure 2.47

In Python this would be:

from random import randint

for currentplace in range(len(pack)-1,-1,-1):
 swapwith = randint(0,currentplace)

pack[currentplace],pack[swapwith]=pack[swap-
with],pack[currentplace]

After shuffling our cards, we might then want to
sort them. Combining lists with recursive functions
allows us to implement divide-and-conquer
algorithms such as quicksort quite elegantly. We can
implement quicksort as a function, which calls itself
on shorter and shorter lists above and below the
pivot for the previous list, until only an empty list is
left, which is trivially already sorted (Figure 2.48).

Figure 2.48

def quicksort(list):
 if len(list)==0:
 return list
 else:
 head = list[0]
 tail = list[1:]
 lower = [x for x in tail if x < head]
 upper = [x for x in tail if x >= head]
 return quicksort(lower) + [head] + quicksort(upper)

Recursive quicksort in Snap! and Python. Notice
the escape clause common to the conquer stage of
recursive divide-and-conquer algorithms

 Classroom activity ideas

●● Pupils could create lists of notes, perhaps with
a paired list of durations, to play in Scratch or
Sonic Pi.

●● Pupils could explore implementing the ‘perfect’
riffle shuffle on a deck of cards using list
manipulations, splitting the pack in two equal
halves and taking cards alternately from top and
bottom halves (Diaconis et al., 1983).

●● Pupils could implement one or more of the sort
algorithms discussed on pages 20 - 21 using list
manipulations.

●● Can pupils write programs to compute
descriptive statistics for lists of numerical values
(for example, to find the mean, median and
mode, the minimum or maximum, the total, the
standard deviation)?

●● Can pupils write a program which would
generate valid National Lottery results giving
results as ordered lists, noting that no number
may occur more than once)?

78

Programming

 Further resources

Code Club World (n.d.) Comment generator.
Available from http://projects.codeclubworld.org/
en-GB/09_python_archive/06/Compliment%20
Generator.html

Computing at School (n.d.) Fun with lists by Mark
Tranter, looking at how Python’s built in list
functions could be implemented. Available from
http://community.computingatschool.org.uk/
resources/2683 (free registration).

Harvey, B. (1997) Computer science logo style: Symbolic
computing (volume 1). Boston, MA: MIT Press.

Raspberry Pi Learning Resources (n.d.) Magic 8 ball.
Available from www.raspberrypi.org/learning/magic-
8-ball/

Raspberry Pi Learning Resources (n.d.) Sonic Pi
lesson on data structures. Available from https://www.
raspberrypi.org/learning/sonic-pi-lessons/lesson-4/
plan/

Other data structures
Other data structures are available.

Whilst Scratch does a good job of hiding this from
the programmer, variables themselves are more
complex than they might appear, as a variable might
store data of one of several different data types:
perhaps a number, but also possibly a Boolean value
(true or false), or text, each of which might be
represented quite differently inside the computer,
and for each of which only certain operations
would make sense.

Some programming languages are much more
demanding (‘strongly typed’) in their treatment
of data types, demanding that these be declared
explicitly before the variable is ever used. Python
is relatively easy-going about data types, but even
in Python it is sometimes necessary explicitly
to change (or ‘cast’) a variable from one type to
another. In some of the examples above we use
‘str(x)’ to convert a number, ‘x’, into a string so that
we can join it to other strings; or ‘int(y)’ to take a

28	See https://docs.python.org/3.5/tutorial/introduction.html#strings and https://docs.python.org/3.5/library/stdtypes.html#string-
methods. Python’s Natural Language Toolkit provides powerful libraries for working with larger bodies of text: www.nltk.org/

string of user input and convert it into a number so
that we can compare it with other numbers.

Strings of text are quite different from numbers,
and can be thought of as simply lists of letters or
other characters. Thus, some of the operations
we might perform on a list also make sense when
working with strings – it makes sense to ask how
long a string is, to be able to reference particular
characters directly, to be able to replace one
character with another (such as converting a string
between different cases), or to be able to join two
strings together (concatenation).

Scratch provides a few blocks for working with
strings (Figure 2.49):

Figure 2.49

The equivalent commands in Python are:

'hello ' + 'world'
'world'[0]
len('world')

Python provides the same slicing tools for strings as
it does for lists, thus if:

cas='Computing At School'

then:

●● cas[0] is C

●● cas[-1] is l

●● cas[:9] is Computing

●● cas[-6:] is School

●● cas[10:12] is At

But as with lists, Python’s string-handling capabilities
extend far beyond this.(28)

A variable can be thought of as a single number
and a list as an ordered, one-dimensional set of
numbers. We could also have two-dimensional

http://projects.codeclubworld.org/en-GB/09_python_archive/06/Compliment%20Generator.html
http://projects.codeclubworld.org/en-GB/09_python_archive/06/Compliment%20Generator.html
http://projects.codeclubworld.org/en-GB/09_python_archive/06/Compliment%20Generator.html
http://community.computingatschool.org.uk/resources/2683
http://community.computingatschool.org.uk/resources/2683
http://www.raspberrypi.org/learning/magic-8-ball/
http://www.raspberrypi.org/learning/magic-8-ball/
https://www.raspberrypi.org/learning/sonic-pi-lessons/lesson-4/plan/
https://www.raspberrypi.org/learning/sonic-pi-lessons/lesson-4/plan/
https://www.raspberrypi.org/learning/sonic-pi-lessons/lesson-4/plan/
https://docs.python.org/3.5/tutorial/introduction.html#strings
https://docs.python.org/3.5/library/stdtypes.html#string-methods
https://docs.python.org/3.5/library/stdtypes.html#string-methods
http://www.nltk.org/

79

Programming

(or greater) collections of data. These are called
arrays. Python doesn’t support arrays as standard
(although it offers good support through the
NumPy library(29)), nor does Scratch. It is possible in
Python and Snap! to construct higher-dimensional
collections of data using nested lists, but this is
unlikely to be particularly appealing or accessible to
pupils at this stage.

Rather than working in Python or Snap! for two-
dimensional arrays of data, revisiting Excel may be
much more useful and accessible, given the direct
and immediate view of all the contents of the
array. Excel (and other spreadsheet software such
as Google Sheets) can be used for genuinely two-
dimensional data, such as heights, temperatures or
rainfall at locations on a grid; or the presence or
absence of a cell in a Life simulation; or greyscale
values for a monochrome pixel bitmap. It allows
calculations to be done to and with these data.

Many pupils might be familiar with Minecraft, in
which the world is represented as a 3D array of
data about the block at each location. Strategy or
construction games, such as Sim City or Civilisation,
represent the world as a 2D array. Pupils can
develop an understanding of arrays, and practise
their Python programming skills, using a Python
API for Minecraft, which is provided as standard for
the Raspberry Pi and is also available, with a little
ingenuity, on other platforms. In the Raspberry Pi
version of Minecraft, we can create a floating cube
of 1000 stone blocks using this code:

29	www.numpy.org/
30	From www.raspberrypi.org/learning/getting-started-with-minecraft-pi/worksheet/, CC by-sa Raspberry Pi Foundation.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
stone = 1
x, y, z = mc.player.getPos()
mc.setBlocks(x+1, y+1, z+1, x+11, y+11, z+11, stone)

Notice the three parameters necessary to specify
locations in this 3D virtual world (see Figure 2.50).

Figure 2.50(30)

Whilst a table in a spreadsheet could be a 2D array
of data, more often we might think of a table of
values in a spreadsheet or a database as providing
a structured collection of data about a number of
different things – each row of the table becomes
a record of an individual case, each column the
different fields of those records. For example, a
spreadsheet might be used by a teacher to track
assessment data for pupils in her class, with each
row storing data on an individual pupil, and each
column recording attainment on particular tasks or
tests, as well as additional personal information such
as name, roll number and date of birth.

(Anonymised example of teacher’s mark book, with thanks to Firefly Learning)

http://www.numpy.org/
http://www.raspberrypi.org/learning/getting-started-with-minecraft-pi/worksheet/

80

Programming

The spreadsheet is really then being used as
a single-table database, and our focus moves
somewhat from performing computation
to managing and processing this structured
information.

Further tables, typically in a database now rather
than a spreadsheet, could link to these data, perhaps
providing further personal details, or information
about the objectives of each assessment. Relating
tables of data in this way means that we only need
to store information once, in one place, but can
use it in many different ways – typically we would
use other software to manage this database (a
‘relational database management system’ [RDBMS],
such as SQLite, MySQL or Microsoft Access).

Pupils learn to ‘structure related items of information’
at Level 2. At Level 3, pupils should ‘represent and
manipulate structured information in programs,
or databases’. Pupils certainly don’t need to create
database management programs themselves in order
to do this, but can write programs using APIs to work
with data stored in a standard database.

Whilst not supporting arrays or databases without
additional libraries, Python does include another very
useful data structure, the dictionary. Like a normal
dictionary, this makes it easy to look up one value
(the key) and get back a bit of associated information:
the value. Unlike normal dictionaries, Python
dictionaries aren’t in any particular order – they are
unordered collections of key:value pairs, where the
value is stored or retrieved using the associated key.

For example, the command:

languages=dict([('Alex', 'Python'), \
		 ('Bobbie', 'Snap!'), \
		 ('Chris', 'Python'), \
		 ('Drew', 'Scratch'), \
		 ('Elliott', 'Visual Basic')])

creates a new dict, ‘languages’, in which we might
store the preferred language of each of five
students. Notice that no two students have the
same name, but a couple of them like the same
language – which is fine.

31	https://networkx.github.io/

We can type:

print(languages['Alex'])

and get back the response ‘Python’, as expected.

We can change an entry too:

languages['Drew']='Snap!'

We can remove an entry from the dict:

del languages['Bobbie']

And we can add a new entry very simply:

languages['Frankie']='Kodu'

Graphs were discussed on page 30 as a particularly
useful form of computational abstraction. Graphs
can be stored and manipulated programmatically
as lists of edges, plus perhaps associated ‘weights’,
or as an array showing which nodes are connected
to which, with the weight of the edge given in the
array. Python has a number of libraries for working
with graphs, including NetworkX,(31) and a variant
of Snap!, Edgy, provides tools for dealing with graphs
using a block-based language.

As mentioned earlier (page 72), object orientation
allows programmers to define their own classes of
abstract data types – in which different properties
of objects can be drawn together – as well as the
methods which operate on objects in those classes.

 Classroom activity ideas

●● You can set pupils many challenges with string
handling – can they remove all the spaces or all
the vowels from a sentence? Can they reverse
the order of letters in a word? Can they make
a list of all the words in a sentence and order
these alphabetically? Can they count how many
times each letter occurs in a piece of text? And
so on.

●● Can pupils use a dictionary to convert text into
Morse code or vice versa? Can they then play
the Morse code?

https://networkx.github.io/

81

Programming

●● If you have access to Raspberry Pis (or can
install Python scripting for Minecraft on another
platform) encourage pupils to experiment
building things, or changing things, in Minecraft
using Python programming. Can they create
charts in Minecraft to visualise data? Can they
import a low-res photo into Minecraft?

●● If you have a school weather station, could
pupils use their programming to interface with
this, adding readings to an external database, or
analysing or visualising data from a database of
weather records?

 Further resources

BBC Bitesize (n.d.) Arrays and lists. Available from
www.bbc.co.uk/education/guides/zy9thyc/revision

BBC Bitesize (n.d.) Databases. Available from www.
bbc.co.uk/education/topics/zwm6fg8

Code Club World (n.d.) Introductory Python game
inspired by Minecraft, but treating the world
as a 2D array. Available from http://projects.
codeclubworld.org/en-GB/08_python_02/06/
CodeCraft.html

Code Club World (n.d.) Project using a dictionary
to convert ‘text’ speak into English. Available from
http://projects.codeclubworld.org/en-GB/09_
python_archive/08/Text-speak%20Converter.html

Raspberry Pi Learning Resources (n.d.) Activity
covering lists, dictionaries and comprehensions.
Available from www.raspberrypi.org/learning/n-
days-of-christmas/

Raspberry Pi Learning Resources (n.d.) Morse
Code decoder. Available from www.raspberrypi.
org/learning/morse-code-virtual-radio/; qv
an implementation in microPython for the
BBC micro:bit. Available from http://microbit-
micropython.readthedocs.io/en/latest/tutorials/
network.html

Raspberry Pi Learning Resources (n.d.) Resources
on getting started with Minecraft Pi. Available from
www.raspberrypi.org/learning/getting-started-with-
minecraft-pi/

32	See, for example, www.theregister.co.uk/2014/04/09/heartbleed_explained

Richardson, C. (2015) Learn to program with
Minecraft. San Francisco, CA: No Starch Press.

Whale, D. and O’Hanlan, M. (2014) Adventures in
Minecraft. Hoboken, NJ: Wiley.

Can we fix the
Code?
Back in the days when there were very few
computers, which took up a whole room and used
electro-mechanical relays rather than transistors,
there was a story of one machine that just wouldn’t
work as it should – careful investigations revealed
that a moth, a literal ‘bug’, had become lodged
between the blades of a relay switch, stopping the
switch from closing and thus the computer from
operating.

Errors in algorithms and code are still called ‘bugs’,
and the process of finding and fixing these is called
‘debugging’. Debugging can often take much longer
than writing the code in the first place, and whilst
fixing a program so that it does work can bring a
great buzz, staring at code that still won’t work,
apparently no matter what you do, can be the
cause of great frustration too: this can be tricky to
manage in class. It is worth spending time getting
the code right in the first place, through careful
planning, logical reasoning and a good command of
the language, rather than having to spend time fixing
things later. Not all bugs get spotted, and those that
don’t can have profound consequences.(32)

Bugs fall into two main categories – those in the
algorithms, which sometimes are called logic bugs,
and are often due to not quite understanding the
problem properly; and those in the code.

In text-based languages, many of the bugs in the
code are ‘syntax’ errors, where the formal rules of
the language’s vocabulary and grammar haven’t been
adhered to, and so the computer isn’t able to turn
the code you’ve written into machine code that
its CPU can execute. Not all software engineers
see these as ‘bugs’, merely as relatively easy-to-fix
syntax errors which a good IDE or text editor
should prevent from getting made in the first place.
Seemingly cryptic error messages about the syntax

http://www.bbc.co.uk/education/guides/zy9thyc/revision
http://www.bbc.co.uk/education/topics/zwm6fg8
http://www.bbc.co.uk/education/topics/zwm6fg8
http://projects.codeclubworld.org/en-GB/08_python_02/06/CodeCraft.html
http://projects.codeclubworld.org/en-GB/08_python_02/06/CodeCraft.html
http://projects.codeclubworld.org/en-GB/08_python_02/06/CodeCraft.html
http://projects.codeclubworld.org/en-GB/09_python_archive/08/Text-speak%20Converter.html
http://projects.codeclubworld.org/en-GB/09_python_archive/08/Text-speak%20Converter.html
https://www.raspberrypi.org/learning/n-days-of-christmas/
https://www.raspberrypi.org/learning/n-days-of-christmas/
http://www.raspberrypi.org/learning/morse-code-virtual-radio/
http://www.raspberrypi.org/learning/morse-code-virtual-radio/
http://microbit-micropython.readthedocs.io/en/latest/tutorials/network.html
http://microbit-micropython.readthedocs.io/en/latest/tutorials/network.html
http://microbit-micropython.readthedocs.io/en/latest/tutorials/network.html
http://www.raspberrypi.org/learning/getting-started-with-minecraft-pi/
http://www.raspberrypi.org/learning/getting-started-with-minecraft-pi/
http://www.theregister.co.uk/2014/04/09/heartbleed_explained

82

Programming

error are generated, which are at least a starting
point for identifying exactly where indentation or
a colon has been missed out or similar. This can be
a good teaching opportunity for emphasising the
importance of spelling, punctuation and grammar in
all pupils’ work.

In graphical languages like Kodu and Scratch it’s
almost impossible to make syntax errors, so as
pupils make the transition from graphical- to text-
based languages, much of their time might be spent
on getting the syntax right.

Much more important than these syntax errors are
the logical or semantic errors, where the code runs
or compiles perfectly but doesn’t quite do what is
intended. These errors are more likely to be about
having the wrong algorithm, of not translating the
ideas of the algorithm into code quite correctly, or
sometimes misunderstanding the semantics – the
meaning – of the commands of the language or
even of how the computer itself operates. Because
it’s normally clear when a program isn’t working
properly (particularly if we test programs, procedures
and functions carefully), it is often easier to address
misconceptions like these in computing than it is in
other subjects, where feedback is less immediate.

Sometimes bugs in algorithms or code only become
apparent in certain circumstances – a program
might function perfectly well most of the time
and then crash (suddenly stop working) very
occasionally. For example, normally a program could
find the mean of a list of numbers by adding them
up and dividing by how many there are, but if given
an empty list, it might attempt to divide by zero,
which in some programming languages would cause
the code to crash. Creating a good, comprehensive
set of test data with known outcomes is important
for tracking down these sorts of bugs in a
systematic way, but even working out from the
input what caused the crash is a great chance for
pupils to put logical reasoning to work.

From primary school onwards, pupils should
be taught to use logical reasoning to detect
and correct errors in algorithms and programs,
so it’s not really enough for pupils to fix their
code without being able to give an explanation
for what went wrong and how they fixed this. In
programming classes, pupils focussed on the task
of writing a program for a particular goal might
want help from you or others to fix their programs.
Tempting as this may be, it’s worth you and they

remembering that the objective in class is not to get
a working program but to learn how to program,
and their being able to debug their own code is a
big part of that.

One way that you can, and should, help is to provide
a reasonably robust, general set of debugging
strategies which they can use for any programming,
or indeed more-general strategies which they can
use when they encounter problems elsewhere.

The Barefoot Computing team suggests a simple set
of four points, emphasising the importance of logical
reasoning:

1.	 Predict what should happen.

2.	 Find out exactly what actually happens.

3.	 Work out where something has gone wrong.

4.	 Fix it.

One way to help predict what should happen is to
get pupils to explain their algorithm and code to
someone else (or even an inanimate object such
as a rubber duck) – in doing so, it’s quite likely that
they will spot where there’s an error in the way
they are thinking about the problem or in the way
they’ve coded the solution.

In finding out exactly what happens, it can be useful
to work through the code, line by line. Seymour
Papert described this as ‘playing turtle’: in a turtle
graphics program, pupils could act out the role of
the turtle, walking and turning as they follow the
commands in the language themselves, or following
the instructions with a pencil on paper. Away from
the easily visualised world of turtle graphics, pupils
could maintain a trace table, keeping a record of
the values of variables and lists as they step through
their code one line at a time. Some IDEs include
debuggers, allowing this process to be automated.
However, the careful thought involved in doing this
by hand might still make it easier to spot, and learn
from, what’s going wrong.

In working out where something has gone wrong,
encourage pupils to look back at their algorithms
before they look at their code: before they can get
started with fixing bugs, they will need to establish
whether it was an issue with their thinking or with
the way they’ve implemented it. Another technique
is to use something like the ‘divide and conquer’
algorithm (for guessing a hidden number) to find a
bug – working out whether the bug is in the first
or second half of the code, or in the first or second

83

Programming

quarter, and so on. Sometimes this is called ‘wolf-
fencing’ – i.e. to find the wolf, build a fence and
listen whether the howl comes from one side or
another; repeat with smaller and smaller areas until
you find the wolf.

Debugging is a great opportunity for pupils to
learn from their mistakes and to get better at
programming. Encourage your pupils to adopt
a ‘growth mindset’, making the most of the
opportunities their bugs present them to learn
more about how to program.

 Classroom activity ideas

●● Pupils are likely to make many authentic errors
in their own code, which they will want to fix.
You might find that it’s worth spending some
time giving pupils some bugs to find and fix in
other programs, both as a way to help develop
strategies for debugging and to help with
assessment of logical reasoning and programming
knowledge. Create some programs with
deliberate mistakes in, perhaps using a range of
logical or semantic errors, and set pupils the
challenge of finding and fixing these. For example,
can pupils find all the errors in the following
Python program, designed to ask ten different
multiplication-test questions?

 import Random
 a = random.randint(1,12)
 b = random.randint(1,12)
 for i in range(l0):
 question = "What is "+a+" x "+b+"? "
 answer = input(question)
 if answer = a*b
 print (Well done!)
 else:
 print("No.")(33)

●● Encourage pupils to debug one another’s code.
One approach is for pupils to work on their own
program for the first part of the lesson and then
to take over their partner’s project, completing
and then debugging it for their friend.

●● A similar paired activity is for pupils to write
code with deliberate mistakes, setting a challenge
to their partner to find and then fix the known
errors in the code.(34)

33	Try online at https://trinket.io/library/trinkets/2da63b4823
34	See https://teachcomputing.wordpress.com/2013/11/23/sabotage-teach-debugging-by-stealth/

 Further resources

Barefoot Computing (2014) Debugging. Available
from http://barefootcas.org.uk/barefoot-primary-
computing-resources/computational-thinking-
approaches/debugging/ (free, but registration
required).

BBC Bitesize (n.d.) What is debugging? Available
from www.bbc.co.uk/guides/ztkx6sg; Writing error-
free code. Available from www.bbc.co.uk/education/
guides/zcjfyrd/revision

Brennan, K. (2010) Debug it! ScratchEd. Available
from http://scratched.gse.harvard.edu/resources/
debug-it

Cutts, Q. (2007) Cribsheet. Available from http://
level1wiki.wikidot.com/cribsheet

Jonassen, D.H. (2004) Learning to solve problems: An
instructional design guide (volume 6). Hoboken, NJ:
John Wiley & Sons.

Berry, M (2014) Switched on Computing Scratch
Projects. Available from http://scratch.mit.edu/
studios/306100/ [29/12/16].

Wikipedia (n.d.) Rubber duck debugging. Available
from http://en.wikipedia.org/wiki/Rubber_duck_
debugging

https://trinket.io/library/trinkets/2da63b4823
https://teachcomputing.wordpress.com/2013/11/23/sabotage-teach-debugging-by-stealth/
http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking- approaches/de
http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking- approaches/de
http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking- approaches/de
http://www.bbc.co.uk/guides/ztkx6sg
http://www.bbc.co.uk/education/guides/zcjfyrd/revision
http://www.bbc.co.uk/education/guides/zcjfyrd/revision
http://scratched.gse.harvard.edu/resources/debug-it
http://scratched.gse.harvard.edu/resources/debug-it
http://level1wiki.wikidot.com/cribsheet
http://level1wiki.wikidot.com/cribsheet
http://scratch.mit.edu/studios/306100/
http://scratch.mit.edu/studios/306100/
http://en.wikipedia.org/wiki/Rubber_duck_debugging
http://en.wikipedia.org/wiki/Rubber_duck_debugging

84

Programming

References
Bornat, R. (2014) Camels and humps: A
retraction. Middlesex University. Available from www.
eis.mdx.ac.uk/staffpages/r_bornat/papers/camel_
hump_retraction.pdf

Dehnadi, S. and Bornat, R. (2006) The camel has
two humps (working title). Middlesex University.
Available at http://www.eis.mdx.ac.uk/research/
PhDArea/saeed/paper1.pdf (accessed 28/12/16).

Diaconis, P., Graham, R.L. and Kantor, W.M. (1983)
The mathematics of perfect shuffles. Advances in
Applied Mathematics 4 (2). 175–196.

Dorling, M. and White, D. (2015) Scratch: A Way to
Logo and Python. In: Proceedings of the 46th ACM
Technical Symposium on Computer Science Education.
ACM. 191–196.

Dorling, M. and Rouse, G. (eds) (2014) Compute-IT.
London: Hodder.

Fisher, R.A. and Yates, F. (1948) [1938]. Statistical
tables for biological, agricultural and medical research
(3rd edition). London: Oliver & Boyd.

Grover, S. (2016) Classroom strategies. CSTA Voice
12 (1). 7-8.

Harvey, B. (1997) Computer science logo style: Symbolic
computing (volume 1). Boston, MA: MIT Press.

Jackson, S. and Livingstone, I. (1982) The warlock of
firetop mountain. London: Puffin.

Knuth, D.E. (1969) Seminumerical algorithms. The art
of computer programming 2. Reading, MA: Addison–
Wesley.

Krauss, S. and Wang, X.T. (2003) The psychology of
the Monty Hall problem: Discovering psychological
mechanisms for solving a tenacious brain teaser.
Journal of Experimental Psychology: General, 132 (1).
3-22.

Peyton Jones, S. (2014) Decoding the new computing
programme of study. Computing at School. Available
from http://community.computingatschool.org.uk/
resources/2936

Peyton Jones, S., Blackwell, A. and Burnett, M. (2003)
A user-centred approach to functions in Excel. ACM
SIGPLAN Notices, 38 (9). 165–176.

Robins, A. (2010) Learning edge momentum: A new
account of outcomes in CS1. Computer Science
Education, 20 (1). 37–71.

Shneiderman, B. and Mayer, R. (1979) Syntactic/
semantic interactions in programmer behavior: A
model and experimental results. International Journal
of Computer & Information Sciences, 8 (3). 219–238.

http://www.eis.mdx.ac.uk/staffpages/r_bornat/papers/camel_hump_retraction.pdf
http://www.eis.mdx.ac.uk/staffpages/r_bornat/papers/camel_hump_retraction.pdf
http://www.eis.mdx.ac.uk/staffpages/r_bornat/papers/camel_hump_retraction.pdf
http://www.eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf
http://www.eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf
http://community.computingatschool.org.uk/resources/2936
http://community.computingatschool.org.uk/resources/2936

CG

Computational Thinking

Systems

What is a computer?

85

Systems

Systems
WHAT IS A COMPUTER?
The term ‘computer’ originally referred to people
whose job it was to perform repeated numerical
calculations according to some pre-determined set
of instructions; that is, an algorithm. At the beginning
of modern computing, Alan Turing captured the
essence of what human computers did – of what
calculation or computation were: that all this could
be understood as making or changing marks on
paper according to some set of rules, and that
those rules could be determined by the marks on
the paper. This model became known as the Turing
machine, and it still forms one of the foundations of
theoretical computer science.

Since the 1940s the term ‘computer’ has been used
pretty much exclusively to refer to digital machines
which accept some sort of input data, process this
according to some set of stored instructions (that
is, a program) and output some sort of information.

The power of digital computers comes from their
ability to run through these stored instructions
incredibly quickly: the chip at the heart of a modern
smartphone might execute up to a couple of
billion instructions per second! On the other hand,
without programming, a computer can do nothing –
it needs to be given instructions to follow.

 You can think of digital technology as baing made
up of two inter-related systems: the hardware,
being the physical components, from processor
and memory to power supply and screen; and
the software, being the core operating system,
embedded control programs, compilers or
interpreters for high-level programming languages,
and all the many application programs used by or
written by the computer’s user.

Computers now seem almost ubiquitous, with an
incredible variety of electronic devices each having
some sort of digital computer controlling how
they operate, according to stored programs. It’s
worth distinguishing between devices that contain
computers, where the computer controls the
operation of the device for one specific purpose, 	

1	 Physical objects that collect, share and access data via the internet; see, for example, https://en.wikipedia.org/wiki/Internet_of_	
	 Things
2	 We call these conditions Turing completeness – systems that can simulate Turing’s theoretical computing machine can, in 		
	 theory, simulate one another; see, for example, https://en.wikipedia.org/wiki/Turing_completeness

and more-general programmable computers, where
one computer can do many different things.

In the former category, the computer-controlled
device, we might count digital watches, digital
radios, digital televisions, computerised central
heating controllers, digital cameras, the engine
management system of a car and many, many
other devices now commonplace. Even in these
categories, convergence of technologies and the
Internet Of Things(1) has meant that previously
‘dumb’ digital devices such as watches, televisions,
cameras and cars can now connect to the internet,
have apps installed on them and, in some cases, be
reprogrammed by their users.

When thinking about general-purpose computers
(see Doctorow, 2012), it can sometimes be helpful
to distinguish between those which the user
themselves can program and those which can only
run software written specifically for the device.
For example, a smart TV or a games console could
be thought of as a general-purpose computer,
capable of doing many different things, and whilst it’s
possible to create smart TV apps or write a video
game, you would normally need to use another
computer to do that. Originally, smartphones and
tablet computers fell into this category too: they
would only be able to run programs written and
licensed for them on other systems, but tools
such as TouchDevelop and Codea now mean that
programs for devices like these can be written on
the smartphone or tablet itself. Indeed, even some
games consoles can be directly programmed, to a
limited extent, using programs such as Kodu and
Project Spark.

General-purpose programmable computers,
from laptops to the large and fast computers
running data centres and ‘cloud computing’, are
capable of running many, many different types of
program, including the compilers or interpreters
necessary to write and run programs in many
different programming languages. At a theoretical
level, if something can be computed by one
system that meets certain basic conditions,(2) it
can be computed by any system that meets those
conditions.

https://en.wikipedia.org/wiki/Internet_of_Things
https://en.wikipedia.org/wiki/Internet_of_Things
https://en.wikipedia.org/wiki/Turing_completeness

86

Systems

It’s not quite true that programming lets us solve
any problem we might imagine.(3) However, by using
computational thinking processes to understand a
problem and develop algorithms for solving it, and
then to write the computer code which implements
that algorithm as a program, on hardware that
accepts input, produces output and connects to
other machines, computers can be used to solve
many, many interesting and difficult real-world
problems, as well as allowing us to watch videos of
cats playing the piano.

Binary
All the data that computers work with, and all the
instructions they follow, have to be represented
as numbers. There are particular conventions or
codes for particular types of data (or instructions).
An understanding of the ways in which information
can be represented, organised and processed
by computers can be seen as of comparable
importance to the concepts of computational
thinking (Michaelson, 2015).

Binary Numbers
Whereas we think of numbers as expressed in
base 10 (decimal) notation, expressing any (whole)
number using our digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and
9, it’s much, much easier for computers to work
with just two symbols, a 0 and 1, as each ‘switch’
in the computer can be simply set as off or on(4)
to represent these – this is the case with modern
integrated circuits as well as the relays, valves and
discreet transistors that preceded them. Binary
representation isn’t really fundamental to the ideas
of computing (Brown, 2012), but the numerical
representation of information and instructions
is, and binary is important in the low level
implementation of digital computing on current
and past hardware.

The programme of study expects pupils to learn
about binary:

Demonstrates an understanding that all
computer data is represented in binary, for
example, numbers, text, black and white
graphics

3	 For example, computers cannot solve the halting problem – that is, they cannot determine if any arbitrary code would 		
	 terminate or not (Turing, 1936).
4	 More strictly, low or high voltages.

In base 10 (decimal or ‘denary’ notation), we use
place value so that the same digit can represent
different numbers:

Thousands	 Hundreds	 Tens	 Units

 	 2	 3	 9	 5

Thus, 2395 is interpreted as two thousands, three
hundreds, nine tens and five units, 2000+300+90+5.
Note how each place is ten times larger than the
one that follows it.

A similar place value system works in binary, but
the places carry twice the value of the following
one:

64	 32	 16	 8	 4	 2	 1

0	 1	 0	 1	 0	 1	 0

So 101010 is interpreted as one thirty-two, one
eight and one two, 32+8+2, that is, 42 in base ten.
Note that you never get more than one in each
place in binary, so converting a binary number to
a decimal one is simply the process of adding up
the respective place values. Given the number
10011101, simply write out the place values of each
‘bit’ (binary digit), starting at the right (the least
significant bit) and doubling each time:

128	 64	 32	 16	 8	 4	 2	 1

1	 0	 0	 1	 1	 1	 0	 1

Then, add up the values of the places where you
have a 1: 128+16+8+4+1=157.

This approach gives us an algorithm for converting
from binary to decimal, which, of course, we can
implement as code (Figure 3.1):

87

Systems

Figure 3.1

	 def bin2dec(binary=’0’):
 decimal = 0
 place = 1
 for i in range(len(binary)-1,-1,-1):
 decimal = decimal + int(binary[i])*place
 place=place*2
 return (decimal)

Binary to decimal conversions in Snap! and Python.
Python allows numbers to be input in binary, they are
stored internally in binary, as all numbers are, but are
printed in decimal. Thus print(0b101010) produces the
output 42

Going in the other direction is easy enough too.
The easiest approach is to start with writing down
place value headings, again starting at the right (the
least significant bit) and doubling until you get to
a column that would mean the next one would be
bigger than the number. So with 150, we would have
column headings:

128	 64	 32	 16	 8	 4	 2	 1

We then start at the left, including any place we can,
and keeping track of how much is left. Taking 150 as
our example:

1	 (and 22 left)

1	 0	 0	 1	 (and 6 left)

1	 0	 0	 1	 0	 1 (and 2 left)

1	 0	 0	 1	 0	 1	 1	 (and 0 left)

1	 0	 0	 1	 0	 1	 1	 0

There are quicker approaches, for example we
could use repeated division by two, keeping track of
the remainders.

150 / 2 = 75 r 0
75 / 2 = 37 r 1
37 / 2 =18 r 1
18 / 2 = 9 r 0
9 / 2 = 4 r 1
4 / 2 = 2 r 0
2 / 2 = 1 r 0
1/ 2 = 0 r 1

The remainders then give the binary, in reverse
order, so reading from the bottom up, we get
10010110 which is the binary representation for
150 as above.

Because of the repetition here, it’s relatively easy to
code this algorithm (Figure 3.2):

Figure 3.2

	 def dec2bin(decimal=0):
 if decimal == 0:
 return ‘0’
 binary = ‘’
 while decimal > 0:
 binary = str(decimal % 2) + binary
 decimal = decimal // 2
 return (binary)

Decimal to binary conversion functions in Snap! and
Python. Python has a built-in bin command to do this too

It’s possible to represent numbers less than one in
binary too, using the binary equivalent of decimal
numbers, sometimes called ‘bicimal’. So, just as
in decimal we extend place value to the right as
tenths, hundredths, thousandths and so on, each
place being a tenth the size of the previous one, so
in binary we halve each time: one-half, one-quarter,
one-eighth and so on.

Thus, 3/8 would be 0.011 in binary, as three-
eighths = one-quarter + one-eighth. In binary,
recurring ‘bicimal’ numbers are quite common; so,
for example, one-tenth would be represented as

88

Systems

0.0001100110011… which will leave a rounding
error wherever it’s truncated.

Given that computers only have limited memory,
for very large or very small numbers it’s inefficient
to store all the bits in a simple place value
representation, so we use a floating point form,
equivalent to scientific notation, storing both
a mantissa and exponent. So, just as 1.14 x 102
is another representation of 114, so we could
represent 1110010 as 1.110010 x 2110 where the
‘bicimal’ (radix) point has been shifted six places
(six being 110 in binary), storing the binary mantissa
(1.110010) and exponent (110) to represent
decimal 114.

It’s also possible to store negative numbers in a
binary representation. Given a fixed word length
(the number of bits set aside for the number), the
usual method is called ‘two’s compliment’: for a
negative number we reverse the bits (0 becomes
1, 1 becomes 0) and add one. For example, 75 is
1001011 in binary:

128	 64	 32	 16	 8	 4	 2	 1

0	 1	 0	 0	 1	 0	 1	 1

but with two’s compliment and an eight-bit word
(a ‘byte’), –75 would be 10110100+1, that is,
10110101.

–128	 64	 32	 16	 8	 4	 2	 1

1	 0	 1	 1	 0	 1	 0	 1

Note though that the first bit no longer represents
128s; it now shows 0 for positive and 1 for negative;
thus, instead of using eight bits to store numbers
from 0 to 255, we instead would store –128 to 127.

It’s worth bearing in mind that binary and decimal
are just different ways of representing the same
number: forty-two is still forty-two, whether we
write it as ‘forty-two’, 42, XLII or in binary as
101010. Don’t let pupils confuse the thing itself with
the way the thing is represented.

Arithmetic

Counting in binary is easy, and a really nice pattern
quickly emerges. Start with one, changing the
rightmost bit by one each time, carrying into the
next column when you would get to two:

1
10
11
100
101
110
111
1000
1001
1010
1011
1100
1101
1110
1111
10000
...

Like counting, binary arithmetic is surprisingly easy
to master, and it’s a good way to revisit the standard
algorithms for the four rules of arithmetic that
pupils will have learnt in primary school. The key
to this is to remember that we carry when we get
to 2, not 10, as we only ever have 1s and 0s in any
place.

Figure 3.3

Look at the addition example in Figure 3.3, starting
from the units column on the right. 0 plus 1 is 1. In
the twos, 1 plus 0 is 1. In the fours, 1 plus 1 is two,
so we put 0 down and carry the 1. In the eights we
have 0 plus 0 plus 1 which is 1, and so on. The sum
and carry operations in binary addition here can be
carried out using a relatively simple combination of
logic gates – see page 103.

Subtraction can be done easily by hand too,
in the example below (Figure 3.4) using the
decomposition method that most schools use for
decimal subtraction.

89

Systems

Figure 3.4

Again, starting from the right: 1 minus 1 is 0. In
the twos column, 1 minus 0 is 1. In the fours we
have a problem, as we can’t do 0 minus 1, so we
decompose the eight into two fours, then 10 minus
1 is 1 in binary. In the eights we have 0 minus 0,
which is 0. In the sixteens we have a problem again,
as we can’t do 0 minus 1. We can’t decompose the
thirty-twos, so we decompose one sixty-four into
two thirty-twos, then decompose one of them into
two sixteens, and 10 minus 1 is 1 as before. Finally
in the thirty-twos, 10 minus 1 is 1.

The times tables for binary are quite easy to learn:

•	 0 x 0 = 0

•	 0 x 1 = 0

•	 1 x 0 = 0

•	 1 x 1 = 1

which is the same as the truth table for Boolean
AND, if we represent True as 1 and False as 0. Again,
we can apply the usual decimal long multiplication
to multiplication in binary (Figure 3.5):

Figure 3.5						

5	 See, for example, www.cut-the-knot.org/Curriculum/Algebra/PeasantMultiplication.shtml
6	 See https://en.wikipedia.org/wiki/Division_algorithm#Integer_division_.28unsigned.29_with_remainder for a version 		
	 expressed as pseudocode.

Again, starting from the right of the number
we’re multiplying by, in the units column, 1101 x
1 is 1101; in the twos column, 1101 x 0 is 0; in
the fours column, 1101 x 1 is 1101, but we shift
across into the fours column (that is, a couple of
places) to write this down (1101 x 100 = 110100).
Adding these answers up using binary addition, we
get 1000001. Notice that multiplication is simply
repeated shifts of the original number together
with binary addition, both of which are easy to
accomplish in digital circuits.

The process here matches the ‘Egyptian’ or ‘Russian
Peasant’ method for long multiplication:(5) start by
writing down the two numbers to be multiplied, the
larger on the left, the smaller on the right. Double
the numbers on the right, halve the numbers on the
left, discarding any remainders:

13	 5
26	 2
52	 1

Now, discard any lines with an even number on the
right:

13	 5
52	 1

and then just add the numbers on the left:

13+52 = 65

The first step here, doubling the numbers on
the left, is simply a left shift in binary. Halving and
ignoring the even values is the equivalent of binary
conversion, so we only add up the shifted values
corresponding to a 1 in the binary representation.

Pupils can also do division in binary, again using
the same algorithm as for decimal long division,(6)
but here with the advantage that the divisor either
divides or does not divide into the dividend at each
stage. There’s an argument that binary is a far better
base for learning the mechanics of this algorithm,
as the additional cognitive load of estimating how
many times the divisor goes into the dividend at
each step is removed.

http://www.cut-the-knot.org/Curriculum/Algebra/PeasantMultiplication.shtml
https://en.wikipedia.org/wiki/Division_algorithm#Integer_division_.28unsigned.29_with_remainder

90

Systems

Figure 3.6

Working this time from the most significant bit of
the dividend, on the left (Figure 3.6):

101 doesn’t go into 1. It doesn’t go into 10. It
doesn’t go into 100. It does go into 1000, once,
so we now work out the remainder in the eights
column, using binary subtraction, 1000–101=11.
Bringing down the next bit, a 0, 101 does go into
110, once, with a remainder of 110–101, that is,
1. Bringing down the next bit, 0, 101 doesn’t go
into 10, so we write 0 in the twos column of the
quotient. Bringing down the next bit, 1, 101 goes
into 101 once, with a remainder of 101–101, that is,
0.

Text

As well as being able to work with numbers
in a binary form, the programme of study also
expects pupils to understand how other forms
of information are represented in a computer
numerically, requiring that the pupil

Understands that different information
could be represented in exactly the same
representation

In order for computers to store, process or
transmit information as text, it’s necessary for
this to be coded as numbers (with the numbers
themselves stored as binary).

7	 https://en.wikipedia.org/wiki/Baudot_code

From Victorian times, way before the advent of
digital computers and the internet, electrical circuits
were used to transmit information, originally
using simple, binary state, on-off switches (the
telegraph), before the use of analogue sound signals
(the telephone). Rather than converting text to
numbers, a different form of representation was
soon agreed on, in which each letter of the alphabet
(plus punctuation, digits and other symbols) had an
agreed sequence of short or long pulses associated
with it – this was Morse code, named after its
inventor (Figure 3.7).

Figure 3.7

The key thing here is not the details of the
representation, but the idea that there needed to be
a single, agreed system for communicating via the
telegraph’s infrastructure: the same held true with
the adoption of digital computers and, particularly,
their connection via the internet. Morse’s system
took account of the relative frequency of letters in
English, thus e and t, the most frequently occurring
letters in typical English prose, have very short
symbols, (. and -) respectively, but other letters,
such as q and j, which occur far less frequently,
have longer pulse patterns, and thus take longer to
transmit.

Another system, Baudot code,(7) represented each
letter as a pattern of five on or off signals, which
subsequently became the standard for telegraph
communications and the teleprinters used as terminals
to communicate with the first computers. Five bits
allowed only 32 different symbols to be represented,
but shift codes were used to swap between letters

https://en.wikipedia.org/wiki/Baudot_code

91

Systems

and symbols (including numbers). A version of this, the
International Telegraph Alphabet (ITA2) remains in use
for some applications even today.

For a long time, the most widely adopted code was
US-ASCII (United States-American Standard Code
for Information Interchange; American Standards
Association, 1963). In US-ASCII, numbers from 0
to 127 are used to represent upper- and lower-
case letters of the Latin alphabet, the digits 0–9,
commonly used punctuation, and necessary control
characters (such as new lines and the backspace). By
this point, eight bits (enough for the numbers 0–255)
had become a standard unit of memory, the byte,
and one byte was thus more than enough to store or
transmit any single character of standard English text,
with room to spare if needed.

Number Binary Character Number Binary Character Number Binary Character
32 00100000 (space) 64 01000000 @ 96 01100000 `
33 00100001 ! 65 01000001 A 97 01100001 a
34 00100010 “ 66 01000010 B 98 01100010 b
35 00100011 # 67 01000011 C 99 01100011 c
36 00100100 $ 68 01000100 D 100 01100100 d
37 00100101 % 69 01000101 E 101 01100101 e
38 00100110 & 70 01000110 F 102 01100110 f
39 00100111 ‘ 71 01000111 G 103 01100111 g
40 00101000 (72 01001000 H 104 01101000 h
41 00101001) 73 01001001 I 105 01101001 i
42 00101010 * 74 01001010 J 106 01101010 j
43 00101011 + 75 01001011 K 107 01101011 k
44 00101100 , 76 01001100 L 108 01101100 l
45 00101101 - 77 01001101 M 109 01101101 m
46 00101110 . 78 01001110 N 110 01101110 n
47 00101111 / 79 01001111 O 111 01101111 o
48 00110000 0 80 01010000 P 112 01110000 p
49 00110001 1 81 01010001 Q 113 01110001 q
50 00110010 2 82 01010010 R 114 01110010 r
51 00110011 3 83 01010011 S 115 01110011 s
52 00110100 4 84 01010100 T 116 01110100 t
53 00110101 5 85 01010101 U 117 01110101 u
54 00110110 6 86 01010110 V 118 01110110 v
55 00110111 7 87 01010111 W 119 01110111 w
56 00111000 8 88 01011000 X 120 01111000 x
57 00111001 9 89 01011001 Y 121 01111001 y
58 00111010 : 90 01011010 Z 122 01111010 z
59 00111011 ; 91 01011011 [123 01111011 {
60 00111100 < 92 01011100 \ 124 01111100 |
61 00111101 = 93 01011101] 125 01111101 }
62 00111110 > 94 01011110 ^ 126 01111110 ~
63 00111111 ? 95 01011111 _ 127 01111111 (delete)

The spare capacity in US-ASCII (it only took seven
bits of an eight-bit byte) allowed other alphabets to
be represented by the numbers 128–255, swapping
in and out different code pages depending on the
particular alphabet and language to be represented
– thus Russian Cyrillic characters could be
represented using the same numbers as would be
used to represent Arabic characters, depending on
the particular code page added on for the 128–255
range above standard US-ASCII.

Back in the days when memory was expensive
and scarce, such a swappable code page system
would work well enough with single, alphabet-
based languages, but what hope would it have of
representing the characters of a language such as
Chinese?

Table 3.1

92

Systems

Subsequent development saw the extension or
perhaps, more accurately, the replacement of ASCII
with Unicode, which uses (up to) 32 bits, that is,
four bytes, to store each character, representing
linguistic (and other) symbols with numbers
between 0 and 4,294,967,295, although thus far
only 120,000 or so characters from 129 scripts
are encoded. The characters coded with 0–127
in Unicode (UTF-8) match exactly the characters
given these numbers in US-ASCII, so for those
working with standard English there are few
practical differences between the two systems. It’s
fascinating to explore the full Unicode table(8) to
see the diversity of symbols used to write human
languages.

A couple of lines of code allow text to be
converted to its numeric representation and vice-
versa.

Figure 3.8

	 list(map(chr,[72,101,108,108,111]))		
	 list(map(ord,”Hello”))

Snap! (Figure 3.8) and Python code to convert between
character codes and text. Note that Snap! works in
Unicode by default, whereas Python defaults to ASCII

Editing text is, in essence, simply about making
changes to the sequence of numbers which
represent any particular string of characters.
Familiar operations such as cut, copy and paste
involve manipulating sequences of numbers: thus,
cut involves removing some numbers from the
sequence, making a copy in another memory
location (essentially a variable); copy involves
duplicating part of the sequence; paste would be
inserting one sequence within another. Whilst
strings of characters and lists are typically thought
of as different data structures, their internal
representation as sequences of numbers will have
much in common: and cut, copy and paste for text
directly parallel common operations on lists.

One interesting development has been the way
in which the US-ASCII punctuation and other
characters have been combined in ways previously

8	 https://unicode-table.com/en/ [2/1/17]
9	 http://unicode.org/emoji/charts/full-emoji-list.html

absent from language to succinctly convey emotions
which would otherwise be cumbersome to write:
thus emoticons such as the following are commonly
used in online communication:

•	 :-)
•	 :-(
•	 ;-)
•	 8-()

More recently, this has extended into the novel
linguistic form of the ‘emoji’, in which pictorial
representations of words can take the place of
more conventional, character-based forms. Emojis(9)
too are represented as numbers, with many now
being included in the Unicode table.

The way in which a particular character is shown
on screen or when printed out is different from
its internal representation. Part of the job of the
operating system and application software is to
take the internal numerical representation of
the character and display or print it as a specific
glyph using a particular font, converting the code
for the character into patterns in pixels, lines and
curves, or ink that can be read on screen or paper
respectively. Similarly, text-to-speech interfaces
must take the character-by-character numerical
representation, process this according to the
grapheme/phoneme correspondence for the
language, and produce appropriate audio using one
of perhaps several ‘voices’.

Images

There are two main ways to represent images
digitally: the most common involves imposing some
form of grid on the image, and then allocating
numbers to the colour of each cell (square) in the
grid – we call this a ‘bitmap’ representation; an
alternative is to describe the shapes (lines, curves,
polygons and so on) from which the image is made,
essentially writing a program to reproduce the
image from its components.

https://unicode-table.com/en/
http://unicode.org/emoji/charts/full-emoji-list.html

93

Systems

A colour bitmap, then, is typically, made up of a
rectangular grid of small squares, called pixels, each
of which is thought of as having one of a fixed
number of possible values for red, green and blue
components. Digital cameras take this approach for
input, using a lens to focus light onto an array of
light-sensitive receptors, usually with red, green and
blue filters in front. LCD (and similar) screens take
the same approach to output, shining light through a
semi-transparent grid through which brightness can
be controlled to a particular level, again with red,
green and blue filters in front.

Figure 3.9 A microphotograph of a webcam image
sensor (CC by-sa Natural Philo)

In storing bitmaps, as with any digitisation process,
there’s a trade-off here between the amount of
storage (memory) needed for the image and the
resolution and colour fidelity stored.

Using just one bit per pixel reduces the
representation to simply black or white, but
even with only a few pixels it’s often possible to
recognise the image (Figure 3.10–3.11):

Figure 3.10 3,550 pixel bitmap, 1 bit per pixel, so
419 bytes of memory

Figure 3.11 120,000 pixel bitmap, 1 bit per pixel, so
15KB memory

Eight bits (one byte) per pixel allows 256 shades
of grey to be represented, greatly improving the
quality of the representation, but taking eight
times as much memory as a black-and-white image

94

Systems

(Figure 3.12–3.13).

Figure 3.12 3,550 pixel bitmap, 8 bits per pixel, so
3.55KB of memory

Figure 3.13 120,000 pixel bitmap, 8 bits per pixel, so
120KB of memory

With three times the memory, using one byte
(eight bits, 256 levels) for each red, green and blue

colour channel, we have the full 16 million-colour
representation that we are used to in digital media
(Figure 3.14–3.15).

Figure 3.14 3,550 pixel image, 24 bits per pixel, so
10.65KB of memory

Figure 3.15 120,000 pixel image, 24 bits per pixel, so
360KB of memory

95

Systems

Image manipulation software(10) allows pupils
to experiment with the effect of reducing the
resolution of an image and the number of bits used
to store the colour or brightness information.
Pupils can also explore creating ‘pixel’ art, choosing
the colour for each pixel of the image, typically at
a very low resolution. They can do this by hand
on gridded paper or using a spreadsheet, perhaps
using conditional-formatting tools to shade cells
according to the number entered.

Mathematician and comedian Matt Parker makes
an online tool available to convert images in
standard file formats into suitably coloured-in Excel
spreadsheets.(11) Once the pixel colour values of the
image are in a spreadsheet format, it’s easy enough
to apply formulae to cells and groups of cells, to see
how simple image manipulation can be accomplished:
increasing the brightness of the image means
increasing the values in each cell; reducing an image
to greyscale involves replacing each colour value
with the average of the red, green and blue values
for a pixel; blurring an image can be accomplished by
replacing each red, green or blue pixel value with the
average of the corresponding values for the nine or
25 surrounding cells; and so on.

Similar effects, and indeed much more, can be
accomplished in programming languages, for
example using Python’s pillow or scikit-image
libraries, or using the tools built into standard image
manipulation packages.

The other approach to working with images,
vector graphics, in which we give the instructions
for the lines and curves that make up an image,
has a number of advantages: the files here tend to
be more compact, there’s no fundamental limit to
the resolution at which images can be displayed,
and there’s no ‘pixelation’. However, this approach
is much more suitable for working with drawings
created originally on the computer than for
digitising images of the real world.

10	For example, Photoshop, The Gimp or Pixlr.
11	www.think-maths.co.uk/spreadsheet, qv www.youtube.com/watch?v=UBX2QQHlQ_I
12	Note: 2 channels * 2 bytes per sample * 44,100 samples a second * 60 seconds in a minute.
13	Note that 32bit, 384KHz audio is also available.

Audio

In the case of sound, again there are a couple of
options: the first involves storing a sequence of
numbers to represent the volume of sound at
different points in time; the other is closer to
composing music, creating a set of instructions for
sound to be played.

Let’s take the case of recording some sound on a
computer. A microphone takes the pressure waves
in the air that we hear and converts these into an
analogue electrical signal. The analogue signal is then
sampled lots of times a second and each of the
sampled voltage values is then simply converted
to a number. This is called pulse code modulation
(PCM) and is used in the .WAV file format. ‘CD-
quality’ audio is sampled 44,100 times a second
(that is, a sampling frequency of 44.1KHz), and
sixteen bits are used to store the different sound
or voltage values (that is, from 0 to 65,535) for
both left and right channels. Thus, one minute of
CD-quality stereo audio takes just over 10MB of
storage.(12)

As with image representation, there’s a trade-off
between the storage capacity needed and the
veracity of the digital representation. It’s possible
to store reasonable audio with a lower quality than
this, and for spoken-word recording this may suffice
– mono recordings at 11KHz storing just eight
bits for each sample are usually acceptable, with
quality comparable to long wave radio or analogue
telephone calls. It’s also possible to store at a higher
quality – so called ‘high definition’ audio uses 24 bits
for each sample, allowing 8,388,608 different audio
intensity values to be stored, and sample rates
as high as 192KHz.(13) Even here though, a digital
representation can never be a perfect match to the
even-finer-grained analogue signal.

http://www.think-maths.co.uk/spreadsheet, qv www.youtube.com/watch?v=UBX2QQHlQ_I

96

Systems

Digital sound wave

Original sound wave

Analogue sound wave

Figure 3.16

Editing digital audio essentially means manipulating
the sequence of numbers that represents the
audio signal – making a recording louder can be
accomplished by multiplying all the numbers by
a number bigger than one; making the recording
quieter involves multiplying by a number less than
one; silencing part of a recording means replacing
the audio signal values with 0; cutting a section
of a recording involves deleting the numbers
corresponding to that section from the sequence of
numbers in the file.

It is possible to view and edit the contents of an
audio file (for example the .WAV format) using
a hexadecimal editor for binary files,(14) although,
given the very high number of samples per second,
it’s hard work to do so in any meaningful way. With
some ingenuity, .WAV audio files can be imported
and exported from Excel or other spreadsheets,(15)
and the data manipulated directly using cell-based
formulae. Audio files can also be manipulated as
data in Python(16) or other programming languages.
Audio editing software such as Audacity provides a
graphical user interface and simple, intuitive tools
for working with audio files at a higher level of
abstraction, hiding the numerical representation of
the audio from the user.

14	https://mh-nexus.de/en/hxd/ [2/1/17]
15	For example, using the .DAT text data format for SoX, http://sox.sourceforge.net/
16	Using the standard wave library: https://docs.python.org/3/library/wave.html
17	Adapted from https://soledadpenades.com/2009/10/29/fastest-way-to-generate-wav-files-in-python-using-the-wave-module/

 import wave
 import random
 import struct

 noise_output = wave.open(‘noise.wav’, ‘w’)
 noise_output.setparams((2, 2, 44100, 0, ‘NONE’, ‘not compressed’))

 for i in range(0, 44100):
 value = random.randint(-32767, 32767)
 packed_value = struct.pack(‘h’, value)
 noise_output.writeframes(packed_value)
 noise_output.writeframes(packed_value)

 noise_output.close()

Python program to generate 1 second of stereo random
noise in 16 bit 44.1KHz PCM format(17)

For music, it’s possible to think in terms of
representing the composition digitally, rather
than the sound that’s heard, essentially writing a
sequence of instructions (a program) which when
executed would play the music – the MIDI file
format does this, storing the order of note values
and durations that make up the music, and then
using software to play these back, typically using
short samples of audio from recorded instruments
or digitally-generated (synthesized) tones.

It’s possible to create midi format files using a wide
range of applications, including sequencing and
traditional stave-notation composition software, and
pupils can get a feel for this more programmatic
approach to music using Scratch or Sonic Pi, both of
which use MIDI note values as a starting point.

Compression

Often it is useful to take large text, image or sound
files and store them in a more compact form, using
fewer bytes to store the same, or almost the same,
information. Although computer storage capacities
have increased exponentially for unit cost (Walter,
2005), ever increasing amounts of data at higher and
higher resolutions are stored. Moreover, a more-
slowly increasing internet bandwidth is used to
transmit these files, with many applications – from
text, audio and video chat or conferencing to the
streaming of audio and video content – requiring
low-latency, real-time transmission.

https://mh-nexus.de/en/hxd/
http://sox.sourceforge.net/
https://docs.python.org/3/library/wave.html
https://soledadpenades.com/2009/10/29/fastest-way-to-generate-wav-files-in-python-using-the-wave-mod

97

Systems

Pioneering work by Claude Shannon in 1948
(Shannon and Weaver, 1949) established the
theoretical foundation for information theory,
including the idea of information entropy, which
measures the degree of uncertainty in any message.
This uncertainty is determined by the nature of the
message: if an English message includes the letter
q, the next letter is very likely to be u; if a message
in English contains ee, the next character cannot
be another e; t is more likely to be followed by h
than any other letter, and so on. For example, given
a sentence in English presented without vowels,
it’s possible to recover much, if not all, of the
original using our knowledge of English vocabulary,
permitted syllables, and - in this case - English
literature to help:

t s trth nvrslly cknwldgd, tht sngl mn n
pssssn f gd frtn, mst b n wnt f wf.(18)

Note that whilst we have saved space here, this is
at the expense of some fairly intensive processing
to uncompress this text. Shannon’s insight was
to recognise that the limits of a communication
system were determined, not by the message
communicated, but by the possible messages
that could be communicated, and their relative
likelihood. As Morse had recognised earlier, some
letters, such as e and t, are far more frequent
than others, and hence had shorter signals; in
contrast, not all US-ASCII and Unicode characters
are equally likely to occur in a message, and yet
each takes the same number of bits to transmit.
Shannon’s information entropy uses probability to
determine the minimum number of bits needed
to communicate a message in a particular system.
His original estimate, based on the patterns from
looking at groups of eight characters, was about
2.3 bits per character for English, but subsequent
work, using longer-range characteristics of the
language, suggested an entropy of as little as
one bit per character (Shannon, 1951). Users of
predictive text systems will be familiar with how
quickly smartphones are able to guess the word
that is being typed: these systems draw directly on
Shannon’s ideas.

Compression techniques draw on Shannon’s work
too, finding clever ways to represent the same (or
in some cases, similar) information in a smaller
number of bytes.

18	 It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife.

Huffman coding is closely related to Shannon’s
information entropy idea. Rather than using the
same number of bits for each symbol, Huffman
formalised the idea of assigning shorter codes to
more-frequently occurring symbols (Huffman, 1952)
in such a way that there would be no ambiguity in
decoding.

One simple approach to compression is run-length
encoding. If we wish to communicate a message
about coin tosses:

HHHTTHHTTTHHTTTTTTHHTHHTTTT

run-length encoding shortens the message by simply
encoding how many instances of each symbol there
are in each run of it:

H3T2H2T3H2T6H2T1H2T4

Similarly, our black-and-white image of Ada Lovelace
(Figure 3.17)

Figure 3.17

has very long runs of black pixels with short runs of
white pixels: run-length encoding would compress
this very efficiently.

Another technique involves looking for patterns
in the information. In the case of English text, we

98

Systems

might simply choose to replace common words
(such as ‘the’, ‘is’, ‘to’, ‘of’, ‘and’, etc) with short, one-
byte codes to represent them. A more-sophisticated
system would be to recursively look for longer and
longer patterns in the text, image or audio, replacing
these with codes and storing the pattern against
the code. LZW (Lempel-Ziz-Welch) compression
(Welch, 1984) takes this approach:

1.	 Initialize the dictionary to contain all strings
of length one.

2.	 Find the longest string in the dictionary that
matches the current input.

3.	 Emit the dictionary index for the string to
output and remove the string from the input.

4.	 Add the string followed by the next symbol
in the input to the dictionary.(19)

5.	 Go to Step 2.

For English text, this typically achieves a 50
percent compression saving. The algorithm most
commonly used with the .ZIP compression format
is a combination of Huffman coding and an earlier
version of LZW compression, which might save 65
percent of the space for a text file.

In the case of text, scientific data and, particularly,
program source or binary files, any compression
has to be lossless: it is essential that we can
recover an exact copy of the original information.
Huffman codes, run-length encoding, LZW and .ZIP
compression all achieve this, and can be applied
to any form of data. Other media formats have
particular compression algorithms that can be even
more efficient, taking account of the particular
properties of the medium. For images, .TIFF and
.PNG formats both support lossless compression.
For audio, .FLAC supports lossless compression.

However, in many cases, it is not absolutely essential
to be able to uncompress a file to recover all the
information originally present: close enough is
often good enough. In these circumstances, we
can use lossy compression. Very high compression
ratios can be obtained but only at the expense of
discarding some of the information contained in the
original data.

19	See https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch#Example for a worked example, qv www.cs4fn.	
	 org/internet/crushed.php

For images, the .JPEG format (Austin, 2009) offers
high compression ratios, saving up to 90 percent of
the space required for a full bitmap representation,
with little loss of image quality. .JPEG makes use of
Huffman coding, but it also takes account of how
we perceive images – that changes in brightness are
noticed more than subtle changes in colour, and
that low-frequency changes are more noticeable
than high-frequency ones.

Similar ideas are used for audio compression using
the .MP3 format (Sellars, 2000): we notice relatively
loud noises more than relatively quiet ones, so
the data from the relatively quiet noise can have
fewer bits devoted to storing it without significantly
impacting our perception of the sound. Transient
high- or mid-frequency sounds capture our
attention more than repetitive low-frequency ones,
and thus deserve more bits for their storage.

We mentioned the idea of creating images and
audio using vector graphics or midi notation: these
formats are far more compact than high-resolution
bitmap or PCM audio respectively, as in both cases
we store instructions for making the image rather
than the image itself. This is related to the idea
of Kolmogorov complexity (Kolmogorov, 1998),
in which the information of a file or message is
measured not by the bits needed to store it but by
the bits needed for a program to reproduce it. Take
for example the sequence:

 31415926535897932384626433832795028841971693993751058209

 749445923078164062862089986280348253421170679

This appears to take 100 bytes to represent as text.
An alternative form, using just 35 characters, would
be ‘the first 100 decimal digits of Pi’. A genuinely-
random sequence (such as is needed for a ‘one-time
pad’ in cryptography; see page 152) requires as
many bytes to describe it as it contains. However, a
pseudorandom sequence from a computer random
number generator (that is, one which has similar
properties to a genuinely-random sequence but
is generated by an entirely deterministic system),
can be described fully by the program for that
generator and its initial seed state.

https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch#Example
http://www.cs4fn.org/internet/crushed.php
http://www.cs4fn.org/internet/crushed.php

99

Systems

Video

Video is a particular challenge for storing and
transmitting: if we simply store a single bitmap at full
HD resolution (1920 x 1080 pixels), it needs over
6MB assuming three bytes per pixel. Video might
typically show 25 frames per second, so one minute
of video without any compression would require
over 9GB, plus a further 10MB for uncompressed
PCM audio. Obviously such figures are impractical
for storing, processing or transmitting video and
necessitate some clever uses of lossy compression,
including those discussed earlier for images and
audio.

Video compression can also make use of the
generally-static nature of most of what’s seen
on screen. Between one frame and the next in a
video, relatively little changes and, furthermore, our
perception generally tunes out things that don’t
change much. Thus, video standards such as H.264
(Wiegand et al., 2003) need only pay attention to
the changing bit of a video signal, perhaps using
keyframes a couple of times a second (or, for video
conferencing, much less frequently) in which all
pixels are captured; the other frames need only
store the changes from the previous frame or
from the keyframe. For H.264 compression, these
techniques reduce the file size for our one minute
of 1080p video from over 9GB to around 400MB;
with the later HEVC (H.265) standard (Sullivan
et al., 2012), this figure drops to around 200MB.
Streaming at a lower resolution would obviously
reduce the file size further still.

To give pupils some feel for video compression,
they could compare the file size of all the frames
in a stop-motion animation to that of the H.264
compressed video exported from a video editor.
Telling the same story using scripted animation,
such as in Scratch or Blender, would be a useful
exercise. Whilst screencast output from Scratch or
rendered output from Blender would produce files
of a comparable size, the Scratch program files or
Blender project files would be significantly smaller,
reflecting the Kolmogorov complexity.

20	http://microbit-micropython.readthedocs.io/en/latest/tutorials/network.html
21	www.raspberrypi.org/learning/morse-code-virtual-radio/
22	For example Photoshop, The Gimp or Pixlr.com.
23	For example http://www.pixilart.net/
24	www.think-maths.co.uk/spreadsheet
25	See also https://people.csail.mit.edu/hubert/pyaudio/ for basic Python audio input/output handling.

 Classroom activity ideas

●● Spend time helping pupils develop fluency in
converting between binary and decimal numbers,
and in doing arithmetic in binary. Counting
games, arithmetic drill-and-practice, worksheets
and having pupils record screencast tutorials are
all likely to be useful here. Using functions to
convert between binary and decimal, pupils could
write their own drill-and-practice programs in
Snap!, Python or other programming languages.

●● Introduce pupils to the idea of encoding and
decoding text through Morse code activities,
perhaps using torches or electrical circuits to
transmit messages, or using the automatic Morse
decoders for the BBC micro:bit(20) or Raspberry
Pi.(21) Pupils could go on to experiment with
converting between text and ASCII or Unicode
representations, or develop programs to do so.

●● Pupils can explore bitmap images using the
tools available in image editing software.(22) They
can create small images pixel by pixel in Excel
or pixel art editors.(23) Matt Parker’s tool(24) to
create Excel spreadsheets from image files is
highly recommended. Pupils should construct
formulae in the spreadsheet to manipulate the
image to desired effects.

●● It’s harder to work with audio files, but Audacity
provides a simple editor for files in this format
and, once pupils’ programming has reached a
level of some fluency, they can explore creating
or editing PCM-encoded audio in Python using
the wave library.(25)

 Further resources

BBC Bitesize (n.d.) Data representation. Available
from www.bbc.co.uk/education/topics/zxnfr82

CIMT (n.d.) MEP exercises on binary conversion and
arithmetic. Available from www.cimt.org.uk/projects/
mepres/book9/bk9_1.pdf [2/1/17]; qv www.cimt.
org.uk/projects/mepres/book9/book9.htm#unit1
[2/1/17] and www.cimt.org.uk/projects/mepres/
book9/book9int.htm [2/1/17].

http://microbit-micropython.readthedocs.io/en/latest/tutorials/network.html
http://www.raspberrypi.org/learning/morse-code-virtual-radio/
http://Pixlr.com.
http://www.pixilart.net/
http://www.think-maths.co.uk/spreadsheet
https://people.csail.mit.edu/hubert/pyaudio/
http://www.bbc.co.uk/education/topics/zxnfr82
http://www.cimt.org.uk/projects/mepres/book9/bk9_1.pdf
http://www.cimt.org.uk/projects/mepres/book9/bk9_1.pdf
http://www.cimt.org.uk/projects/mepres/book9/book9.htm#unit1
http://www.cimt.org.uk/projects/mepres/book9/book9.htm#unit1
http://www.cimt.org.uk/projects/mepres/book9/book9int.htm
http://www.cimt.org.uk/projects/mepres/book9/book9int.htm

100

Systems

CS Unplugged (n.d.) Resources on counting in
binary. Available from http://csunplugged.org/binary-
numbers/; image representation: http://csunplugged.
org/image-representation/; text compression:
http://csunplugged.org/text-compression/; sound
representation: http://csunplugged.org/modems-
unplugged-2/; and information theory more
generally: http://csunplugged.org/information-
theory/

CS4FN (n.d.) Resources on run-length encoding.
Available from www.cs4fn.org/compression/
burrowswheeler.php; mp3 audio compression:
www.cs4fn.org/mathemagic/sonic.html; LZW
compression applied to Vicky Pollard: www.cs4fn.
org/internet/crushed.php; and bitmaps: www.cs4fn.
org/pixels/pixels.html

CS Field Guide (2016) Data representation. Available
from http://csfieldguide.org.nz/en/chapters/data-
representation.html; Coding: http://csfieldguide.
org.nz/en/chapters/coding-introduction.html; and
Coding-Compression: http://csfieldguide.org.nz/en/
chapters/coding-compression.html

Digital Schoolhouse (n.d.) Crazy graphics. Available
from www.digitalschoolhouse.org.uk/workshops/
crazy-graphics

Gleick, J. (2012) The information: A history, a theory, a
flood. New York, NY: Harper Collins.

Guzdial, M. and Ericson, B. (2015) Introduction to
computing and programming in Python: A multimedia
approach. Harlow: Pearson Education. Also online
resources for Mark Guzdial’s highly regarded media
computation course (http://coweb.cc.gatech.edu/
mediaComp-teach) and the Jython development
environment for media computation (https://github.
com/gatech-csl/jes)

Kolas, O. (2005) Image processing with gluas. Available
from http://pippin.gimp.org/image_processing/chap_
dir.html

Petzold, C. (2000) Code: The hidden language of
computer hardware and software. Redmond, WA:
Microsoft Press.

Shannon, C. and Weaver, W. (1949) The mathematical
theory of communication (PDF). Urbana, IL: University
of Illinois Press.

Logic Circuits
We discussed the principles of Boolean logic on
pages 13 - 14. Inside the central processing unit
(CPU) that controls the computer, all operations
are implemented by using logic gates to switch the
bits that make up digital data between different sets
of logic circuits.

We can introduce pupils to the AND, OR and NOT
gates through simple electrical circuits (Figures
3.18–3.20):

Figure 3.18 Circuit to illustrate an OR gate –
LAMP1 lights if SW1 OR SW2 is closed

Figure 3.19 Circuit to illustrate an AND gate –
LAMP1 lights if SW1 AND SW2 are closed

http://csunplugged.org/binary-numbers/
http://csunplugged.org/binary-numbers/
http://csunplugged.org/image-representation/
http://csunplugged.org/image-representation/
http://csunplugged.org/text-compression/
http://csunplugged.org/modems-unplugged-2/
http://csunplugged.org/modems-unplugged-2/
http://csunplugged.org/information-theory/
http://csunplugged.org/information-theory/
http://www.cs4fn.org/compression/burrowswheeler.php
http://www.cs4fn.org/compression/burrowswheeler.php
http://www.cs4fn.org/mathemagic/sonic.html
http://www.cs4fn.org/internet/crushed.php
http://www.cs4fn.org/internet/crushed.php
http://www.cs4fn.org/pixels/pixels.html
http://www.cs4fn.org/pixels/pixels.html
http://csfieldguide.org.nz/en/chapters/data-representation.html
http://csfieldguide.org.nz/en/chapters/data-representation.html
http://csfieldguide.org.nz/en/chapters/coding-introduction.html
http://csfieldguide.org.nz/en/chapters/coding-introduction.html
http://csfieldguide.org.nz/en/chapters/coding-compression.html
http://csfieldguide.org.nz/en/chapters/coding-compression.html
http://www.digitalschoolhouse.org.uk/workshops/crazy-graphics
http://www.digitalschoolhouse.org.uk/workshops/crazy-graphics
http://coweb.cc.gatech.edu/mediaComp-teach
http://coweb.cc.gatech.edu/mediaComp-teach
https://github.com/gatech-csl/jes
https://github.com/gatech-csl/jes
http://pippin.gimp.org/image_processing/chap_dir.html
http://pippin.gimp.org/image_processing/chap_dir.html

101

Systems

Figure 3.20 Circuit to illustrate a NOT gate –
LAMP1 lights if SW1 is open

With somewhat more authenticity, these gates can
be built from individual transistors, perhaps on a
breadboard (Figures 3.21–3.23):

Figure 3.21 Electronic circuit for AND

Figure 3.22 Electronic circuit for an OR gate

Figure 3.23 Simple electronic circuit for a NOT gate

Before the invention of the integrated circuit,
digital computers would be made using logic gates
composed of surface-mounted, transistor-based
circuits such as these.

102

Systems

Figure 3.24 Digital clock using only transistors and
other surface-mounted components. CC by-sa
Wtshymanski. See also http://monster6502.com/ for
a 6502 CPU implementation using surface-mounted
components

The beauty of abstraction though is that we don’t
need to worry about the internal operation of logic
gates; we can treat them as ‘black boxes’ which
produce certain output for certain input, according
to their truth tables.

Thus we can create simple logic circuits using
individual logic gates as the components, rather
than thinking about switches or transistors.

For example, we can build (or simulate) the circuits
(Figures 3.25–3.26):

Figure 3.25 NOT (A AND B)

and:

Figure 3.26 (NOT A) OR (NOT B)

We can use this symbolic representation of the
gate, rather than needing to show its internal
structure. Note that the two circuits above have the
same truth tables:

A	 B	 Output
False	 False	 True
False	 True	 True
True	 False	 True
True	 True	 False

Thus the two are functionally equivalent. A gate
with this truth table is called NAND (NOT AND).

More complex circuits can be constructed. Thus, for
the truth table:

A	 B	 Carry	 Sum
False	 False	 False	 False
False	 True	 False	 True
True	 False	 False	 True
True	 True	 True	 False

we have Carry = A AND B and Sum = (A OR B)
AND NOT (A AND B) (Figure 3.27):

Figure 3.27

http://monster6502.com/

103

Systems

If we replace False with 0 and True with 1, the table
becomes:

A + B	 Carry	 Sum

0	+ 0	 0	 0
0	+ 1	 0	 1
1	+ 0	 0	 1
1	+ 1	 1	 0

This allows binary addition, at least for just one bit,
to be implemented using nothing more than logic
gates. This circuit is known as a half adder.

Two half adders can be combined using an OR gate
to allow three inputs, one from a previous carry,
plus two bits of data, producing a sum and carry for
bitwise addition (Figure 3.28):

Figure 3.28 Full adder

A set of eight of these, connecting the Carry output
of each to the Previous Carry input of the next
would allow two bytes to be added together.

More complex logic circuits still can be designed
and built. Given any truth table, it’s possible to
construct a logic circuit that will produce the
desired output using just a combination of NOT,
OR and AND gates.(26) All logic circuits, including
NOT, OR and AND gates, can be built using NAND
gates.(27)

 Classroom activity ideas

●● Provide pupils with increasingly sophisticated logic
circuit diagrams, asking them to work out the
truth table by tracing the output at each gate for
all the possible combinations of TRUE and FALSE
inputs to the circuit. A more challenging problem
is to create the logic circuit for a given truth table.

26	Conjunctive normal form: https://en.wikipedia.org/wiki/Conjunctive_normal_form
27	https://en.wikipedia.org/wiki/NAND_logic
28	www.neuroproductions.be/logic-lab/

●● Circuit simulators such as logic.ly, circuitlab.com
and logic lab(28) allow pupils to experiment with
electrical, electronic and logic circuits on screen.
It’s well worth giving pupils some experience
of creating simple logic circuits using switches,
transistors or integrated circuits if the resources
are available.

●● You can get pupils themselves to act as a
logic circuit, some taking on the role of gates,
others the part of bits. See this BBC clip of
implementing a two-bit adder: www.bbc.co.uk/
programmes/p01m5xfs

●● Give pupils particular scenarios to create logic
circuits: home security systems and traffic
management are popular contexts.

●● Pupils can build simple logical circuits out of
redstone in Minecraft.

 Further resources

BBC Bitesize (n.d.) Boolean logic. Available from
www.bbc.co.uk/education/guides/zc4bb9q/revision

BBC Joy of Logic (2014) Available from www.
youtube.com/watch?v=ZO__UZ6iV0A

Gregg, J. (1998) Ones and zeros: Understanding
boolean algebra, digital circuits, and the logic of sets.
New York, NY: Wiley-IEEE Press.

Intel (n.d.) Lesson resources on circuits and
switches. Available from www.intel.com/content/
www/us/en/education/k12/the-journey-inside/
explore-the-curriculum/circuits-and-switches.html

Minecraft (n.d.) Logic circuit. Available from
http://minecraft.gamepedia.com/Logic_circuit;
and introductory tutorial. Available from http://
minecraft.gamepedia.com/Tutorials/Basic_logic_
gates

PyroEdu (n.d.) Course on digital electronics.
Available from www.pyroelectro.com/edu/digital/

https://en.wikipedia.org/wiki/Conjunctive_normal_form
https://en.wikipedia.org/wiki/NAND_logic
http://www.neuroproductions.be/logic-lab/
http://www.bbc.co.uk/programmes/p01m5xfs
http://www.bbc.co.uk/programmes/p01m5xfs
http://www.bbc.co.uk/education/guides/zc4bb9q/revision
http://www.youtube.com/watch?v=ZO__UZ6iV0A
http://www.youtube.com/watch?v=ZO__UZ6iV0A
http://www.intel.com/content/www/us/en/education/k12/the-journey-inside/explore-the-curriculum/circuits-and
http://www.intel.com/content/www/us/en/education/k12/the-journey-inside/explore-the-curriculum/circuits-and
http://www.intel.com/content/www/us/en/education/k12/the-journey-inside/explore-the-curriculum/circuits-and
http://minecraft.gamepedia.com/Logic_circuit
http://minecraft.gamepedia.com/Tutorials/Basic_logic_gates
http://minecraft.gamepedia.com/Tutorials/Basic_logic_gates
http://minecraft.gamepedia.com/Tutorials/Basic_logic_gates
http://www.pyroelectro.com/edu/digital/

104

Systems

Hardware
Components
One quite intuitive and generally helpful way of
thinking about computers is as machines which
accept input, process this according to some stored
set of instructions and produce output (Figure
3.29).

Figure 3.29

In thinking about hardware components, it’s worth
considering each function here separately.

Input

The form of input will vary, depending on the
type of computer and the uses to which it is put.
On a laptop, you might typically find a keyboard,
a trackpad, a microphone and a webcam, as well
as ports which other input devices, such as a USB
mouse, could be plugged into. On a smartphone, you
would probably find a touch-sensitive screen, some
other buttons, a microphone or two, a couple of
cameras, a global positioning system (GPS) receiver,
an accelerometer, perhaps a barometer and again
one or more ports for additional input devices.

Both Raspberry Pi and BBC micro:bit have support
for a broader range of sensor input, including
simple switches and the digitisation of analogue
signals connected to their general-purpose input/
output (GPIO) pins or connector. Sensors can be
connected to these pins which can, for example,
be used to capture temperature levels over time,
or proximity in some robot-control applications.
With other computers, an interface can be used to
provide similar functionality.

For trackpads, touch screens, microphones and
cameras it’s necessary for the computer to convert

29	http://techtalks.tv/talks/54443/
30	Neil Brown explains that modern processors use optimisations such as caches, pipelining, out-of-order execution, 	
	 speculative execution and microcode, in addition to the basic fetch–decode–execute cycle: 				
	 https://academiccomputing.wordpress.com/2012/04/29/the-computer-is-a-lie/

the continuous, analogue real-world data into a
digital format before it can be processed, stored
or transmitted by the computer. As discussed on
pages 92 - 96 in the context of images and sound,
digitisation inevitably involves throwing away some
of the fine detail of the real-world information.

Some pre-processing can be applied to the raw
input signals, for example voice recognition provides
an alternative form of input using the microphone,
or positions of objects in three dimensions can be
determined using two cameras or a linked laser
and sensor for establishing depth, as in Microsoft’s
Kinect.(29) A basic form of brain–computer interface
is possible using current technology, typically
through sensing electrical activity in the brain.

Processing

The fetch–decode–execute cycle in which
processors execute machine code instructions is
described on pages 48 - 49. Programs written in
high-level languages are converted into machine
code using interpreters or compilers – most
of the programs that run on the computer are
already compiled as machine code binaries, and so
this process is typically hidden from the user. The
machine code instructions and the data on which
the programs operate are all stored together in
memory (see later), and the computer provides a
fast way of moving both program instructions and
data out between the processor and memory: the
internal (or ‘front side’) bus.(30)

Processors work very, very quickly. Modern
operating systems are efficient at managing the
load on the processor so that, despite giving the
appearance of always being ready for whatever
instruction it is next required to execute, it can also
run instructions from many of the other programs
on the computer almost simultaneously. This is
called multi-tasking.

The processors inside modern computers are
typically multicore chips, containing perhaps four
(or more) CPU cores and cache memory (see
later), each operating independently and being
capable of running instructions from quite separate

http://techtalks.tv/talks/54443/
https://academiccomputing.wordpress.com/2012/04/29/the-computer-is-a-lie/

105

Systems

programs literally at the same time. Multicore
processing isn’t confined to the desktop or laptop
form factor either: some current smartphone
models have eight-core processors.

As well as the main, typically multicore, processor,
modern computers often have other processors
– most notably graphical processor units (GPUs),
now often designed specifically for the parallel
processing needed for physics simulation and fast
2D and particularly 3D rendering – most commonly
deployed for video games (Sony’s PlayStation 4 has
some 1,152 parallel cores for its GPU). For the
iPhone 5s, Apple introduced a ‘motion’ coprocessor
(the M7) alongside the smartphone’s main CPU,
dedicated to processing sensor data and running on
low power even with the phone asleep.

Current developments include massively parallel
processing, in which complex computing problems
are shared between many processors with results
being subsequently combined;(31) and processing ‘in
the cloud’, in which complex tasks are handled not
by the user’s own computer but by running programs
on computers to which it communicates via the
internet.(32) Speech-to-text processing of services,
such as Apple’s Siri, is accomplished in this way.

Storage

Both the programs a computer needs to operate,
and the data that it processes, are stored in
the computer’s memory. In modern computer
architecture, the same memory is used to store
both the programs and the data, side by side.

There are different types of computer memory, and
usually there’s a trade-off between speed and cost
or capacity: the fastest, most expensive memory is
used for the data that’s needed most immediately
and most frequently; the cheapest and slowest
storage is used for data that may or may not be
needed again at some distant point in the future.
This structuring of memory, from small and fast to
vast and slow, has proven a particularly powerful
way of organising data for processing and programs
for execution. Moving data between one level of
memory and another takes time.

31	See, for example, www-01.ibm.com/software/data/infosphere/hadoop/mapreduce/
32	For example Google Compute, Microsoft Azure and Amazon EC2.
33	www.extremetech.com/extreme/210492-extremetech-explains-how-do-ssds-work

The fastest memory available will be the registers
and ‘level 1 cache’ memory built into each CPU
core itself but, even with modern processors, the
amount of data that can be stored here is very
limited. Elsewhere on the CPU chip, and connected
to the rest of the computer via the bus, is the
‘level 2 cache’ – larger than the level 1 cache, and
somewhat slower, but still much faster to access
than the main memory.

On the internal bus, and connected directly to
the main circuit board of the computer (the
‘motherboard’) is fast, high-capacity memory called
‘RAM’, although this is typically ‘volatile’, meaning it
loses all the data stored in it when the computer is
switched off.

Rather slower, but again of much larger capacity,
will be the computer’s main drive: until recently,
this would typically contain magnetic disks able to
retain data with the power turned off, but these are
increasingly being replaced by faster, non-volatile
‘flash’ memory or solid-state drives(33) (SSDs),
similar to what you might also find in USB sticks or
the memory cards used for digital photography.

Optical storage, such as CD-ROMs, DVDs and Blu-
ray disks, is slower still, but costs for these media
are low, making them suitable for long-term storage
of data rarely needed for processing. These media
are not, by modern standards, of particularly high
capacity, and thus many find the need to connect
high-capacity external hard drives or SSD drives
to the computer, perhaps via USB or a higher-
bandwidth external bus interface.

Storage capacity has grown at an even quicker pace
than the increase in processing speeds (Walter,
2005), and thus, now, data centres connected via
the internet can provide very high capacity, but
relatively slow storage, for data, at a very low cost.
Whilst once upon a time, long-term archival storage
might have made use of magnetic tape, there are
interesting developments using low-cost, high-
capacity hard drives for this sort of ‘cold’ storage.

http://www-01.ibm.com/software/data/infosphere/hadoop/mapreduce/
http://www.extremetech.com/extreme/210492-extremetech-explains-how-do-ssds-work

106

Systems

Internet pioneer Vint Cerf has, perhaps surprisingly,
argued(34) that the best approach to very long-term
(for example, millennium-long) archival storage
might more reliably use paper than digital media,
given that no special systems need to be maintained
to ensure that paper remains readable.

Power and cooling

Other internal hardware components are needed
too.

Processing requires power, and so one of the most
noticeable components inside a desktop computer
will be the power supply unit, providing regulated
current at the various voltage levels needed for the
computer’s components. In the case of business-
critical machines some, form of alternative power
supply, such as an uninterruptible power supply
(UPS – essentially a large battery and associated
monitoring sensors and software), or perhaps even
an emergency generator, may be necessary. Battery
life remains a problem for portable technology
including laptops, tablets and smartphones, although
battery technologies have advanced significantly in
recent years, alongside advances in processor and
storage efficiency, and better power management
software at operating-system level. A relatively
recent development has been the use of additional,
external batteries to provide a top-up charge for
the smartphones on which many have come to rely.
Convenient access to a cheap source of power is
one of the principal considerations when siting a
data centre.

The processing that computers do generates lots of
heat (and thus the second law of thermodynamics
holds, as entropy increases overall). Processors
stop working if they get too hot and thus attention
must be given to keeping processors cool. In a
traditional desktop computer, CPUs are mounted
with passive heatsinks and active fan cooling, and
a smaller version of these components will also
feature on laptop computers. Tablet computers
and smartphones typically do not include active
cooling with a fan although much care is taken in
their design to ensure effective passive cooling.
Bareboard computers such as the Raspberry Pi and
BBC micro:bit achieve sufficient cooling in normal
use, as air can freely circulate over the processor.

34	www.theguardian.com/technology/2015/feb/13/google-boss-warns-forgotten-century-email-photos-vint-cerf

Cooling becomes a particularly important
consideration in building data centres, where a large
number of processors and other components are
packed together in a small space.

Output

Computers are able to produce many different
forms of output. On a laptop or desktop computer,
these are likely to be the screen and speakers,
together with connections for external peripherals
such as printers or headphones.

On a smartphone, tablet or games console
controller, outputs might also include a small motor
to produce vibrations. Smartphones typically include
bright light-emitting diodes (LEDs) used as a flash
for photography, or to provide extra light when
recording video.

Other output devices can be connected too, for
example the computer can be used to control
motors, such as in a robot. In addition to traditional
2D display technologies, computers can also power
virtual- or augmented-reality headsets: the former
replaces the wearer’s view of the world with a 3D
computer generated image (shown as different
images to each of the wearer’s eyes), the latter adds
an additional layer of information to the wearer’s
view of the world.

Similar to the way in which a computer can print
information on paper through sending instructions
to a printer, computers can send instructions to
3D printers, producing 3D objects through detailed
layering of a plastic resin (or other material)
according to the instructions received.

Connectivity

The traditional model of input – processing –
output has evolved to include network connections.
The data a computer processes need not be
provided directly through input devices attached to
the machine; it could easily come via one or more
network connections. Similarly, the information
the computer outputs could be transmitted via a
network connection.

http://www.theguardian.com/technology/2015/feb/13/google-boss-warns-forgotten-century-email-photos-vint-cer

107

Systems

For example, a typical web server is unlikely to
have a keyboard or screen connected to it directly
– it accepts requests for web pages or commands
via its internet connection, and responds with the
HTML for the page or other output via its internet
connection.

A smartphone includes a number of different
network connections, including: near-field
communication (NFC) for passing small packets
of data, such as cashless payments over very short
distances; Bluetooth for external keyboards and
hands-free audio; WiFi for high-speed internet
access and longer-range connection to the phone
network for voice and data, possibly at high speed
using 3G or 4G systems. WiFi and Bluetooth
connectivity is typically provided as standard on
laptop and tablet computers, and is also built into
the Raspberry Pi 3. The BBC micro:bit includes
Bluetooth connectivity. Traditional cabled network
connections provide greater communication
bandwidth, and are less likely to suffer from
contention issues than the WiFi equivalents.

Many devices now contain microprocessors and
should be thought of as small, dedicated-use
computers with their own input/output systems:
for example, a digital thermostat includes a heat
sensor, some form of control interface for user
input, processing capabilities and a stored program,
a display and a control interface for the heating
system itself. Increasing numbers of these devices
now provide network connectivity too, most often
via WiFi, but perhaps via Bluetooth or the mobile
phone system, becoming part of the ‘Internet
Of Things’. Such connectivity provides greater
convenience, such as the ability to turn on central
heating via smartphone on the journey home, or
to upload photos directly to the internet from
a digital camera, but also allows integration with
other internet-based systems and cloud-based
processing. For example, a smart thermostat
could ‘learn’ typical use patterns and adjust these
predictively to take account of weather forecasts,
or a smart, internet-connected refrigerator
could autonomously submit orders to an online
supermarket as staple supplies run low. Many are
concerned over the privacy and security issues
associated with such systems.

 Classroom activity ideas

●● Show pupils how input and output devices
and the network are connected to a
computer. Disassemble a computer as pupils
watch, explaining the purpose of each of
the components in turn. Explain that the
components pupils see are made up of smaller
components, to illustrate the multi-layered
nature of abstraction in computing. Some
teachers make displays of computer components.

●● Compare the components of different types
of computer system, showing how the internal
components of desktop, laptop, smartphone and
Raspberry Pi computers must all accomplish
the same function, but that these different form
factors mean that their physical forms can be
quite different.

●● Demonstrate CPU usage using operating system
tools to monitor activity (Performance Monitor
for Windows, Activity Monitor on OS X and the
top command on Linux).

●● Pupils in an extracurricular computer club
could perhaps build their own computer from
component parts, or fix a broken computer.

 Further resources

Barefoot Computing (2014) Computer systems.
Available from http://barefootcas.org.uk/barefoot-
primary-computing-resources/concepts/computer-
systems/ (free registration required).

BBC Bitesize (n.d.) Digital devices. Available from
www.bbc.co.uk/education/guides/zxb72hv/revision;
and the CPU: www.bbc.co.uk/education/guides/
zws8d2p/revision

Bishop, C. (2008). Royal Institution Christmas
Lecture on ‘chips with everything’. Available from
www.richannel.org/christmas-lectures-2008-chris-
bishop--chips-with-everything

Google Data Centres (n.d.) Available from www.
google.co.uk/about/datacenters/

IFixit (n.d.) Repair and ‘tear down’ guides to
common devices, including some great photos of
internal components. Available from https://www.
ifixit.com

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computer-systems/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computer-systems/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computer-systems/
http://www.bbc.co.uk/education/guides/zxb72hv/revision
http://www.bbc.co.uk/education/guides/zxb72hv/revision
http://www.bbc.co.uk/education/guides/zxb72hv/revision
http://www.richannel.org/christmas-lectures-2008-chris-bishop--chips-with-everything
http://www.richannel.org/christmas-lectures-2008-chris-bishop--chips-with-everything
http://www.google.co.uk/about/datacenters/
http://www.google.co.uk/about/datacenters/
https://www.ifixit.com
https://www.ifixit.com

108

Systems

Intel (n.d.) Teaching resources on microprocessors.
Available from www.intel.com/content/www/us/
en/education/k12/the-journey-inside/explore-the-
curriculum/microprocessors.html

Lockwood, B. and Cornell, R. (2013) School ICT
Infrastructure Requirements for Teaching Computing: A
Computing at School (CAS) Whitepaper. Available
from http://community.computingatschool.org.uk/
resources/446

SpiNNaker (n.d.) Novel, massively parallel computer
architecture modelled on how the brain works. Available
from http://apt.cs.manchester.ac.uk/projects/
SpiNNaker/. See also Steve Furber on this for CAS
TV: www.youtube.com/watch?v=wnSjR04qang

Software
Components
None of this computer hardware would do
anything if it had no software: the programs that
make it work, that make it useful. The many layers
of software that make up a computer system are
each abstractions of the software systems, and
ultimately the hardware, beneath them. At each
layer of the system, assumptions are made about
how the layer lower down behaves, without needing
to know how it works, which means that:

●● There’s no need to deal with the complexity of
the system at that layer since this has already
been addressed in a reliable way.

●● There’s no duplication of the functionality
provided by the lower layer, as this is done once
for all the different programs running at the
upper layers.

●● The internal operations of the lower layer are
generally something with which we don’t need to
concern ourselves; indeed, in many systems the
internal operation of lower layers is deliberately
hidden from those working at upper layers,
sometimes for reasons of security, but also for
proprietary, commercial reasons.

Working from the bottom of the software stack
up, and thinking in terms of a general-purpose
computer such as a laptop, desktop, smartphone,
tablet or Raspberry Pi, we typically begin with
a very small set of firmware instructions,
compiled into machine code, providing just enough
functionality to load and run (to ‘bootstrap’) an
operating system. Many of the internal components
of the computer, such as disk drives, will have

their own firmware too, and modern CPUs often
include a layer of ‘microcode’, which is essentially an
interpreter for machine code which sits between
the hardware itself and the abstraction of the
internal architecture that’s presented to the rest of
the system.

Operating systems (OS) such as Windows, OS
X, Linux, iOS and Android sit between the user’s
experience of the computer and the computer
hardware itself. Operating systems are themselves
multi-layered. One level deals with fundamental
operations, including: managing multi-tasking for
the different system and user programs to be
run on the CPU; main memory and longer-term
storage; input; output; network connectivity; power
and cooling; and presenting abstractions (such as
a file system, virtual memory and inter-process
communication) of all these complex sub-systems
in a simple, consistent and reliable way to other
programs on the system.

The various hardware components typically have
device driver software, running at operating
system level, (although not formally part of the
operating system), which allows components
from different manufacturers and with different
specifications to be used by the operating system
without the OS having to deal with the specifics of
implementation.

Outside of the operating system itself there’s often
a number of utility programs that are useful, if
perhaps not absolutely essential, to the operation
of the computer, such as programs to find files, to
protect against viruses and other malware and to
manage the installation of other programs.

The operating system also provides one or more
user interfaces – a way for the user to interact
with the computer’s core functions and with other
software that might be running on it. The most
basic of these is a command line interface (CLI),
in which commands can be typed on screen and
responses displayed on screen. Some computers
(for example Linux servers) start up in this mode,
but more often you can access this interface
through launching a shell or terminal program.
Whilst seeming to lack the functionality, familiarity
and ease of use of more familiar graphical user
interfaces (GUIs; see below), this stripped-down
way of interacting with computers offers power and
flexibility, and can sometimes be the only, or more
often the fastest, way to get things done.

http://www.intel.com/content/www/us/en/education/k12/the-journey-inside/explore-the-curriculum/microprocess
http://www.intel.com/content/www/us/en/education/k12/the-journey-inside/explore-the-curriculum/microprocess
http://www.intel.com/content/www/us/en/education/k12/the-journey-inside/explore-the-curriculum/microprocess
http://community.computingatschool.org.uk/resources/446
http://community.computingatschool.org.uk/resources/446
http://apt.cs.manchester.ac.uk/projects/SpiNNaker/
http://apt.cs.manchester.ac.uk/projects/SpiNNaker/
http://www.youtube.com/watch?v=wnSjR04qang

109

Systems

The other layer of a modern operating system
is the graphical user interface (GUI), which
provides a consistent look and feel for the user’s
interaction with the computer in a way that’s more
intuitive and easier to learn through exploration
than the CLI. The GUI provides a way to interact
with the computer through keyboard, mouse
and now voice input, task switching, an interface
to manage files and folders, control interfaces
for sound, networking, dates and times, and so
on, as well as managing windows for programs,
displaying text and graphics, looking after the
printer and providing accessibility support such as
voice synthesis. It’s typically the GUI that people
think of when talking about Windows or Mac (OS
X) operating systems. All of this of course needs
processing capacity in order to operate, and so
computers running as servers or in data centres
would typically not run, or even have, a GUI.

Whilst the CLI or GUI allow us to interact with the
computer and run utility programs if needed, they
don’t, in themselves, provide software for getting
useful work done. For this, we use application
software, and most of the programs which we
think of as running on a computer fall into this
broad category. Within this category are, for
example:

●● Office productivity programs: such as a word-
processor, spreadsheet and presentation
software, desktop publishing software, calendars,
task management, contact management.

●● Media production tools: such as image editors,
drawing programs, audio editors, music
composition software, video-editing software, 3D
animation packages.

●● Media management tools: for example music
players, video players, image galleries, photo
browsers.

●● Communication software: a web browser,
email client, video conferencing tools, instant
messaging.

●● Technical software: computer algebra systems,
bibliography management tools.

●● Games and educational software.

Software in all of these categories can run on
traditional Windows, OS X or Linux desktop
computers or laptops, but these categories
of software are also available as ‘apps’ (short
for application programs) on iOS or Android
smartphones and tablets, and can be run on remote
web servers and accessed using just a web browser

via the internet (as is the case with Google’s
Chrome operating system).

A few special categories of application software
deserve particular mention:

●● Server software: via the internet (or perhaps
just a local network), one computer can run
a program to provide services to many other
computers, for example managing user accounts
and password authentication on a school
network; saving files centrally; storing, forwarding
and providing access to email; serving static
or dynamically-generated web pages when
requested; managing a database of records so
that connected computers can each update or
interrogate a single consistent version of the
information contained in it; and so on.

●● Programming language software and
associated tools: converting a program written
in a human-readable, high-level language such as
Scratch or Python requires an interpreter or
compiler although, once compiled, the program
could be treated as any other application or
system program. Programmers also use a range
of tools to support the process of writing
programs, including text editors or integrated
development environments (such as the Scratch
web and offline editors, or Python’s IDLE).

●● Virtualisation: theoretically, one computer
system can simulate any other; in practical terms,
this allows computers to run virtual emulations
of other computer systems. Programs such as
Virtual Box or VMWare provide a simulation of
computer hardware, running as software, onto
which other operating systems can be installed.
This is a great way to explore other operating
systems safely, cheaply and securely, and also
offers a useful way to deploy preconfigured
combinations of operating systems and
application software for particular purposes.

As with other application software, these categories
can be used on Windows, Mac (OS X) and Linux
operating systems, or accessed remotely via the
web. With the exception of providing some simple
web-based services to the local network, support
for these categories is at present largely absent
from iOS or Android platforms.

110

Systems

 Classroom activity ideas

●● Use the operating system tools to monitor
activity (Performance Monitor for Windows,
Activity Monitor on OS X and the top command
on Linux) to show pupils all the programs
which run on the CPU, to demonstrate how the
operating system manages multi-tasking.

●● Provide pupils with the opportunity to try
out several operating systems, perhaps setting
them the same task (sending an email, making
a presentation, writing a short program) to
accomplish using the Windows GUI, Linux at
the command line, a smartphone and just a web
browser.

●● Give pupils the opportunity to install an
operating system from scratch, perhaps using
virtual hardware. If using open-source software
such as Linux, pupils could then assemble and
test a suite of application programs selected with
a particular user in mind.

●● Work with your network manager to ensure
pupils get some experience of working with
a command line interface, perhaps using the
command prompt on Windows, or a Linux shell
via terminal access, or virtualisation.

 Further resources

BBC Bitesize (n.d.) Software. Available from www.
bbc.co.uk/education/guides/zcxgr82/revision and
www.bbc.co.uk/education/guides/z6r86sg/revision,
also operating systems: www.bbc.co.uk/education/
guides/ztcdtfr/revision

Bishop, C. (2008). The ghost in the machine. Royal
Institution Christmas Lecture from 2008. Available
from www.richannel.org/christmas-lectures-2008-
chris-bishop--the-ghost-in-the-machine

Moody, G. (2002) Rebel code: The inside story of Linux
and the open source revolution. New York, NY: Basic
Books Inc.

Raymond, E.S. (2001) The cathedral & the bazaar:
Musings on linux and open source by an accidental
revolutionary. Sebastopol, CA: O’Reilly Media, Inc.

Smedley, R. (2016) Conquer the command line.
Raspberry Pi. www.raspberrypi.org/magpi-issues/
Essentials_Bash_v1.pdf

Stephenson, N. (1999) In the beginning... was the
command line. New York, NY: Avon Books.

Physical
Computing
In order for a computer to be able to do anything
with the real world, it needs some form of input
to get data in, and some form of output to put
information back out.

Traditional ‘control’ activities certainly have their
place in the new Computing Science and Digital
Literacy programmes of study.

Teaching control technology is perhaps implied by
the requirement that pupils be taught to:

Interpret a problem statement, and
identify processes and information to
create a physical computing and/or
software solution

and that he or she:

Writes code which receives and responds
to real world inputs (in a visual language).

It is also a requirement that pupils can

Identify the transfer of information
through complex systems involving both
computers and physical artefacts

Perhaps the easiest way into the realm of physical
computing is through using computers to monitor
activity in the real world. A very simple introduction
might involve recording or plotting the level of
noise in the classroom using Scratch’s microphone
input (Figure 3.30):

http://www.bbc.co.uk/education/guides/zcxgr82/revision
http://www.bbc.co.uk/education/guides/zcxgr82/revision
http://www.bbc.co.uk/education/guides/z6r86sg/revision
http://www.bbc.co.uk/education/guides/ztcdtfr/revision
http://www.bbc.co.uk/education/guides/ztcdtfr/revision
http://www.richannel.org/christmas-lectures-2008-chris-bishop--the-ghost-in-the-machine
http://www.richannel.org/christmas-lectures-2008-chris-bishop--the-ghost-in-the-machine
http://www.raspberrypi.org/magpi-issues/Essentials_Bash_v1.pdf
http://www.raspberrypi.org/magpi-issues/Essentials_Bash_v1.pdf

111

Systems

Figure 3.30 Scratch sound level monitor

The Makey Makey interface board(35) plugs into a
computer’s USB port, allowing other conductive
objects to function as a replacement for some of
the keys on the computer’s keyboard. This can be
combined with pupils’ own Scratch programs to
produce, for example, a maze game controlled by
jumping in buckets of water, or a piano with keys
made from bananas. The PicoBoard(36) provides an
alternative input interface for Scratch.

Integrating monitoring software with web-based
services allows pupils to explore some aspects of
the ‘Internet Of Things’, for example, setting up a
bird box camera which uploads a photograph to
the web when a bird enters or leaves the box. Data
could be tweeted from a school weather station in
response to particular queries.

There are some great cross-curricular
opportunities here, for example, the use of data
loggers in science experiments, activity monitors
in PE or weather station data(37) for science and
geography. Working with real-world data such
as this provides a very motivating context for
visualisation and exploratory analysis, and perhaps
some scope for introducing ideas of machine
learning.

35	www.makeymakey.com/
36	www.picocricket.com/picoboard.html
37	See, for example, www.raspberrypi.org/blog/school-weather-station-project/
38	https://vimeo.com/4313755

Beyond monitoring activities, many teachers report
success with having pupils write software which
controls real-world components. The ‘Hello, world’
of this sort of programming is typically flashing an
LED on and off (see Figure 3.31).

Figure 3.31 Scratch code to flash an LED connected
to GPIO pin 17 on a Raspberry Pi. CC by-sa
Raspberry Pi Foundation

	 from gpiozero import LED
	 from time import sleep

	 led = LED(17)

	 while True:
	 led.on()
	 sleep(1)
	 led.off()
	 sleep(1)

The equivalent Python code using Raspberry Pi’s GPIO
Zero library. CC by-sa Raspberry Pi Foundation

From here, it’s a relatively simple step to producing
a set of working traffic light signals using the correct
sequence.

It’s when monitoring (input) and control (output)
aspects of physical computing are combined using
a single computer program that the most exciting
and creative elements of physical computing open
up. For example, pupils could ‘hack’ a soft toy so
that its eyes light up and a noise plays when the toy
in tapped,(38) or write a program to play a game of
noughts and crosses on a small LED screen such as

http://www.makeymakey.com/
http://www.picocricket.com/picoboard.html
http://www.raspberrypi.org/blog/school-weather-station-project/
https://vimeo.com/4313755

112

Systems

on Raspberry Pi’s Sense HAT,(39) or create a digital
musical instrument.(40)

Pupils might take these ideas of monitoring and
control and apply them to projects involving
robotics. For example, pupils can build a model
or robot out of Lego NXT or EV3 Mindstorms
kit, incorporating sensors and motors, and then
write code in Enchanting Scratch or EV3’s own
programming language to control how their model
moves in response to the input signals received from
the sensors.

One way of thinking about a robot is as a computer
which can move, perhaps as a single, integrated
system following a sequence of instructions, such
as the Pro-Bot, Bigtrak or a floor turtle, or a flying
drone under the direct control of its operator, or a
largely stationary device with one or more motors
controlling moving parts – e.g. a robotic arm under
computer control, used in industrial manufacturing,
or a surgical robot under the remote control of a
human operator.

Robotics has long had wide applications in industry,
where repetitive tasks can be performed effectively
and efficiently by machines, but as better or ‘smarter’
algorithms have been developed by computer
scientists, more and more decision-making capabilities
have been built into the robot, so that the robot
is able to autonomously react to changes in its
environment. Autonomous, self-driving cars such as
those pioneered by Google are an example, even if
we may think of them as cars rather than robots. The
long communication delays between Earth and Mars
mean that the robotic Mars rover(41) must use lots of
event-driven, ‘when...do’ programming to be able to
respond to what happens in its environment without
waiting for control instructions from Earth. One
application of machine learning will be programming
robots to respond to input data to improve their own
operation over time, perhaps particularly in such far-
flung settings.

Whilst few might attempt such projects with a whole
class, an advanced group of pupils or an extracurricular
club might combine Design & Technology and
computing skills, knowledge and understanding to
build and program its own robot, perhaps entering a
competition with the work or focussing on developing
a solution to a real-world problem.

39	www.raspberrypi.org/products/sense-hat/
40	For example a digital theramin: www.raspberrypi.org/magpi/ultrasonic-theremin/
41	http://mars.nasa.gov/mer/overview/

There are many platforms available on which
pupils can develop their understanding of physical
computing:

●● Interface boards such as Makey Makey provide
an easy way to connect the ‘real world’ beyond
keyboard and mouse to a computer, and can be
used directly with lots of different programs.

●● Small microcontroller-based boards such as
CodeBug and Crumble allow pupils to write
programs on screen and then flash (download)
them to the board to run independently; each of
these examples can be used for both monitoring
and control.

●● Lego WeDo hardware provides simple sensors
and a motor, and is connected to a computer or
tablet via Bluetooth; it can be programmed using
Scratch as well as its own tile-based language.

●● Lego Mindstorms is a more sophisticated
system, with a wider range of sensors and
motors. Programs are downloaded to the
Mindstorm control brick and can then run
independently of the computer on which they
were written.

●● Arduino microcontrollers provide a range of
boards able to work with a variety of different
components. Again, programs are written on one
computer and then downloaded to the Arduino
board.

The two most common platforms for physical
computing activities at present are the BBC
micro:bit and the Raspberry Pi, both of which have
been mentioned elsewhere in this guide, but both
merit further discussion here.

Raspberry Pi

The Raspberry Pi is a small, cheap and high-
powered bare-circuit-board general-purpose
computer. It was created by a small, Cambridge-
based team who had noticed the decline in
undergraduate admissions to university computer
science courses, and who believed that easy
access to a computing platform which positively
encouraged tinkering, programming and making
would be helpful in supporting computing
education. The first model went on sale to the
general public in 2012.

http://www.raspberrypi.org/products/sense-hat/
http://www.raspberrypi.org/magpi/ultrasonic-theremin/
http://mars.nasa.gov/mer/overview/

113

Systems

The Raspberry Pi foundation sees its mission as:

to put the power of digital making into the
hands of people all over the world, so they
are capable of understanding and shaping
our increasingly digital world, able to solve
the problems that matter to them, and
equipped for the jobs of the future.

Figure 3.32 Raspberry Pi 3 (CC by-sa Herbfargus)

Version 3 of the Raspberry Pi (Figure 3.32) is a
capable machine: the board provides four USB
inputs, such as for mouse and keyboard, HDMI
video and audio output to connect to a monitor
or television screen, Bluetooth, WiFi and wired
networking, a connector for a camera module (sold
separately), and a set of general-purpose input/
output pins used for the control and monitoring
needed for physical computing. The processor is
a four-core ARM chip running at 1.2GHz, similar
to that used in smartphones, and it is powered by
a micro-USB connector. It has 1GB of RAM but
has no built-in permanent storage; instead, the
operating system, application software and any data
are stored on a removable Micro SD card, from
which it boots.

The Raspberry Pi can use a number of different
operating systems, including a version of Windows
10, as well as Acorn’s RISC OS first released in 1987
and popular at the time in UK schools. Most users,
however, use a version of Debian Linux, Raspbian,
that has been tailored to both the Raspberry Pi
hardware platform and the foundation’s educational
mission. Raspbian has an easy-to-navigate desktop
GUI, using a similar system of icons and menus to
other operating system GUIs.

42	www.raspberrypi.org/resources/
43	http://projects.codeclubworld.org/en-GB/index.html

The bundled software focusses, unsurprisingly,
on programming but includes a broader range of
application software too: there’s the Libre Office
suite, a web browser and an email client, as well as
the high-end computer algebra system Mathematica.
On the programming side, we have Python with the
IDLE IDE (integrated development environment),
a bespoke version of Scratch with support for the
GPIO pins, and Sonic Pi, a Ruby-like language for
composing (and performing) music. Raspbian includes
Minecraft as standard, with the API (application
programming interface) to allow Minecraft to be
controlled through programming in Python. Many
additional programs can be installed very easily: for
example, the command (typed in the shell):

 sudo apt-get install tree

is all it takes to install the tree utility.

The Raspberry Pi Foundation has assembled a
collection of curriculum resources, many of which are
directly relevant to the Level 3 computing curriculum,
with others providing much that might inspire pupils
in extracurricular computing clubs within or beyond
school.(42) The Foundation merged with Code Club
towards the end of 2015. Whilst the Code Club
activities(43) have been written with primary pupils in
mind, many, particularly those on HTML and Python,
would be appropriate for Level 3.

The Raspberry Pi Foundation has developed two-
day face-to-face PiCademy workshops. Day 1 is
spent learning about computing and the Raspberry
Pi, including physical computing, Minecraft and
Sonic Pi. On day 2, participants work in teams,
with contributions from the Raspberry Pi team, to
develop their own project ideas. The Raspberry Pi
community also hosts frequent local ‘Raspberry
Jam’ events, in which community members meet to
share their knowledge, learn new things and show
off what they’ve done with their Raspberry Pi.

BBC micro:bit

Back in the 1980s the BBC played a pivotal role in
the early days of computing education. The BBC
sponsored the development of a home computer
by Acorn, the BBC Micro, and developed television
content to promote computer literacy in the home.

http://www.raspberrypi.org/resources/
http://projects.codeclubworld.org/en-GB/index.html

114

Systems

The BBC Micro was chosen as one of the computer
models that would be supplied to every school.

Building on this legacy, and as part of a year-long
‘Make it digital’ initiative across the BBC’s media,
the BBC drew together a consortium of some 29
partner organisations (including ARM, Samsung,
Microsoft and Lancaster University) to develop
the BBC micro:bit, with the aim of inspiring ‘young
people to get creative with digital and develop core
skills in science, technology and engineering’.

In 2016, close on 1 million micro:bits were
distributed to the entire Year 7 national cohort.
Significantly, the micro:bits, whilst distributed via
schools, are intended to be given to the pupils
themselves. Schools, pupils and others are able to
buy further micro:bits if they desire.

The micro:bit (Figures 3.33–3.34) is smaller than
the Raspberry Pi and, unlike the Raspberry Pi, it
cannot be programmed directly, but rather must
have programs downloaded to it from a connected
computer, tablet or smartphone.

Figure 3.33 BBC micro:bit showing buttons, 25
pixel display and IO connector. CC by-sa Gareth
Halfacree

Figure 3.34 The other side of the BBC micro:bit
showing power and data connectors, processor,
accelerometer, compass and reset button

44	https://microbit-micropython.readthedocs.io/en/latest/tutorials/network.html
45	Alternative programming platforms are available such as Microsoft’s www.pxt.io/

The hardware includes an ARM microcontroller,
running at 16MHz, 16KB of RAM and 256KB
of flash memory, in which programs are stored.
Input is through two buttons, an accelerometer,
a magnetometer and the GPIO edge connector.
Output is through a 25-pixel display or via the
GPIO connector (for example, a speaker can
be wired between connectors 0 and GND to
produce simple audio). Connectivity is via USB and
Bluetooth, as well as, somewhat unexpectedly, the
GPIO pins.(44)

Programming the micro:bit is done via a web-
based interface at www.microbit.co.uk/create-code
which provides access to four different editors:
a block-based javascript-like editor from Code
Kingdoms, a blockly-based block editor, Microsoft’s
TouchDevelop, and an online version of the Mu
educational IDE for microPython (see Figures
3.35–3.36).(45)

Figure 3.35 Simple micro:bit dice program in Blocks

Figure 3.36 The same program converted to
TouchDevelop

https://microbit-micropython.readthedocs.io/en/latest/tutorials/network.html
http://www.pxt.io/

115

Systems

 // When the microbit runs.
 function onStart() {

 }

 function onShake() {
 microbit.say(Random.number(1, 6));
 wait(1000);
 microbit.clear();
 }

A similar program in CodeKingdoms’ Javascript editor
(code view)

 from microbit import *
 import random

 while True:
 if accelerometer.is_gesture(“shake”):
 display.show(str(random.randint(1, 6)))
 sleep(1000)

A similar program in microPython

There are a couple of particularly nice features
of the micro:bit code editors. Firstly, there’s an
on-screen emulator, so (with the exception of
microPython) it is possible to test your code on
screen without downloading it to the micro:bit
(Figure 3.37).

Figure 3.37 On-screen micro:bit emulator running
the above program

Secondly, although these editors work in the web
browser, they don’t need any server side-processing
to work: compiling the program you write happens
inside the browser itself so, once they have been
accessed online, they can be subsequently used
offline. Micro:bit source code files can be uploaded
or downloaded to the editor from the desktop.

Once you have written your program, to run
it on the micro:bit itself you first compile the

program, which produces a .hex machine code
file. This contains a pre-compiled run-time
environment, a device abstraction layer that sits
between the hardware and your program, and your
program compiled into ARM mbed machine code.
Connecting the micro:bit to your computer via a
USB cable, it shows up as if it were a USB memory
stick, so you can simply drag the compiled .hex
file across onto the micro:bit. A quick press of the
reset button and your code should run very happily
on the micro:bit itself. You can now plug in the
micro:bit’s own battery pack and disconnect the
USB cable.

As you would expect, there’s a good range of
support materials available from the BBC itself
and many of the other partner organisations. The
project site at www.microbit.org/ is the best place
to get started.

CAS (Computing At School) regional centres and
Master Teachers have been active in supporting
teachers with introductory CPD (continuing
professional development) courses for the
micro:bit, as have many of the partner organisations.

 Classroom activity ideas

●● Pupils could use the micro:bit, Raspberry Pi
Sense HAT or GPIO pins, or a Makey Makey to
control a simple game.

●● Pupils might use sensors to collect weather
data for school and then analyse for patterns,
relationships and interesting exceptions.

●● Ask pupils to write a program which could
control a set of traffic lights in the correct
sequence, perhaps on screen initially. Can they
connect suitable LEDs to the computer and
control these directly?

●● Pupils could build and program a robot that
could find its way out of a maze.

http://www.microbit.org/

116

Systems

 Further resources

BBC Bitesize (n.d.) Raspberry Pi and Arduino.
Available from www.bbc.co.uk/education/guides/
zdsbwmn/revision

BBC Cracking the Code clips (2013) Robots. Available
from www.bbc.co.uk/programmes/p01661tn; and
aerial photography using the Raspberry Pi: www.
bbc.co.uk/programmes/p01661f7

BBC micro:bit site (n.d.) Available from www.
microbit.org/

Berry, M. and Chambers, R. (2015) Quick start guide
to the BBC micro:bit. London: Hodder Education.

IBM (n.d.) Workshop on robotics. Available from
www.ibm.com/ibm/responsibility/initiatives/
activitykits/robotics/

Philbin, C.A. (2015) Adventures in Raspberry Pi.
Hoboken, NJ: John Wiley & Sons.

PiCademy (n.d.) Available from www.raspberrypi.
org/picademy/

Raspberry Pi (n.d.) Education resources. Available
from www.raspberrypi.org/education/ including a
teacher’s guide to using Raspberry Pi in the classroom:
www.raspberrypi.org/guides/teachers/

Royal Academy of Engineering (2015) Applying
computing in D&T at KS2 and KS3: The 2014 national
curriculum requirements. Available from http://
community.computingatschool.org.uk/files/6994/
original.pdf

Technology will Save Us (n.d.) Available from www.
techwillsaveus.com/

References
American Standards Association (1963) American
standard code for information interchange.
ASA X3, 4.

Austin, D. (2009) Image compression: Seeing what’s
not there. AMS. Available from www.ams.org/
samplings/feature-column/fcarc-image-compression
[2/1/17].

Brown, N. (2012) Binary is an implementation detail.
Academic Computing. Available from https://
academiccomputing.wordpress.com/2012/04/13/
binary-is-an-implementation-detail/

DfE (2013) National curriculum in England: Design
and technology programmes of study. London: DfE

Doctorow, C. (2012) Lockdown. BoingBoing.
Available from http://boingboing.net/2012/01/10/
lockdown.html

Huffman, D. (1952). A method for the construction
of minimum-redundancy codes. Proceedings of the
IRE 40 (9). 1098–1101.

Kolmogorov, A. (1998) On tables of random
numbers. Theoretical Computer Science 207 (2).
387–395.

Michaelson, G. (2015) Teaching programming with
computational and informational thinking. Journal of
Pedagogic Development, 5 (1). 51-66.

Sellars, P. (2000) Perceptual coding: How Mp3
compression works. Sound on Sound (May).

Shannon, C.E. (1951) Prediction and entropy of
printed English. Bell System Technical Journal, 30 (1).
50–64.

Shannon, C.E. and Weaver, W. (1949) The
mathematical theory of communication. Champaign, IL:
University of Illinois Press.

Sullivan, G.J. Ohm, J.-R, Han, W.-J, et al. (2012).
Overview of the High Efficiency Video Coding
(HEVC) Standard (PDF). IEEE Transactions on Circuits
and Systems for Video Technology (IEEE) 22 (12). 1649-
1668.

Turing, A.M. (1936) On computable numbers, with
an application to the Entscheidungsproblem. J. of
Math, 58. 345–363.

Walter, C. (2005). Kryder’s Law. Scientific American.
August, 25/7/2005.

Welch, T. (1984). A technique for high-performance
data compression (PDF). Computer 17 (6). 8–19.

Wiegand, T., Sullivan, G.J., Bjøntegaard, G. et al.
(2003) Overview of the H. 264/AVC video coding
standard. Circuits and Systems for Video Technology,
IEEE Transactions, 13 (7). 560–576.

http://www.bbc.co.uk/education/guides/zdsbwmn/revision
http://www.bbc.co.uk/education/guides/zdsbwmn/revision
http://www.bbc.co.uk/programmes/p01661tn
http://www.bbc.co.uk/programmes/p01661f7
http://www.bbc.co.uk/programmes/p01661f7
http://www.microbit.org/
http://www.microbit.org/
http://www.ibm.com/ibm/responsibility/initiatives/activitykits/robotics/
http://www.ibm.com/ibm/responsibility/initiatives/activitykits/robotics/
http://www.raspberrypi.org/picademy/
http://www.raspberrypi.org/picademy/
http://www.raspberrypi.org/education/
http://www.raspberrypi.org/guides/teachers/
http://community.computingatschool.org.uk/files/6994/original.pdf
http://community.computingatschool.org.uk/files/6994/original.pdf
http://community.computingatschool.org.uk/files/6994/original.pdf
http://www.techwillsaveus.com/
http://www.techwillsaveus.com/
http://www.ams.org/samplings/feature-column/fcarc-image-compression
http://www.ams.org/samplings/feature-column/fcarc-image-compression
https://academiccomputing.wordpress.com/2012/04/13/binary-is-an-implementation-detail/
https://academiccomputing.wordpress.com/2012/04/13/binary-is-an-implementation-detail/
https://academiccomputing.wordpress.com/2012/04/13/binary-is-an-implementation-detail/
http://boingboing.net/2012/01/10/lockdown.html
http://boingboing.net/2012/01/10/lockdown.html

DM

Systems

Computer
Networks

How do computers communicate?

117

Computer Networks

Computer
Networks
HOW DO COMPUTERS
COMMUNICATE?
Useful as individual computers are for running
programs, such as games, calendars and
spreadsheets, to perform calculations and help
manage information, it has really been through
connecting computers together to form networks,
and particularly through the internet – a network
of networks – that they have had the most
immediate impact on our lives. Consider how
limited our use of technology in school would be
if we had no access to the local network or the
internet. Consider how frustrating many find it
when, even temporarily, we have no data signal for
smartphones, or no WiFi for a tablet or laptop.

The internet has made possible communication
and collaboration with a diversity and immediacy
as never before, and yet, perhaps like writing,
printing and the telephone before it, it’s something
that most of us take for granted, and possibly have
little understanding of. The computing curriculum
sets out to change this: alongside developing
pupils’ computational thinking through practical
programming, it includes requirements that
primary pupils be taught to ‘access websites and
use navigation skills to retrieve information for
a specific task’ and ‘use search engines to search
the internet for specific or relevant information’.
At Level 3, pupils have to ‘demonstrate an
understanding of how computers communicate
and share information over networks, including the
concepts of sender, receiver, address and packets.’

How does the
Internet work?
The internet is a physical thing: it is the cables, fibre,
transmitters, receivers, switches, routers and all the
rest of the hardware that connect computers, or
networks of computers, to one another.

The internet has been designed to do one job: to
transport data from one computer to another. This
information might be an email, the content of a web
page or the audio and video for a video call.

The data that travels via the internet is digital: this
means it is expressed as numbers. All information
on the internet is expressed this way, including
text, images and audio. These numbers are
communicated using binary code, which is made
up of 1s and 0s, using on/off (or low and high)
electrical or optical signals. Binary code is similar to
the Morse code used for the telegraph in Victorian
times, but it’s much, much faster. A good telegraph
operator could work at maybe 70 characters
(letters) a minute, but even a basic school network
can pass data at 100 million on/off pulses a second,
enough for some 750 million characters per minute.
One transatlantic fibre connection has the capacity
for up to 24 trillion characters per minute.

Digitised information needs to be broken down
into small chunks by the computer, before it can
be sent efficiently. These smaller chunks of data are
known as ‘packets’.

The small packets can be passed quickly through
the internet to the receiving computer where they
are re-assembled into the original data. The process
happens so quickly that high-definition video can be
watched this way, normally without any glitches.

The packets don’t all have to travel the same way
through the internet: they can take any route from
sender to recipient. However, there is generally a
most efficient route, which all the packets would
take (Figure 4.1).

118

Computer Networks

Server

Server

Most efficient route
for packets

Key

Router

Figure 4.1 A sample network: Note there is more
than one route for packets to travel

It is perhaps easier to understand how the internet
works nowadays by looking at a picture of how it
worked in 1969 when it started (Figure 4.2):

Figure 4.2(1)

Here you see the internet made up of just four
routers: UCLA, SRI, UCSB and UTAH. Each router
is a piece of hardware that passes packets of data
from the computer it is connected to (in the case of
UTAH, that’s PDP10; in the case of UCLA, it’s SIGMA
7) – and perhaps any terminals connected to those
computers – to any of the other three computers
and their terminals.

So, if you were using the PDP10 computer at the
University of Utah and sent a message to someone at
UCLA, your message would be passed first to your
router at Utah, then on to the router at Stanford
Research Institute (SRI), then (normally) to UCLA’s
router, where it would be passed on to the intended
recipient on their SIGMA 7.

1	 From www.computerhistory.org/internet_history/
2	 Simple Scratch-based simulation of DNS lookups at https://scratch.mit.edu/projects/105316834/#editor

The internet is obviously much, much bigger than
this example. In real life, the journey of a packet
of data from your home computer to one of
Microsoft’s server farms might look something like
this:

●● your home WiFi access point;
●● your home switch and router (usually all in the

same black box);
●● switches in your nearest BT green cabinet;
●● more switches in your local telephone exchange;
●● London internet exchange;
●● routers near Porthcurno in Cornwall;
●● fibre optics under the Atlantic;
●● further switches and routers in the USA. until

Microsoft’s internet connection at whichever of
its data centres you are communicating with.

When you type a URL (such as www.bbc.co.uk or
www.computingatschool.org.uk) into your browser,
you send a packet of data requesting the content
of these pages to be returned to you. But, before
this can happen, the domain name first needs to
be converted into numbers. This is the job of the
Domain Name Service (DNS), which converts
these familiar web addresses into numbers known
as Internet Protocol (IP) addresses. The DNS itself
uses the internet to look up (in the equivalent
of huge phone books) the numeric address
corresponding to the domain names, but it keeps a
local record (cache) of these, so that the next time
the domain name is requested, the IP address can
be returned more quickly.(2)

Each packet has a destination IP address on it. With
it the router can easily look up which way to pass
the packet on.

http://www.computerhistory.org/internet_history/
https://scratch.mit.edu/projects/105316834/#editor

119

Computer Networks

Who can see the data we
transmit?

There’s nothing to stop routers from looking at the
data in the packet before they pass it on (just as
there was nothing to stop telegraph clerks reading
the messages they passed on in Morse code).

To be able to send information, such as passwords
or bank account details, secretly via the internet, it’s
important to encrypt the data first. This happens
automatically when using the ‘https’ version of
websites. In these situations, you will see a little
green padlock displayed in your browser’s address
bar. The data are decrypted when they reach their
destination – see pages 151 - 154 for more on
cryptography.

 Classroom activity ideas

●● Ask pupils to draw a picture of the internet. This
will allow you to spot any misconceptions they
have, and provide an opportunity for pupils to
share their understanding.

●● Carry out this ‘unplugged’ activity to model how
the internet passes packets of data.

»» Organise all but four of your pupils into
groups.

»» Tell the pupils to choose one pupil in their
group to be the ‘group router’. The rest of the
group will be ‘computers’.

»» Ask the remaining four pupils to take on the
role of ‘internet routers’, which connect the
group routers together.

»» Give each ‘computer’ a numerical address,
comprising a group number and a computer
number (for example 1.1, 1.2, 1.3; 2.1, 2.2, 2.3,
and so on; Figure 4.3).

»» Ask each ‘computer’ to write a short message
to another ‘computer’ in a different group,
splitting their message over three different
slips of paper and marking their slips ‘1 of 3’,
‘2 of 3’ and ‘3 of 3’. Tell them to write their
numerical address and the numerical address
of the recipient, for example ‘To: 2.2; From:
3.4; 2 of 3’. This is the ‘packet header’.

»» Ask the ‘computers’ to pass their slips to
their ‘group router’, who can pass these on
one at a time to the ‘internet routers’. They in
turn pass them to the correct ‘group router’
who passes them to the recipient themselves,
who can reassemble the message as their
other packets arrive.

Figure 4.3 Role-playing a computer network in class

●● Investigate the physical infrastructure of the
school network. Tell the pupils to walk from
their laptop to the local WiFi point or to follow
the network cable from the computer to the
classroom switch. Next, walk together to the
school’s main network switch, firewall and
router. If you can, then walk down to the nearest
BT green cabinet, and perhaps to your local
telephone exchange, depending on how close
this is to you.

●● Explore the steps on the journey of a packet
using the ‘tracert’ command at the Windows
command prompt, if you have access to this. Also
see the Visual traceroute reference in Further
resources.

●● Ask your school network manager to talk pupils
through how the school network connects their
computers to the rest of the internet.

 Further resources

Bagge, P. (n.d.) Network, internet and web search
planning. Code-it. Available from http://code-it.co.uk/
netintsearch

Barefoot Computing (2014) Internet services.
Available from http://barefootcas.org.uk/
programme-of-study/multiple-services-provided-
networks-internet/internet-services/ (free, but
registration required).

http://code-it.co.uk/netintsearch.
http://code-it.co.uk/netintsearch.
http://barefootcas.org.uk/programme-of-study/multiple-services-provided-networks-inte
http://barefootcas.org.uk/programme-of-study/multiple-services-provided-networks-inte
http://barefootcas.org.uk/programme-of-study/multiple-services-provided-networks-inte

120

Computer Networks

Barefoot Computing (2014) Modelling the internet
activity. Available from http://barefootcas.org.uk/
programme- of-study/understand-computer-
networks-including- internet/ks2-activity-modelling-
the-internet/ (free, but registration required).

BBC Bitesize (n.d.) Introduction to networks. Available
from www.bbc.co.uk/education/guides/zc6rcdm/
revision and Internet and communication: www.bbc.
co.uk/education/guides/z8nk87h/revision

Blum, A. (2012. Discover the physical side of the
internet. TED. Available from www.ted.com/talks/
andrew_blum_what_is_the_Internet_really

Blum, A. (2012) Tubes: Behind the scenes at the
internet. London: Penguin Books.

Digital Schoolhouse (n.d.) Mark Dorling and
others: Networks unplugged. Available from www.
digitalschoolhouse.org.uk/documents/networks-
unplugged-workshop-pack

Naughton, J. (2012) From Gutenberg to Zuckerberg:
What you really need to know about the internet.
London: Quercus.

Raspberry Pi Learning Resources (n.d.) Networking
lessons. Available from www.raspberrypi.org/
learning/networking-lessons/

Visual traceroute to find the path from their web
server to an internet address. Available from www.
yougetsignal.com/tools/visual-tracert/

What can you
do with the
Internet?
One way to think of the internet is as the train
network, efficiently routing trains of all kinds from
one point to another, irrespective of what those
trains contain: some will have passengers, others
freight, others are perhaps maintenance stock.
Similarly the infrastructure of the internet can be
used for lots of different things. At present, we are
most familiar with the web as the main application
of the internet, but the internet pre-dates the web
by a couple of decades and there are many who
think we will be using the internet, or something
very like it, long after the web becomes a historical
curiosity.

The services which run on computer networks,
including the internet, fall into roughly two groups
(Figure 4.4):

(1) client–server: one computer (the client)
accesses services or content running or stored on
another, typically larger, computer (the server);

(2) peer-to-peer: two computers communicate
directly as equals, passing data directly to and from
each other.

Client–server

Client computer

Client computer

Server computer

Client computer

Peer-to-peer

Figure 4.4

The World Wide Web (see page 122) fits into
the client–server model, but so do lots of other
services which use computer networks and the
internet as a means of communicating.

A school network will often have one or more
computers acting as servers, responding to requests
from the desktop, laptop and tablet computers
which act as clients. On a local area network
(LAN) like this, the servers might provide central
storage and backup for files, access to documents
and so on, from any computer on the network; a
management information system (such as SIMS –
the Student Information Management System); local
email accounts; access to printers; username and
password authentication; filtering and logging of
access to the web; and even locally-stored copies of
frequently visited web pages.

Email is a good example of a client–server system
using the internet (although many people’s
experience of email is as webmail accessed through
a browser like Internet Explorer or Chrome). The
journey of an email might be something like this:

http://barefootcas.org.uk/programme- of-study/understand-computer-networks-including- internet/ks2-a
http://barefootcas.org.uk/programme- of-study/understand-computer-networks-including- internet/ks2-a
http://barefootcas.org.uk/programme- of-study/understand-computer-networks-including- internet/ks2-a
http://barefootcas.org.uk/programme- of-study/understand-computer-networks-including- internet/ks2-a
http://www.bbc.co.uk/education/guides/zc6rcdm/revision
http://www.bbc.co.uk/education/guides/zc6rcdm/revision
http://www.bbc.co.uk/education/guides/z8nk87h/revision
http://www.bbc.co.uk/education/guides/z8nk87h/revision
http://www.ted.com/talks/andrew_blum_what_is_the_Internet_really
http://www.ted.com/talks/andrew_blum_what_is_the_Internet_really
http://www.digitalschoolhouse.org.uk/documents/networks-unplugged-workshop-pack
http://www.digitalschoolhouse.org.uk/documents/networks-unplugged-workshop-pack
http://www.digitalschoolhouse.org.uk/documents/networks-unplugged-workshop-pack
http://www.raspberrypi.org/learning/networking-lessons/
http://www.raspberrypi.org/learning/networking-lessons/
http://www.yougetsignal.com/tools/visual-tracert/
http://www.yougetsignal.com/tools/visual-tracert/

121

Computer Networks

●● Alice opens up Outlook and starts typing in her
email to Bob. She includes Bob’s email address,
bob@builders.com, in the ‘To’ line of the email
and clicks ‘send’.

●● The email is transmitted via the internet (or the
local network) to her outgoing mail server. If the
email is intended for another domain (builders.
com here) rather than Alice’s own (lookingglass.
org) then Exchange will forward the email as
packets of data via the internet, which routes
these through to the incoming mail server for
builders.com as discussed above.

●● The inbound mail server at builders.com (again,
perhaps running Exchange) re-assembles the
message from the packets of data, accepts this
and stores it ready for Bob to collect.

●● Later on, Bob’s email client (perhaps also
Outlook) connects to his mail server and asks
if there are any messages for him. The one from
Alice gets transmitted to Bob’s computer via the
local network or the internet, where Bob can
read it in his email software.

Although it might look to Alice and Bob as though
they are communicating directly with each other,
all their emails are going via the outbound and
inbound mail servers. Notice that the contents of
their emails are not encrypted, so the organisations
running the two mail servers can read the contents
of these messages if they wish.

Not all communication on the internet uses a
client–server model. For example, peer-to-peer
communication is a model used for Skype and a
number of other video conferencing or voice-
over-internet systems. Although Skype uses a
server to maintain a list of logged-in users and
the IP addresses of their computers, when a call is
connected, the packets of data that make up the
digitised video and audio for the call are routed
directly through the internet between the two
parties.

Some online gaming websites use a similar peer-
to-peer system, as does BitTorrent (Cohen, 2003),
a protocol which allows large files to be shared
between many computers by allowing direct peer-
to-peer connections, and blockchain (Nakamoto,
2008), a distributed ledger system for transactions
in cryptographically-generated (‘mined’) currency.
Because peer-to-peer connections are harder for
large organisations to monitor, they are favoured by
those using the internet for criminal purposes, for
example the use of the BitTorrent protocol

for illegally sharing copyrighted material, or the
blockchain-based Bitcoin for purchasing illegal
goods.

 Classroom activity ideas

●● Role-play can be used very effectively to teach
how email works and issues with email security.
Explain to pupils that email addresses can be
‘spoofed’ or accounts hacked – So, not all emails
are from whom they appear to be. Warn pupils
that files attached to emails can contain viruses.
Also explain that links in emails can sometimes
point to websites that are set up to capture
personal information such as passwords. You
might like to run this as part of a larger topic
looking at the effective and safe use of email,
perhaps in a twinning project with a class in this
or another country.

●● Use a video conferencing system to allow
experts to talk to the class or to allow two
classes to communicate. As you set up the
computer, talk through the technical aspects of
the call with your pupils. Note: Skype and most
other video conferencing systems don’t allow
children to register for accounts, so you will
need to run this as a whole-class activity.

●● Encourage pupils to talk about how they and
their families use the internet to communicate,
highlighting any services they use in addition to
the World Wide Web.

 Further resources

Google Green (2012) Story of send on Google Green
(a short cartoon about the journey of a Gmail-
based e-mail). Available from www.youtube.com/
watch?v=5Be2YnlRIg8

Guha, S., Daswani, N. and Jain, R. (2006) An
experimental study of the Skype peer-to-peer VoIP
system. Available from http://saikat.guha.cc/pub/
iptps06-skype.pdf

The journey of a letter. Available from www.
anpost.ie/anpost/schoolbag/primary/our+people/
the+journey+of+your+mail/

http://www.youtube.com/watch?v=5Be2YnlRIg8
http://www.youtube.com/watch?v=5Be2YnlRIg8
http://saikat.guha.cc/pub/iptps06-skype.pdf
http://saikat.guha.cc/pub/iptps06-skype.pdf
http://www.anpost.ie/anpost/schoolbag/primary/our+people/the+journey+of+your+mail/
http://www.anpost.ie/anpost/schoolbag/primary/our+people/the+journey+of+your+mail/
http://www.anpost.ie/anpost/schoolbag/primary/our+people/the+journey+of+your+mail/

122

Computer Networks

What is the World
Wide Web?
In 1989, British computer scientist Tim Berners-Lee
decided to combine the capabilities of the internet
with the functions of hypertext (documents that
include hyperlinks that allow connections to be
made between different files; see Figure 4.5) to
manage information systems at CERN where he
was working (Berners-Lee, 1989).

Hypertext

Figure 4.5 The links in the hypertext take the reader
to different documents which extend or support
the information in the original document

Berners-Lee developed a specification for how an
internet-based version of hypertext would work,
and then wrote the software for the first web
servers and web browsers. The result was the
World Wide Web.

The internet is about connecting computers
together, but the World Wide Web is about the
connections between documents (Figure 4.6).
When you click on a web link, another web page
is requested from (typically) a different web server
somewhere else on the internet.

The content of this web page is then delivered to
your web browser.

Figure 4.6 The World Wide Web is about the
connection (the links) between documents

What standards does
the World Wide Web use?

To ensure that all computers could communicate
with one another, Berners-Lee developed a set of
standards (called protocols) for the web. Versions of
these are all still used today.

HTTP (HyperText Transfer Protocol)

This is the process that computers use to request
and transfer hypertext to one another.

The web is a client–server system: we use a web
browser on our computer to request a web page
from one of the many, many web servers connected
to the internet. The request travels as a packet
of data via switches and routers until it reaches
the intended web server. The server responds by
sending back the content of the page, together
with any images and formatting instructions and
mini programs (typically in JavaScript) needed for
the page. If the page isn’t there, it sends back a ‘404:
Not found’ error message – sometimes you will see
other error messages too.

Remember that the internet doesn’t encrypt
packets of data: there’s another version of HTTP,
called HTTPS, where the request for a page, the
contents of the page and any information entered
into a form (such as a password) are sent over the
internet in an encrypted form. This encryption can
sometimes be bypassed by network managers and
government agencies.

123

Computer Networks

URL (Uniform Resource Locator)

URLs are the precise location on the web where
web pages or their components are stored. They
are what you type in to your browser’s address bar
to request a page.

Each bit of a URL means something. Let’s look at
the URL of one of the first web pages – Berners-
Lee’s home page for the World Wide Web project
itself – to work out what each bit means:

http://info.cern.ch/hypertext/WWW/TheProject.
html

●● ‘http’ is the protocol we are using to request
hypertext and the content that comes back –
see above.

●● ‘://’ is just punctuation – Berners-Lee now thinks
it would have been better if he’d skipped the //
bit!.

●● ‘info’ is the name of the web server we are
connecting to. Often this will be ‘www’ these
days, or it’s just omitted, as the main web server
for the organisation will be assumed.

●● ‘cern’ is the name of the organisation, in this case
the European Centre for Nuclear Research.

●● ‘ch’ is an abbreviation for the country where
the organisation has registered its domain name,
in this case Switzerland. Some countries also
show what sort of organisation is registered; for
example, ‘co.uk’ for a commercial site and ‘.sch.
uk’ for a school site in the UK. If no country
is shown, then it will be registered in the USA:
‘.com’ for commercial sites, ‘.edu’ for university
sites, and so on.

●● ‘hypertext’ is a directory (folder) on the web
server.

●● ‘WWW’ is a directory inside the ‘hypertext’
directory on the web server.

●● ‘TheProject’ is the name of the actual file we
are requesting, in this case a web page about the
World Wide Web project. Sometimes you don’t
see a file name at the end of a URL, in which
case the web server will send back the default
file for the directory, often an index page such as
‘index.html’.

●● ‘.html’ is the file extension, which shows what
format the page is written in, in this case HTML.
This is like ‘.doc’ or ‘.docx’ for a Word file or
‘.jpg’ or ‘.jpeg’ for an image.

Although it is often convenient to use search
engines like Google or Bing to find pages rather
than typing in URLs, the URL is a good way to

check that you’re connecting to the intended web
server (rather than a spoof website). URLs are also
needed when acknowledging sources of information
and for creating links between pages (and so
building more of the connections that make the
web so useful).

HTML (HyperText Mark-up Language)

HTML is the computer language (code) in which
the content and structure of a web page are
described, or ‘marked up’.

The content of web pages is stored in HTML
format on web servers. Creating a web page
involves writing (or getting a computer to generate)
the HTML that describes the page. HTML can be
read, and written, by humans as well as computers.
You can view the HTML source code for any web
page using tools built into your web browser.
(There’s a menu command to do this, or you can
press ‘ctrl-u’ in Internet Explorer.)

These days, the HTML for a web page might not
be stored as a file on the web server: in content
management systems, when a page is requested, it
will be generated automatically using a database of
content, a template and some programs running on
the web server, perhaps written in Python or PHP.
For example, every time you visit www.bbc.co.uk/
newsround/, the page will be generated using the
latest news in the database.

More recently, a couple of other languages have
come to play an important part in developing the
web.

CSS (Cascading Style Sheets)

CSS provides formatting information alongside the
content and structure of HTML, allowing designers
and developers to specify exactly how the content
of the page should be displayed in the web browser
on a computer, tablet, smartphone or printer.

JavaScript

JavaScript is a programming language that can be
interpreted by the web browser itself, allowing
interaction with the content of a page to be
handled by the user’s computer (the client) rather
than on the server itself. The web-based version of
Office 365 relies heavily on JavaScript.

124

Computer Networks

What’s the most amazing
thing about the web?

The amazing thing about the web isn’t really these
technologies though. It’s that, from its early days
as the preserve of academic scientists, so many
organisations and individuals have connected their
own web servers to the internet and added their
own content to the web. In part, this was because
Berners-Lee created a system that was accessible,
scalable and extensible, capturing the imagination
of many, but it’s also because he and CERN gave
it to the world for free – the standards and the
technology were entirely open, without any central
authority or commercial company licensing or
charging for their use.

 Classroom activity ideas

●● Encourage pupils to look at the different parts
of the URLs for the web pages they visit, asking
them to explain what each part of the URL
means. Make a display showing the different parts
of some interesting or common URLs.

●● Ask pupils to talk to their parents, grandparents
or carers about the difference the World Wide
Web has made in their lives.

●● Tell pupils to keep a diary of the different ways
they use the web over a week.

●● It’s not too tricky to set up a web server in
school, although providing access to this from
the rest of the internet may be harder. With
access to a web server, either on the school
network or via the internet, pupils could create
their own web pages either in HTML or using
a content management system, for others to
view. They could install a number of open-source
applications such as Moodle or Wordpress,
configuring these as they wish. They might also
watch and analyse the data logged by the web
server as it responds to page requests across the
network.(3)

3	 GitHub offers free hosting of static webpages: https://pages.github.com/

 Further resources

BBC Bitesize (n.d.) What is the world wide web?
Available from www.bbc.co.uk/guides/z2nbgk7

Berners-Lee, T. (n.d.) Answers for young people.
Available from www.w3.org/People/Berners-Lee/
Kids.html

CERN (n.d.) The original CERN home page for the
web. Available from http://info.cern.ch/hypertext/
WWW/TheProject.html

Mozilla Webmaker (n.d.) Web literacy whitepaper.
Available from http://mozilla.github.io/webmaker-
whitepaper/

Raspberry Pi Learning Resources (n.d.) Build a
Python webserver with Flask. Available from www.
raspberrypi.org/learning/python-web-server-with-
flask/

Wayback Machine (n.d.) To search for historic web
pages. Available from http://archive.org/web/

How do you make
a Web Page?
There are plenty of tools available for you and your
pupils to create your own content for the web.

Your school’s learning platform, or Virtual Learning
Environment (VLE), provides one way to get
content online, as do blogging platforms like
WordPress. These platforms usually include a
‘WYSIWYG’ (‘what you see is what you get’) editor.
This makes writing content for the web similar to
using Microsoft Word, with a range of formatting
controls built in. In most of these editors, you can
swap into code (or source view), seeing and editing
the HTML itself. This can be a good introduction to
working directly in HTML, as you can always swap
back to the WYSIWYG view to see the effects of
editing the code.

Giving pupils some experience of writing content
for the web through editing HTML ‘by hand’ is
well worth doing, although it isn’t, strictly speaking,
programming. It adds to their understanding of
networks, including the internet, that the curriculum

https://pages.github.com/
http://www.bbc.co.uk/guides/z2nbgk7
http://www.w3.org/People/Berners-Lee/ Kids.html
http://www.w3.org/People/Berners-Lee/ Kids.html
http://info.cern.ch/hypertext/WWW/TheProject.html
http://info.cern.ch/hypertext/WWW/TheProject.html
http://mozilla.github.io/webmaker-whitepaper/
http://mozilla.github.io/webmaker-whitepaper/
http://www.raspberrypi.org/learning/python-web-server-with-flask/
http://www.raspberrypi.org/learning/python-web-server-with-flask/
http://www.raspberrypi.org/learning/python-web-server-with-flask/
http://archive.org/web/

125

Computer Networks

expects, and is one more way of using software
on a range of devices to create content. It is also
a good way to get pupils used to working in a
formal, text-based computer language. As with
other text-based languages, working in HTML helps
reinforce the importance of spelling, punctuation
and grammar: mistakes in the mark-up of the page
usually become quite apparent in the way the
browser displays the page.

Many pupils are likely to find these skills useful in
the long term too, both at secondary school and
beyond: developing content for the web is part of
many jobs, teaching included.

What does HTML look like?

Let’s compare the HTML code for a simple web
page and the page itself.

<!doctype html>
<html>
 <head>
 <meta charset=”utf-8”>
 <title>A simple webpage</title>
 </head>
 <body>
 <h1>Origins of the Web</h1>
 <p>Tim Berners-Lee started working on
the world-wide web project in 1989.</p>
 <p>He was working at <a href=”http://
home.web.cern.ch/”>CERN in Switzerland
at the time.</p>
 <img src=”http://www.w3.org/Press/Stock/
Berners-Lee/2001-europaeum-eighth.jpg”>
 </body>
</html>

Figure 4.7

Can you see where the content for the page (Figure
4.7) comes from in the code? Can you see what
effect some of the HTML tags (the bits in the <...>
angle brackets, like <h1> and <p>) have on how the
content is structured?

Notice how most of the tags come in matched
pairs, for example:

●● <html> and ending </html> for the whole
page;

●● <head> to </head> for the information
about the page, such as its character set and
title;

●● <body> to </body> for the content of the
page;

●● <h1> to </h1> around the main heading for
the page;

●● <p> to </p> around each paragraph.

Compare the underlined link in the web page with
the corresponding code. In the code, <a> to
shows where the link should be, and href=”http://
home.web.cern.ch/” inside the <a> tag details
where the link should point to.

An image is inserted from elsewhere on the
web, using a single tag, this time without a
matched closing tag, and again giving the location of
the image, using src=” http://www.w3.org/Press/
Stock/Berners-Lee/2001-europaeum-eighth.
jpg” inside the tag.

126

Computer Networks

How do I get started with
HTML?

Mozilla’s Thimble tool for creating websites
(available at: https://thimble.webmaker.org/) makes
it easy to get started with coding in HTML, as it
displays the source code alongside the resulting
web page, as does Trinket.io in HTML (rather than
Python) mode.

Instead of starting from a blank page, pupils can try
editing other web pages, exploring the structure
and HTML code of these pages, and seeing what
effect changing the code has on how the page is
displayed in the browser.

On Internet Explorer or Chrome, you can use the
Developer Tools (hit F12 or launch via the menu)
to view and edit the source code (the HTML code
which describes the content and structure) for a
page. Alternatively, you can install Mozilla’s X-Ray
Goggles as an active bookmarklet (see Further
resources) to remix and share edited web pages.

 Classroom activity ideas

●● When using their learning platform, VLE or
class blog, encourage pupils to swap from the
normal WYSIWYG (what you see is what you
get) mode of the built-in editor, into the code,
source or HTML mode and try writing their
post or page in that. Remind them that they
can swap back and forth to see how the code
relates to the page that’s displayed. Give pupils a
list of some common HTML tags to try out for
themselves.

●● Set pupils the challenge of making a parody of
a web page by using either the Developer Tools
in Internet Explorer, or X-Ray Goggles, to edit
the code for the page. It’s wise to decide some
ground rules for this activity in advance. Show
pupils how easily a spoof page can be created
this way, and explain why it’s so important to
check the address of the page they are visiting,
to confirm it is authentic rather than merely one
which looks convincing.

●● Rather than asking pupils to write up a story
or a report using Word, challenge them to do
this using HTML code to make a web page.
Emphasise that they need to concentrate on
the content and structure of their page, which is
what HTML is designed for. Encourage them to
add in links to supporting material using the <a>
tag if they are creating a non-fiction account, and
perhaps to add in some images from elsewhere
on the web using the tag.

 Further resources

Codecademy (n.d.) Curriculum materials. Available
from www.codecademy.com/schools/curriculum
(registration required). See also: www.codecademy.
com/learn/make-a-website

CodeClub World (n.d.) Resources. Available
from http://projects.codeclubworld.org/en-
GB/05_html_01/index.html and http://projects.
codeclubworld.org/en-GB/06_html_02/index.html

Howe, S. (n.d.) Learn to code HTML and CSS
(tutorials). Available from http://learn.shayhowe.
com/

Mozilla X-Ray Goggles (n.d.) See the source code
behind web pages using X-Ray Goggles. Available
from https://goggles.webmaker.org/

Playto (n.d.) App design basics. Learn to code using
HTML and CSS. Available from https://learn.playto.io/
html-css/lesson/0

Raspberry Pi Learning Resources (n.d.) Google Coder
resources. Available from www.raspberrypi.org/
learning/coder-html-css-lessons/

Thimble (n.d.) Available from https://thimble.
webmaker.org/

W3schools.com (n.d.) Tutorials on a wide range
of computer languages. Available from www.
w3schools.com/

http://www.codecademy.com/schools/curriculum
http://www.codecademy.com/learn/make-a-website
http://www.codecademy.com/learn/make-a-website
http://projects.codeclubworld.org/en-GB/05_html_01/index.html
http://projects.codeclubworld.org/en-GB/05_html_01/index.html
http://projects.codeclubworld.org/en-GB/06_html_02/index.html
http://projects.codeclubworld.org/en-GB/06_html_02/index.html
http://learn.shayhowe.com/
http://learn.shayhowe.com/
https://goggles.webmaker.org/
https://learn.playto.io/html-css/lesson/0
https://learn.playto.io/html-css/lesson/0
http://www.raspberrypi.org/learning/coder-html-css-lessons/
http://www.raspberrypi.org/learning/coder-html-css-lessons/
https://thimble.webmaker.org/
https://thimble.webmaker.org/
http://www.w3schools.com/
http://www.w3schools.com/

127

Computer Networks

How does a
Search Engine
work?
Search engines like Google and Bing have
transformed the way we use the web. Instead of
having to remember URLs for the pages we want,
or following the links from one page to another, we
can normally rely on these web-based programs to
give us the most relevant results for our query.

Given how much we use search engines, it’s
important to use them effectively and efficiently,
to show some discernment in deciding how far a
particular page can be trusted, and to have some
grasp of the algorithms that underpin them.

In order for Google or Bing to be able to respond
to a search query, they use their index of the web.
A search engine builds its index by using specially
written programs called ‘web crawlers’. The
web crawlers create a huge copy of the publicly
accessible bits of the web (called a cache) which is
stored on the search engine’s servers.

When a new or updated copy of a web page is
added to the cache, an entry for the page will be
added to, or updated in, the search engine’s index
of the web for each of the words on the page
(typically ignoring small, common words like ‘and’,
‘the’ and so on). The web crawlers continue to build
and update the cache by following all the hyperlinks
in the page, requesting and making copies of those
pages too, adding or updating index entries for
them and following the links on those pages too.
And so on.

So, when we type a keyword such as ‘dog’ into a
search engine, it consults the index and returns
a list of all the web pages on which that keyword
appears. Typing in several keywords, for example
‘dog’ and ‘bowl’ would only return pages with both
of these keywords, which helps to narrow down the
set of results.

How are search results ranked?

The really clever bit about web searches is not the
list of results but the rank order the results are put
into. How do the search engine algorithms decide
what to put top of the list?

Google’s founders, Larry Page and Sergei Brin,
recognised that the key to determining the
relevance of a particular result was likely to lie in
the links between other pages and the result. They
realised that a high-quality page is a one that has
lots of links pointing to it from other web pages,
particularly if they too are high-quality results (Page
et al., 1999). This is shown in Figure 4.8, where the
larger the circle is, the higher the quality of the web
page.

Figure 4.8

The cached and indexed copy of the (publicly
accessible) web on the servers of search engines
also includes the links between them. This allows
Page and Brin’s PageRank algorithm to work out
which pages are considered the highest quality to
other web developers (as they add links to those
into their own content). Thus, for many queries,
the Wikipedia entry will often be at the top of, or
at least high up, the results list, not because of its
accuracy or authority, or even because people click
on this more than other results, but because lots of
the other high-quality search results link to it.

The actual algorithms that search engines use can
be very complicated and are frequently tweaked
to keep one step ahead of the ‘search engine
optimisation’ (SEO) industry, that tries to improve

128

Computer Networks

the ranking for its clients’ pages. These days, the
ranking of results is typically personalised, based on
location, the history of what the user has searched
for and clicked on before, and close to 200 other
factors or ‘signals’.

When teaching pupils about how search engines
work, point out the sponsored results which are
shown above or to the side of those generated
using this relevance algorithm. The sponsored
results are also algorithmically generated, based on
the keyword, some quality measure for the advert,
the page it points to and often your search history.
They are placed on a ‘pay per click’ basis: the search
engine doesn’t charge for showing the advert, but
the advertiser pays when you click on it, so it’s in
the interests of the search engine to only show the
most relevant adverts here.

The mechanics will vary from one search engine
to another, but a good search engine should also
filter out explicit content automatically, allow you
to search within a particular site, and allow results
to be filtered by their location (for example, just
the UK) and by date range (for example, just pages
created or edited in the last year).

 Classroom activity ideas

●● Encourage pupils to use search engines for
independent or guided research projects. Get
pupils to experiment with the effect that adding
further keywords, or searching for phrases, (by
putting quotation marks around the phrases) has
on a set of results.

●● Demonstrate, and ask pupils to use, some of the
more advanced search features, such as filtering
by date. Show pupils how they can view the
cached copy of a web page (for both Google and
Bing this is hidden under the green drop-down
next to the URL on the results page).

●● Read through the Digital Schoolhouse notes
on a simulation of how a search engine works,
based on Google engineer Doug Aberdeen’s
presentation at the 2012 CAS Conference (see
Further resources). Print off the resources and
run this as an activity with your class.

 	 Further resources

Aberdeen, D. (2011) Simulation from the CAS
conference. Available from https://youtu.
be/bNp4ZP5CDcA?t=20m35s; qv www.
computingatschool.org.uk/data/uploads/conf2011/
real-life.pdf

Bing (n.d.) Useful list of advanced search keywords in
Bing. Available from http://onlinehelp.microsoft.com/
en-gb/bing/ff808421.aspx [2/1/17].

Cutts, M. (2010). How search works.
YouTube. Available from www.youtube.com/
watch?v=BNHR6IQJGZs

Dickman, P. (2012) How Google search works.
YouTube. Available from www.youtube.com/
watch?v=C8v7AM1o7uM

Digital Schoolhouse (n.d.) Simulation of how a search
engine works. Available from http://community.
computingatschool.org.uk/files/3874/original.pdf

Pariser, E. (2011) Beware online ‘filter bubbles’ (how
individually focussed our search results are). TED.
Available from www.ted.com/talks/eli_pariser_
beware_online_filter_bubbles?language=en

References
Berners-Lee, T. (1989) Information management:
A proposal. Available from https://www.w3.org/
History/1989/proposal.html [2/1/17].

Cohen, B. (2003) Incentives Build Robustness in
BitTorrent. In: Workshop on Economics of Peer-to-Peer
Systems. Volume 6. 68–72.

DfE (2013) National curriculum in England:
Computing programmes of study. London: DfE.

Nakamoto, S. (2008) Bitcoin: A peer-to-peer electronic
cash system. Available from https://bitcoin.org/
bitcoin.pdf [2/1/17].

Page, L., Brin, S., Motwani, R., et al. (1999) The
PageRank citation ranking: Bringing order to the
web. Available from http://ilpubs.stanford.
edu:8090/422/1/1999-66.pdf [2/1/17].

https://youtu.be/bNp4ZP5CDcA?t=20m35s
https://youtu.be/bNp4ZP5CDcA?t=20m35s
http://www.computingatschool.org.uk/data/uploads/conf2011/real-life.pdf
http://www.computingatschool.org.uk/data/uploads/conf2011/real-life.pdf
http://www.computingatschool.org.uk/data/uploads/conf2011/real-life.pdf
http://onlinehelp.microsoft.com/en-gb/bing/ff808421.aspx
http://onlinehelp.microsoft.com/en-gb/bing/ff808421.aspx
http://www.youtube.com/watch?v=BNHR6IQJGZs
http://www.youtube.com/watch?v=BNHR6IQJGZs
http://www.youtube.com/watch?v=C8v7AM1o7uM
http://www.youtube.com/watch?v=C8v7AM1o7uM
http://community.computingatschool.org.uk/files/3874/original.pdf
http://community.computingatschool.org.uk/files/3874/original.pdf
http://www.ted.com/talks/eli_pariser_beware_online_filter_bubbles?language=en
http://www.ted.com/talks/eli_pariser_beware_online_filter_bubbles?language=en
https://www.w3.org/History/1989/proposal.html
https://www.w3.org/History/1989/proposal.html
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

DY

Systems

Productivity
and Creativity

Can we carry on teaching
our old topics?

129

Productivity and Creativity

Productivity and
Creativity
CAN WE CARRY ON TEACHING
OUR OLD TOPICS?
The 2017 Technologies Benchmarks make a clear
distinction between Digital Literacy and Computing
Science. The organisers for Digital Literacy:

Using digital products and services in a
variety of contexts to achieve a purposeful
outcome. Searching, processing and
managing information responsibly. Cyber
resilience and internet safety

These encompass the older concept of ‘ICT across
the curriculum’ and, as such, are the responsibility
for all subject areas but in many establishments
much specific teaching of these elements will be
done alongside the Computing Science delivery.

The topics which encompassed the broad areas of
productivity and creativity will remain an important
part of the new curriculum.

Level 1 requires that the pupil ‘uses digital
technology to collect, capture, combine and
share text, sound, video and images’. At Level 2
this extends to selecting the most appropriate
applications and techniques and to ‘share and
collaborate’.

At Level 3, it extends to pupils being able to ‘gather
and combine data and information from a range
of sources to create a publication, presentation or
information resource, and that the pupil ‘uses the
most appropriate applications and software tools to
capture, create and modify text, images, sound, and
video to present and collaborate’.

In planning what to include, think back to the
units that worked particularly well in your old
scheme of work. Avoid having too many units which
do little more than allow pupils to practise or
reinforce skills they already have. Do include any
opportunities to make connections between Digital
Literacy and Computing Science – for example,
video-editing work provides a great opportunity
to develop the ideas of sequencing, which can be
linked to sequencing in programming, as well as a
chance to consider compression algorithms and

file formats. Also it can link to digital literacy: have
pupils consider the privacy implications of videoing
one another and potentially sharing this with an
audience beyond the class or school.

How can we make IT activities
more meaningful for pupils?

Back in 2008, David Jonassen (Jonassen, 2008)
coined the term ‘meaningful learning’ to describe
learning that met a number of criteria: he and his
colleagues were thinking particularly about learning
activities that involved using technology, but the
principles can be applied more broadly. Jonassen’s
list was:

●● Active: a good IT activity should be one in
which learners are doing something, not merely
reading about something, watching someone else
do something or listening to someone talking
about something.

●● Constructive: a good IT activity should be
both constructive in the sense of pupils making
something – that is, working creatively – but also
in the sense of ‘making meaning’, of developing
their mental model of how a particular
technology works.

●● Intentional: ideally, IT activities should allow
pupils some element of choice in what they
do, or how they accomplish something: this
can often be done through specifying some
required outcomes in functional terms, rather
than particular tools that should be used to
accomplish these.

●● Authentic: where possible, IT activities should
be embedded in pupils’ experience, including,
perhaps particularly, that of school: look for
connections with other areas of the curriculum,
for example, embedding the teaching of IT skills
in work which develops pupils’ understanding of
other topics.

●● Co-operative: again, where possible, look for
activities where pupils can learn with and from
one another, ensuring that they have the chance
to talk purposefully and productively with one
another, to share their ideas and insights with
each other.

These ideas can be applied directly to projects
in IT: for example, pupils could work together to
create an online survey of other pupils about their
views on the breadth of the school’s curriculum,
choosing for themselves how they might analyse
and present the results. It is just as easy though to

130

Productivity and Creativity

apply these to topics in computer science, perhaps
setting pupils the challenge of working together to
develop a simple phonics game for younger pupils,
leaving many of the decisions over implementation
to pupils themselves.

There’s some quantitative evidence to support
some of Jonassen’s ideas. In his survey of meta-
analyses of education research, John Hattie (2008)
considers the evidence for the most effective use of
technology in education. He argues:

	 The use of computers is more effective 			
	 when:

●● There is a diversity of teaching strategies.
●● There is teacher pre-training in the use of

computers as a teaching and learning tool.
●● There are multiple opportunities for

learning.
●● The student, not the teacher, is in control

of the learning.
●● Peer learning is optimised.
●● Feedback is optimised.

In terms of IT, notice Hattie’s emphasis on the
student rather than the teacher being in control
of the learning, and compare this with Jonassen’s
expectation of intentionality, and indeed the Level
2 curriculum requirement that pupils should
be able to select as well as use and combine
applications. Similarly, Hattie’s emphasis on peer
learning mirrors Jonassen’s focus on co-operation.
An emphasis on the collaborative use of technology
is also supported in Steven Higgins and colleagues’
(Higgins et al., 2012) synthesis of meta-analyses of
technology in education; they state: ‘collaborative
use of technology (in pairs or small groups) is
usually more effective than individual use.’

How should pupils go about
project work?

It is important to find a balance between getting
things done, adopting an agile approach of
producing a ‘minimum viable product’ in the limited
time available, and developing good working habits
for more extended projects. One way to achieve
this balance is to include a mix of short activities,
in which pupils simply roll up their sleeves and
create a spreadsheet, make a presentation or shoot

and edit some digital photos, and more extended
projects, in which the processes of planning,
implementing, revising and evaluating the project are
fully explored, including some occasions when these
become part of a cycle of iterative development.
Note that these phases mirror the computational
thinking concepts and approaches of algorithms and
decomposition, creating, debugging and evaluation.
Working through the stages of a project in detail,
sometimes repeatedly, is good experience for
project work elsewhere in the curriculum and
beyond school although, obviously, extended
projects will take longer to complete than short,
focussed tasks.

Where possible, look for ways to get pupils
themselves involved in the work of managing
the projects, including deciding what particular
programs, and what equipment, they will need
to use, and even in managing their time and the
work of others in the team, if they are working
collaboratively. The sort of project management
skills involved in creative IT or digital media work
are very similar to those required in developing
computer software, so a similar approach can
be applied to project work in both the IT and
computer science strands of the curriculum.

131

Productivity and Creativity

What applications should
pupils work with?

The 2017 Benchmarks are quite careful not to
specify particular digital media, partly in recognition
that new forms of digital content are likely to
develop over time, and partly through a desire not
to limit the forms in which pupils could explore
ideas and express their creativity.

Technology currently available in most schools
can be used for work across a very wide range
of media, including: text (in both print and digital
formats), images (both as vector illustrations and
bitmap photographs), sound (as both recorded
audio and composed music), animations (as stop-
frame and scripted), video, and 3D (typically virtual
representations, but some schools are starting to
explore 3D printing).

Pupils need not be limited to working in just one
medium – creative work in digital media will often
combine multiple forms: a simple PowerPoint
presentation or a website is likely to include text
and images and perhaps video, audio and animations.
Notice that the programme of study expects pupils
to be able to combine applications across a range
of devices. Pupils might begin by shooting video and
recording audio using a tablet computer, importing
this to a laptop to use video-editing software,
combining this live footage with appropriately
licensed images sourced from the web, before
uploading their final edited film to an online video-
hosting site.

Digital media can also be interactive – perhaps
using little more than hyperlinks to allow non-
linear navigation, but potentially drawing on more-
complex scripting or programming.

1	 Confusingly, the term also means ‘any undesired or unintended alteration in data introduced in a digital process by an involved 	
	 technique and/or technology’. The programme of study uses it in its anthropological sense of ‘an artifact that is of a digital 	
	 nature or creation’.

What are digital artefacts?

A digital artefact(1) is a thing made using digital
technology. The thing may not have a physical
existence – it might be a virtual or a transient
thing, but it must be something that has been made,
something which provides evidence of its maker’s
creative work.

There’s a very wide variety of digital artefacts
which pupils might create. Oliver Quinlan identifies
a number of categories in his landscape review of
young people’s digital making for Nesta (Quinlan,
2015):

●● digital pictures;
●● edited videos or visual effects;
●● music;
●● animation;
●● games;
●● websites;
●● remixes and mashups;
●● apps;
●● software;
●● robots;
●● 3D-printed objects;
●● edited photos.

Note that the list includes a number of artefacts
which are made with code: games, apps and
software, but perhaps also animation, visual effects,
websites and robots. To this list we might add more
conventional categories of artefacts created using
digital tools: text, word-processed documents and
desktop publishing, web content below the level of
a site (such as a blog post), fan fiction or a forum
contribution, spreadsheets, presentations, audio
other than music, and 3D virtual objects (apart
from in the context of games and animation).

Sir Ken Robinson defines creativity as ‘the process
of having original ideas that have value’ (Robinson,
2011): both aspects here matter. Creative work
should be original: in school, this should at least
mean that it’s a pupil’s own work, not something
where they have simply filled in a blank or copied

132

Productivity and Creativity

something made by their teacher. Creative work
should also be of value: at the very least, to the
pupil herself, but perhaps also to her teacher and a
wider audience. This means that pupils should aim
to produce the best work they possibly can, and
that their teachers and peers should be unafraid
to offer constructive critical feedback on work
so that it can be improved, further developing the
computational thinking concept of evaluation.

As well as originality and value, creative work also
implies that the pupil has made something. An
emphasis on creativity recognises how powerful the
process of making things for others is as a means
to learning, as Seymour Papert did in the very early
days of Logo programming in schools, coining the
term ‘constructionism’ for this as a theory of how
people learn (Papert and Harel, 1991). Pupils seem
far more likely to develop an understanding of how
software works, as well as becoming more skilful in
using it, if they have the chance to use it creatively
to make something original and valuable for others.

Related to this are ideas of craftsmanship. In
describing craftsmanship values, Hoover and
Oshineye (2009) discuss much that should have a
place in creative computing lessons, such as the idea
of a growth mindset, recognising the importance of
hard work to the mastery of any craft, a willingness
to experiment and be proven wrong, and the need
for craftspeople to have some control over and
responsibility for their work. Richard Sennett (2008)
discusses the relationship of the craftsperson to
their tools, recognising the importance of mastering
the tools of a trade, and that tool use can be bound
up with creative expression: ‘tools used in certain
ways organize this imaginative experience ... with
productive results’. In the classroom, help pupils
to become masters of the software tools and
digital devices they use, helping them to develop
confidence, competence and independence as they
do so, and then encourage them to employ these,
playfully or experimentally, as a means towards the
expression of their own insights and ideas.

2	 https://creativecommons.org/
3	 www.gov.uk/guidance/exceptions-to-copyright#parody-caricature-and-pastiche
4	 See https://opensource.org/licenses

How can pupils learn to reuse,
revise and repurpose digital

artefacts?

Pupils do not have to work from scratch in creating
digital artefacts. It is entirely legitimate for them to
start with someone else’s work, adapting this for
their own particular purpose and audience, or using
others’ work as components within their own.

The Creative Commons licensing scheme(2) enables
artists to license their work for others to reuse or
develop without the need for further permission,
and current copyright legislation permits some
reuse, for purposes of parody(3) and for private
study, subject to reasonable fair dealing limits. There
are extensive online repositories of text, images and
audio that can be reused, revised and repurposed,
either in the public domain or licensed for reuse
under the Creative Commons scheme. Public-
domain or Creative Commons video resources
are somewhat harder to obtain in general, in part
due to the restrictions on downloading imposed by
YouTube, however some downloadable, remixable
content is available via Vimeo and the Internet
Archive.

Figure 5.2 Creative Commons scheme

Content shared on the Scratch community site
automatically carries a Creative Commons licence
and can thus be freely remixed by any other Scratch
users. Much other software is licensed in a way that
permits reuse and further development, and there’s
a number of different licence terms available.(4) In
general open-source software will permit free reuse
and further development of source code, although

https://creativecommons.org/
http://www.gov.uk/guidance/exceptions-to-copyright#parody-caricature-and-pastiche
https://opensource.org/licenses

133

Productivity and Creativity

the specific conditions vary according to the licence
that applies. Projects such as Moodle, Wordpress,
Firefox, Scratch, Android and Python have freely
downloadable and editable source code, although
it would be a brave pupil who decided to develop
their own version of Android. To help manage the
process of access to, remixing of and contributing
back to the main development process for open-
source projects, GitHub seems to be the platform
of choice now.

The negative side of reuse is plagiarism. Reusing
another’s work as a basis for your own creative
work is acceptable only if the original work is
duly acknowledged. Artists sharing their work
under a Creative Commons licence, or developers
releasing code under open-source licences, are
entitled to have their work, and their contribution
to other’s creative work, properly recognised; such
recognition may be the only reward they have for
freely sharing their work in this way. Passing off
another’s creative work as one’s own is unethical,
in breach of most forms of the Creative Commons
licence and in contravention of academic discipline
codes for higher education and public exams. With
code, it is okay to look for others’ solutions on
StackOverflow or other sites, and it’s (usually) okay
to make use of their solutions in your own work,
but only if you acknowledge that you have done so.

Are there principles
for good design?

Whilst there are purely artistic, creative projects
accomplished in digital media, very often in
computing, pupils are likely to have a sense of
audience and purpose for their work. Their creative
work is closer to architecture than to sculpture
– in most cases it has to be something which its
audience will find useful as well as beautiful. That’s
not to say that its beauty is unimportant but, the
design of a product should be led by the needs of
its users, rather than just the desire for creative
expression of its developer.

Any approach to user-centred design must
acknowledge that functionality is fundamental. As
Steve Jobs put it:

5	 See www.usability.gov/what-and-why/user-centered-design.html
6	 www.vitsoe.com/gb/about/good-design

It’s not just what it looks like and feels like.
Design is how it works. (Walker, 2003)

User-centred design doesn’t in itself specify
principles of good design, but it does suggest a
process that helps ensure that any design is fit for
its audience and purpose:

●● Specify who will be the users of a product
and what they will use it for – audience.

●● Identify the goals that must be met for the
product to be a success – purpose.

●● Plan and implement a solution.
●● Evaluate the solution.(5)

A common design approach is to plan, and perhaps
partially implement or prototype, many possible
solutions, evaluating each against the audience and
purpose criteria, before taking one solution through
to full implementation.

Many lists of design principles have been drawn up.
Dieter Rams, the designer of many of Braun’s iconic
20th-century products, had the following list:

●● Good design is innovative.
●● Good design makes a product useful.
●● Good design is aesthetic.
●● Good design makes a product

understandable.
●● Good design is unobtrusive.
●● Good design is honest.
●● Good design is long-lasting.
●● Good design is thorough down to the last

detail.
●● Good design is environmentally friendly.
●● Good design is as little design as possible.(6)

http://www.usability.gov/what-and-why/user-centered-design.html
http://www.vitsoe.com/gb/about/good-design

134

Productivity and Creativity

Figure 5.3 Some of Dieter Rams’s designs for Braun.
From https://www.flickr.com/photos/42035325@
N00/15538137829/ CC by-nc-nd albyantoniazzi

More recently, the Government Digital Service
has adopted the following principles for its work
developing and refining the UK Government’s
online presence and interaction:

●● Start with needs.
●● Do less.
●● Design with data.
●● Do the hard work to make it simple.
●● Iterate. Then iterate again.
●● This is for everyone.
●● Understand context.
●● Build digital services, not websites.
●● Be consistent, not uniform.
●● Make things open: it makes things better.(7)

Comparing these and similar lists, there seems
some agreement over some core principles of
good design, such as utility, inclusion, honesty and
simplicity. Simplicity seems particularly striking in
the context of Digital Literacy where, until recently,
many of us might have encouraged pupils to include
all the possible ‘bangs and whistles’, clipart and
animation in their media work to demonstrate that
they could use every last aspect of the application
software. Perhaps, when developing digital artefacts
as part of the curriculum, we should encourage

7	 www.gov.uk/design-principles

pupils to strive for a simpler design aesthetic,
prioritising function over form, and placing the
needs of users before the need to demonstrate
prowess with particular tools.

As Apple’s lead designer, Sir Jonathan (Jony) Ive,
explains:

Simplicity is not the absence of clutter;
that’s a consequence of simplicity.
Simplicity is somehow essentially
describing the purpose and place of
an object and product… The quest for
simplicity has to pervade every part
of the process. It really is fundamental.
(Richmond, 2012)

 Classroom activity ideas

●● Take a topic in which pupils are interested,
perhaps from computing or from another area of
the curriculum, and ask them to document it in
a rigorous, critical way using the digital medium
and tools of their choice.

●● Working in a medium such as digital images
or audio, provide pupils with some Creative
Commons licensed content and set them the
challenge of remixing this in the most original
way that they can.

●● Extend pupils’ skills, knowledge and
understanding in digital media work beyond
what they covered in primary school, for
example introducing them to the techniques of
3D animation using the open-source Blender
platform.

 Further resources

Design thinking for educators (n.d.) Available from
www.designthinkingforeducators.com/

Duarte, N. (2008) Slide:ology: The art and science of
creating great presentations. Sebastopol, CA: O’Reilly
Media, 417–421.

Government Digital Service (n.d.) Design principles.
Available from www.gov.uk/design-principles

https://www.flickr.com/photos/42035325@N00/15538137829/
https://www.flickr.com/photos/42035325@N00/15538137829/
http://www.gov.uk/design-principles
http://www.designthinkingforeducators.com/
http://www.gov.uk/design-principles

135

Productivity and Creativity

Kemp, P. (n.d.) Introduction to 3D animation using
Blender. Available from https://goo.gl/5F9esz

Martinez, S.L. and Stager, G. (2013) Invent to learn:
Making, tinkering, and engineering in the classroom.
Torrance, CA: Constructing Modern Knowledge
Press.

Nielsen, J. (2003) Usability 101: Introduction to
usability. Available at https://www.nngroup.com/
articles/usability-101-introduction-to-usability/
[2/1/17].

Norman, D.A. (2013) The design of everyday things:
Revised and expanded edition. New York, NY: Basic
Books Inc.

Quinlan, O. (2015) Young digital makers surveying
attitudes and opportunities for digital creativity across
the UK. London: Nesta.

Reynolds, G. (2011) Presentation Zen: Simple ideas
on presentation design and delivery. Vancouver: New
Riders.

Sefton-Green, J. (2013) Mapping digital makers: A
review exploring everyday creativity, learning lives and
the digital. Oxford: Nominet Trust.

Williams, R. (2014) The non-designer’s design book:
Design and topographic principles for the visual novice.
Upper Saddle River, NJ: Pearson Education.

What can pupils
do with Data?
The new computing curriculum places an emphasis
on pupils working with numerical, quantitative data.
This is a hugely important application of computer
systems, and seems likely to become even more
so in the future. There’s much that you can do
to provide pupils with a meaningful, authentic
experience of working with both small and large
datasets, and the skills and insights this work
provides can be applied immediately in studying
other subjects, as well as being useful for pupils
as they work with datasets in the future. Given
the ready access to tools with which pupils can
generate interesting sets of data or access large
open-data repositories on the web, the rather
artificial database activities that many teachers and
pupils found understandably dull should now be a
thing of the past.

Online survey tools, such as Google Forms, allow
pupils to design and deploy quick opinion polls
or surveys, and then analyse, evaluate and present
the results. Choosing topics of genuine interest
to pupils, perhaps concerned with aspects of
school life, can make activities like this much more
engaging; or pupils could use these to survey
opinion more broadly on local or national issues
about which they have become concerned. In this
case, care needs to be taken to avoid written-in,
free-text responses, to avoid potential e-safety
issues. Pupils should think about privacy and ethical
aspects of such surveys – good practice includes
principles of informed consent and anonymity; the
latter is particularly important as, otherwise, data
protection legislation might apply to the processing
of personal data.

Data activities can also draw on automatically-
generated data, perhaps using sensors to record
environmental information (for example, a Scratch
script to record the level of sound in class over
a school day, or a Raspberry Pi-based weather
station, or the data generated automatically in
the log files of the school’s website or its VLE
(virtual learning environment) if you have access to
these. Often there will be a ‘dashboard’ interface
available to explore summaries of these data, but
you might also be able to provide pupils with the
raw data, so they gain some insight into how they
are structured and so they can experiment with

https://goo.gl/5F9esz
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/

136

Productivity and Creativity

analysing them in Excel or other software. You or
your pupils could create random simulations to
generate large datasets, for example using Excel to
simulate rolling two dice 1,000 times. Pupils could
then analyse these data to learn more about what
was being modelled in the simulation – this is called
the ‘Monte Carlo method’ and is an important
application of computer modelling.

Figure 5.4 Raspberry Pi weather station,
(picture, Miles Berry)

Pupils can also analyse some genuinely big datasets
made publicly available on the internet: for example,
Google makes it easy to run searches for the
occurrence of words or phrases in the vast number
of books it has digitised, seeing how this changes
over time.(8) Google also allows the trends in
search-term popularity over time to be explored(9)
– for example looking at the relative popularity of
searches for ‘ICT’ and ‘Computing’ over time in the
UK. The DfE provides detailed data on performance
and other measures for all English schools,(10) and
pupils could use Excel to analyse these data, for
example exploring for themselves whether there’s
any relationship between proportions of pupils
receiving free school meals and a school’s GCSE
results.

8	 https://books.google.com/ngrams
9	 www.google.co.uk/trends
10	www.compare-school-performance.service.gov.uk/download-data

Figure 5.5 Screenshot from Google Trends,
e.g. https://www.google.co.uk/trends/
explore?date=all&geo=GB&q=computing,ict

There is an opportunity here to touch on some
of the ethical implications of data processing.
Pupils might think about the data which the school
routinely stores about their activities, particularly
that which becomes part of the DfE’s national pupil
database.

 Classroom activity ideas

●● Carry out activities that draw on automatically-
generated data, perhaps using sensors (for
example a Scratch script to record the level of
sound in class; see Further resources).

●● Organise your pupils to analyse some big
datasets made publicly available on the internet.
Help them to use n-gram viewer to search for
the occurrence of words or phrases in the vast
number of books that Google has digitised, and
to see how this changes over time (see Further
resources). Analyse how search-term popularity
has changed over time, for example look at the
relative popularity of searches for ‘Britain’s Got
Talent’ and ‘The X Factor’ over time in the UK,
using Google Trends (see below).

●● Discuss the ethical implications of data
processing (that is, what others do with our
data). Ask pupils to think about the detailed
profile which internet, email or search-engine
providers might build up through analysing
each user’s activity, as well as to what uses this
information might be put.

https://books.google.com/ngrams
http://www.google.co.uk/trends
http://www.compare-school-performance.service.gov.uk/download-data
https://www.google.co.uk/trends/explore?date=all&geo=GB&q=computing,ict
https://www.google.co.uk/trends/explore?date=all&geo=GB&q=computing,ict

137

Productivity and Creativity

 Further resources

BBC Two: The Code (2011) Using Google searches
to predict flu. Available from www.youtube.com/
watch?v=uEt8NuqBvPQ; see also Google Trends:
www.google.com/trends/

Google (n.d.) Google forms. Available from www.
google.co.uk/forms/about; or Excel Surveys: http://
blogs.office.com/2012/11/16/excel-surveys/ for
creating online surveys.

Mayer-Schönberger, V. and Cukier, K. (2013) Big data:
A revolution that will transform how we live, work, and
think. Boston, MA: Houghton Mifflin Harcourt.

Nelson, S.L. and Nelson, E.C. (2014) Excel data
analysis for dummies. Hoboken, NJ: John Wiley &
Sons.

Raspberry Pi Learning Resources (n.d.) Weather
station guide. Available from www.raspberrypi.org/
learning/weather-station-guide/

TED (n.d.) Data talks. Available from www.ted.com/
topics/data

TED (2011) A picture is worth a thousand words:
what we learned from 5 million books. Available from
www.youtube.com/watch?v=5l4cA8zSreQ; see also
n-gram viewer: https://books.google.com/ngrams

Wikipedia (n.d.) Monte Carlo method. Available from
http://en.wikipedia.org/wiki/Monte_Carlo_method

How can we
best support
Collaboration?
The research cited earlier by Jonassen, Hattie
and Higgins et al. all attests to the benefit of
collaboration when using technology in education,
but how can such collaborative use of technology
be best developed?

The use of digital technology such as smartphones
and the internet for communication has had a huge
impact on the personal and professional lives of
many: over 3 billion are connected to the internet
worldwide, and the number of iPhones sold per day
has exceeded the number of children born. It’s hard
to think of any sphere of life, including secondary
education, which hasn’t been changed by the near-
ubiquitous nature of communication technology.

There’s substantial evidence that young people
are comfortable making use of a range of digital
technologies to communicate with one another,
although the extent to which they act safely and
responsibly, or show discernment or wisdom when
doing so, cannot be taken for granted. There’s rather
less evidence that young people are skilled in using
technologies to work collaboratively on shared
projects. Whilst the fit is far from perfect, one way
of thinking about communication technology is to
look at the size of the groups sending and receiving
information, for example:

●● one to one: email, skype, instant messaging;
●● one to many: blogging, personal website,

publishing on YouTube, podcasting, posting
to social media, uploading projects to the
Scratch community site;

●● many to one: searching the web, watching
YouTube, browsing social media, downloading
and remixing projects from the Scratch or
Kodu community sites;

●● many to many: discussion forums, Wikipedia.

Irrespective of their access to or familiarity with
technology outside of school, Level 2 pupils learn to
collaborate using an online cloud-based service, for
example, Glow or other platforms.

http://www.youtube.com/watch?v=uEt8NuqBvPQ
http://www.youtube.com/watch?v=uEt8NuqBvPQ
http://www.google.com/trends/
http://www.google.co.uk/forms/about
http://www.google.co.uk/forms/about
http://blogs.office.com/2012/11/16/excel-surveys/
http://blogs.office.com/2012/11/16/excel-surveys/
http://www.raspberrypi.org/learning/weather-station-guide/
http://www.raspberrypi.org/learning/weather-station-guide/
http://www.ted.com/topics/data
http://www.ted.com/topics/data
http://www.youtube.com/watch?v=5l4cA8zSreQ
https://books.google.com/ngrams
http://en.wikipedia.org/wiki/Monte_Carlo_method

138

Productivity and Creativity

In the best primary schools, this will have been
about developing children’s understanding of these
technologies, and some critical discernment about
their use, rather than merely a set of skills in using
one platform or another.

Can communication
technology be embedded across

the whole curriculum?

Yes! Many schools are now routinely using digital
communication and collaboration technologies as
part of their day-to-day work. Learning platforms,
VLEs and systems such as Glow provide a
reasonably convenient way for teachers to share
resources and activities with a class, groups of
pupils or even parents. They also offer one way in
which pupils’ work can be completed, submitted
and sometimes marked online. Whilst the take-
up of such technologies has been far lower than
originally expected, the digital domain has become
the default place for teachers’ and pupils’ work in at
least some schools. In schools that have gone down
this route, pupils can continue to access content,
complete exercises, take part in discussion forums
and contribute to collaborative projects from
their home computers as well as within school.
The enthusiastic take-up of tablet technology by
many schools must almost assume ubiquitous
connectivity, so that resources and outcomes can
be stored, shared and, in the latter case, assessed.

Are pupils able to communicate
with pupils in other schools?

Again, yes! Looking beyond the confines of an
individual school’s network, the internet can
provide many opportunities for pupils in one class
to communicate with or work collaboratively
with pupils in another class, elsewhere in the local
authority, the country or internationally. There’s
so much that can be gained through even a simple,
email-based e-Twinning project, in which pupils,
either collectively as a class or one-to-one as
individual pupils, share opinions and experiences:
think of the scope for exploring ‘contrasting
localities’, for practising modern languages or
looking at a period in history from a global
perspective. As well as email, a shared discussion

forum, perhaps hosted in one or other school’s
virtual learning environment, can make it easier to
see the multiple perspectives on a topic, as well
as allaying some of the e-safety concerns raised
by providing pupils with individual email accounts.
Digital media has a role here too, with pupils
perhaps recording videos, taking photos or making
presentations to share with the other class.

What sort of audience can
pupils reach with their work?

For a previous generation, those who would read
a pupil’s work were perhaps just their teacher and
maybe their parents; even if the work was put on
display, the audience would rarely reach beyond
the class itself. These days, it’s easy enough for a
school, an individual teacher or even particularly
keen pupils to set up a blog, with the option of
open access to all those connected to the internet
worldwide, so that a child’s work can reach an
audience, potentially, of close on 3 billion others.

There’s been a great deal of interest and enthusiasm
of late in blogging in education: for many, this has
been about sharing their educational insights with
a community of fellow professionals, but it’s also
a great way to provide an authentic audience
for pupils’ work. Blogs can be used as a basis for
partnership projects, as described above, with
another class or group of classes.

There are obviously aspects to the safe and
responsible use of blogging which teachers and
pupils need to be aware of. Pupils should be
taught to keep personal information private, so
they will need to think carefully about what sort
of content is suitable to post to a public blog. It’s
really important that comments posted to a class
or school blog are moderated by a teacher before
pupils get to see these – the workload here isn’t
too bad, but this needs doing to keep a blog free of
unwanted advertising, inappropriate links or hurtful
comments.

139

Productivity and Creativity

Even without blogging, pupils could share their
programming work through community sites
for tools such as Scratch, Trinket.io and GitHub,
although take care that you and they observe
the terms and conditions which apply to these
platforms.

What opportunities are
there for pupils to work

collaboratively?

The web and the internet make it easy for pupils
to work collaboratively online, just as they have
always been able to do in class, working together
to research a topic, to draft, revise and complete
documents or to make original, creative artefacts of
their own, drawing on one another’s skills and ideas.

Web-based platforms such as Google Apps for
Education and Office 365 mean that pupils can
work on documents, spreadsheets and presentation
files together, either inviting comment and review

from others, in much the same way as professional
writers might, or through real-time collaboration in
which several pupils edit the same document at the
same time, seeing the changes made by others as
they happen. Although this takes a little getting used
to for some, the efficiency with which joint projects
can be undertaken and reviewed can make this a
very appealing, and exciting, mode of work.

On a broader canvas, teachers and pupils alike will
be aware of the collaborative nature of Wikipedia,
and that the contents of Wikipedia pages can be
edited by anyone who has access to them. Whilst
many in education steer clear of Wikipedia as a
result, worrying about its reliability, this actually
provides a good opportunity for pupils to become
more discerning in evaluating digital content,
and indeed to correct errors or add content to
Wikipedia when they can.

Figure 5.6 Screenshot of setting for moderating comments

140

Productivity and Creativity

Online collaborative working is a very important
part of software development – whilst much of
the industry will keep these processes behind
closed doors, those interested can get some
flavour of this through open-source software
projects such as Wordpress, Moodle and Firefox,
and pupils themselves can get some experience in
collaborative software development through the re-
mix feature built into the Scratch community site.

GitHub supports version control and collaboration
on software projects and online text. Whilst the
learning curve can be quite steep, and the interface
and associated vocabulary are not particularly
intuitive, it has become the platform of choice for
open-source software development. GitHub offers
unlimited private repositories for students and
those wishing to use it in school.

What ground rules should
we establish?

It’s important to establish an agreed set of rules
for any online communication or collaboration
activities, as can be seen from the importance given
to specifying acceptable-use policies, and terms
and conditions of use for computer networks and
online platforms. Whilst pupils need to be aware
that these conditions do apply to them, these are
rarely written in a language which pupils will find
particularly accessible, so teachers ought to spend
time briefing pupils on what is expected of them.

It’s helpful to have a simple set of guiding principles
here: for example, pupils should behave online just
as they would offline; this would include not being

Figure 5.7 Screenshot of editing a Wikipedia entry

141

Productivity and Creativity

deliberately hurtful, taking care of shared resources,
leaving things as they would hope to find them,
being prepared to stand up for doing the right thing,
even if it’s unpopular, and not talking to strangers.

Pupils ought to be aware that most online systems
automatically log the activities that take place
in them: that is, that someone (or something) is
watching what they do online.

The Wikipedia community has established a set
of community guidelines, its ‘five pillars’, which
outline how contributors can work together and
what constitutes acceptable behaviour in their
online system, just as you are likely to have a code
of conduct as a school or a class. These principles
include ideas such as assuming good faith, being
bold but not reckless, and striving for a neutral
point of view which recognises both sides where
there is disagreement.

 Classroom activity ideas

●● Set up a blog for computing in your school or
for each class you teach, and ask pupils to share
the best examples of their work, and comments
on computing stories in the news, on the blog,
reading and commenting positively on one
another’s posts.

●● Request a school account from GitHub
Education and use this as a way of sharing notes
on lessons with your pupils, allowing them to
‘fork’ any handouts, notes or plans, to annotate
these with their own notes from lessons.

●● Pupils could work collaboratively to create a
multi-page website, perhaps using GitHub Pages
or a wiki platform, to present an informed,
balanced review of issues around online safety,
responsibility, privacy and security.

 Further resources

Blog platforms for education. Available from http://
kidblog.org/home/, http://creativeblogs.net/ and
http://primaryblogger.co.uk/

Davies, J. and Merchant, G. (2009) Web 2.0 for
schools. Learning and social participation. New York,
NY: Peter Lang Publishing.

eTwinning (n.d.) Connect with classes across
Europe. Available from www.eTwinning.net

GitHub Education (n.d.) Available from https://
education.github.com/

Richardson, W. (2010) Blogs, wikis, podcasts, and other
powerful web tools for classrooms. Thousand Oaks,
CA: Corwin Press.

Wikipedia (n.d.) Five pillars (the guiding principles
behind Wikipedia). Available from http://
en.wikipedia.org/wiki/Wikipedia:Five_pillars

Wikispaces (n.d.) Wikispaces classroom (creating
wikis in school). Available from www.wikispaces.
com/content/classroom

http://kidblog.org/home
http://kidblog.org/home
http://primaryblogger.co.uk/
https://education.github.com/
https://education.github.com/
http://en.wikipedia.org/wiki/Wikipedia:Five_pillars
http://en.wikipedia.org/wiki/Wikipedia:Five_pillars
http://www.wikispaces.com/content/classroom
http://www.wikispaces.com/content/classroom

142

Productivity and Creativity

References
Hattie, J. (2008) Visible learning: A synthesis of over
800 meta-analyses relating to achievement. Abingdon:
Routledge.

Higgins, S., Xiao, Z. and Katsipataki, M. (2012) The
impact of digital technology on learning: A summary for
the education endowment foundation. Durham, UK:
Education Endowment Foundation and Durham
University.

Hoover, D. and Oshineye, A. (2009) Apprenticeship
patterns: Guidance for the aspiring software craftsman.
Sebastopol, CA: O’Reilly Media, Inc.

Jonassen, D.H. (2008) Meaningful learning with
technology. Harlow: Pearson Education.

Papert, S. and Harel, I. (1991) Situating
constructionism. Constructionism, 36. 1–11.

Quinlan, O. (2015) Young digital makers. London:
Nesta.

Richmond, S. (2012) Jonathan Ive interview: Simplicity
isn’t simple. Daily Telegraph, 23 May 2012.

Robinson, K. (2011) Out of our minds: Learning to be
creative. Hoboken, NJ: John Wiley & Sons.

Sennett, R. (2008) The craftsman. New Haven, CT:
Yale University Press.

Walker, R. (2003) The guts of a new machine. The
New York Times, 30/11/2003.

EM

Systems

Safe and
Responsible Use

How can we best keep young people
safe online?

143

Safe and Responsible Use

Safe and
Responsible Use
HOW CAN WE BEST KEEP YOUNG
PEOPLE SAFE ONLINE?
Schools have long had a responsibility to keep pupils
safe, and the recommendations from Tanya Byron
(2008), Ofsted (2010) and others have emphasised
that the best way to do this is through teaching
pupils how they can best keep themselves safe.
This is perhaps akin to cycling: pupils cycling to
school are exposed to risks which could otherwise
be avoided, but many see the benefits (for
independence, health, the environment, the easing
of road congestion, and so on) as being worth the
additional risk, so we then do all we can to mitigate
the risks through teaching pupils to cycle well and
safely.

The computing curriculum includes the requirement
that pupils are taught to keep themselves safe, and
indeed goes beyond just teaching ‘online safety’,
teaching pupils how to act respectfully, responsibly
and securely when using technology, to know
what constitutes inappropriate content, contact or
conduct, and how to report concerns that they may
have.

Including these requirements in the computing
programmes of study does not mean that these
should only be taught in computing lessons, or
that the computing head of department becomes
responsible for these things: good practice is to
see these as a whole-school responsibility, and to
embed their teaching across the curriculum and the
life of the school. Within computing, these matters
can be addressed very effectively, emphasising
them as you teach other topics. A few online-safety
lessons and an assembly for Safer Internet Day
seem less effective than an approach in which safe,
responsible and secure practices for the use of
technology are taught and followed in all aspects of
the school’s life and work.

Stepping back from the risk-mitigation approach
to online safety, seeing the development of the
responsible use of technology as just one aspect
of values or character education (see, for example,
Department for Education [DfE], 2014) may be
particularly effective. If, over pupils’ time in school,
we can help develop a strong sense of moral

responsibility and the ‘grit’ necessary to stand up
for doing the right thing, they will leave us far better
at coping with the challenges of adult life, and far
less likely to fall prey to the more sinister aspects of
the internet and other technology.

What are the risks?

In her 2008 report, Safer children in a digital world,
clinical psychologist Prof. Tanya Byron (2008)
outlined three broad categories of risk to which
young people are exposed through their use of
digital technology: content, contact and conduct
(see Figure 6.1).

Commercial Aggressive Sexual Values

Content
(child as
recipient)

Adverts
Spam
Sponsorship
Personal info

Violent/hateful
content

Pornographic
or unwelcome
sexual
content

Bias
Racism
Misleading info
or advice

Contact
(child as
participant)

Tracking
Harvesting
personal info

Being bullied,
harassed or
stalked

Meeting
strangers
Being
groomed

Self-harm
Unwelcome
persuasions

Conduct
(child as actor)

Illegal
downloading
Hacking
Gambling
Financial scams
Terrorism

Bullying or
harassing
another

Creating and
uploading
inappropriate
material

Providing
misleading info/
advice

Figure 6.1 (from Byron, 2008)

Content

Young people are naturally curious and, as teachers,
we would hope to nurture and develop that innate
curiosity, doing what we can to establish a lifelong
love of learning in our pupils. However, whilst a
previous generation’s curiosity might have led
them to look up rude words in a dictionary or
encyclopaedia, today’s young people are far more
likely to search the words they overhear on Google
or Bing. The loss of innocence through exposure
to highly graphic depictions of sex or violence
is far too prevalent. Schools must have effective
filters and monitoring in place to prevent access to
inappropriate or harmful material (DfE, 2016), but
this in itself does little to mitigate the risk to young
people through access to such material outside of
school, including on smartphones.

Both Google and Bing have SafeSearch settings
which, whilst not infallible, will do much to prevent
pupils accessing particularly inappropriate content
via these; these settings can be locked in place, and
a number of organisations have developed search
engines targeted at children, often through using

144

Safe and Responsible Use

a combination of SafeSearch and custom search
tools in Google Search. Pupils might consider how
algorithms can be designed to filter search results
as effectively as they do.(1)

It would be wrong to think of filtering merely in terms
of preventing access to inappropriate or harmful
sexual content. Schools have a duty to promote
fundamental British values and should prevent access
to terrorist or extremist material which might lead to
pupils’ radicalisation (DfE, 2014, 2015).

Just as schools typically receive a filtered internet
connection, in which access is blocked to content
considered inappropriate, so parents can request
filtered internet access at home and on mobile
devices: it’s worth teachers explaining to parents
how to do this, and the reasons why they should.
Even with filters in place, young people may still
encounter content that concerns them, and
establishing a ‘no blame’ culture, in which they can
alert you or their parents to such content, can be
helpful. Many schools operate a policy of teaching
young people to close the laptop, switching off
the monitor or turning over the iPad if ever they
find content they know they shouldn’t view or are
otherwise concerned about.

Byron identified other risks associated with
content, including commercialisation (qv Bailey,
2011). When teaching pupils about the internet,
and particularly the web, it’s worth helping them
to become more discerning and critical about
the commercial aspects. You could address the
prevalence of spam in email, how this can be filtered
semi-automatically, as well perhaps as what sort
of algorithms might be used in doing so.(2) It’s also
worth helping pupils to become aware of the use of
advertising on the web and how this can be avoided
through the use of browser plugins such as AdBlock,
and covering the difference between sponsored
and other results in search engines. It’s important
to help pupils become aware of the difference
between altruistically-created content (e.g.
Wikipedia, many blogs and much of YouTube), and
content created with a perhaps hidden or implicit
commercial purpose, noting the absence of a ‘free
lunch’ in many apparently free online services.

1	 www.youtube.com/watch?v=H2EIN24r-3M, qv Edelman (2003).
2	 See https://gmail.googleblog.com/2007/10/how-our-spam-filter-works.html and www.wired.com/2015/07/google-says-ai-		
	 catches-99-9-percent-gmail-spam/
3	 www.ceop.police.uk/
4	 www.childline.org.uk/explore/onlinesafety/Pages/Sexting.aspx

Contact

Much good work has been done to teach young
people about the dangers of posting personal
information online, and of contact via the internet
from those they don’t already know. The Child
Exploitation and Online Protection Centre (CEOP)
makes some excellent resources available to
support teachers in effectively delivering a clear
message to pupils about these risks, and what they
can do to minimise them.(3)

Teachers and parents can do much to help young
people become more discerning in their use of the
internet or other communication technologies,
thinking carefully about strange or otherwise
unanticipated contact or communication, and
the potential long-term consequence of sharing
information online.

‘Sexting’, the sharing of sexually explicit text, images
or video via smartphones, perhaps using apps such
as Snapchat, seems increasingly prevalent amongst
some groups of young people. This is in part due to
peer pressure, but also short-term perspectives and
some misconceptions about online privacy. There
can be profound consequences for both the sender
and recipient of the content. The advice from
Childline, if someone keeps asking a young person
for inappropriate photos, is:

●● ‘Ask them to stop … or just don’t reply at all
and hopefully they will get the hint. But if they
are still bothering you or making you feel upset
it’s okay to block them – even if it’s just for a bit’.

●● ‘If an adult has been making you feel
uncomfortable by asking you to send them
images, you can report them on the CEOP site.
If an adult does this it is sometimes called online
grooming’.

●● ‘It is wrong for anyone to be pressuring you in
this way. If you are under 18, they are breaking
the law’.(4)

Whilst acknowledging that it’s illegal for a person
under 18 to take or share indecent images
of themselves, current ACPO (Association of
Chief Police Officers) advice does not support

http://www.youtube.com/watch?v=H2EIN24r-3M
https://gmail.googleblog.com/2007/10/how-our-spam-filter-works.html
http://www.wired.com/2015/07/google-says-ai-catches-99-9-percent-gmail-spam
http://www.wired.com/2015/07/google-says-ai-catches-99-9-percent-gmail-spam
http://www.ceop.police.uk/
http://www.childline.org.uk/explore/onlinesafety/Pages/Sexting.aspx

145

Safe and Responsible Use

prosecution, and emphasises the need to put
safeguarding at the heart of any intervention.(5)

As with any safeguarding issue in school, teachers
have a responsibility to report concerns to the
designated person, in accordance with school
policies.

Conduct

The curriculum requires that pupils understand
how to use technology responsibly and respectfully.
Supporting young people’s moral development is
a vital part of secondary education, a statutory
requirement for a school’s curriculum and, as part
of ‘spiritual, moral, social and cultural development’,
an element of all Ofsted inspections. Kohlberg’s
stages of moral development (for example,
Kohlberg, 1984) offers one model for thinking about
this:

1.	 obedience and punishment orientation (how
can I avoid punishment?);

2.	 self-interest orientation (what’s in it for me?);

3.	 interpersonal accord and conformity (the
good boy/girl attitude);

4.	 authority and social-order-maintaining
orientation (law and order morality);

5.	 social contract orientation (Do unto
others…);

6.	 universal ethical principles (principled
conscience).

Under this model, we would hope to see pupils
already taking responsibility for their own moral
and ethical decisions and behaviour when they get
to secondary school. We then support them as
they learn to do the right thing out of a respect
for others and, ultimately, on the basis of their
personal adoption of universal ethical principles,
probably including such ‘fundamental British values’
as ‘democracy, the rule of law, individual liberty
and mutual respect and tolerance of those with
different faiths and beliefs’. If schools take seriously
moral education, focussing on character and values,
seriously, many aspects of pupils’ inappropriate
conduct using technology can perhaps be avoided,
or their consequences reduced.

5	 https://ceop.police.uk/Documents/ceopdocs/externaldocs/ACPO_Lead_position_on_Self_Taken_Images.pdf
6	 www.bbc.co.uk/news/education-35524429
7	 www.gov.uk/government/uploads/system/uploads/attachment_data/file/375951/Education_and_Teaching.pdf
8	 www.copyrightandschools.org/

In many schools, cyberbullying is a common
problem: a BBC/Comres survey reported 22
percent of 10–12-year-olds had experienced
bullying or ‘trolling’.(6) Whilst this is more likely
to happen outside of school, it’s common for
both bully and victim to be members of the same
class, year group or school, and the cause and
consequences may often be connected to school.
As with bullying in general, a focus on moral
education might reduce the prevalence of such
hurtful behaviour in the school community, but a
clear zero tolerance message is essential, together
with a culture in which this can be reported, safe in
the knowledge that swift and effective action will
follow. Alongside this, it’s worth building up young
people’s resilience to off-hand, unintentionally
hurtful remarks from others, recognising that not
every online disagreement or critical comment
constitutes bullying.

Copyright, and other aspects of intellectual
property, is another area in which young people’s
(and sometimes teachers’) conduct isn’t all that it
could be. Perhaps because the web works through
automatically making copies of the content from
a distant web server in the user’s web browser
when a page is accessed – and the ease with which
digital content can be perfectly copied – it’s all
too easy to assume that content found online can
be used wherever and however someone wants,
without paying attention to the legal and ethical
aspects of intellectual property. There are generous
exemptions from much copyright legislation
for clearly specified educational use,(7) as well
as educational-use licences for a range a media
purchased centrally by the DfE on behalf of state-
funded schools in England.(8) However, it remains
important to teach and show best practice in the
use of copyrighted material, including properly
acknowledging the source of content and respecting
any associated licence terms.

The Creative Commons family of licences makes
it easy for those who create work in any medium
to license it for reuse, under a range of different
conditions: you can teach pupils about this approach
to sharing online, and show them how they can
search for, acknowledge and reuse Creative
Commons licensed content in their own work.

https://ceop.police.uk/Documents/ceopdocs/externaldocs/ACPO_Lead_position_on_Self_Taken_Images.pdf
http://www.bbc.co.uk/news/education-35524429
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/375951/Education_and_Teaching.pdf
http://www.copyrightandschools.org/

146

Safe and Responsible Use

Both Google and Bing image searches allow results
to be filtered to show just images that have been
licensed in this way.

Figure 6.2 Screenshot to show filtering by licence in
Google image search

Furthermore, the work uploaded to the Scratch
website is covered by a Creative Commons by-
share-alike licence, as are resources shared on the
CAS (Computing At School) community site, except
where stated otherwise. There’s ample scope in
the curriculum for pupils to make use of Creative
Commons and public-domain(9) content: the Level
2 Benchmarks state that pupils ‘Demonstrate an
understanding of usage rights and can apply these
within a search’.

It’s worth bearing in mind that pupils automatically
own the copyright in their own work, including
that which they produce in school, and that we as
teachers should respect this, for example checking
with pupils and their parents before publishing
their work online in a class or school blog. Asking
parents to license their children’s work for these and
other uses by the school might seem unnecessarily
legalistic, but it’s important that pupils learn about,
and have respect shown for, their rights as well as
their responsibilities.

It’s important that pupils be taught to respect the
terms and conditions of any websites or other
online services which they use, and indeed see you
doing so yourself. The terms and conditions of most
online services run to many, many pages, but when
signing up for new services, or asking pupils to do
so, it’s well worth checking through the sections
on any age restrictions as well as through those on
copyright and data privacy. US-based companies are
required to abide by American COPPA (Children’s
Online Privacy Protection Act) legislation,(10) which
prevents their storing personal data on under-13s
without parental consent. As a result, many US-based

9	 That is, content which can be used without any restriction, sometimes called Creative Commons
10	http://bit.ly/ftccoppa
11	www.legislation.gov.uk/ukpga/1990/18

internet services and websites (including Facebook)
prohibit under-13s from creating accounts or
using the service. Pupils under 13 using these
services would be doing so without the operator’s
permission, which could be considered an offence
under the Computer Misuse Act.

A number of services, including Google Apps for
Education and Office 365, allow schools to create
accounts on behalf of children, with the school
taking responsibility for obtaining the necessary
parental consent. Other websites, such as Scratch,
allow teachers to create multiple accounts in their
own name and share these with pupils, but this is an
exception rather than the rule: it’s much better to
check, and abide by, the terms and conditions, rather
than making these assumptions.

Concern is sometimes expressed that young people
might use their knowledge of programming and
computer networks for harmful or illegal purposes,
including cybercrime. Even in the context of school
networks, it’s not unheard of for pupils to attempt
to obtain administrator or teacher password details,
bypass filtering through proxy servers or VPNs
(virtual private networks), or attempt to install
keyloggers or password sniffers: all of these are likely
to be prohibited under the school’s acceptable-use
policy. Pupils investigating the tools and techniques
involved here may get drawn in further to a
subculture in which circumventing computer security
is seen as an acceptable intellectual challenge.

The Computer Misuse Act(11) was introduced to
make hacking computer systems illegal. It covers
a number of offences involving the unauthorised
use of computers, with or without the intention
of committing further crimes, or impairing the
operation of computers. As well as account hacking,
using malware (including rootkits) is against the law,
as is conducting distributed denial-of-service attacks.
The National Crime Agency suggests a number of
warning signs that parents might watch out for, to
alert them to a young person’s involvement in cyber-
crime:

●● Are they resistant when asked what they do
online?

●● Do they get an income from their online
activities, do you know why and how?

http://bit.ly/ftccoppa
http://www.legislation.gov.uk/ukpga/1990/18

147

Safe and Responsible Use

●● Is your child spending all of their time
online?

●● Do they have irregular sleeping patterns?
●● Have they become more socially isolated?

Whilst parents of many teenagers not involved
in cybercrime might answer yes to many or all of
these, it’s important that parents and teachers feel
able to discuss any concerns or suspicions they
have over an individual’s interest in or involvement
with criminal activities. A clear emphasis on
character or values education in school, including in
computing lessons, might do much to help prevent
young people becoming involved in computer-based
crime.

Finally, be aware, and make your pupils aware, of
the opportunity cost associated with screen
time – time spent using a computer, tablet or
smartphone is time not spent doing other things,
such as reading a (paper-based) book, learning a
musical instrument, playing in a team and socialising
face-to-face with family and friends. Whilst digital
technology is seen by many as transformative of
so many aspects of learning and life, many would
count it a great shame if it came to dominate
childhood, within or beyond school, to any greater
extent than it already has. Helping young people
to become more discerning users of technology,
knowing when it would be useful, and when it might
be more of a distraction, is perhaps also one of our
responsibilities as teachers.

Reporting concerns

The new curriculum requires that pupils are taught
how to report concerns they have over technology.
In most cases, pupils should talk to their parents or
their teachers about such concerns: if pupils report
such concerns to you, this may be covered by
your safeguarding policy, so make sure you follow
this very carefully. Sometimes, pupils might be too
embarrassed about something to turn to either
you or their parents, so it’s worth making them
aware that there are others whom can they talk to,
including Childline and CEOP.

12	www.childnet.com/new-for-schools/childnet-digital-leaders-programme
13	See www.thinkuknow.co.uk/14_plus/help/Contact-social-sites/ for links to policies and reporting portals for many social 		
	 media providers.
14	Pupils might enter their film for Childnet’s annual competition: www.childnet.com/resources/film-competition/

Pupils need not be directly affected by something
to report it: it’s important to establish a classroom
and school culture in which pupils feel that they
can discuss any concerns openly with teachers and
one another, including if they believe any of their
friends are involved in risky online activity, or if they
notice unusual changes in a friend’s behaviour. A
number of schools have established a ‘digital leader’
role for pupils,(12) which might include particular
responsibilities around supporting other pupils in
staying safe online.

Older pupils should also know how they can
address concerns they have, particularly over
content or conduct, with social media sites
directly.(13) And reputable sites, including Facebook,
Twitter, Tumblr, Instagram and YouTube, will act
promptly in the case of illegal activity or where the
site’s terms and conditions have been infringed.

 Classroom activity ideas

●● Online safety and responsibility provide great
topics in which pupils can develop their creative
use of technology. From making and giving
high-quality presentations and blogging advice
for younger pupils, to creating short live-
action video(14) or animations exploring these
issues, there’s ample scope here for pupils to
collaborate and produce high-quality work
across a range of digital media.

●● Pupils might work together to develop a website
summarising the terms and conditions, and the
reporting arrangements, for popular social media
platforms and apps.

●● Keep abreast of media stories concerning illegal
or unethical use of technologies, using these as
starting points for class discussions. Encourage
pupils to use a framework of ethical principles
when discussing these.

●● Online content, conduct and contact issues
might be effectively explored through role-play
and discussion, although you should be aware
that some pupils might be directly affected by
some of these issues, and thus a particularly
sensitive approach may be necessary. Dilemma
cards might be particularly useful.

http://www.childnet.com/new-for-schools/childnet-digital-leaders-programme
http://www.thinkuknow.co.uk/14_plus/help/Contact-social-sites/
http://www.childnet.com/resources/film-competition/

148

Safe and Responsible Use

 Further resources

Computing At School (n.d.) Computing starters:
Social, ethical, economic and philosophical issues.
Available from http://community.computingatschool.
org.uk/resources/2212

Childnet (n.d.) Secondary hub. Available from www.
childnet.com/young-people/secondary; see also
advice for teachers: www.childnet.com/teachers-
and-professionals

Creative Commons (n.d.) For information and
free licences to use. Available from http://
creativecommons.org/

Cutts, M. (2011). Google’s Matt Cutts on how Google
Safe Search works. YouTube. Available from www.
youtube.com/watch?v=H2EIN24r-3M

Dredge, S. (2014) How do I keep my children safe
online? What the security experts tell their kids. The
Guardian. Available from www.theguardian.com/
technology/2014/aug/11/how-to-keep-kids-safe-
online-children-advice

Intellectual Property Office (2014) Exceptions to
copyright: Education and teaching. Available from
www.gov.uk/government/uploads/system/uploads/
attachment_data/file/375951/Education_and_
Teaching.pdf

Kohlberg, L. (1981) The philosophy of moral
development: Moral stages and the idea of justice
(Essays on moral development, volume 1). San
Francisco: Harper & Row.

Ofsted (2015) Ofsted on inspecting safeguarding.
Available from www.gov.uk/government/
publications/inspecting-safeguarding-in-early-years-
education-and-skills-from-september-2015

South West Grid for Learning (n.d.) Digital literacy
& citizenship curriculum: Teaching resources. Available
from www.digital-literacy.org.uk/Home.aspx

Thinkuknow.co.uk (CEOP) (n.d.) Resources for lower
secondary pupils. Available from www.thinkuknow.
co.uk/11_13/; and for teachers: www.thinkuknow.
co.uk/Teachers/

15	https://ico.org.uk/for-organisations/guide-to-data-protection/key-definitions/

UK Safer Internet Centre (n.d.) Available from www.
saferinternet.org.uk/

UNICEF (n.d.) Children’s rights: United Nations
Convention on the Rights of the Child. Available from
www.unicef.org.uk/Documents/Publication-pdfs/
UNCRC_PRESS200910web.pdf

Privacy, Security
and Identity
Online safety is linked directly with issues of
privacy, security and identity, and these topics lend
themselves to further exploration within computing
lessons. Privacy and security are closely related
ideas but are not synonymous: we put curtains at
our windows to protect our privacy but fit locks to
our doors to maintain security.

Privacy

Pupils at Level 1 are taught that they should keep
personal information private. At Level 3 they learn
how to use technology to protect their privacy.

Pupils ought to have a good idea of what’s meant
by personal information. The Data Protection Act
defines personal data as data about a person who
can be identified from the data.(15) This includes
names, home addresses, personal phone numbers
and email addresses, as well as photographs or
videos showing the face of a person, but it might
also be reasonably seen as including the Internet
Protocol (IP) or Media Access Control (MAC)
addresses of connections or computers used by the
person, or details of their social media accounts.

There’s other information which a person might
reasonably expect to be kept private, such as
their internet history, their search history, mobile
cell or Global Positioning System (GPS) location
information, personal photographs, and records of
mobile phone calls or email correspondence.

Keeping all this information entirely private is, to
all intents, incompatible with the use of online
technology – when using a standard mobile phone,
the network operator must know the cell to which

http://community.computingatschool.org.uk/resources/2212
http://community.computingatschool.org.uk/resources/2212
http://www.childnet.com/young-people/secondary
http://www.childnet.com/young-people/secondary
http://www.childnet.com/teachers-and-professionals
http://www.childnet.com/teachers-and-professionals
http://creativecommons.org/
http://creativecommons.org/
http://www.youtube.com/watch?v=H2EIN24r-3M
http://www.youtube.com/watch?v=H2EIN24r-3M
http://www.theguardian.com/technology/2014/aug/11/how-to-keep-kids-safe-online-children-advice
http://www.theguardian.com/technology/2014/aug/11/how-to-keep-kids-safe-online-children-advice
http://www.theguardian.com/technology/2014/aug/11/how-to-keep-kids-safe-online-children-advice
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/375951/Education_and_Teaching.pdf
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/375951/Education_and_Teaching.pdf
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/375951/Education_and_Teaching.pdf
http://www.gov.uk/government/publications/inspecting-safeguarding-in-early-years-education-and-skills-from-september-2015
http://www.gov.uk/government/publications/inspecting-safeguarding-in-early-years-education-and-skills-from-september-2015
http://www.gov.uk/government/publications/inspecting-safeguarding-in-early-years-education-and-skills-from-september-2015
http://www.digital-literacy.org.uk/Home.aspx
http://www.thinkuknow.co.uk/11_13/
http://www.thinkuknow.co.uk/11_13/
http://www.thinkuknow.co.uk/Teachers/
http://www.thinkuknow.co.uk/Teachers/
https://ico.org.uk/for-organisations/guide-to-data-protection/key-definitions/
http://www.saferinternet.org.uk/
http://www.saferinternet.org.uk/
http://www.unicef.org.uk/Documents/Publication-pdfs/UNCRC_PRESS200910web.pdf
http://www.unicef.org.uk/Documents/Publication-pdfs/UNCRC_PRESS200910web.pdf

149

Safe and Responsible Use

any call should be routed; when communicating by
email, the email provider of sender and recipient
must have access to the email and its contents;
search providers must know what it is that you
are searching for if they are to provide results; web
servers automatically maintain records of pages
requested and the IP address of the computer
requesting them: such information has to be
provided through the very nature of the technology
used. Similarly, without encryption there’s nothing
to prevent routers, gateways and switches sniffing
the contents of the packets transmitted through
them across the internet’s infrastructure. Users
particularly concerned about privacy issues might
set up their own virtual private network,(16) use
an anonymising routing protocol such as TOR,(17)
set up their own server and domain for email and
other services,(18) and avoid social media: for users
outside of oppressive regimes, such steps might
suggest an excessive degree of paranoia or that
they have something to hide.

Rather than such an entirely paranoid approach,
it’s worth getting pupils to think in terms of circles
of trust, thinking carefully about with whom they
would choose to share information. There are some
people whom a pupil should trust to a very great
extent, secure in the knowledge that that person
has the pupil’s own best interests at heart: one
would hope that for almost all children this would
include their parents and their teachers. With those
in this circle of trust, pupils might confidently share
almost any information. Close friends and relatives
might be trusted somewhat less, but we would be
predisposed to consider them worthy of our trust
in most matters. There’s then a looser circle of
friends and acquaintances, whom we are perhaps
somewhat more wary of, but in whom we are still
willing to invest some trust to strengthen such
relationships – although we might exercise some
degree of caution in doing so.

In a benign, liberal democracy, and in an education
system which places its pupils’ well-being as its
number one concern, we might also consider
the police, other government agencies and those
maintaining the security of the school’s information
systems as meriting a high degree of trust, although
not all would necessarily agree.

16	For example using a Raspberry Pi: www.bbc.co.uk/news/technology-33548728
17	www.torproject.org/
18	Perhaps using https://owncloud.org/ or https://sandstorm.io/

Many of us feel confident placing our trust in large,
multinational corporations, not because we believe
they act in our best interests, but because what
they provide in return for what they ask seems
a good deal, and many such organisations have
stated policies in which they seem to take their
customers’ privacy very seriously, even if it’s on
their own terms rather than ours.

Those whom we don’t know are another matter.
Back in Jane Austen’s day, new acquaintances would
only be accepted once they had been introduced,
either by letter or in person, by someone already
known and trusted, and perhaps something similar
operates at a lower level of trust on the web and
through social media.

It seems clear that some degree of caution and
discernment is needed when navigating the complex
web of personal, commercial and regulatory
relationships that our online life makes us part of.
To share nothing of oneself denies the opportunity
for participation, but to share everything seems
foolhardy. A middle path seems the appropriate way
to strike a balance between these extremes, sharing
some things more generally whilst keeping other
things to a closer circle.

In sharing information online, pupils should
be aware of the long-term persistence of the
information they share – what goes online typically
stays online. Once a photograph, video or message
is available on the open web, then anyone with
access to it may be able to make a copy of it –
indeed, the very act of viewing the content involves
transferring that content from a web server to a
computer. Google’s Page Rank algorithm can only
operate through indexing a cached copy of the
web. The Internet Archive similarly makes regular
copies of many websites to preserve this content for
the future. Even within password-protected sites, it’s
essentially impossible to prevent what other users
with access to content will do with that content. A
photograph might be shared in the expectation that it
would remain private, but the other person might still,
in a breach of trust, share a copy of that with others
or on the open web. That which a pupil thinks is
worth sharing at the age of 14 might subsequently be
regretted when it remains permanently associated.

http://www.bbc.co.uk/news/technology-33548728
http://www.torproject.org/
https://owncloud.org/
https://sandstorm.io/

150

Safe and Responsible Use

As well as deciding for themselves with whom to
share particular information, based on the extent to
which they trust the other, pupils should be aware
of the routine and almost inevitable recording or
surveillance of their online activities. As mentioned
above, schools now have a duty to monitor pupils’
access to the internet; internet service providers
maintain records of sites visited; mobile phone
companies maintain records of the cell masts to
which a mobile phone automatically transmits its
location; search-engine providers build detailed
profiles of users based on their search queries and
other activities; social media sites and app providers
similarly know much about whom any one of us is
friends with or follows.

With the Investigatory Powers Act(19) becoming
law, much of this information has to be disclosed to
investigators in certain defined circumstances. Many
would argue that such recording or surveillance is
a not an unreasonable price to pay for the online
services provided, and to ensure that individuals and
society are protected from those who would wish
them harm.

Pupils should have a reasonable expectation that any
data held about them is kept private, as the Data
Protection Act(20) requires; that personal information
is not, without one of a few very good reasons, or the
subject’s explicit permission, shared with third parties;
and that, when others are, of necessity, involved
in processing data, they too have an obligation to
protect the privacy of those to whom it relates.
This expectation applies to schools as much as to
any other organisation processing personal data, and
including that data be kept securely in such a way that
unauthorised users cannot access it.

19	www.gov.uk/government/collections/investigatory-powers-bill
20	www.gov.uk/data-protection/the-data-protection-act
21	See, for example, www.theguardian.com/world/2014/jul/15/germany-typewriters-espionage-nsa-spying-surveillance
22	https://en.wikipedia.org/wiki/Air_gap_(networking)

Security

Security is about preventing those who shouldn’t
have access to data, information or systems from
gaining such access.

Security is related to privacy – in general it’s a
necessary but not sufficient condition: that is, you
cannot expect privacy without security, but privacy
needs more than just security.

At one level, information can be kept secure by
physical means – recording information on paper
only, and storing that information in a safe or locked
filing cabinet, would foil all but the most intrepid.(21)

On a computer, an ‘air gapped’ machine(22), without
network access and without support for removable
media, would provide a high degree of security for
any data stored on it, assuming that the physical
security of the system itself could be guaranteed –
although it would be a far-from-convenient system
to use for most practical tasks.

Beyond the physical security of a system, some
attention should be given to the security of the
data stored on it, or on removable media used
with it – whilst challenge-and-response passwords
provide a degree of protection, encrypting the data
is the best way to ensure that, even if unauthorised
users were to gain access to the system or find the
memory stick, it would be essentially impossible
for them to read the data stored on the device
without knowing the secret key with which
the data had been encrypted. These days, most
operating systems include the ability to encrypt
all of the data on the startup disk or equivalent
system, and communication via the internet can be
routinely encrypted without any additional efforts.
Smartphones can be set to delete any data stored
on them if a wrong passcode is entered more than
a set number of times, and can be wiped remotely
when connected to the internet.

http://www.gov.uk/government/collections/investigatory-powers-bill
http://www.gov.uk/data-protection/the-data-protection-act
http://www.theguardian.com/world/2014/jul/15/germany-typewriters-espionage-nsa-spying-surveillance
https://en.wikipedia.org/wiki/Air_gap_(networking)

151

Safe and Responsible Use

Cryptography

Cryptography is central to an understanding of
the security of digital data, and particularly to its
communication via the internet, over what are
essentially insecure, open channels. The encryption
techniques used to transmit messages securely can
also be used to store those messages securely.

In classical cryptography, we take a plain text
message to be encrypted, some agreed protocol
for encrypting the message and, crucially, a secret
key that’s used to encrypt the message into some
‘ciphertext’. The idea is that, even if the enemy has
access to the ciphertext and full knowledge of the
protocol used, they cannot recover the original
plain text without knowing (or guessing) the
encryption key used.

Figure 6.3 Image of Caesar cipher wheel: this
from https://commons.wikimedia.org/wiki/
File:CipherDisk2000.jpg

The history of cryptography long and interesting.
One of the earliest cryptographic systems was the
Caesar cipher (Figure 6.3), in which the letters in
the plain text message were simply shifted along the
alphabet by an agreed number of places – thus the
plain text

attack at dawn

would become the ciphertext

BUUBDL BU EBXO

Decrypting the message is simply the reverse of this
process, shifting each letter of the ciphertext back
along the alphabet the correct number of places.

Whilst this is an easy system to implement by
hand and to code on a computer, it’s very far from
secure: to break the encryption, the enemy only
needs to try the 25 possible shifts until something
in English turns up.

A more sophisticated system might involve
replacing each letter in the plain text alphabet with
another, agreed letter. For example, we might swap

a b c d e f g h i j k l m n o p q r s t u v w x y z

with

E G L J H O T U P V F S X A W Q K R M Z D Y N C I B

Using this key, the message

attack at dawn

would become the ciphertext

EZZELF EZ JENA

With knowledge of the key, this is reasonably easy
to decipher by hand, and easy enough to program
on a computer (Figure 6.4).

Figure 6.4

def encode(message, cipher,
plain=”abcdefghijklmnopqrstuvwxyz”):
 ciphertext = “”
 for i in range(len(message)):
 letter = message[i]
 position = plain.find(letter)

152

Safe and Responsible Use

 if position > -1:
 ciphertext = ciphertext + cipher[position
 else:
 ciphertext = ciphertext + “ “
 return ciphertext

Simple substitution functions in Snap! and Python

At first sight, it looks very hard to break by trying
out all the possible key combinations (of which there
are 26 x 25 x 24 x … x 2 x 1 possible keys, roughly
4 x 1026), but such brute-force approaches are only
ever the last resort of cryptanalysts or hackers. If the
language of the original message is known or can be
guessed, and the message is long enough for statistical
techniques to work, then the enemy can use the
relative frequency of letters (and pairs of letters) in
the original language to start making plausible guesses
at which letter had been swapped for which (see
the discussion of Shannon and information entropy
on pages 96 - 98). For example, E and T are the
most common letters in English, T is more likely to
be followed by H than any other letter, and so on.
Unsurprisingly, it is possible to automate or at least
semi-automate this frequency-analysis approach to
breaking a simple substitution cipher. Automated
or semi-automated breaking of codes has figured
prominently in the history of computing, most
notably in the work of Turing, Flowers, Welchman and
others at Bletchley Park in the Second World War.

A more sophisticated system still is the Vigenère
or polyalphabetic cipher in which different Caesar
shift covers are applied to different letters of the
plain text, according to some predefined system. For
example, one could take the letters of a key word
and use these to determine different Caesar shifts:
the key word ‘FAB’ could suggest shifts of 6, 1 and
3 positions repeatedly, or a longer text, such as an
agreed passage from a book could be used. This is far
less amenable to frequency analysis.

def vigenere(message, key):
 ciphertext = “”
 for i in range(len(message)):
 letter = message[i]
 newletter = (ord(letter) - 96 + ord(key[i %
len(key)]) - 96) % 26
 ciphertext = ciphertext + chr(newletter +
64)
 return ciphertext

Simple implementation of a Viginere or polyalphabetic
cipher in Python

Such a system can form the basis of an unbreakable
code – a ‘one-time pad’ (Shannon, 1949) in which
Caesar shifts or their equivalents are applied
according to a genuinely random stream of values
known only to sender and recipient in advance of
communication. If there’s no pattern to the shifts
that are applied, and if the random stream is known
only to sender and recipient, then even a brute-
force attack cannot recover the original plain text,
as all information about the plain text is hidden
within the randomness of the key. The downside
is that the key must be the same length as the
plain text and cannot be used again – hence the
‘one-time’ name for this method. Furthermore, the
security of the communication now becomes about
‘marinating’ the security of the one-time pad, which
is at least as hard as marinating the security of the
message it was designed to protect.

Figure 6.5 One-time pad

PD: https://upload.wikimedia.org/wikipedia/
commons/thumb/6/62/One-Time_Pads_-_Flickr_-_
The_Central_Intelligence_Agency.jpg/399px-One-
Time_Pads_-_Flickr_-_The_Central_Intelligence_
Agency.jpg

https://upload.wikimedia.org/wikipedia/commons/thumb/6/62/One-Time_Pads_-_Flickr_-_The_Central_Intelligence_Agency.jpg/399px-One-Time_Pads_-_Flickr_-_The_Central_Intelligence_Agency.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/6/62/One-Time_Pads_-_Flickr_-_The_Central_Intelligence_Agency.jpg/399px-One-Time_Pads_-_Flickr_-_The_Central_Intelligence_Agency.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/6/62/One-Time_Pads_-_Flickr_-_The_Central_Intelligence_Agency.jpg/399px-One-Time_Pads_-_Flickr_-_The_Central_Intelligence_Agency.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/6/62/One-Time_Pads_-_Flickr_-_The_Central_Intelligence_Agency.jpg/399px-One-Time_Pads_-_Flickr_-_The_Central_Intelligence_Agency.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/6/62/One-Time_Pads_-_Flickr_-_The_Central_Intelligence_Agency.jpg/399px-One-Time_Pads_-_Flickr_-_The_Central_Intelligence_Agency.jpg

153

Safe and Responsible Use

Whilst the one-time pad is secure, it is impractical
for general-purpose communication on the internet,
due to the key exchange problem. If Alice and Bob
are to communicate securely, they need to agree in
advance the key they will use, and this would need to
be communicated securely – and if Alice and Bob can
do this already, they have no need to establish a new
secure-communication channel…

The breakthrough to the key exchange problem
came with finding mathematical functions which
are easy to perform but very hard to reverse. For
example, if I take two very large prime numbers, it’s
easy to multiply them together; however, given the
product of two very large prime numbers, it’s very
hard, even for a very fast computer, to reverse the
factorisation. Without the aid of a calculator, you
should be able to multiply 7,919 and 8,863, but even
with a calculator it would take a long time for you to
find the factors of 62,080,727. Factoring this number
is relatively trivial, but finding the factor of a number
some 620 digits in length seems beyond the reach of
even the fastest computers, for some time to come.

There’s a little more to Diffie-Hellman (see Diffie
and Hellman, 1976; and also Merkle, 1978) key
exchange than simply multiplying large prime
numbers together, but the idea here is that it allows
two people wishing to communicate to decide a
secret key that could be used for encryption using
another cryptographic system, in such a way that
anyone eavesdropping on the communication about
the key couldn’t work out the key, because it relies
on secret information that is never shared. Thus,
when communicating over the internet, my browser
and the server it is communicating with can, across
an open channel, establish a secret key known only
to them, and then use this for subsequent encrypted
communication – without the key itself ever being
transmitted, and in such a way that no third party
can guess that key.

Another approach to the key exchange problem,
again based on the difficulty of factoring a product
of primes compared to the ease with which they
can be multiplied, is the RSA public/private key
algorithm.(23) Here, two different keys are needed
for the cryptographic system: one which allows data
to be encrypted, the public key, and another which
allows a message to be decrypted, the private key.
If I wish to encourage folks to communicate with
me securely, I can publish my public key on the web

23	www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-rsa-cryptography-standard.htm

and invite anyone to use it. Folks can then send
me encrypted messages using this key, but even
with access to the public key, no eavesdropper can
reverse the encryption process to read the message,
as this is only possible using the associated private
key, which only I have access to. RSA offers another
advantage in that it allows me to cryptographically
‘sign’ messages – I could, for example, encrypt an
outbound message using my private key; anyone
reading this could then decrypt it using my public key,
and the fact that it can be decrypted using my public
key proves that it was originally encrypted (that is,
signed) using the associated private key that only I
hold.

The HTTPS protocol, used for secure
communication for web traffic over the internet,
builds on these ideas. HTTPS does two things: it
establishes that the computer you are talking to is
the one you think you are talking to, by presenting
(and checking) a signed cryptographic certificate;
and it sets up secure communication for subsequent
communication between you and the far web
server. Thus, when I visit my bank’s home page over
HTTPS, my browser checks that the site carries
a cryptographic certificate signed by someone
I already trust (one of a number of supposed
incorruptible certificate authorities accepted by
my browser); assuming all is well, key exchange
for the session takes place and all the following
communication is done in secret, from my password,
through my statement, to setting up new payments -
even though this is over the insecure channels of the
internet.

HTTPS has vulnerabilities, but it’s not vulnerable to
folk in the same coffee shop sniffing otherwise open
or poorly-encrypted WiFi traffic. The vulnerability
lies in the acceptance of certificate authorities
(Callegati et al., 2009) – on a school network, you
may be expected to accept, to trust, a security
certificate from the school for internet access. Once
you’ve done so, it’s possible for the school’s gateway
computer or router to sit between you and distant
web servers (a man-in-the-middle attack) routinely
decrypting and re-encrypting any traffic between
you whilst assuring you that all is very well, as you’ve
trusted it to sign and to encrypt traffic on your
behalf. Assuming HTTPS access is permitted, it could
be possible for pupils to use HTTPS to access web-
based content in school, without the school being
able to monitor or filter what they were accessing.

http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-rsa-cryptography-standard.htm

154

Safe and Responsible Use

Beyond encryption of data and communication, it’s
worth considering some other elements of security.

As well as ensuring that unauthorised users cannot
access data, it’s important for the security of
data that those who should have access do have
access, even if disaster strikes. In part, this involves
implementing a robust approach to backing-up and
archiving data. In the case of data stored locally
on hard drives or removable media, a sensible
approach would be to make copies of this at regular
intervals, wherever possible ensuring this happens
automatically, thus protecting against hardware
failure of a drive or memory stick, and, in some
cases, against operator error too. It’s wise to store
one copy of the data in another location, to protect
against fire or theft. If the capacity and availability
of back-up media isn’t an issue, then an incremental
back-up policy is wise, keeping older copies of
data as well as recording subsequent changes, thus
allowing older versions of files to be retrieved if
subsequent changes harm their integrity.

In the case of data stored ‘in the cloud’ on
remote servers, it’s important to establish whose
responsibility it is to back-up data. Google,
Microsoft and other reputable providers will have
robust and well-tested back-up strategies in place,
and you might consider using a service like this as
an additional back-up for locally-stored files. For
sensitive data, you should consider encrypting such
files locally before storing them remotely.

It’s particularly important to protect the integrity
of any admin or root accounts on a computer or,
particularly, a server or domain. Such accounts
should not normally be used when operating
the computer at a user level, as it’s possible for
accounts with these privileges to make far-reaching
and long-lasting changes to other users’ data and
the system itself. If installing software using these
accounts, you should take particular care that any
programs installed come from a trusted source.

24	https://xkcd.com/936/

Identity

Pupils construct their identity in many ways, often
presenting different persona in different contexts,
behaving quite differently at school, at home and
when out with their friends. Online identity can
make this harder, as multiple accounts across
different services are often linked, either explicitly
or implicitly. Many social media sites, most notably
Facebook, prohibit multiple accounts and require
that one registers using a real name. Furthermore,
open platforms and an eagerness to share content
can make it hard for young people to maintain
different persona in different online contexts.
Both the deliberately shared and the automatically
recorded aspects of a digital footprint become
inextricably linked to a user’s online identity. Young
people, and their teachers, can do much to promote
their best selves to the world online: and some
recognition of the persistence of online data and of
their responsibilities might encourage them to be
so. This is less about using the web to experiment
with the cyberculture (Turkle, 1995) of the past, as
it is about presenting an authentic picture of one’s
best self.

As more and more aspects of pupils’ learning
and life are mediated through online systems, it’s
important that they learn to protect their own
online identity and respect the online identity of
others.

Typically, online identity is established through
some form of password system. Pupils should treat
passwords as they do toothbrushes: only use their
own, and change them regularly! Encourage pupils
to use long passwords that cannot easily be guessed
(for example CorrectHorseBatteryStaple,(24) or in
accordance with the rules enforced on the systems
they access), to use different passwords for different
sites or services, and to change passwords regularly.

https://xkcd.com/936/

155

Safe and Responsible Use

Discourage pupils from sharing passwords with
one another, as this is usually their only way to
prove who they are in any online system, and avoid
encouraging pupils to share their passwords with
their parents: many difficulties could arise through
one parent impersonating their son or daughter in
an otherwise secure ‘walled garden’ environment
such as a school VLE or learning platform. Remind
pupils that they should log off when they have
finished using a computer or website, and that they
should only allow browsers to maintain logged-
in status if they are the only person with access
to that browser. Similarly, they should only ever
use the ‘remember my password’ feature in a web
browser if they are certain that they are the only
person who will use that browser. Pupils should
consider which accounts they care particularly
about and ensure that passwords for these are
unique and particularly secure, for example a main,

personal email account should always have a unique
password since it would be the principal means
of requesting a password reset for other online
accounts.

Encourage pupils to consider the security of their
passwords on the server they are connecting to.
There have been well-publicised stories of user-
account databases being hacked and passwords
sold on, which is particularly worrying for users
who happen to have used the same password
across multiple sites. Passwords should never be
transmitted in an unencrypted form. A secure
password system must never store the password
itself in an unencrypted form, and it should never
be possible for those who maintain the system
to recover the original password: distrust (and
stop using) any system which, when you ask for
a password reminder, is able to tell you what
password you set.

Figure 6.6 From XKCD at https://xkcd.com/936/, licensed CC by-nc

156

Safe and Responsible Use

When setting a password online, the minimum
acceptable approach is for the browser to transmit
the password via an encrypted connection, then
for the server to cryptographically ‘hash’ the
password and store this hash in the database.
To check the password, the user transmits their
password over an encrypted connection; this is
again hashed by the server and the hash compared
to the stored version. If they match, the user can
access the system. This system too is vulnerable
if the password table is available to an attacker,
as possible passwords can simply be hashed and
compared to the hashed value in the table. By
adding some predetermined, unique, random ‘salt’
to the password before it’s hashed, the risk here
can be mitigated.(25)

For particularly sensitive accounts, consider
some form of two-factor authentication. User
authentication can be based on who a person is,
what they know or what they have. Usual password
protocols rely on one factor only: what a person
knows. Simple swipe cards, or biometric systems
sometimes used for registration, catering or
library access, rely on what a person has or who a
person is. Two-factor systems require two distinct
elements before allowing access. For example,
an ATM uses a relatively insecure four-digit PIN
because it only provides account access if the user
has the corresponding card. Online systems which
send authentication codes to mobile phones, or
require codes to be generated on a previously
authenticated app or device, provide a similar
degree of security – even if an attacker guesses the
account password, they cannot get access without
also having the associated phone. If the phone
used can only be unlocked with a fingerprint or
biometric, then this could be considered a three-
factor authentication system.

Any such authentication systems are vulnerable
if users can be tricked into giving away their
passwords, and it’s important to teach pupils
how to spot phishing or other social engineering
attempts. For example, pupils should learn to
distrust the links shown in emails or similar
messages, as these might be spoof and point to
websites other than those suggested. Pupils should
never give passwords out in response to questions,
whether online, face to face or by phone.

25	See www.owasp.org/index.php/Authentication_Cheat_Sheet for more details about secure password systems.
26	www.tnmoc.org/
27	www.bletchleypark.org.uk/

 Classroom activity ideas

●● Help pupils to consider the extent of their
digital footprint, perhaps keeping a diary of the
apps they use in one day, or reviewing their
own browser or search histories for a day. Take
care here as some pupils might be particularly
sensitive to the associated issues around privacy
and surveillance. What do pupils find if they type
their name into Google? Ask pupils to review
their privacy settings on any social media sites
they use. If they have accounts for services they
no longer use, why don’t they delete them?

●● A combined visit to the birthplace of
computing(26) and the home of wartime
codebreaking efforts(27) is highly recommended,
although places for school visits tend to be
booked months in advance.

●● Talk through some of the issues of privacy and
surveillance with pupils. Do they consider this an
appropriate way to keep them and others safe?
Is it acceptable to use search or browser history
or tracking cookies to better target marketing
information? Do they mind automated systems
reading their emails?

●● Cryptography is rich territory for linking pupils’
computational thinking and programming skills
to issues of privacy and security. Can pupils write
programs to implement simple cryptography
systems in Snap! or Python? Can they write
programs which can crack or help crack simple
encryption? Can they implement a program to
securely store salted and hashed passwords and
then check passwords against these?

http://www.owasp.org/index.php/Authentication_Cheat_Sheet
http://www.tnmoc.org/
http://www.bletchleypark.org.uk/

157

Safe and Responsible Use

 Further resources

British Library (n.d.) Education resources on ‘My
Digital Rights’. Available from www.bl.uk/my-digital-
rights/

CESG / CPNI (n.d.) Password guidance. Available
from www.gov.uk/government/uploads/system/
uploads/attachment_data/file/458857/Password_
guidance_-_simplifying_your_approach.pdf

CIMT (n.d.) Codes and ciphers resources. Available
from http://www.cimt.org.uk/resources/codes/
[2/1/17].

Cyber Security Challenge UK (n.d.) Available from
https://cybersecuritychallenge.org.uk/

Electronic Frontier Foundation (US) (n.d.) Resources
on student privacy. Available from www.eff.org/issues/
student-privacy/

Open Rights Group (n.d.) Available from www.
openrightsgroup.org/

Raspberry Pi Learning Resources (n.d.) One
time pad activity (Python). Available from www.
raspberrypi.org/learning/secret-agent-chat/

Schmidt, E. and Cohen, J. (2013) The new digital age:
Reshaping the future of people, nations and business.
London, Hachette UK.

Schneier, B. (2009) Schneier on security. Hoboken, NJ:
John Wiley & Sons.

Singh, S. (1999) The code book: the evolution of secrecy
from Mary, Queen of Scots, to quantum cryptography.
London: Harper Collins. See also interactive tools
at www.simonsingh.net/The_Black_Chamber/
chamberguide.html and Singh’s Science of Secrecy
programme on public key cryptography: www.
youtube.com/watch?v=_ZTWLAqYf9c and www.
youtube.com/watch?v=oR0_LPbWxe4

References
Bailey, R. (2011) Letting children be children: Report
of an independent review of the commercialisation and
sexualisation of childhood (CM. 8078). London: The
Stationery Office.

Byron, T. (2008) Safer children in a digital world:
The report of the Byron Review. DCFS. Available
from http://webarchive.nationalarchives.gov.
uk/20130401151715/http://www.education.gov.uk/
publications/eOrderingDownload/DCSF-00334-
2008.pdf

Callegati, F., Cerroni, W. and Ramilli, M. (2009)
Man-in-the-Middle attack to the HTTPS protocol. IEEE
Security and Privacy Magazine 7(1):78 - 81.

DfE (2014) Promoting fundamental British values
through SMSC.

DfE (2015) Keeping children safe in education.

DfE (2016) Draft: Keeping children safe in education.
London: DfE.

Diffie, W. and Hellman, M. (1976) New directions in
cryptography (PDF). IEEE Transactions on Information
Theory 22 (6). 644–654.

Edelman, B. (2003) Empirical analysis of Google
SafeSearch. Berkman Center for Internet & Society,
Harvard Law School, Available at http://cyber.
harvard.edu/archived_content/people/edelman/
google-safesearch/ [2/1/17].

Kohlberg, L. (1984) Essays on moral development:
Volume 2: The psychology of moral development. New
York, NY: Harper & Row.

Merkle, R.C. (April 1978). Secure communications
over insecure channels. Communications of the ACM,
21 (4). 294–299.

Ofsted (2010) The safe use of new technologies
London.

Shannon, C. (1949) Communication theory of
secrecy systems. Bell System Technical Journal, 28 (4).
656–715.

Turkle, S. (1995) Life on the screen. Identity in the age
of the age of internet. New York, NY: Touchstone.

http://www.bl.uk/my-digital-rights/
http://www.bl.uk/my-digital-rights/
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/458857/Password_guidance_-_simplifying_your_approach.pdf
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/458857/Password_guidance_-_simplifying_your_approach.pdf
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/458857/Password_guidance_-_simplifying_your_approach.pdf
http://www.cimt.org.uk/resources/codes/
https://cybersecuritychallenge.org.uk/
http://www.eff.org/issues/student-privacy/
http://www.eff.org/issues/student-privacy/
http://www.openrightsgroup.org/
http://www.openrightsgroup.org/
http://www.raspberrypi.org/learning/secret-agent-chat/
http://www.raspberrypi.org/learning/secret-agent-chat/
http://www.simonsingh.net/The_Black_Chamber/chamberguide.html
http://www.simonsingh.net/The_Black_Chamber/chamberguide.html
http://www.youtube.com/watch?v=_ZTWLAqYf9c
http://www.youtube.com/watch?v=_ZTWLAqYf9c
http://www.youtube.com/watch?v=oR0_LPbWxe4
http://www.youtube.com/watch?v=oR0_LPbWxe4
http://webarchive.nationalarchives.gov.uk/20130401151715/http://www.education.gov.uk/publications/eOrderingDownload/DCSF-00334-2008.pdf
http://webarchive.nationalarchives.gov.uk/20130401151715/http://www.education.gov.uk/publications/eOrderingDownload/DCSF-00334-2008.pdf
http://webarchive.nationalarchives.gov.uk/20130401151715/http://www.education.gov.uk/publications/eOrderingDownload/DCSF-00334-2008.pdf
http://webarchive.nationalarchives.gov.uk/20130401151715/http://www.education.gov.uk/publications/eOrderingDownload/DCSF-00334-2008.pdf
http://cyber.harvard.edu/archived_content/people/edelman/google-safesearch/
http://cyber.harvard.edu/archived_content/people/edelman/google-safesearch/
http://cyber.harvard.edu/archived_content/people/edelman/google-safesearch/

Subject Knowledge covering Level 3 and 4
QuickStart Computing provides the vital subject knowledge enhancement

for secondary computing teachers.
It covers the content of the Computing Science and Digital Literacy

curriculum at Levels 3 and 4 so that you and your colleagues can teach it
confidently and successfully.

Inside you’ll find:

ISBN 978-1-78017-441-9

All this guidance is also available online at:
computingatschool.org.uk/scotland/quickstart

9 781780 174419

•	 Detailed coverage of Computing Science and Digital Literacy topics
included at Levels 3 and 4

•	 Guidance on developing and applying the concepts and approaches of
computational thinking

•	 Programming examples using Scratch, Snap! and Python

•	 Practical classroom activities and inspiration

•	 A carefully curated collection of the best online resources and
reference materials

•	 Notes on what’s covered in primary computing to ensure excellent
transition

Computing Scotland

SUPPORTED BY

