
SUPPORTED BY

Computing Scotland
Subject Knowledge covering  

the transition from Primary to Secondary



In 2017, Education Scotland revised the computing science 
content within the Broad General Education, with significant 
input from Computing At School Scotland (CAS Scotland), 
to reflect the developing worldwide understanding of the 
importance of the subject.

We recognise that there is a large increase in the computing 
science content to be covered in both primary and early 
secondary compared to the old Experiences and Outcomes 
(Es & Os) for computing science.  In secondary schools, with 
our current computing teacher numbers, many teachers from 
related subjects may be asked to deliver teaching at the lower 
levels.  It is important, then, that materials are available for 
such teachers to enable them to prepare for these classes.

This QuickStart resource is the first to support early 
secondary teaching, and it particularly focusses on the 
necessary subject knowledge for teachers.  It is not full of 
teaching activities and pedagogical advice – we will shortly be 
extending the primary teacher guide available at http://teachcs.
scot, developed by CAS Scotland, to include these.  That guide 
explains well the particular structure of the new Es & Os, and 
so is essential reading too.

This resource is an adjusted version of one originally 
developed by CAS for the English curriculum.  Such sharing 
between the nations is valuable, and should be effective since 
the subject knowledge required for both the English and 
Scottish curricula is similar.  We have largely removed direct 
reference to the English curriculum, although connections 
may still be apparent.  Most importantly, the structuring of 
the two curricula is significantly different, and so the chapter 
structure in this resource does not readily follow the Scottish 
curriculum.  For this reason, we have provided a mapping from 
the Es & Os, and the Benchmarks, to the relevant sections 
of the resource, which will help you to find the descriptions 
and explanations you need.  This appears right after the main 
Contents page.

We are acutely aware of the huge effort it has taken in recent 
years to teach the new computing science qualifications, 
and also how much it will take to teach to the new Es & 
Os.  Be assured that the best international research evidence 
in computing science education has been incorporated 
into these Es & Os.  As such, we are confident that the 
combination of foundational work in the early years and 
primary, as well as the overall structure and extended time 
in secondary, will enable all pupils to succeed in the subject, 
correcting the imbalance in background and gender to which 
our subject has long been prone.

A word about sponsorship. The QuickStart project was 
funded by Microsoft, with matched funding from the English 
Department for Education, and further funding from Education 
Scotland, and it is heartening to see such tangible support 
for teachers, both from business and from government. I 
would like to thank them warmly and to emphasise that 
the QuickStart resources were developed for teachers by 
a Computing At School working group, without the direct 
influence of the sponsors. 

It’s an exciting time for computing science!  We are a subject 
coming of age, with great relevance to every one of our pupils.  
We hope very much that you find this QuickStart resource of 
value in underpinning your delivery of great experiences for 
your pupils.

Quintin Cutts  
Chair, Computing At School Scotland
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Digital technology has come to play a huge part in 
the lives of individuals and our society: there seems 
hardly any sphere of work, leisure or study that has 
not been transformed by computers, the internet 
or smartphones. The changes we've seen in our 
lifetimes show no signs of slowing down. If we take 
seriously our responsibilities to prepare the next 
generation for the opportunities, responsibilities 
and experiences of their later lives, then that must 
involve empowering them not only to use the 
technologies that will be part of their future, but 
also to understand these technologies, and perhaps 
develop them further still.

Computing is about more than using or 
understanding technologies though. The principles 
of computer science which lie at the foundation of 
digital technology have wide applications beyond 
this. An understanding of these principles (things 
like logic, computability and the properties of 
information) certainly helps to make sense of 
current technology and looks likely to be necessary 
for a grasp of future technology, but it also offers 
unique insights into the nature of the world. 

In thinking about the purpose of education, surely 
part of this is that school should help young people 
develop an understanding of the world in which 
they find themselves, and equip them to make a 
difference to that world. This vision is reflected in 
the opening sentence of the 2014 English computing 
curriculum:

A high-quality computing education 
equips pupils to use computational 
thinking and creativity to understand and 
change the world. 

Reflecting the advice of The Royal Society’s Shut 
down or restart? report (Furber, 2012), the Scottish 
curriculum includes two distinct but inter-related 
aspects of the subject: computing science, and digital 
literacy. These are perhaps best thought of as the 
foundations of the discipline, and its applications 
to getting useful things done, and the wider 
personal, cultural, ethical and societal implications 
of the subject. Computing science provides a unique 
way of looking at the world, like mathematics and 
the natural sciences; digital literacy is a creative 

1	  http://barefootcas.org.uk/
2	  http://primary.quickstartcomputing.org/

discipline with much in common with expressive 
arts, but also might include links with the personal 
and social aspects of health and wellbeing, social 
studies and even religious and moral education. 

The computing science and digital literacy 
experiences and outcomes are unashamedly 
ambitious. For a school to deliver on the promise 
of these experiences and outcomes and do the best 
that it can for its pupils, there needs to be enough 
time to teach the programmes of study, plus good 
resources, robust connectivity, effective pedagogy 
and crucially, knowledgeable, enthusiastic teachers. 

With primary teachers, CAS (Computing At 
School) developed CPD (continuing professional 
development) programmes such as Barefoot 
Computing(1) and Primary QuickStart Computing(2) 
to help address the subject knowledge gap, and 
alongside initiatives such as PLAN C, these have 
generally been regarded as effective. At secondary 
level, subject knowledge professional development 
has unsurprisingly often focussed on those new to 
teaching exam courses with relatively little in place 
to equip teachers to rise to the challenge of the 
Level 3 programme of study.

This new QuickStart guide has therefore been 
developed with Level 3 teachers particularly in 
mind. I have taken as a starting point the structure 
of the primary guide and have included much of 
the content from that to provide a starting point 
for getting to grips with computing in lower 
secondary schools. But this guide goes much 
further, covering, in more or less depth, the subject 
knowledge needed to teach the whole of the Level 
3 programme of study. 

I have broken the curriculum up into six, unequal 
but inter-related parts: computational thinking, 
programming, computer systems, networks, 
productive and creative IT, and the safe and 
responsible use of technology. In each chapter, 
I discuss the ideas that the curriculum is built 
on, weaving in some thoughts on how these can 
best be taught. I have added in a good scattering 
of footnotes pointing to original sources and 
further examples, and each section includes a few 
suggestions for relevant teaching activities and a list 
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of further resources for those who want to learn 
more or draw on alternative perspectives. 

This is not a guide on how to plan, teach or 
assess computing, important as these elements 
are. There’s good advice on these things in the 
original secondary QuickStart guide,(3) as well as 
CAS’s guidance notes on the secondary computing 
curriculum(4) and the more-recent guide to 
computational thinking.(5) Those looking to go 
rather further in their understanding of computing 
than an introduction like this can cover, might 
be interested in pursuing the BCS Certificate in 
Computer Science teaching,(6) enrolling in one or 
more of the excellent online computing MOOCs 
(massive, open, online courses)(7) or attending CAS’s 
new Tenderfoot Computing CPD programme.(8)

Miles Berry, 
Roehampton, 
November 2017.

3	 www.quickstartcomputing.org/secondary/
4	 www.computingatschool.org.uk/data/uploads/cas_secondary.pdf
5	 https://community.computingatschool.org.uk/files/6695/original.pdf
6	 www.computingatschool.org.uk/certificate
7	 For example, Harvard’s CS50: www.edx.org/course/introduction-computer-science-harvardx-cs50x
8	 www.computingatschool.org.uk/custom_pages/56-tenderfoot
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Benchmarks – Third Level Technologies

Curriculum  
Organisers

Experiences and  
Outcomes for planning 
learning, teaching and 
assessment

Benchmarks to support practitioners’ professional  
judgement

Page  
reference

D
ig

it
a
l 

Li
te

ra
cy

Using  
digital  
products and 
services in 
a variety of 
contexts to 
achieve a 
purposeful 
outcome

I can explore and use the 
features of a range of 
digital technologies,  
integrated software and 
online resources to 
determine the most 
appropriate to solve 
problems. 
TCH 3-01a

•	 Uses the most appropriate applications and software tools to 
capture, create and modify text, images, sound, and video to 
present and collaborate.

•	 Demonstrates an understanding of file handling, for example, 
uploading, downloading, sharing and permission-setting, for 
example within Glow or other platforms.

129 - 135

 
154 - 157

Searching, 
processing 
and managing 
information 
responsibly

Having used digital 
technologies to search, 
access and retrieve 
information, I can justify 
my selection in terms of 
validity, reliability, and 
have an awareness of 
plagiarism. 
TCH 3-02a

•	 Gathers and combines data and information from a range of 
sources to create a publication, presentation or information 
resource.

•	 Uses applications to analyse data and identify trends / make 
predictions based on source data.

•	 Demonstrates efficient searching techniques, for example using 
‘and’, ‘or’, ‘not’.

 129 - 135

 
135 - 137

 
127 - 128

Cyber  
resilience and 
internet safety

I can keep myself safe and 
secure in online 
environments and I am 
aware of the importance 
and consequences of 
doing this for myself and 
others. 
TCH 3-03a

•	 Demonstrates an understanding of the legal implications and 
importance of protecting their own and others’  privacy when 
communicating online.

•	 Evaluates online presence and identifies safeguards.
•	 Presents relevant ideas and information to explain risks to 

safety and security of their personal devices and networks, 
including encryption. 

•	 Applies appropriate online safety features when becoming 
involved with online communities such as online gaming, chat 
rooms, forums and social media. 

•	 Demonstrate an understanding of different cyber threats, 
for example, viruses, phishing, identity theft, extortion and 
sextortion.

•	 Demonstrates understanding of device security including 
personal and domestic devices.  

143 - 157  
for all aspects 

here

Benchmarks highlighted in red are covered in the materials on the pages indicated. Benchmarks in blue are not 
covered in any detail by the materials.
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Benchmarks – Third Level Technologies

Curriculum  
Organisers

Experiences and  
Outcomes for planning 
learning, teaching and 
assessment

Benchmarks to support practitioners’ professional  
judgement

Page  
reference

C
o

m
p

u
ti

n
g
 S

ci
e
n

ce

Understanding 
the world 
through  
computational 
thinking

I can describe different 
fundamental information 
processes, and how they 
communicate and can 
identify their use in solving 
different problems. 
TCH 3-13a

I am developing my 
understanding of 
information and can use 
an information model to 
describe particular aspects 
of a real-world system. 
TCH 3-13b

•	 Recognises and describes information systems with 
communicating processes which occur in the world around them. 

•	 Explains the difference between parallel processes and those 
that communicate with each other. 

•	 Demonstrates an understanding of the basic principles of 
compression and encryption of information. 
 
 

•	 Identifies a set of characteristics describing a collection of 
related items that enable each item to be individually identified.

•	 Identifies the use of common algorithms such as sorting and 
searching as part of larger processes.

106 - 108

96 - 100 
(compression)  

151 - 153  
(encryption)

 
75 - 81

  
19 - 21

Understanding 
and analysing 
computing  
technology

I understand language 
constructs for representing 
structured information. 
TCH 3-14a

I can describe the 
structure and operation of 
computing systems which 
have multiple software and 
hardware levels that 
interact with each other. 
TCH 3-14b

•	 Understands that the same information could be represented in 
more than one representational system.

•	 Understands that different information could be represented in 
exactly the same representation.

•	 Demonstrates an understanding of structured information in 
programs, databases or web pages. 

•	 Describes the effect of mark-up language on the appearance 
of a webpage, and understands that this may be different on 
different devices.

•	 Demonstrates an understanding of the von Neumann 
architecture and how machine code instructions are stored and 
executed within a computer system.

•	 Reads and explains code extracts including those with 
variables and data structures.

•	 Demonstrates an understanding of how computers 
communicate and share information over networks, including 
the concepts of sender, receiver, address and packets.

•	 Understands simple compression and encryption techniques 
used in computing technology.

90 - 100
 

90 - 100
  

75 - 81
 

123 - 126

 
48 - 49

 
73 - 81

  
117 - 121

 
96 - 100 

(compression)  
151 - 153  

(encryption)

Designing, 
building and 
testing  
computing  
solutions

I can select appropriate 
development tools to 
design, build, evaluate and 
refine computing solutions 
based on requirements. 
TCH 3-15a

•	 Designs and builds a program using a visual language 
combining constructs and using multiple variables.

•	 Represents and manipulates structured information in 
programs, or databases; for example, works with a list data 
structure in a visual language, or a flat file database.

•	 Interprets a problem statement, and identifies processes and 
information to create a physical computing and/or software 
solution.

•	 Can find and correct errors in program logic.
•	 Groups related instructions into named subprograms (in a 

visual language).
•	 Writes code in which there is communication between parallel 

processes (in a visual language).
•	 Writes code which receives and responds to real-world inputs 

(in  a visual language).
•	 Designs and builds web pages using appropriate mark-up 

languages.

59 - 73
 

75 - 78

  
38 - 43

81 - 83
68 - 73

  
110 - 116

  
123 - 126
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Benchmarks – Fourth Level Technologies

Curriculum  
Organisers

Experiences and  
Outcomes for planning 
learning, teaching and 
assessment

Benchmarks to support practitioners’ professional  
judgement

Page  
reference

D
ig

it
a
l 

Li
te

ra
cy

Using  
digital  
products and 
services in 
a variety of 
contexts to 
achieve a 
purposeful 
outcome

I can select and use digital 
technologies to access, 
select relevant information 
and solve real-world 
problems. 
TCH 4-01a

•	 Demonstrates an understanding of how digital literacy will 
impact on their future learning and career pathways.

•	 Consistently uses a range of devices and digital software 
and applications and services to share, create, collaborate 
effectively and publish digital content online. 

  
137 - 141

Searching, 
processing 
and managing 
information 
responsibly

I can use digital 
technologies to process 
and manage information 
responsibly and can 
reference sources 
accordingly. 
TCH 4-02a

•	 Gathers, evaluates and combines data and information from 
a range of sources to create a publication, presentation or 
information resource.

•	 Evaluates applications to analyse data and identify  
trends / make predictions based on source data.

•	 Evaluates efficient searching techniques, for example using 
‘and’, ‘or’,’not’. 

129 - 135

  
135 - 137

 
127 - 128

Cyber  
resilience and 
internet safety

I can explore the impact of 
cyber-crime for business 
and industry and the 
consequences this can 
have on me.  
TCH 4-03a

•	 Demonstrates understanding of how industry collects and uses 
personal data ethically and how this relates to data security 
legislation.

•	 Demonstrates understanding of how cyber security breaches in 
industry can impact on individuals.

•	 Evaluates the digital footprint of industry and identifies good 
practice. 

•	 Identifies the main causes of security breaches in industry.
•	 Demonstrates understanding of safe disposal of data and 

devices. 

148 - 157
 
 

148 - 157
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Benchmarks – Fourth Level Technologies

Curriculum  
Organisers

Experiences and  
Outcomes for planning 
learning, teaching and 
assessment

Benchmarks to support practitioners’ professional  
judgement

Page  
reference

C
o

m
p

u
ti

n
g
 S

ci
e
n

ce

Understanding 
the world 
through 
computational 
thinking

I can describe in detail the 
processes used in 
real-world solutions, 
compare these processes 
against alternative 
solutions and justify which 
is the most appropriate. 
TCH 4-13a

I can informally compare 
algorithms for correctness 
and efficiency. 
TCH 4-13b

•	 Identifies the transfer of information through complex systems 
involving both computers and physical artefacts, for example, 
airline check-in, parcel tracking and delivery.

•	 Describes instances of human decision making as an 
information process, for example, deciding which check-out 
queue to pick, which route to take to school, how to prepare 
family dinner / a school event.

•	 Compares alternative algorithms for the same problem and 
understands that there are different ways of defining “better” 
solutions depending on the problem context, for example, is 
speed or space more valuable in this context?

 
36 - 38

Understanding 
and analysing 
computing  
technology

I understand constructs 
and data structures in a 
textual programming 
language. 
TCH 4-14a

I can explain the overall 
operation and architecture 
of a digitally created 
solution. 
TCH 4-14b

I understand the 
relationship between high 
level language and the 
operation of computer. 
TCH 4-14c

•	 Understands basic control constructs such as sequence, 
selection, repetition, variables and numerical calculations in a 
textual language.

•	 Demonstrates an understanding of how visual instructions and 
textual instructions for the same construct are related.

•	 Identifies and explains syntax errors in a program written in a 
textual language.

•	 Demonstrates an understanding of representations of data 
structures in a textual language.  

•	 Demonstrates an understanding of how computers represent 
and manipulate information in a range of formats.

•	 Demonstrates an understanding of program plans expressed 
in accepted design representations, for example pseudocode, 
storyboarding, structure diagram, data flow diagram, flow chart.

•	 Demonstrates an understanding of the underlying technical 
concepts of some specific facets of modern complex 
technologies, for example, online payment systems and sat-nav.

•	 Demonstrates an understanding that computers translate 
information processes between different levels of abstraction.

59 - 73

 
59 - 73

  
81 - 83

  
73 - 78

 
78 - 81

  
17

  
108 - 110

Designing, 
building and 
testing  
computing  
solutions

I can select appropriate 
development tools to 
design, build, evaluate and 
refine computing solutions 
to process and present 
information whilst making 
reasoned arguments to 
justify my decisions. 
TCH 4-15a

•	 Analyses problem specifications across a range of contexts, 
identifying key requirements.	

•	 Writes a program in a textual language which uses variables 
and constructs such as sequence, selection and repetition.

•	 Creates a design using accepted design notations, for example, 
pseudocode storyboarding, structure diagram, data flow 
diagram, flow chart.

•	 Develops a relational database to represent structured 
information.

•	 Debugs code and can distinguish between the nature of 
identified errors e.g. syntax and logic.

•	 Writes test and evaluation reports.
•	 Can make use of logical operators – AND, OR, NOT.
•	 Writes a program in a textual language which uses variables 

within instructions instead of specific values, where appropriate.
•	 Designs appropriate data structures to represent information in 

a textual language.
•	 Selects an appropriate platform on which to develop a physical 

and/or software solution from a requirements specification.
•	 Compares common algorithms, for example, those for sorting 

and searching, and justify which would be most appropriate for 
a given problem.

•	 Design and build web pages which include interactivity.

59 - 73
  

17

 
81  - 83

  
13 - 16
59 - 73

  
73 - 77

 
18 - 21
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How do we think about problems so that 
computers can help?
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Computational Thinking

Computational 
Thinking
HOW DO WE THINK ABOUT 
PROBLEMS SO THAT COMPUTERS 
CAN HELP? 

Computers are incredible devices: they extend 
what we can do with our brains. With them, we 
can do things faster, keep track of vast amounts of 
information and share our ideas with other people.

What is computational 
thinking?

Getting computers to help us to solve problems is 
a two-step process:

1.	 First, we think about the steps needed to 
solve a problem.

2.	 Then, we use our technical skills to get the 
computer working on the problem. 

Take something as simple as using a calculator 
to solve a problem in maths. First, you have to 
understand and interpret the problem before the 
calculator can help out with the arithmetic bit.

Similarly, if you’re going to make a presentation, you 
need to start by planning what you are going to 
say and how you’ll organise it before you can use 
computer hardware and software to put a deck of 
slides together.

In both of these examples, the thinking that is 
undertaken before starting work on a computer is 
known as computational thinking.

Computational thinking describes the processes 
and approaches we draw on when thinking about 
problems or systems in such a way that a computer 
can help us with these. Jeanette Wing puts it well: 

1	 The Barefoot Computing developed by Computing At School (CAS) for primary teachers refers to 'patterns' here, but the 	
	 term 'generalisation' was used in CAS's Computational Thinking Working Group (see Czismadia et al., 2015). 

Computational Thinking is the thought 
processes involved in formulating 
problems and their solutions so that 
the solutions are represented in a form 
that can be effectively carried out by an 
information-processing agent. (Wing, 
2010)

The apparently clumsy term ‘information-
processing agent’ is there because Wing wants us 
to understand that it’s not just computers that 
can execute algorithms. People can (following 
instructions to make a cake), bees can (finding the 
shortest path to nectar), termites can (building a 
mound), and cells can (DNA is the program that 
cells execute). 

Computational thinking is not thinking about 
computers or like computers. Computers don’t 
think for themselves. Not yet, at least!

 When we do computational thinking, we use the 
following concepts to tackle a problem:

●● logical reasoning: predicting, analysing and 
explaining (see pages 12 - 16);

●● algorithms: making steps and rules  
(see pages 16 - 24);

●● decomposition: breaking problems or systems 
down into parts (see pages 24 - 27);

●● abstraction: managing complexity, sometimes 
through removing unnecessary detail  
(see pages 27 - 31);

●● generalisation:(1) spotting and using patterns and 
similarities (see pages 31 - 34);

●● evaluation: making judgements  
(see pages 34 - 38). 

This is not an exhaustive list, but it gives some 
helpful structure to the umbrella term of 
‘computational thinking’. Here is a picture that may 
help to clarify (Figure 1.1):
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What can you do with 
computational thinking?

Although computational thinking describes the sort 
of thinking that computer scientists and software 
developers engage in, plenty of other people think 
in this way too, and not just when it comes to using 
computers. The thinking processes and approaches 
that help with computing are really useful in many 
other domains too.

For example, the way a team of software engineers 
goes about creating a new computer game, video 
editor or social networking platform is really not 
that different from how you and your colleagues 
might work together to plan a scheme of work or 
to organise an educational visit.

In each case:

●● You think about the problem – it’s not just trying 
things out and hoping for the best.

●● You take a complex problem and break it down 
into smaller problems.

●● It’s necessary to work out the steps or rules for 
getting things done.

●● The complexity of the task needs to be managed, 
typically by focussing on the key details.

●● The way previous projects have been 
accomplished can help.

●● It’s a good idea to take stock at the end to 
consider how effective your approach has been.

How is computational thinking 
used in the curriculum?

Ideas like logical reasoning, step-by-step approaches 
(algorithms), decomposition, abstraction, 
generalisation and evaluation have wide applications 
for solving problems and understanding systems 
across (and beyond) the school curriculum. As pupils 
learn to use these approaches in their computing 
work, you and your colleagues should find that they 
become better at applying them to other work too.

During their time at primary school, pupils will 
already have used lots of aspects of computational 
thinking, and will continue to do so across the 

Figure 1.1  
Barefoot would like to acknowledge the work of Julia Briggs and the eLIM team at Somerset County Council for their contribution to this poster and Group DRP for their work on the design.
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curriculum in secondary education. It’s worth making 
these connections explicit during computing lessons, 
drawing on the applications of computational 
thinking that your students will already be familiar 
with, as well as discussing these ideas with your 
colleagues teaching other subjects. For example:

●● In English, students are encouraged to plan their 
writing, to think about the main events and 
identify the settings and the characters.

●● In art, music or design and technology, students 
think about what they are going to create and 
how they will work through the steps necessary 
for this, by breaking down a complex process 
into a number of planned phases.

●● In maths, pupils will identify the key information 
in a problem before they go on to solve it.

Where does computational 
thinking fit in the new 
computing curriculum?

The Benchmarks for Technologies have 
computational thinking as one of the key curricular 
organisers from Early Years to Level 4:

Understanding the world through 
computational thinking (Education 
Scotland 2017)

At all levels, one element of very good practice is:

As their digital literacy becomes more 
sophisticated they embed computation to 
solve problems.

Whilst programming (see pages 45 - 84) is an 
important part of the new curriculum, it would be 
wrong to see this as an end in itself. Rather, it is 
through the practical experience of programming 
that the insights of computational thinking can best 
be developed and exercised. Not all students will 
go on to get jobs in the software industry or make 
use of their programming in academic studies, but 
all are likely to find ways to apply and develop their 
computational thinking.

Computational thinking should not be seen as 
just a new name for ‘problem-solving skills’. A key 
element of computational thinking is that it helps us 
make better use of computers in solving problems 
and understanding systems. It does help to solve 

problems and it has wide applications across other 
disciplines, but it is most obviously apparent, and 
probably most effectively learned, through the 
rigorous, creative processes of writing code – as 
discussed in the next section. 

  Classroom activity ideas

●● Traditional IT activities can be tackled from 
a computational thinking perspective. For 
example, getting students to create a short 
video presentation might begin by breaking the 
project down into short tasks (decomposition), 
thinking carefully about the best order in which 
to tackle these and drawing up a storyboard for 
the video (algorithms), learning about standard 
techniques in filming and editing and recognising 
how others’ work could be used as a basis or 
even included here (generalisation), learning 
about – but not being overly concerned about 
– technical elements of cameras and file formats 
(abstraction).

●● If your school has cross-curricular projects or 
theme days, see if you can adopt a computational 
thinking approach to one of these. Take, as an 
example, putting on an end of year play: students 
could break the project down into a set of sub-
tasks, consider the order in which these need 
to be accomplished, assign tasks to individuals 
or groups and review how work is progressing 
towards the final outcome.

●● There are strong links between computational 
thinking and the design–make–evaluate approach 
that’s common in design and technology, and 
sometimes in other subjects.

  Further resources

Barba, L. (2016) Computational thinking: I do not think 
it means what you think it means. Available from 
http://lorenabarba.com/blog/computational thinking-
i-do-not-think-it-means-what-you-think-it-means/

Barefoot Computing (n.d.) Computational 
thinking. Available from http://barefootcas.org.uk/
barefoot-primary-computing-resources/concepts/
computational thinking/ (free, but registration 
required).

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking/
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BBC Bitesize (n.d.) Introduction to computational 
thinking. Available from www.bbc.co.uk/education/
guides/zp92mp3/revision

Berry, M. (2014) Computational thinking in 
primary schools. Available from http://milesberry.
net/2014/03/computational-thinking-in-primary-
schools/

Computer Science Teachers Association (n.d.) 
CSTA computational thinking task force/Computational 
thinking resources. Available from http://csta.acm.org/
Curriculum/sub/CompThinking.html

Computing At School (n.d.) Computational thinking. 
Available from http://community.computingatschool.
org.uk/resources/252

Curzon, P., Dorling, M., Ng, T., et al. (2014) 
Developing computational thinking in the classroom: A 
framework. Computing At School. Available from http://
community.computingatschool.org.uk/files/3517/
original.pdf

Google for Education (n.d.) Exploring computational 
thinking. Available from www.google.com/edu/
computational-thinking/index.html

Google's MOOC on Computational Thinking 
for Educators (n.d.) Available from https://
computationalthinkingcourse.withgoogle.com/unit

Harvard Graduate School of Education (n.d.) 
Computational thinking with Scratch. Available from 
http://scratched.gse.harvard.edu/ct/defining.html 

Pólya, G. (1945) How to solve it. Princeton, NJ: 
Princeton University Press.

Selby, C. and Woollard, J. (2013) Computational 
thinking: The developing definition. University of 
Southampton. Available from http://eprints.soton.
ac.uk/356481/ 

Wing, J.M., 2008. Computational thinking and 
thinking about computing. Philosophical transactions 
of the royal society of London A: mathematical, physical 
and engineering sciences, 366(1881), pp.3717-3725.

Logical Reasoning
Can you explain why  
something happens?

At its heart, logical reasoning is about being able to 
explain why something is the way it is. It’s also a way 
to work out why something isn’t quite as it should be.

If you set up two computers in the same way, give 
them the same instructions (the program) and the 
same input, you can pretty much guarantee the 
same output. Computers don’t make things up as 
they go along or work differently depending on how 
they happen to be feeling at the time. This means 
that they are predictable. Because of this we can 
use logical reasoning to work out exactly what a 
program or computer system will do.

It’s well worth doing this in school: as well as 
writing and modifying programs, have pupils 
read programs that you give them; get them to 
explain a program to another student; encourage 
them to predict what their own or others' 
programs will do when given different test data; 
when their program doesn’t work, encourage them 
to form a hypothesis of what is going wrong, and 
then devise a test that will confirm or refute that 
hypothesis; and so on. All of these involve logical 
reasoning.

At a basic level, pupils will draw on their previous 
experience of computing when making predictions 
about how a computer will behave, or what a 
program will do when run. They have some model 
of computation, a ‘notional machine’ (Sorva, 2013) 
which may be more or less accurate: one of our 
tasks as computing teachers is to develop and refine 
pupils’ notional machines. This process of using 
existing knowledge of a system to make reliable 
predictions about its future behaviour is one part of 
logical reasoning. 

As far back as Aristotle (1989; qv Chapter 22 
of Russell, 1946), rules of logical inference were 
defined; these were expressed as syllogisms, such as:

●● All men are mortal.
●● Socrates is a man.
●● Therefore Socrates is mortal.

http://www.bbc.co.uk/education/guides/zp92mp3/revision
http://www.bbc.co.uk/education/guides/zp92mp3/revision
http://milesberry.net/2014/03/computational-thinking-in-primary-schools/
http://milesberry.net/2014/03/computational-thinking-in-primary-schools/
http://milesberry.net/2014/03/computational-thinking-in-primary-schools/
http://csta.acm.org/Curriculum/sub/CompThinking.html
http://csta.acm.org/Curriculum/sub/CompThinking.html
http://community.computingatschool.org.uk/resources/252
http://community.computingatschool.org.uk/resources/252
http://community.computingatschool.org.uk/files/3517/original.pdf
http://community.computingatschool.org.uk/files/3517/original.pdf
http://community.computingatschool.org.uk/files/3517/original.pdf
http://www.google.com/edu/computational-thinking/index.html
http://www.google.com/edu/computational-thinking/index.html
https://computationalthinkingcourse.withgoogle.com/unit
https://computationalthinkingcourse.withgoogle.com/unit
http://scratched.gse.harvard.edu/ct/defining.html
http://eprints.soton.ac.uk/356481/
http://eprints.soton.ac.uk/356481/
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This approach to logic, as an early sort of 
computational thinking, formed part of the trivium 
of classical and medieval education: it provides a 
grounding in the mechanics of thought and analysis, 
which is as relevant to education now as then.

Boolean logic

Irish mathematician George Boole (2003) took 
the laws of logic a step further in the 19th century, 
taking them out of the realm of philosophy and 
locating them firmly inside mathematics. Boole saw 
himself as going under, over and beyond Aristotle’s 
logic, by providing a mathematical foundation to 
logic, extending the range of problems that could 
be treated logically and increasing the number of 
propositions that could be considered to, arbitrarily 
many.

Boole’s system, subsequently named ‘Boolean 
logic’ after him, works with statements that are 
either true or false, and then considers how 
such statements might be combined using simple 
‘operators’, most commonly AND, OR and NOT. In 
Boolean logic:

●● (A AND B) is true if both statement A is true 
and statement B is true, otherwise it’s false. 

●● A OR B is true if A is true, if B is true or if 
both A and B are true. 

●● NOT A is true if A is false, and vice versa.  

Boole went on to establish the principles, rules 
and theorems for doing something very much 
like algebra with logical statements rather than 
numbers. It’s a powerful way of analysing ideas, and 
worth some background reading; it’s a mark of 
Boole’s success that this system of logic remains in 
use today and lies at the heart of computer science 
and central processing unit (CPU) design.

One way of visualising Boole’s operators is the 
combination of sets on Venn diagrams, where the 
members of the set are those that satisfy the 
conditions A or B.

X AND Y is the intersection of the two sets is 
where both condition X and condition Y are 
satisfied (Figure 1.2):

Figure 1.2

X OR Y is the union of the two sets is where either 
condition X or condition Y (or both) are satisfied 
(Figure 1.3):

Figure 1.3

NOT X is the complement of the set, that is those 
elements that don’t satisfy the condition X (Figure 
1.4) -

 
Figure 1.4
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Sometimes we use Boolean operators like this 
when refining search results, for example results for 
(‘computing’ OR ‘computer science’) AND ‘CPD’ 
AND (NOT (‘primary’ OR ‘elementary’)), although 
to be fair this sophistication is seldom needed these 
days – check out Google or Bing’s advanced search 
pages to see how something similar to Boolean 
operators is used in modern search engines.

In computing, we can think of Boole’s operators as 
gates, producing output depending on the inputs 
they are given – at a simple level, current flows 
through the gate depending on whether voltage 
is applied at the inputs, or the gate produces a 
binary 1 as output depending on the binary values 
provided at the inputs (see pages 100 - 103). There 
are standard symbols for the different gates, making 
it easy to draw diagrams showing how systems of 
gates can be connected. We can use truth tables 
to show the relationship between the inputs and 
the outputs. These are the logic equivalents to times 
tables, listing all the possible inputs to a gate, or a 
system of gates, and the corresponding outputs.

AND:

A B Output Q

False False False

False True False

True False False

True True True

OR:

A B Output Q

False False False

False True True

True False True

True True True

NOT:

A Output 

False True

True False

It is possible to wire up simple electrical circuits 
to model the behaviour of these logic gates, using 
nothing more sophisticated than batteries, bulbs 
and switches: two switches in series model the 
behaviour of an AND gate, in parallel an OR gate, 
and a switch in parallel with a bulb would behave as 
a NOT gate, shorting the circuit when closed. 

Boolean operators are also part of most 
programming languages, including Scratch, Python, 
Javascript and Small BASIC. They are used in 
conjunction with selection (if… then… else…) 
statements to control the flow of a program’s 
execution. It is in this context that pupils are initially 
likely to encounter and make use of them. For 
example, game programming might make use of 
selection statements such as:

if (have candle) and (have match) then (show room)

Or

if (time remaining < 0) or (health < 0) then (game 
over)

When used in combination with binary 
representation, logical operators can be applied to 
each bit in binary numbers – we call these ‘bitwise’ 
operators – and this can be used in quickly isolating 
particular parts of a byte or word.

How is logical reasoning used  
in computing?

Logic is fundamental to how computers work: deep 
inside the computer’s CPU, every operation the 
computer performs is reduced to logical operations 
carried out on binary digits, using electrical signals. 
We return to these ideas in the section on 
technology. Operations at CPU level, from binary 
addition upwards, can be carried out by digital circuits 
made from just combining AND, OR and NOT gates.
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It is because everything a computer does is 
controlled by logic that we can use logic to reason 
about program behaviour.

Software engineers use logical reasoning all the 
time in their work. They draw on their internal 
mental models of how computer hardware, the 
operating system (such as Windows 10, OS X) 
and the chosen programming languag all work, in 
order to develop new code that will work as they 
intend. They will also rely on logical reasoning when 
testing new software, and when searching for and 
fixing the ‘bugs’ (mistakes) in their thinking (known 
as debugging – see page 39 & 81 - 83) or in their 
coding when these tests fail.

Boolean operators are useful in many contexts 
beyond the digital circuits controlling CPUs, 
including refining sets of search results and 
controlling how programs operate.

There is a long history of getting computers to 
work with logic at a more abstract level, with 
these ideas laying the foundation for early work 
in artificial intelligence. The programming language 
Prolog is perhaps the best known and most 
widely used logical programming language and has 
applications in theorem proving, expert systems and 
natural language processing.

Where does logical reasoning fit 
in the computing curriculum?

At primary school, pupils at Level 1 are expected 
to use logical reasoning to predict the behaviour 
of simple programs. This can include the ones 
they themselves write, but it might also include 
predicting what happens when they play a computer 
game or use a painting program. Pupils at Level 2 
are expected to ‘use logical reasoning to explain 
how some simple algorithms work and to detect 
and correct errors in algorithms and programs’.

At Levels 3 and 4, pupils continue to use logical 
reasoning when thinking about programs, including 
‘to compare the utility of alternative algorithms 
for the same problem’. They also encounter 
Boolean logic, although some will have had a little 
experience of using logical operators in Scratch or 
other programming at primary school. They should 
‘understand simple Boolean logic [for example, 
AND, OR and NOT]’. 

Logic has played a part in the school curriculum 
from classical times onwards, and your colleagues 
can do much to develop and build on pupils’ 
logical reasoning. For example, in science, pupils 
should explain how they have arrived at their 
conclusions from the results of their experiments; 
in mathematics, they reason logically to deduce 
properties of numbers, relationships or geometric 
figures; in English, citizenship or history, they might 
look for logical flaws in their own or others’ 
arguments.

  Classroom activity ideas

●● Give pupils programs in Scratch, Python or other 
programming languages and ask them to explain 
what the program will do when run. Being able 
to give a reason for their thinking is what using 
logical reasoning is all about. Include some 
programs using logical operators in selection 
statements.

●● In their own coding, logical reasoning is key to 
debugging (finding and fixing the mistakes in 
their programs). Ask the pupils to look at one 
another’s Scratch or Python programs and spot 
bugs, without running the code. Encourage them 
to test the programs to see if they can isolate 
exactly which bit of code is causing a problem. If 
pupils’ programs fail to work, get them to explain 
their code to a friend or even an inanimate 
object (for example, a rubber duck).

●● Provide an opportunity for pupils to experiment 
with logic at a circuit level, perhaps using 
simple bulb/switch models, or using LEDs and 
logic gates on simple integrated circuits on a 
breadboard. 

●● Encourage pupils to experiment with the 
advanced search pages in Google or Bing, 
perhaps also expressing their search query using 
Boolean operators.
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●● Pupils should make use of logic operators in 
selection statements when programming – game 
programs, for example text-based adventures, 
provide many opportunities for this. Pupils could 
also experiment with bitwise logical operators 
in Python or TouchDevelop, or create blocks for 
other logical operators such as NAND and XOR 
in Snap! 

●● Ask pupils to think carefully about some 
school rules, for example those in the school’s 
computer Acceptable Use Policy. Can they 
use logical reasoning to explain why the rules 
are as they are? Can they spot any logical 
contradictions in the policy?

●● There are many games, both computer-based and 
more traditional, that draw directly on the ability 
to make logical predictions. Organise for the 
pupils to play noughts and crosses, Nim or chess. 
As they are playing, ask them to predict their 
opponent’s next move. Let them play computer 
games such as Minesweeper or SimCity, as 
appropriate. Ask them to pause at certain points 
and tell you what they think will happen when 
they move next. Consider starting a chess club if 
your school doesn’t already have one.

  Further resources

Barefoot Computing (n.d.) Logic: Predicting and 
Analysing. Available from http://barefootcas.org.uk/
barefoot-primary-computing-resources/concepts/
logic/ (free, registration required).

Boole, G. (1853) An investigation of the rules of 
thought. Mineola, NY: Dover Publications.

Bragg, M., Grayling, A. C., Millican, P., Keefe, R., (2010) 
Logic. BBC Radio 4 In Our Time. Available from 
www.bbc.co.uk/programmes/b00vcqcx 

Carroll, L. (1896) Symbolic logic and the game of logic. 
Mineola, NY: Dover Publications.

Cliff, D. (2013) The joy of logic (for BBC Four). Vimeo. 
Available from https://vimeo.com/137147126

Computer Science for Fun (n.d.) The magic of 
computer science. Available from www.cs4fn.org/
magic/

Computer Science Unplugged (n.d.) Databases 
unplugged. Available from http://csunplugged.org/
databases

Cryan, D., Shatil, S. and Mayblin, B. (2008) Introducing 
logic: A graphic guide. London: Icon Books Ltd.

McInerny, D. (2005) Being logical: A guide to good 
thinking. New York, NY: Random House.

McOwan, P. and Curzon, P. (n.d.) Brain-in-a-bag: 
Creating an artificial brain. Available from www.cs4fn.
org/teachers/activities/braininabag/braininabag.pdf

The P4C Co-operative (n.d.) A co-operative providing 
resources and advice on philosophy for children.  
Available from www.p4c.com/

PhiloComp.net (n.d.) Website highlighting the strong 
links between philosophy and computing.  Available 
from www.philocomp.net/

Algorithms
What is the best way to  

solve a problem?

An algorithm is a sequence of instructions or a set of 
rules to get something done.

You probably know the fastest route from school 
to home; for example, turn left, drive for five miles, 
turn right. You can think of this as an ‘algorithm’ – as 
a sequence of instructions to get you to your chosen 
destination. There are plenty of routes that will 
accomplish the same goal, but some are better (that is, 
shorter or faster) than others. 

Indeed, we could think of strategies (that is, algorithms) 
for finding a good route, such as might be programmed 
into a sat-nav. For example, taking a random decision 
at each junction is unlikely to be particularly efficient, 
but it will (perhaps centuries later) get you to school. 

One approach to this problem could be to list all 
the possible routes between home and destination 
and simply choose the fastest. This isn’t likely to be 
a particularly fast algorithm, as there are many, many 
possible routes (such as via Edinburgh, or round the 
M25 a few times), many of which can be immediately 
ignored. 

Another algorithm would be to take the road closest 
to the direction you are heading; this will do a bit 
better, but might involve some dead ends and lots of 
narrow lanes. 

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/logic/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/logic/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/logic/
http://www.bbc.co.uk/programmes/b00vcqcx
https://vimeo.com/137147126
http://www.cs4fn.org/magic/
http://www.cs4fn.org/magic/
http://csunplugged.org/databases
http://csunplugged.org/databases
http://www.cs4fn.org/teachers/activities/braininabag/braininabag.pdf
http://www.cs4fn.org/teachers/activities/braininabag/braininabag.pdf
http://www.p4c.com/
http://www.philocomp.net/
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Dijkstra's algorithm does a much better job of 
finding the shortest route, and, subject to some 
reasonable assumptions, there are even faster 
algorithms now.(2) 

It’s worth noting a couple of things here: calculating 
the shortest routes quickly comes not through 
throwing more computing power at the problem 
(although that helps) but through thinking about 
a better solution to the problem, and this lies at 
the heart of computer science.  Also, Dijkstra’s 
algorithm (and others like it) isn’t just about finding 
the shortest route for one particular journey; it 
allows us to find the shortest path in any network 
(strictly, a graph), whether between places on a road 
network, underground stations, states of a Rubik’s 
Cube or film stars who have acted alongside one 
another.(3)

How algorithms are expressed

There is sometimes confusion between what an 
algorithm is and the form in which it is expressed. 
Algorithms are written for people to follow rather 
than computers, but even so there is a need for a 
degree of precision and clarity in how algorithms 
are expressed. It is quite good enough to write out 
the steps or rules of an algorithm as sentences, as 
long as the meaning is clear and unambiguous, but 
some teachers find it helpful to have the steps of an 
algorithm written as a flow chart, such as in Figure 
1.5:

Figure 1.5 An example of a flow chart

2	 See https://en.wikipedia.org/wiki/Shortest_path_problem
3	 See https://oracleofbacon.org/how.php

Algorithms can also be expressed in pseudocode, 
which is perhaps best thought of as a halfway 
house between human language and a programming 
language, borrowing many of the characteristics of 
the latter, whilst allowing some details to be left as 
implicit:

Repeat 10 times: 
	 Ask a maths question 
	 If the answer is right then: 
		  Say well done! 
	 Else: 
		  Say think again!

At least one awarding organisation has developed 
its own more-formal pseudocode for GCSE and 
A Level, allowing programming questions to be set 
and answered without preferring one programming 
language to another. 

How are algorithms used  
in the real world?

There are plenty of day-to-day situations in which 
life can be made a little simpler or more efficient 
through algorithmic thinking, from deciding where 
to park, to finding socks in a drawer (Christian and 
Griffiths, 2016).

Search engines such as Bing or Google use 
algorithms to put a set of search results into order, 
so that more, often than not, the result we are 
looking for is at the top of the front page (Brin and 
Page, 1998; qv Peng and Dabek, n.d.).

Your Facebook news feed is derived from your 
friends’ status updates and other activity, but it only 
shows that activity which the algorithm (EdgeRank) 
thinks you will be most interested in seeing. The 
recommendations you get from Amazon, Netflix 
and eBay are algorithmically generated, based in 
part on what other people are interested in. There 
are even algorithms which can predict whether a 
movie or song will be a hit.

Credit ratings, interest rates and mortgage 
decisions are made by algorithms. Algorithmic 
trading now accounts for large volumes of the 
stocks and other financial instruments traded on 
the world’s markets, including by pension funds. 

https://en.wikipedia.org/wiki/Shortest_path_problem
https://oracleofbacon.org/how.php
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Given the extent to which so much of their lives 
is affected by algorithms, it is worth pupils having 
some grasp of what an algorithm is.

Where do algorithms fit in the 
computing curriculum?

At primary school, the computing curriculum 
expects pupils at Level 1 to construct an algorithm 
to solve a task. Often young pupils will be 
introduced to the idea of an algorithm away from 
computers, in ‘unplugged’ classroom contexts. Pupils 
will go on to recognise that the same algorithm can 
be implemented as code in different languages and 
on different systems, from Bee Bots to Scratch Jr 
(Figure 1.6). 

Figure 1.6 Scratch Jr programming for drawing a 
square

Level 2 builds on this: pupils are expected to design 
programs with particular goals in mind, which will 
draw on their being able to think algorithmically, 
as well as being able to use logical reasoning to 
explain algorithms and to detect and correct errors 
in them. Sometimes this will be through acting out 
or writing down what happens when an algorithm 
is followed, rather than always through writing a 
program in Scratch to implement it.

In developing your pupils’ understanding of key 
algorithms, you might start with ‘unplugged’ 
approaches, in which pupils get a good feel for how 
an algorithm operates, for example by playing ‘guess 
the number’ games or by sorting a set of masses 
into order using a pan balance. It can also be very 
useful for pupils to work through the steps of an 
algorithm for themselves, perhaps expressed as 
flow charts or pseudocode, using pencil and paper. 
This was the approach advocated by Donald Knuth 
(1997) in The Art of Computer Programming, when 
he wrote that:

An algorithm must be seen to be 
believed, and the best way to learn what 
an algorithm is all about is to try it. The 
reader should always take pencil and 
paper and work through an example 
of each algorithm immediately upon 
encountering it.

Don’t shy away from having pupils implement 
algorithms as code, in whatever programming 
language they are most familiar with. They’re likely 
to understand the algorithm better, and be able to 
recall it more clearly, if they have to work out for 
themselves how it can be implemented, and debug 
any mistakes that they make. It is also important 
that pupils maintain good habits of thinking about 
the algorithms they want to use before writing 
code to implement them. Think of the coding as 
being like an experiment in science.

Sorting and searching

The programme of study talks of ‘key algorithms’, 
particularly for search and sort, so we will look at 
some of these now. Why are sorting and searching 
distinguished in this way? For three reasons. First, it is 
particularly easy to explain what sorting and searching 
algorithms do and to explain why they are useful. 
Second, they are ubiquitous inside computer systems, 
so knowledge of sorting and searching algorithms 
is particularly useful. Third, there is an astonishingly 
large number of algorithms known for sorting and 
searching, each useful in different circumstances. 
People write entire books about them! 
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Search

Imagine trying to find the definition of a word 
in a dictionary – we have a number of possible 
approaches: 

●● we could pick a word at random, check if it’s the 
right word, and repeat this until we get the one 
we want; or 

●● we could start at the beginning, checking each 
word in turn until we get to the word we want; 
or 

●● we could pick a word in the middle, decide 
whether our word is before or after that, pick 
a word in the middle of that half, and keep 
narrowing down until we get to the word we 
want. 

These three approaches provide three possible 
algorithms for search – that is, for finding a 
particular item in a list of data: a random search, a 
linear search and a binary search.(4) 

You can demonstrate these in class by taking three 
different approaches to a ‘guess my number’ game, 
thinking of a number and asking the class to use 
one or other of these algorithms to work out what 
it is (Figures 1.7–1.9):

Figure 1.7 Random search

4	  See, for example, David J. Malan's demonstration for Harvard's CS50: https://youtu.be/zFenJJtAEzE?t=16m35s

Figure 1.8 Linear search

Figure 1.9 Binary search

After only a few goes at the game, or perhaps just 
by reasoning logically about the flow charts here, it 
should be evident that the first two are much slower 
than the third one, unless you happen to be very 
lucky. If we are trying to guess a number between, 
say, 0 and 127, the first two algorithms would take, 
on average, 64 steps to get there, sometimes more, 
sometimes less. If we use the binary search algorithm, 
we get there in just seven goes – try it! The efficiency 
gains get even more dramatic with a bigger range of 
starting numbers – guessing a number between one 
and a million would take an average of 500,000 goes 
with either of the first two algorithms, but we would 
narrow down on the number in just 20 steps with 
binary search – try it!

Notice the recursive nature of the binary search: 
we take the problem of finding a number between 
0 and 127 and reduce it to a simpler, but 
identically structured problem of finding a 
number between 0 and 63 or between 64 and 127. 
We then apply the same binary search algorithm to 
solving this new problem. 

https://youtu.be/zFenJJtAEzE?t=16m35s
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This recursive technique of reducing a problem 
to a simpler problem, and then applying the same 
algorithm to that, is called divide and conquer, 
and it is an excellent example of an algorithmic 
pattern that can be applied in lots of different 
contexts, including: classical search problems like 
this; finding highest common factors (see Euclid’s 
algorithm on page 68); sorting a list of numbers (see 
quicksort and merge sort on page 21); and parsing 
algebraic expressions, computer code or even 
natural language.(5)

It is worth noting that binary search only works 
if the list is already in order: finding a word in a 
dictionary this way is only possible if the dictionary 
is already in alphabetical order. For an unsorted list 
it would be hard to do better than starting at the 
beginning and working through to the end using 
linear search. Similarly, for the guess-a-number 
game, we can use this method because numbers are 
in order and we can ask the ‘is it less than’ question. 

The problem of searching for information on the 
web (see page 127 - 128) is obviously much more 
complex than simply finding a word in a dictionary 
or a secret number in a game but, even here, one 
of the problems a search engine needs to solve is 
looking up the results in its index of the web for 
each of the keywords typed in by the user. 

Sort

In order to find things in a list quickly, time after 
time, it’s really helpful if that list is in order. Imagine 
the problem of finding an email if all your messages 
were in some random sequence; or of finding a 
document on a computer if there was no way to 
sort a folder’s contents into order, or of finding a 
contact on your phone if, each time, you had to 
look through a randomly-ordered list of everyone 
you knew; or of finding a book in the school library 
if they had never been put into any order. There are 
many, many areas where a list in some natural order 
seems an intuitive way to organise information. 
Notice that, once a list is in order, adding a new 
item into the list is easy – you just search for the 
right place, add the item and shuffle everything 
afterwards along a place. Getting the list into order 
in the first place is another matter.

5	  See https://en.wikipedia.org/wiki/Divide_and_conquer_algorithms
6	  See the Harvard CS50 demonstration at www.youtube.com/watch?v=f8hXR_Hvybo
7	  9+8+7+6+5+4+3+2+1=45.

It is well worth getting pupils to think about this 
problem for themselves, perhaps initially as an 
unplugged activity, sorting a group of their peers 
into height order or by birthday, or using numbered 
slips of paper, or a pan balance and pots with hidden 
masses. You can do this as a programming task, once 
pupils have learnt how to manipulate a list in the 
programming language you are teaching, but, as with 
any programming, it’s wise to have planned how to 
solve the problem (that is, the algorithm) before 
working with code.

There is quite a variety of sort algorithms around. 
Some are much more efficient than others, and 
some are certainly easier to understand than 
others. For computing, it’s worth teaching at least 
a couple so that pupils can use logical reasoning to 
compare them. Selection sort or bubble sort are 
good starting points, but ideally include quicksort 
or merge sort so that pupils can see how some 
algorithms are more efficient than others for the 
same problem.

Selection sort

This is quite an intuitive approach. 

●● Start with a list. 
●● Find the smallest item* and swap it with the item 

in the first place.
●● Now, starting with the second item, look for the 

next smallest and swap it with the item in the 
second place.

●● Starting with the third item, look for the next 
smallest and swap it with the item in the third 
place. 

●● Keep doing this until you get to the last item.

* Finding the smallest at each step involves 
comparing the smallest-so-far with all the other 
items after it, until the end of the list, at which point 
the smallest-so-far must be the smallest of the 
group.

Try it for yourself!(6) Can you use logical reasoning 
to work out how this works? Could you explain the 
idea here to your pupils? Could you work out how 
many comparisons you would have to make to sort 
a list of ten things?(7)

https://en.wikipedia.org/wiki/Divide_and_conquer_algorithms
http://www.youtube.com/watch?v=f8hXR_Hvybo
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Bubble sort

Bubble sort has quite a lot in common with 
selection sort, but we make swaps as we go rather 
than just swapping the next smallest into the right 
place.

●● Start with a list.
●● Compare the first and the second item: if they are 

in the right order, that’s fine, if not, swap them.
●● Compare the second and the third item: if they 

are in the right order, that’s fine, if not, swap 
them.

●● Keep doing this until the end of the list: the last 
item should now be the largest of all.

●● Now use the method above to work through 
everything up to the item before the last, to find 
the second largest; then the list up to everything 
two items before the end, to get the third 
largest; then three items before the end, and so 
on until there’s only one thing left.

●● The list is now sorted. 

Try it yourself!(8) Again, can you explain how this 
works? Could you explain it to a class? Can you 
predict how many comparisons it would take to 
sort a list of ten things?(9)

Quicksort

The quicksort algorithm wasn’t discovered (or 
invented) until 1959 (published in 1961: Hoare, 
1961), but it is still quite an intuitive method – it’s 
also much faster, although it can be a bit trickier to 
program if the language does not support functions 
(see page 70). The idea is:

●● Start with a list.
●● If there’s only one thing (or nothing) in the list, 

stop, as that’s already sorted!
●● Pick one item in the list, which we will call the 

‘pivot’. Any item will do as the pivot, so you may 
as well choose the first item.

●● Compare all the other items with the pivot, 
making two lists: one of things smaller than the 
pivot, the other of things larger than (or equal 
to) it.

●● Now use this method to sort both of the 
unsorted lists.

8	 See the Harvard CS50 demonstration at www.youtube.com/watch?v=8Kp-8OGwphY
9	 Also 45.
10	See the Harvard CS50 demonstration at www.youtube.com/watch?v=aQiWF4E8flQ
11	This depends on the choice of pivot at each stage, but could be as low as 9+4+4+1+1+1+1=21.
12	See the Harvard CS50 demonstration at www.youtube.com/watch?v=EeQ8pwjQxTM

●● Your sorted list is made up of the sorted smaller 
items, the pivot, then the sorted larger items. 

Again, try this!(10) Did you notice it was quicker 
than selection sort or bubble sort? Can you explain 
how this works? Can you think of a way to program 
this in a language you are familiar with? How many 
comparisons would it take to sort ten things into 
order?(11)

Merge sort

Whereas quicksort works top down, partitioning 
the list and then sorting each part, merge sort can 
be thought of as working from the bottom up.

Break the list into pairs, and then sort each pair 
into order. Now look at groups of four; that is, two 
pairs, sorting them into order. This is quite easy as 
each of the pairs is already ordered, and so the next 
item in the sorted group has to come from the 
beginning of each pair. Now look at groups of eight, 
sorting them into order by looking at the beginning 
of each sub-group of four, and so on until the whole 
list is sorted. Here’s an example:

Original list: 		  3 – 1 – 4 – 1 – 5 – 9 – 2 – 7

Sorting pairs:		  1 3 – 1 4 – 5 9 – 2 7 	 
(4x1 comparisons)

Sorting quads: 	 1 1 3 4 – 2 5 7 9  
(2x3 comparisons)

Sorting all eight:	 1 1 2 3 4 5 7 9 
(1x7 comparisons)

Again, to really get a feel for this, you need to try 
it for yourself!(12) Merge sort is as fast as quicksort, 
and is quite amenable to being run in parallel 
processing situations, where the work of a program 
is divided between multiple processors. 

Other algorithms
It would be wrong to leave pupils with the 
impression that the only interesting algorithms 
are about searching for things or sorting lists into 
order. Mathematics provides some rich territory for 

http://www.youtube.com/watch?v=8Kp-8OGwphY
http://www.youtube.com/watch?v=aQiWF4E8flQ
http://www.youtube.com/watch?v=EeQ8pwjQxTM
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pupils to experiment with algorithmic thinking for 
themselves, and exploring mathematical problems 
from a computer science standpoint seems likely to 
help develop pupils’ mastery of mathematics.

Testing for primes

Take as an example checking whether or not a 
number is prime (that is, it cannot be divided by 
any number other than itself and one). A naive 
algorithm for this would be to try dividing by any 
number between 1 and the number itself; if none of 
them go in then the number must be prime. We can 
do much better than this though, by thinking more 
carefully about the problem:

●● We don’t need to go up to the number – 
nothing past the half-way point could go in 
exactly.

●● We don’t need to go past the square root of the 
number – if something bigger than the square 
root goes in, then something less than the square 
root goes in as well (for example, because 
50 goes into 1,000, we know 20 does too, as 
50x20=1000).

●● If two doesn’t go in, then no even numbers go 
in either; if three doesn’t go in, no multiples of 
three can go in either; and so on. 

So, a quicker test for whether a number is prime is 
to try dividing by all the primes up to the square 
root of the number: if none of them go in, the 
number must be prime. (Try it!)

Big (well, very big) prime numbers play an important 
role in cryptography, and so algorithms to find 
and test whether numbers are prime have some 
important applications, but despite efficiencies such 
as the above algorithm, this is still a hard problem, 
without a guaranteed fast solution (as yet). There 
is, though, an algorithm that can tell if a number is 
probably prime, and you could run this many times 
to check whether a number is almost certainly 
prime or not (Miller, 1976).(13) Is this an algorithm? 
After all, it only says ‘almost certainly prime’? Yes, it 
is an algorithm in the sense that it defines a precise 
sequence of steps that a computer can carry out. 
And how likely is it that you would conclude ‘N is 
prime’ and be wrong? With a couple of hundred 
iterations, it is far more likely that an asteroid will 
strike the earth tomorrow than it is for N to be 
non-prime. 

13	qv Simon Peyton Jones for CAS TV: https://youtu.be/ixmbkp0QEDM?t=12m30s
14	Sieve programs in many languages: http://c2.com/cgi/wiki?SieveOfEratosthenesInManyProgrammingLanguages

Finding a list of primes

Finding a list of all the primes up to a certain limit 
has an interesting (and old) algorithmic solution. We 
could simply start at the beginning of our list and 
test each number in turn using the above algorithm. 
It’s a bit slow, but it would get there, although we 
would have to watch out for the subtlety of needing 
a list of the primes up to the square root of each 
number, to try dividing by.

We can do better than this though, using a method 
called the Sieve of Eratosthenes:

●● Start with your list of numbers from 1 up to and 
including your limit.

●● Cross out 1, as it’s not prime.
●● Take the next number not crossed out (initially 

2) and cross out all its multiples – you can do 
this quickly by just counting on (initially in steps 
of 2).

●● Repeat this step until the next number not 
crossed out is more than the square root of the 
limit.

●● Anything not yet crossed out is a prime number. 

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

This is a really nice programming challenge too.(14) 

Finding the highest common factor

One more number theory problem, and 
again something with wide applications, from 
implementing fractions arithmetic on a computer to 
internet cryptography, is to be able to find quickly 
the largest number which divides into a pair of 
numbers; that is, the highest common factor or 
greatest common divisor.

A slow, naive algorithm would be to find all the 
numbers which divide into both and simply take 
the largest of these. A somewhat faster method is 

https://youtu.be/ixmbkp0QEDM?t=12m30s
http://c2.com/cgi/wiki?SieveOfEratosthenesInManyProgrammingLanguages
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Finding a list of primes

Finding a list of all the primes up to a certain limit 
has an interesting (and old) algorithmic solution. We 
could simply start at the beginning of our list and 
test each number in turn using the above algorithm. 
It’s a bit slow, but it would get there, although we 
would have to watch out for the subtlety of needing 
a list of the primes up to the square root of each 
number, to try dividing by.

We can do better than this though, using a method 
called the Sieve of Eratosthenes:

●● Start with your list of numbers from 1 up to and 
including your limit.

●● Cross out 1, as it’s not prime.
●● Take the next number not crossed out (initially 

2) and cross out all its multiples – you can do 
this quickly by just counting on (initially in steps 
of 2).

●● Repeat this step until the next number not 
crossed out is more than the square root of the 
limit.

●● Anything not yet crossed out is a prime number. 

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

This is a really nice programming challenge too.(14) 

Finding the highest common factor

One more number theory problem, and 
again something with wide applications, from 
implementing fractions arithmetic on a computer to 
internet cryptography, is to be able to find quickly 
the largest number which divides into a pair of 
numbers; that is, the highest common factor or 
greatest common divisor.

A slow, naive algorithm would be to find all the 
numbers which divide into both and simply take 
the largest of these. A somewhat faster method is 

the ‘ladder’ algorithm that is sometimes taught in 
schools:

●● Put the numbers side by side.
●● Find the smallest number (bigger than 1) that 

divides evenly into both.
●● Replace the numbers with how many times that 

number goes in.
●● Repeat until there is no number that can divide 

both.
●● The highest common factor is then simply the 

product of the common prime factors.(15) 
 

Better still is Euclid’s algorithm for this, which dates 
back to c.300 BCE. 

The modern version of this uses modular 
arithmetic – that is, finding the remainder on 
division by a number, but you can do this with 
nothing more sophisticated than repeated 
subtraction; it is also really fast:

●● Start with two, non-zero numbers.
●● Is the smaller number zero? If so, the highest 

common factor is the larger number (this won’t 
happen the first time around).

●● Replace the larger – number with the remainder 
you get when you divide by the smaller.

●● Now repeat this process. 

So, if we start with, say, 144 and 64, we get 16 and 
64, then 0 and 16, so 16 is the highest common 
factor. Try it with some other numbers, then have a 
go at writing a program to implement this.

Estimating pi

Another very nice algorithm, to estimate pi, is this:

●● throw a dart at a 2r x 2r board;
●● see if it lands in the inscribed circle radius r. 

The proportion of darts thrown, that land in the 
circle, should be equivalent to the area of the circle 
divided by the area of the board, which allows you 
to estimate pi! So, in programmatic terms:

●● Choose two random numbers, x,y in -r to r.
●● See if x2 + y2 is less than r2. If so, the dart 

landed in the circle.
●● Keep doing this, keeping track of how many 

landed inside and how many outside.

15	See www.youtube.com/watch?v=oKfwT-5DqsA for one presentation of this.

Figure 1.10 Scratch snippet to estimate pi, (see 
https://scratch.mit.edu/projects/61893848/)

  Classroom activity ideas

●● It is worth starting with problems rather than 
solutions, to encourage algorithmic thinking: set 
pupils the challenge of finding an algorithm that 
can find a short path through a graph, or search a 
list or sort some numbers, or test if a number is 
prime. Challenge them to find better algorithms 
to do this (see the evaluation on page 34).

●● There’s much scope here for using ‘unplugged’ 
activities, i.e. activities that teach algorithmic 
thinking and some of these key algorithms 
without going near computers. You could play 
the ‘guess my number’ game as a class, trying to 
find a winning strategy, or ask pupils to write 
instructions for finding a book in the library or 
for sorting out a set of masses. There are some 
great ideas online from CAS Barefoot, CS4FN 
and CS Unplugged.

●● There’s much scope for algorithmic thinking in 
games and puzzles – can pupils work out the 
set of rules for playing an unbeatable game of 
noughts and crosses, Nim or Mastermind, or 
completing a knights’s tour of a (possibly small) 
chess board?

●● Get pupils to think about when there are formal 
sets of rules or sequences of steps in other 
subject areas or in school life. In cookery, recipes 
have much in common with algorithms. In 
science, experimental methods do too. Challenge 
them to think of better algorithms for the same 
tasks (see the evaluation on page 34).

 

http://www.youtube.com/watch?v=oKfwT-5DqsA
https://scratch.mit.edu/projects/61893848/
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●● Don’t be afraid to get pupils implementing their 
algorithms as programs: it is the thinking that we 
are focussing on here, but there is much to be 
said for linking algorithms and coding together.

  Further resources

Bagge, P. (2014) Flow charts in primary computing 
science. Available from http://philbagge.blogspot.
co.uk/2014/04/flow-charts-in-primary-computing-
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CS Field Guide (n.d.) Algorithms. Available from 
http://csfieldguide.org.nz/en/chapters/algorithms.
html
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Du Sautoy, M. (2015) The secret rules of modern living 
(for BBC Four). 
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www.khanacademy.org/computing/computer-
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computers/
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programmes of study. Computing at School. Available 
from http://community.computingatschool.org.uk/
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Slavin, K. (2011) How algorithms shape our world. TED. 
Available from www.ted.com/talks/kevin_slavin_
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Steiner, C. (2013) Automate this: How algorithms came 
to rule our world. New York, NY: Portfolio Penguin.

Decomposition
How do I solve a problem by 

breaking it into smaller parts?

The process of breaking down a problem 
into smaller manageable parts is known as 
decomposition. Decomposition helps us solve 
complex problems and manage large projects.

This approach has many advantages. It makes a 
complex process or problem a manageable or 
solvable one – large problems are daunting but a 
set of smaller related tasks is much easier to take 
on. It also means that the task can be tackled by 
a team working together, each bringing their own 
insights, experience and skills to the task. 

In modern computing, massively parallel processing 
can be used to significantly speed up some 
computing problems if they are broken down 
into parts that each processor can work on semi-
independently of the others, using techniques such 
as MapReduce (Dean and Ghemawat, 2004).

How is decomposition used  
in the real world?

Decomposing problems into their smaller parts is 
not unique to computing: it is pretty standard in 
engineering, design and project management. 

Software development is a complex process and 
so being able to break down a large project into 
its component parts is essential – think of all the 
different elements that need to be combined to 
produce a program like PowerPoint.

The same is true of computer hardware (see Figure 
1.11): a smartphone or a laptop computer is itself 
composed of many components, often produced 
independently by specialist manufacturers, which 
are assembled to make the finished product, each 
under the control of the operating system and 
applications.

Figure 1.12

Notice that when we thought about the algorithm 
for quicksort earlier, we took for granted that we 
could partition (split) a list into those things smaller 
than our pivot and those which are larger than or 
equal to it. In implementing quicksort as code, we 
would need to implement this function too, if it is 
not already present in the programming language 
we are using.

 
Figure 1.13

‘Divide and conquer’ algorithms like binary search 
and quicksort also use decomposition, but the 
distinctive feature of these is that the smaller 
problems have essentially the same structure as 
the larger one. This idea of the parts of a system 
or algorithm being similar to the whole is known 
as recursion: it is a very powerful way of looking 

http://philbagge.blogspot.co.uk/2014/04/flow-charts-in-primary-computing-science.html
http://philbagge.blogspot.co.uk/2014/04/flow-charts-in-primary-computing-science.html
http://philbagge.blogspot.co.uk/2014/04/flow-charts-in-primary-computing-science.html
http://csfieldguide.org.nz/en/chapters/algorithms.html
http://csfieldguide.org.nz/en/chapters/algorithms.html
http://csunplugged.org/
http://csunplugged.org/
http://www.cs4fn.org/
http://www.khanacademy.org/computing/computer-science/algorithms
http://www.khanacademy.org/computing/computer-science/algorithms
http://www.microsoft.com/en-us/research/video/getting-from-a-b-fast-route-finding-using-slow-computers/
http://www.microsoft.com/en-us/research/video/getting-from-a-b-fast-route-finding-using-slow-computers/
http://www.microsoft.com/en-us/research/video/getting-from-a-b-fast-route-finding-using-slow-computers/
http://community.computingatschool.org.uk/resources/2936
http://community.computingatschool.org.uk/resources/2936
http://www.ted.com/talks/kevin_slavin_how_algorithms_shape_our_world?language=en
http://www.ted.com/talks/kevin_slavin_how_algorithms_shape_our_world?language=en
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Figure 1.11 A tablet can be broken down 
(decomposed) into smaller components

You will have used decomposition to tackle big 
projects at school, just as programmers do in 
the software industry. For example, delivering 
your school’s curriculum: typically this would be 
decomposed into years and subjects, and further 
decomposed into terms, units of work and 
individual lessons or activities. Notice how the 
project is tackled by a team working together (your 
colleagues) and how important it is for the parts to 
integrate properly.

Where does decomposition fit in 
the new computing curriculum?

In primary school, pupils should have learnt to 
‘Simplify problems by breaking them down into 
smaller more manageable parts’ (Education 
Scotland 2017).

At Level 3, there is an expectation that pupils 
will use modularity in their programming, using 
subroutines, procedures or functions (see page 67). 
If their programs are to use a modular approach, 
this is something that they will need to take into 
account at the design stage too. For example, 
creating a complex turtle graphics figure such as in 
Figure 1.12 almost demands that pupils recognise 
that this is built up from a repeated square, and 
their program must include a set of instructions to 
draw a square. Similarly, a turtle graphics program 
to draw a house is likely to include routines 
(perhaps as procedures) to draw doors, windows, a 
roof and so on. 

Figure 1.12

Notice that when we thought about the algorithm 
for quicksort earlier, we took for granted that we 
could partition (split) a list into those things smaller 
than our pivot and those which are larger than or 
equal to it. In implementing quicksort as code, we 
would need to implement this function too, if it is 
not already present in the programming language 
we are using.
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‘Divide and conquer’ algorithms like binary search 
and quicksort also use decomposition, but the 
distinctive feature of these is that the smaller 
problems have essentially the same structure as 
the larger one. This idea of the parts of a system 
or algorithm being similar to the whole is known 
as recursion: it is a very powerful way of looking 
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at systems, with wide applications; for example, 
the internet can be thought of as a network of 
networks, and each of those networks might be 
composed of still further networks. Recursive 
patterns occur in nature too: look for example 
at ferns, broccoli and other fractals. Pupils could 
draw representations of these using turtle graphics 
commands in Scratch, TouchDevelop, Small Basic or 
Python (see Figures 1.14–1.15):

Figure 1.14 

Figure 1.15

Recursive procedure in Scratch to draw Figure 1.15.(16)

def tree(level,size): 
 if level > 0: 
    forward(size) 
    left(20) 

16	See https://scratch.mit.edu/projects/72176670/
17	See https://trinket.io/python/8996e36dda

    tree(level-1,size*0.5) 
    right(35) 
    tree(level-1,size*0.9) 
    left(15) 
    forward(-size) 
  else: 
    return

Python turtle code for the same fractal.(17)

As pupils plan their programs or systems, 
encourage them to use decomposition: to work out 
what the different parts of the program or system 
must do, and to think about how these are inter-
related. For example, a simple educational game is 
going to need some way of generating questions, a 
way to check if answers are right, some mechanism 
for recording progress such as a score, and some 
sort of user interface, which in turn might include 
graphics, animation, interactivity and sound effects. 
Thinking of the game like this is essential to the 
planning process. 

On larger projects, decomposition also makes 
it possible for pupils to work as a collaborative 
team, as team members can take responsibility 
for implementing each of these features and 
then ensuring that they will work properly when 
combined. Plan opportunities for pupils to get some 
experience of working as a team on a software 
development project, and indeed other projects 
in computing. This could be media work such as 
animations or videos, shared online content such as 
a wiki, or a challenging programming project such as 
making a computer game or a mobile phone app.

	   

  Classroom activity ideas

●● Organise for the pupils to tackle a large-
scale programming project, such as making a 
computer game, through decomposition. Even 
for a relatively simple game, the project would 
typically be decomposed as follows: planning, 
design, algorithms, coding, animation, graphics, 
sound, debugging and sharing. A project like this 
would lend itself to a collaborative team-based 
approach, with development planned over a 
number of weeks. 

 https://scratch.mit.edu/projects/72176670/
https://trinket.io/python/8996e36dda
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●● Take the case off an old desktop computer 
and show the pupils how computers are made 
from systems of smaller components connected 
together. Depending on the components 
involved, some of these can be disassembled 
further still, although it is likely to be better to 
look at illustrations of the internal architecture 
of such components.

●● Organise for the pupils to carry out a 
collaborative project online, for example, 
developing a multi-page wiki site. Pupils could 
take the broad topic of e-safety, decompose this 
into smaller parts and then work collaboratively 
to develop pages for their wiki, exploring each 
individual topic. The process of writing these 
pages can be further decomposed through 
planning, research, drafting, reviewing and 
publishing phases.

●● Introduce pupils to ‘divide and conquer’ 
approaches, as well as other applications of 
recursion, through binary search, quicksort and 
experimenting with simple fractals using turtle 
graphics. Encourage them to look out for other 
occasions on which this powerful technique can 
be used.

  Further resources

Apps for Good (n.d.) Available from  
www.appsforgood.org/

Barefoot Computing (2014) Decomposition. Available 
from http://barefootcas.org.uk/sample-resources/
decomposition/ (free, but registration required).

Basecamp (n.d.) Professional project management 
software that can be used by teachers with their 
class (free). Available from https://basecamp.com/
teachers

BBC Bitesize (n.d.) Decomposition. Available from 
http://www.bbc.co.uk/education/guides/zqqfyrd/
revision

(2011) Ratatouille: Rats doing massively parallel 
computing. Available from www.cs4fn.org/
parallelcomputing/parallelrats.php

Gadget Teardowns (n.d.) Teardowns. Available from 
www.ifixit.com/Teardown

NRICH (n.d.) Planning a school trip. Available from 
http://nrich.maths.org/6969; Fractals. Available from 
http://nrich.maths.org/public/leg.php?code=-384 

Project Management Institute Educational 
Foundation (2011) Project management toolkit for 
youth. Available from https://pmief.org/library/
resources/project-management-toolkit-for-youth

Abstraction
How do you manage complexity?

For American computer scientist Jeanette Wing, 
credited with coining the term ‘computational 
thinking’, abstraction lies at the heart of it: 

The abstraction process – deciding 
what details we need to highlight and 
what details we can ignore – underlies 
computational thinking. (Wing, 2008)

Abstraction is about simplifying things; identifying 
what is important without worrying too much 
about the detail. Abstraction allows us to manage 
complexity.

We use abstractions to manage the complexity of 
life in schools. For example, the school timetable is 
an abstraction of what happens in a typical week: 
it captures key information such as which class is 
taught what subject where and by whom, but leaves 
to one side further layers of complexity, such as 
the learning objectives and activities planned in any 
individual lesson.

Pupils use abstraction in mathematics, when 
solving ‘real world’ problems, but mathematical 
abstractions are typically numerical, algebraic or 
geometrical, whereas in computing they can be far 
more general. In computing, abstractions are also 
multi-layered: computer systems are made up of 
boxes within boxes within boxes. We are able to 
tackle complex problems because others have built 
the components on which our solution depends 
– at one level we may be interested in playing a 
game but unconcerned with how that game has 
been programmed; at another level we might 
be interested in the program but less so in the 
interpreter or compiler which converts that into 
machine code; at yet another, in that machine code 
but less so in how this is executed on the CPU or 
stored in physical memory. Wing puts it well:

http://www.appsforgood.org/
http://barefootcas.org.uk/sample-resources/decomposition/
http://barefootcas.org.uk/sample-resources/decomposition/
https://basecamp.com/teachers
https://basecamp.com/teachers
http://www.bbc.co.uk/education/guides/zqqfyrd/revision
http://www.bbc.co.uk/education/guides/zqqfyrd/revision
http://www.cs4fn.org/parallelcomputing/parallelrats.php
http://www.cs4fn.org/parallelcomputing/parallelrats.php
http://www.ifixit.com/Teardown
http://nrich.maths.org/6969;
http://nrich.maths.org/public/leg.php?code=-384
https://pmief.org/library/resources/project-management-toolkit-for-youth
https://pmief.org/library/resources/project-management-toolkit-for-youth
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In computing, we work simultaneously 
with at least two, usually more, layers of 
abstraction: the layer of interest and the 
layer below; or the layer of interest and 
the layer above. Well-defined interfaces 
between layers enable us to build large, 
complex systems. (Wing, 2008)

Programming also makes use of abstraction – in 
modular software design, programmers develop 
procedures, functions or methods to accomplish 
particular goals, sometimes making these available 
to others in libraries. What matters is what the 
function does and that it does this in a safe and 
reliable way; the precise implementation details are 
much less important. 

Where does abstraction fit in 
the new computing curriculum?

Abstraction is part of the overarching aims for the 
computing curriculum, which seeks to ensure that 
pupils are capable of:

Understanding the world through 
computational thinking (Education 
Scotland 2017)

At primary school, pupils will have encountered the 
idea of abstractions in maths as ‘word problems’ 
represented in the more-abstract language of 
arithmetic, algebra or geometry; or in geography 
where the complexity of the environment is 
abstracted into maps of different scales. In their 
computing lessons, pupils may have learnt about 
the process of abstraction from playing computer 
games, particularly those that involve interactive 
simulations of real-world systems; most pupils will 
have experienced writing computer games or other 
simulations themselves.

The multi-layered nature of abstraction in computing 
is well worth discussing with pupils as they learn 
about how computers work. For example, ask 
pupils to work out the detail of what’s happening 
inside a computer when they press a key and the 
corresponding letter appears on-screen in their 
word processor or text editor. Similarly, pupils’ 
knowledge of how search engines work, or how web 
pages are transmitted across the internet, is going to 
draw on their understanding of the many different 
layers of systems on which these processes depend.

At Level 3, abstraction is an intrinsic part of 
developing computational solutions to real-world 
problems, as pupils focus attention on the detail 
of the real-world problem or system, deciding for 
themselves what they won’t need to take account 
of in the algorithms, data structures and programs 
that they develop. 

As well as understanding the algorithms that 
describe systems or allow us to compute solutions 
to problems, designing and using computational 
abstractions also means that we need the right 
data structure to describe the state of the 
system. Niklaus Wirth famously argued that 
programs are made up of algorithms and data 
structures (Wirth, 1976) and, more recently, Greg 
Michaelson has described solutions as consisting 
of computation plus information (Michaelson, 
2015). Whilst most pupils will be familiar with the 
concept of algorithms, from their primary school, 
few will have spent long considering the information 
or the data that they need to take into account 
when designing an abstraction of a problem or 
system, and how this can be best represented in a 
computer.

The programme of study talks of modelling ‘the 
state and behaviour of real-world problems and 
physical systems’, and this provides one approach to 
thinking about the relationship between algorithms 
and data, with the algorithm describing the set of 
rules or sequence of steps that the system obeys, 
and the data structure describing the state in which 
the system is.

Take for example the process of shuffling a deck of 
cards. A ‘perfect’ riffle shuffle could be described by 
the following algorithm:

●● Split the pack in two, calling these smaller packs 
the top and the bottom.

●● Take cards sequentially, one from the top, one 
from the bottom, to assemble a new pack.

●● Repeat until there are no cards remaining in the 
top or bottom. 
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This describes the behaviour of our system, but 
any abstraction also needs to include the state of 
the system, which is simply an ordered list of the 
cards in the pack. Working with a deck of just eight 
cards, we might start with:

A, 2, 3, 4, 5, 6, 7, 8

Applying the above algorithm once would change 
this to:

A, 5, 2, 6, 3, 7, 4, 8

Card games are rich territory for thinking about 
computational abstractions: the rules of the game 
describe (perhaps only in part) the behaviour 
of the system – they are its algorithm; the cards 
in the pack and in individual hands describe the 
state of the system. Games in general, from snakes 
and ladders or noughts and crosses to chess and 
Go, can be typically thought of as sets of rules 
(algorithms) for legally-valid moves, and some data 
structure (often counters or pieces on a board, 
plus perhaps a random element such as a dice) to 
define the state of the game at any time. The same 
is true of computer games: Minecraft could be 
thought of as a complex system of rules governing 
the interaction of blocks and other game elements, 
as well as a three-dimensional data structure (and 
some random elements).(18) 

Mathematician J H Conway created a simple 
computational abstraction, his ‘Game of Life’ 
(Berlekamp et al., 2004),(19) that opened up a rich 
field of research in mathematics, computer science 
and biology into the behaviour of cellular automata. 
In Conway’s Game of Life, the state of the world 
is a two-dimensional grid (or an array) where each 
cell is either alive or dead. The algorithm (or rules 
of the game) describe its behaviour. For each cell:

●● Any live cell with fewer than two live neighbours 
dies.

●● Any live cell with two or three live neighbours 
lives on to the next generation.

●● Any live cell with more than three live 
neighbours dies.

●● Any dead cell with exactly three live neighbours 
becomes a live cell. 

18	Things in Minecraft are somewhat more-sophisticated than this. See http://minecraft.gamepedia.com/Chunk_format  
	 for details of the data structure used, or explore this in Minecraft for the Raspberry Pi: 
	 www.raspberrypi.org/learning/getting-started-with-minecraft-pi/worksheet/
19	Computer implementations of Life include Golly: http://golly.sourceforge.net/ 

Thus, for example, the pattern

   

Figure 16a		  becomes               Figure 16b

which becomes  

Figure 16c

and so on.

You can play the game on a grid using counters to 
represent live cells, but it’s quicker on a computer 
and not too challenging an abstraction for Level 
3 pupils to be able to program for themselves. 
Despite this relatively simple description and ease 
of implementation, complex, unexpected and subtle 
behaviour emerges in this system: for example, 
Life can itself be ‘programmed’ to perform any 
computation.

http://minecraft.gamepedia.com/Chunk_format
http://www.raspberrypi.org/learning/getting-started-with-minecraft-pi/worksheet/
http://golly.sourceforge.net/
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As well as the list that represents the state of a 
pack of cards and the two-dimensional array that 
represents the state of cells in Life, a graph is a 
particularly useful data structure that can be used 
in a wide variety of computational abstractions. 
A graph consists of nodes connected by edges. (A 
graph, in this sense, is quite different from the sort 
of statistical charts or diagrams which pupils might 
be familiar with. The same technical term ‘graph’ is 
used for two completely different things.)

Figure 1.17

The classic example of a graph as a computational 
abstraction is the London Underground Map, which 
simply shows which stations connect with which 
others. This sort of abstraction allows us to work 
out quite easily the route to take from one station 
to another without concerning ourselves with 
the physical location of stations or the detail of 
underground engineering such as track gradients 
or curve radii. Note that different abstractions of 
the same underlying reality are useful for different 
purposes: for example, the underground map is 
useless for estimating how far apart on the surface 
two stations are or (if you were a maintenance 
engineer) how much track-cleaning fluid you would 
need to clean the track between Russell Square and 
Covent Garden.

Graphs like this can also represent the ‘friendship’ 
links in social networks such as Facebook, or links 
between scientists co-authoring papers (Newman, 
2001), or actors who have co-starred.(20)

In most cases we attach values or labels to the 
nodes, as in these examples. In some cases the 

20	See http://oracleofbacon.org/how.php 
21	Conversely, graphs can be represented as lists of edges or arrays of node connections. 
22	From CS Unplugged: http://csunplugged.org/wp-content/uploads/2014/12/unplugged-11-finite_state_automata.pdf 

edges connect nodes in one direction but not the 
other – for example, the links between web pages 
or followers on Twitter. In some cases we attach 
numbers or weights to the edges, for example so 
that we can work out the shortest path between 
two nodes, as in the sat-nav example earlier (page 
16). There are many examples of problems which 
appear initially very complex (such as the knight’s 
tour in chess [Curzon, 2015]), but become very 
much simpler to solve using standard algorithms 
when represented as graphs. Graphs are particularly 
general sorts of structures: lists, arrays and trees 
(such as in our binary search example on page 19) 
can all be thought of as special sorts of graphs.(21) 
Languages such as Snap!, Python and Mathematica 
have libraries available for working with graphs. 

Another interesting, and important, way of 
modelling state and behaviour is through ‘finite-
state machines’. A graph is a very useful way to 
visualise this sort of abstraction, representing the 
states of the system as nodes and the transitions 
between states as the edges. It is possible to think 
of the grammatical structure of languages this way. 
For example this from CS Unplugged (Figure 1.18) 
generates grammatically correct sentences (notice 
the double circle on the right, used to show the 
exit or ‘accept’ state of the machine).

Figure 1.18(22)

This sort of abstraction is very useful when thinking 
about interface design – from toasters and kettles 
through digital watches and cash-point machines 
to websites and sophisticated apps. Thinking of the 
states of a system such as an app, and how the app 
moves between these states, can be helpful in the 
design process. Notice the similarities between a 
graph and the state transition diagram for a finite-
state machine – this isn’t coincidental and means that 
we can use the algorithms and techniques for graphs 
to explore the properties of finite-state machines. 

http://oracleofbacon.org/how.php
http://csunplugged.org/wp-content/uploads/2014/12/unplugged-11-finite_state_automata.pdf
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At Level 3, there is the expectation that pupils will 
be drawing on the ideas of decomposition and 
abstraction by developing software with a modular 
architecture using procedures or functions, or drawing 
on procedures or functions developed by others. 
Procedures and functions are covered on pages 67 - 
69.

  Classroom activity ideas

●● Without using computers to think about 
programming, set pupils the challenge of 
designing interesting playable games, thinking 
carefully about the state (typically, board, card 
deck, die) of their game and its behaviour (the 
rules or algorithm, according to which play 
takes place). Pupils might start by adapting the 
state and behaviour of games they are already 
familiar with (noughts and crosses, Nim, draughts, 
pontoon).

●● In programming, you might ask pupils to create 
their own games. If these are based on real-
world systems then they will need to use some 
abstraction to manage the complexity of that 
system in their game. In a simple table tennis 
game, for example Pong, the simulation of the 
system’s behaviour includes the ball’s motion in 
two dimensions and how it bounces off the bat, 
but it ignores factors such as air resistance, spin 
or even gravity: the state of the system might be 
modelled by coordinates to specify the position 
of the ball and the bats, as well as each player’s 
score.

●● Whilst developing an app is an ambitious project 
at Level 3, designing apps is accessible to most 
pupils: they can take the idea of a finite-state 
machine and apply it to designing the screens 
of their app and the components of the user 
interface which allow the app to move from one 
screen to another.

  Further resources

Barefoot Computing (2014) Abstraction. Available 
from http://barefootcas.org.uk/barefoot-primary-
computing-resources/concepts/abstraction/ (free, 
but registration required).

BBC Bitesize (n.d.) Abstraction. Available from www.
bbc.co.uk/education/guides/zttrcdm/revision

BBC Cracking the Code (2013) Simulating the 
experience of F1 racing through realistic computer 
models. Available from www.bbc.co.uk/programmes/
p016612j

Computerphile (2013) The art of abstraction – 
Computerphile. Available from www.youtube.com/
watch?v=p7nGcY73epw

CS Fieldguide (2016) Formal languages. Available 
from http://csfieldguide.org.nz/en/chapters/formal-
languages.html

CS4FN (n.d.) Download our computer science 
magic books! Available from www.cs4fn.org/magic/
magicdownload.php 

CS4FN (2016) Computational thinking: Puzzling 
tours. Available from https://cs4fndownloads.files.
wordpress.com/2016/02/puzzlingtours-booklet.pdf

Google for Education (2013) Solving problems at 
Google using computational thinking. Available from 
www.youtube.com/watch?v=SVVB5RQfYxk

Kafai, Y. B. (1995) Minds in play: Computer game 
design as a context for children’s learning. Mahwah, NJ: 
Lawrence Erlbaum.

Patterns and  
Generalisation

How can you make things  
easier for yourself?

There is a sense in which the good software engineer 
is a lazy software engineer, although this isn’t the 
same as saying that all lazy software engineers are 
good software engineers! In this case, being lazy 
means looking for an easier way to do something: 
partly this is about efficient algorithms, for example 
looking for a quicker way for the computer to do 
something, but it’s also about not doing unnecessary 
work yourself.

In the long run it can save lots of time to come 
up with a solution to a general class of problems 
and apply this to all the individual problems in 
that class, rather than solving each of these as an 
entirely separate problem. For example, in learning 
about area, pupils could find the area of a particular 

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/abstraction/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/abstraction/
http://www.bbc.co.uk/education/guides/zttrcdm/revision
http://www.bbc.co.uk/education/guides/zttrcdm/revision
http://www.bbc.co.uk/programmes/p016612j
http://www.bbc.co.uk/programmes/p016612j
http://www.youtube.com/watch?v=p7nGcY73epw
http://www.youtube.com/watch?v=p7nGcY73epw
http://csfieldguide.org.nz/en/chapters/formal-languages.html
http://csfieldguide.org.nz/en/chapters/formal-languages.html
http://www.cs4fn.org/magic/magicdownload.php
http://www.cs4fn.org/magic/magicdownload.php
https://cs4fndownloads.files.wordpress.com/2016/02/puzzlingtours-booklet.pdf
https://cs4fndownloads.files.wordpress.com/2016/02/puzzlingtours-booklet.pdf
http://www.youtube.com/watch?v=SVVB5RQfYxk
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rectangle by counting the centimetre squares on the 
grid on which it is drawn. It’s better to realise that, 
in each case, all we need do is multiply the length by 
the width: not only is this quicker, it’s also a method 
that will work for all rectangles, including really small 
ones and really large ones. Although it takes a while 
for pupils to understand this formula, once they do 
it’s so much faster than counting squares.

In computing, this method of looking for a 
general approach to a class of problems is called 
‘generalisation’. It is dependent on the ability to 
spot patterns in the class of problems that you are 
working with: in the areas example, a child might 
well come to spot the relationship between the 
length and width of the rectangles and the number 
of centimetre squares they contain, suggesting a rule 
they can use for other rectangles too. In computing, 
in the early days of the web, directories of all the 
best sites were compiled to help people discover 
the pages they needed. The general rule for these 
lists might be to include those websites which 
lots of people use or link to, and that’s a pattern 
which can be used to produce a general solution 
to the problem, automatically, by search engines 
such as Google or Bing. Rather than individual 
editors compiling long lists of relevant web pages, an 
algorithm can apply, automatically, the general rule of 
finding pages most linked, with a particular phrase, 
to its indexed cache of the web.

In computer science, the field of machine learning 
has taken this idea of recognising patterns and 
made this something which computers can do. 
With a large enough database, it is possible for 
algorithms to spot patterns in the data which appear 
to be related to particular outcomes. For example, 
Amazon’s algorithms can spot the patterns in the 
data of all their customers’ buying and browsing 
habits, to suggest which products another customer 
might be interested in. We are already starting 
to see these ideas being applied in education – 
with enough data available, the patterns in pupils' 
interactions with online questions can be used 
to suggest helpful activities for pupils to try next, 
in much the same way that teachers might make 
‘intuitive’ judgements based on past experience 
of how best to teach a topic to the individuals in 
their class. Of course, these judgements aren’t really 
‘intuitive’; because it’s time-consuming to think  
every situation through logically, in such a way that 
we can give a rational explanation for our decision, 
we create our own ‘rules of thumb’ based on the 

patterns we spot in our day-to-day professional 
experience. 

The term ‘pattern’ has another meaning in software 
engineering: it also refers to common approaches to 
solving the same problem. Taking inspiration from ‘A 
Pattern language’ by Alexander et al. (1977), which 
sought to document good solutions to common 
problems in architecture and urban design, Gamma 
and three colleagues (‘The Gang of Four’) published 
a very influential set of 23 classic software design 
patterns for object-oriented programming (Gamma 
et al., 1994). Examples of these design patterns 
include ‘iterator’, which accesses the elements of an 
object sequentially without exposing its underlying 
representation, and ‘memento’, the ‘undo’ behaviour 
which provides the ability to restore an object to 
its previous state. Further design patterns have 
been written up since and the approach has been 
applied to other domains too, including teaching 
(Laurillard, 2012).

One particularly useful design pattern for developing 
software, including apps and games, is the ‘model-
view-controller’ pattern. The model here is the part 
of the program that captures the computational 
abstraction of the state and behaviour of the system; 
the view is the part of the program which displays 
the state of the system to the user; the controller 
is the part that allows the user to control the 
behaviour of the system. This pattern is the basis for 
most software that relies on user interaction via a 
graphical user interface (GUI) (Michaelson, 2016).

Generalisation is one of the reasons why 
computational thinking is so important beyond 
the realms of software engineering or computer 
science. Wing argues that computational thinking for 
everyone includes being able to:  

Apply or adapt a computational tool or 
technique to a new use,

Recognize an opportunity to use 
computation in a new way, and

Apply computational strategies such as 
divide and conquer in any domain. (Wing, 
2010)

All of which are directly linked to this element of 
computational thinking.
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How are patterns and 
generalisation used in the 

Scottish curriculum?

When at primary school, pupils are likely to have 
encountered the idea of generalising patterns in 
many areas of the curriculum. From an early age, 
they will become familiar with repeated phrases in 
nursery rhymes and stories; later on they will notice 
repeated narrative structures in traditional tales or 
other genres. In maths, pupils typically undertake 
investigations in which they spot patterns and 
deduce generalised results. In English, pupils might 
notice common rules for spellings themselves, as 
well as being taught these and their exceptions.

Draw pupils’ attention to the opportunities to use 
the same or similar techniques or approaches in 
computing, for example, highlighting where pupils 
can apply a ‘divide and conquer’ algorithm to solving 
a problem, or where lists, arrays or graphs would be 
the best way of thinking about the state of a system 
they wish to model, or where decomposition or 
abstraction provide effective strategies for dealing 
with a problem. 

In computing, always encourage pupils to look for 
simpler or quicker ways to solve a problem or 
achieve a result, particularly where they can draw 
on the idea of patterns or generalisation to help 
them do this. One example might be developing 
a quiz program in Scratch or Small Basic – each 
question could be coded by hand, but pupils might 
also create a general form of the question, using 
repetition to ask variations of this a number of 
times. 

In turtle graphics, pupils might create programs 
to draw equilateral triangles, squares, regular 
pentagons and so on with sides of particular 
lengths, before generalising this pattern to create 
a procedure to draw any regular polygon with 
arbitrary length sides (Figure 1.19):

Figure 1.19 A Scratch block to draw a general 
regular polygon

def polygon (sides, length): 
  for i in range (sides): 
    fd (length) 
    rt (360./sides)

Python turtle code for drawing a general regular polygon

As the above examples illustrate, as pupils become 
familiar with more programming languages, they 
might start to notice and draw on how patterns 
they’ve used in one programming language can be 
applied in another. For example, when working in 
Scratch, pupils might often find that they need to 
keep count of the number of times they go round 
a repeating loop, using a structure like this (Figure 
1.20):

Figure 1.20

Subsequently, they will notice how the same idea is 
accomplished in, say, Snap! using the standard tools 
(Figure 1.21):

Figure 1.21
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Or in Python:

for i in range(10): 
  some_code_using(i)

Part of a pupil’s learning to program is building up 
a portfolio of such patterns that they can draw 
on fluently in a range of different contexts for 
solving quite different problems. This fluency comes 
through reading and remixing code written by 
others (Rajlich and Wilde, 2002), as much as it might 
through writing a program from scratch.

Pupils also learn common ways of operating a range 
of different programs: one indication of pupils’ 
developing IT capability is that they can generalise 
from their way of using one piece of software 
to working with a completely different piece of 
software, or from working with one computer 
system to a different platform.

  Classroom activity ideas

●● In computing, encourage pupils to always 
look for simpler or quicker ways to solve a 
problem or achieve a result. Ask pupils to 
explore geometric patterns using turtle graphics 
commands in languages like Scratch, Logo 
or TouchDevelop to create ‘crystal flowers’ 
Emphasise how the use of repeating blocks of 
code or procedures is much more efficient than 
writing each command separately, and allow 
pupils to experiment with how changing one or 
two of the numbers used in their program can 
produce different shapes.

●● In programming, set pupils the challenge of 
completing the same task in two different 
programming languages, perhaps one block-based 
and the other text-based. Can they see the 
similarities between the two implementations of 
the same algorithm?

●● When programming games or simple apps, 
encourage pupils to adopt, or at least to think 
in terms of, the model-view-controller design 
pattern.(23)

●● Teach pupils to use graphics software to create 
tessellating patterns to cover the screen. As 
they do this, ask them to find quicker ways of 
completing the pattern, typically by copying 
and pasting groups of individual shapes, or 

23	See, for example, https://svn.python.org/projects/python/trunk/Demo/turtle/tdemo_nim.py for an example of this approach to 
implementing the game of Nim.

alternatively by writing a turtle graphics program 
to do this.

●● Teach pupils to create rhythmic and effective 
music compositions using simple sequencing 
software in which patterns of beats are repeated; 
encourage them to experiment with repeating 
and changing the patterns of notes in their 
composition.

  Further resources

Barefoot Computing (n.d.) Patterns. Available 
from http://barefootcas.org.uk/barefoot-primary-
computing-resources/concepts/patterns/ (free, but 
registration required).

Basawapatna, A., Koh, K. H., Repenning, A. 
Webb, D. and Marshall, K. (2011) Recognizing 
Computational Thinking Patterns. 
In: Proceedings of the 42nd ACM Technical Symposium 
on Computer Science Education (SIGCSE '11).

Hoover, D. and Oshineye, A. (2009) Apprenticeship 
patterns: Guidance for the aspiring software craftsman. 
Sebastopol, CA: O’Reilly.

Isle of Tune app (n.d.) Available from http://isleoftune.
com

Pattern in Islamic Art (n.d.) Available from www.
patterninislamicart.com

Pysnap (n.d.) Design patterns explained with Python 
examples. Available from www.pysnap.com/design-
patterns-explained/  

Evaluation
How good is our solution?

Whereas other aspects of computational thinking are 
focussed on looking at problems or systems in such a 
way that computers can help us solve or understand 
them, evaluation is more concerned with checking 
that we have a solution and about considering 
qualities of that solution, from algorithmic efficiency 
through to design of the user interface. 

https://svn.python.org/projects/python/trunk/Demo/turtle/tdemo_nim.py
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/patterns/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/patterns/
http://isleoftune.com
http://isleoftune.com
http://www.patterninislamicart.com
http://www.patterninislamicart.com
http://www.pysnap.com/design-patterns-explained/
http://www.pysnap.com/design-patterns-explained/


35

Computational Thinking

In the Computing At School guide to computational 
thinking, the authors write:

Evaluation is the process of ensuring that 
a solution, whether an algorithm, system, 
or process, is a good one: that it is fit for 
purpose. Various properties of solutions 
need to be evaluated. Are [they] correct? 
Are they fast enough? Do they use resources 
economically? Are they easy for people 
to use? Do they promote an appropriate 
experience? Trade-offs need to be made, as 
there is rarely a single ideal solution for all 
situations. There is ... attention to detail in 
evaluation based on computational thinking. 
(Csizmadia et al., 2015)

Evaluation, though, isn’t just for computer scientists 
or software engineers. As users of technology, it’s 
important that everyone considers whether the 
software and hardware available is fit for purpose, 
and recognises the limits of what computers can 
do. Wing argues that computational thinking means 
that everyone should be able to:

Evaluate the match between 
computational tools and techniques and a 
problem [and] understand the limitations 
and power of computational tools and 
techniques. (Wing, 2010)

The multi-layered abstraction common to 
computational thinking provides one way of thinking 
through the evaluation of a computational solution. 

At the most fundamental level, the algorithms that 
lie at the heart of the solution must be correct, and 
here logical reasoning can be used to provide proof 
that, given the correct input data, the algorithm will 
produce the correct output data. Alongside the 
algorithms governing the behaviour of the solution, 
the underlying abstraction must also reflect the 
state of the problem or system we are working 
with. In the process of developing a computational 
abstraction, some information is put to one side, 
reducing the complexity of the problem: the 
process of evaluation involves considering whether 
the choices in reducing complexity have been well 
made. Computational abstractions also involve 
choices over how data are to be structured and 
represented, and again evaluation should consider 
whether such choices are correct and optimal.

Evaluation needs to consider the implementation of 
the algorithm and associated data structures as code. 
Part of this involves carefully and logically reviewing 
the code to ask whether it does what it should do, 
but also whether it’s good code. Good code is likely 
to be well formatted and commented, so that it’s 
easier for others to read and review. Variables and 
functions or procedures will have useful, sensible 
names. It’s likely to make use of decomposition and 
abstraction through a modular approach. Good code 
is likely to use a simple, sensible, obvious way to get 
things done, drawing perhaps on some of the classic 
design patterns; it shouldn’t make a reviewer wonder 
‘Why did they do it like that?’ Good code is also likely 
to make good use of the features of the language it is 
written in, particularly the available function libraries. 
Knuth argues for literate programming, in which 
programmers document the logical argument and 
design decisions of their programs, illustrating these 
with the source code (Knuth, 1992).

As well as reasoning about and understanding code, 
evaluation also has to involve testing code. Good 
practice, in programming if not always in education, is 
to test early and often: as each part of a program is 
written, it should be tested to see that it does exactly 
what it’s supposed to do. Modular programming, 
typically involving functions or procedures, makes it 
easier to test code as it’s being developed, as each 
function or procedure can be tested independently of 
the rest of the program. 

Test-driven development (TDD) is an agile 
programming methodology in which the tests for 
features are written first before the new features 
are developed. There’s a three-phase cycle here 
(Figure 1.22): at first the test should fail (as the new 
feature hasn’t been implemented yet); then the test 
should pass (as the feature has been implemented 
successfully); and then there’s often the need to 
refactor the already-working code so that it’s better 
integrated or more efficient. There are parallels here 
with assessment for learning in schools: check first 
what pupils don’t know; teach them; check again that 
they’ve learnt it (providing evidence of progress); then 
ensure that they develop fluency and mastery in the 
new content. These tests are typically automated – we 
work out in advance what a function or procedure 
should do, given different input data, and then check 
that it does indeed return the expected output.
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Figure 1.22 The mantra of test-driven development 
(TDD) is ‘red, green, refactor’

Above this attention to the detail in implementing 
functions and procedures in code, it’s important 
that those evaluating computational artefacts don’t 
lose sight of the big picture. Typically, programs are 
written to solve problems and a crucial element of 
evaluation is checking that the program does indeed 
solve the problem. Evaluation might also take into 
account how good the solution is. Is it an efficient 
one? Is it an elegant one? Is it one that meets the 
needs of its users? Does it meet all the overarching 
criteria in the design specification?

Typically, software is developed with users in 
mind, and part of evaluation is about looking to 
see how well the software meets the needs and 
expectations of these users: whether it lets them 
get things done effectively and efficiently. This 
would include considerations such as user interface 
design, accessibility and appeal, and could draw 
on rigorous analytical techniques, A/B testing of 
different interfaces on live websites, observations of 
users’ interactions with the software, and feedback 
surveys or focus groups. 

There is another level of reflection here, which is 
important in education and software craftsmanship. 
Useful as it is to evaluate the artefacts produced, 
it’s also helpful to reflect on what has been learnt 
through the process of making the artefact, 
and indeed on how new knowledge, skills and 
understanding have been acquired.(24) 

24	See, for example, https://educationendowmentfoundation.org.uk/evidence/teaching-learning-toolkit/meta-cognition-and-self-	
	 regulation/ 

There is relatively little attention to formal evaluation 
at Level 2. Pupils should have learnt to be discerning 
in evaluating digital content whilst at primary school: 
this might have involved their reflecting critically on 
their own work or that of their peers, but would 
also have involved their forming judgements about 
content produced by others and shared via the web. 
In primary school, pupils will also have learnt about 
evaluating data and information, and these evaluation 
skills can be built on in secondary school as pupils 
learn to evaluate algorithms, programs and other 
digital artefacts.

The Benchmarks at Level 3 expect pupils to 
evaluate computing solutions. This need not 
be computational abstractions of their own design, 
and the skills of evaluation can perhaps best be 
developed by looking at the abstractions made by 
others. Evaluating abstractions starts by considering 
whether an abstraction does model the original 
system; it then considers whether the abstraction 
is at the right level of detail, and then whether the 
abstraction is actually a helpful one for solving the 
problem at hand, or understanding the original 
system. Looking at different ways in which the same 
problem can be represented can soon make it 
clear that some abstractions are more useful than 
others (see, for example, Curzon, 2015). Finite-
state machines (see page 30) provide rich territory 
here, as pupils can consider the extent to which the 
abstraction does capture the relevant detail of the 
state and behaviour of the system it models, but they 
can also be used for evaluating interface design – e.g. 
how many transitions/clicks are needed to get back 
to the home page or to find a company’s phone 
number on its website. 

The curriculum also expects pupils to use 
logical reasoning to compare the utility of 
alternative algorithms for the same problem. 
An algorithm is only useful if it solves the problem 
it sets out to do; can pupils justify why an algorithm 
must work? How do they know that linear search 
will eventually find the right item or that bubble 
sort will produce a correctly ordered list?

Evaluation in the curriculum

https://educationendowmentfoundation.org.uk/evidence/teaching-learning-toolkit/meta-cognition-and-self-		regulation/
https://educationendowmentfoundation.org.uk/evidence/teaching-learning-toolkit/meta-cognition-and-self-		regulation/
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Evaluating the utility of an algorithm is also about 
judging the algorithm’s efficiency. The ‘random 
driver’ approach to finding a path through a 
graph may eventually work, but it is unlikely to be 
much help when driving to Birmingham in time 
for a meeting. The examples earlier, of different 
algorithms for searching, sorting or other problems, 
provide ample scope for pupils to learn about this. 
Notice that the curriculum talks here of using 
logical reasoning: evaluating algorithms should start 
with thinking about them, rather than by rushing to 
implement them as code. Can pupils explain to you 
or to one another why a binary search will be more 
efficient than a linear search? Can they explain why 
quicksort gets its name? There’s something to be 
gained by letting pupils implement these algorithms 
as code and to see for themselves the difference in 
how long their programs take to complete – bubble 
sort and quicksort programs in Snap! will have 
appreciably different run times if given lists of 100 
random integers to sort.

As well as evaluating abstractions and algorithms, 
pupils should also learn to evaluate the digital 
artefacts that they make. When pupils develop, 
create, reuse, revise and repurpose digital 
artefacts, they do so for a given audience, and 
evaluation should consider the extent to which 
they have met the needs of these known users. 
These needs should feed into the design process 
from the start, perhaps in terms of specifications 
or criteria against which the eventual product or 
prototype might be judged; but also perhaps as 
the ‘user stories’ which play a similar role in agile 
development (see page 41- 43), often expressed in 
the form ‘As a __, I want __ so that __.’ It’s worth 
giving pupils a genuine experience of developing 
for actual users at some point – perhaps for 
their peer group, for parents at the school or for 
younger children.(25) Evaluation in terms of meeting 
the needs of known users can then involve trying 
out the product or prototype with these users, 
observing their interactions and listening to their 
feedback. 

The programme of study expects attention to be 
paid to trustworthiness, design and usability 
when using or developing digital artefacts. Evaluating 
trustworthiness can help develop pupils’ logical 
and critical reasoning, as they come to consider 
internal and external consistency, logical flaws in 

25	Some great examples via www.appsforgood.org/
26	See also www.vitsoe.com/gb/about/good-design and www.gov.uk/design-principles 

arguments, unsubstantiated claims, vested interests 
and other forms of bias. Whilst there are perhaps 
inevitably some subjective elements to evaluating 
the design of a digital artefact, there are also 
principles which seem common to much, if not 
all, good design: simplicity, symmetry, consistency, 
proportion, attention to detail, fitness for purpose, 
honesty, inclusion and sustainability.(26) Evaluating 
usability is about considering how well an artefact 
meets the needs of its intended users; doing 
this demands some empathy with those users. 
Encourage pupils to take an inclusive approach to 
usability, considering how well an artefact would 
meet the needs of a diverse group of users – e.g. 
those whose first language isn’t English, those who 
are visually impaired, or those for whom fine motor 
control is difficult or impossible.

  Activities

●● Get pupils to do code reviews for one another. 
Given a problem, pupils should write programs 
to solve it, and add comments to their code. 
They should then review a solution written by 
one of their peers, evaluating how well they have 
solved the problem and providing constructive, 
critical feedback on their solution.

●● Again in programming activities, pupils should be 
able to create tests for the correctness of their 
code, determining by hand what output should 
follow from particular input data and then testing 
to see whether their code performs correctly.

●● Encourage pupils to be constructively critical of 
websites, software and systems that they use – 
how might these be improved? Have they found 
any bugs? In many cases, particularly open-source 
software projects, users can play an important 
role in software development by submitting bug 
reports or feature requests.

●● Using keyboard-only input, using just a screen 
reader for output, or swapping a program’s 
language settings into another language would 
give pupils an insight into the challenges of 
designing and developing with accessibility in 
mind.

http://www.appsforgood.org/
http://See also www.vitsoe.com/gb/about/good-design
http://www.gov.uk/design-principles
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  Further resources

Barefoot Computing (2014) Evaluation. Available 
from http://barefootcas.org.uk/barefoot-primary-
computing-resources/concepts/evaluation/ (free 
registration required).

BBC Bitesize (n.d.) Evaluating solutions. Available 
from www.bbc.co.uk/education/guides/zssk87h/
revision 

Bragg, M. (2015) P v NP. BBC Radio 4: In Our 
Time. Available from www.bbc.co.uk/programmes/
b06mtms8 

CAS TV (2016) Simon Peyton Jones on algorithmic 
complexity. YouTube. Available from www.youtube.
com/watch?v=ixmbkp0QEDM 

CS Field Guide (2016) Complexity and tractability. 
Available from http://csfieldguide.org.nz/en/
chapters/complexity-tractability.html

CS Field Guide (2016) Human computer interaction. 
Available from http://csfieldguide.org.nz/en/
chapters/human-computer-interaction.html

Peyton Jones, S. (2010) Getting from A to B: Fast route-
finding using slow computers. Microsoft. Available 
from www.microsoft.com/en-us/research/video/
getting-from-a-b-fast-route-finding-using-slow-
computers/

Programming challenges that are particularly good 
at encouraging pupils to look for more-efficient or 
elegant solutions: Project Euler: https://projecteuler.
net/, Cargo Bot (iPad only) https://itunes.apple.com/
gb/app/cargo-bot/id519690804?mt=8, Code Hunt 
(Java and C++) www.codehunt.com/

Teaching London Computing (n.d.) Evaluation. 
Available from https://teachinglondoncomputing.
org/resources/developing-computational-thinking/
evaluation/

TryEngineering (n.d.) Lesson plan introducing ideas 
of algorithms and complexity. Available from http://
tryengineering.org/lesson-plans/complexity-its-
simple 

How does  
Software get  
written?
Features of a highly effective curriculum include:

All children and young people have the 
opportunity to develop and apply more-
sophisticated computational thinking skills. 

Learners are able to challenge the status 
quo constructively and generate ideas, 
including, if appropriate, digital solutions 
to improve it.

Whilst the above concepts of computational 
thinking help with understanding the world, it 
would be wrong to see them as separate from 
the processes of computational doing that 
have resulted in the profound changes to our 
world through the applications of computer 
science to digital technology. These approaches 
can be applied in computing but, as with the 
concepts of computational thinking, have wide 
applications beyond this (see also the discussion of 
computational thinking practices and perspectives 
in Brennan and Resnick, 2012). 

Computational doing

Tinkering

There is often a willingness to experiment and 
explore in computer scientists’ work. Some 
elements of learning a new programming language 
or exploring a new system look quite similar to 
the sort of purposeful play that’s seen as such an 
effective approach to learning in the best nursery 
and reception classrooms. Tinkering is also a great 
way to learn about elements of physical computing 
on platforms such as the BBC micro:bit and the 
Raspberry Pi. 

Open-source software makes it easy to take 
someone else’s code, look at how it’s been 
made and then adapt it to your own particular 
project or purpose. Platforms such as Scratch and 
TouchDevelop positively encourage users to look 
at other programmers’ work and use this as a basis 
for their own creative coding.

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/evaluation/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/evaluation/
http://www.bbc.co.uk/education/guides/zssk87h/revision
http://www.bbc.co.uk/education/guides/zssk87h/revision
http://www.bbc.co.uk/programmes/b06mtms8
http://www.bbc.co.uk/programmes/b06mtms8
http://www.youtube.com/watch?v=ixmbkp0QEDM
http://www.youtube.com/watch?v=ixmbkp0QEDM
http://csfieldguide.org.nz/en/chapters/complexity-tractability.html
http://csfieldguide.org.nz/en/chapters/complexity-tractability.html
http://csfieldguide.org.nz/en/chapters/human-computer-interaction.html
http://csfieldguide.org.nz/en/chapters/human-computer-interaction.html
http://www.microsoft.com/en-us/research/video/getting-from-a-b-fast-route-finding-using-slow-computers/
http://www.microsoft.com/en-us/research/video/getting-from-a-b-fast-route-finding-using-slow-computers/
http://www.microsoft.com/en-us/research/video/getting-from-a-b-fast-route-finding-using-slow-computers/
https://projecteuler.net/
https://projecteuler.net/
https://itunes.apple.com/gb/app/cargo-bot/id519690804?mt=8
https://itunes.apple.com/gb/app/cargo-bot/id519690804?mt=8
http://www.codehunt.com/
https://teachinglondoncomputing.org/resources/developing-computational-thinking/evaluation/
https://teachinglondoncomputing.org/resources/developing-computational-thinking/evaluation/
https://teachinglondoncomputing.org/resources/developing-computational-thinking/evaluation/
http://tryengineering.org/lesson-plans/complexity-its-simple
http://tryengineering.org/lesson-plans/complexity-its-simple
http://tryengineering.org/lesson-plans/complexity-its-simple
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In class, encourage pupils to experiment with a new 
piece of software, sharing what they discover about 
it with one another, rather than you explaining 
exactly how it works. Also, look for ways in which 
pupils can use others’ code – from you, their 
peers or online – as a starting point for their own 
programming projects.

Creating

Programming is a creative process. Creative work 
involves both originality and making something of 
value: typically, something that is useful, or at least 
fit for the purpose intended.

Encourage pupils to approach tasks with a creative 
spirit, and look for programming tasks that allow 
some scope for creative expression rather than 
merely arrival at the right answer. 

Encourage pupils to reflect on the quality of the 
work they produce, critiquing their own and others’ 
projects. The process of always looking for ways 
to improve on a software project is becoming 
common practice in software development. 
Look for projects in which artistic creativity is 
emphasised, such as working with digital music, 
images, animation, virtual environments or even 3D 
printing.(27)

Creating need not be confined to the screen: there 
is ample scope to introduce pupils to electronic 
circuits, microcontrollers, wearable electronics 
and simple robotics. Platforms such as the BBC 
micro:bit and the Raspberry Pi make this sort of 
activity more accessible than ever at school, and 
there are many extra-curricular opportunities 
for pupils such as hack days, Coder Dojos(28) and 
Raspberry Jams.(29)

Debugging

Because of its complexity, the code programmers 
write often doesn’t work as intended. 

Getting pupils to take responsibility for thinking 
through their algorithms and code, to identify and 
fix errors, is an important part of learning to think 
and work like a programmer. It’s also something 
to encourage across the curriculum: get pupils 
to check through their working in maths or to 
proofread their stories in English. Ask pupils to 

27	For a survey of young people’s digital making see Quinlan (2015).
28	https://coderdojo.com/ 
29	www.raspberrypi.org/jam/

debug one another’s code (or indeed proofread one 
another’s work), looking for mistakes and suggesting 
improvements. There’s evidence that learning 
from mistakes is a particularly effective approach, 
and the process of pupils debugging their own 
or others’ code is one way to do this. A positive 
attitude towards mistakes as learning opportunities, 
and taking responsibility for fixing them, can help 
develop pupils’ resilience and contribute towards 
a ‘growth mindset’ (Dweck, 2006; qv Cutts et al., 
2010), as Papert observed:

The question to ask about the program 
is … if it is fixable. If this way of looking 
at intellectual products were generalised 
to how the larger culture thinks about 
knowledge and its acquisition, we all might 
be less intimidated by our fears of ‘being 
wrong’. (Papert, 1980)

Keep an eye on the bugs that your pupils do 
encounter, as these can sometimes reveal particular 
misconceptions that you may need to address. 

Debugging is discussed in more detail on pages 81 
- 83.

Persevering

Computer programming is hard. This is part of 
its appeal – writing elegant and effective code 
is an intellectual challenge requiring not only 
an understanding of the ideas of the algorithms 
being coded and the programming language you’re 
working in, but also a willingness to persevere with 
something that’s often quite difficult and sometimes 
very frustrating. There’s evidence that learning 
is more effective when there are challenges to 
overcome, in part because we then have to think 
more (Bjork and Bjork, 2011). 

Carol Dweck’s work on ‘growth mindsets’ suggests 
that hard work and a willingness to persevere in the 
face of difficulties can be key factors in educational 
outcomes. Encourage pupils to look for strategies 
they can use when they do encounter difficulties 
with their programming work, such as working 
out exactly what the problem is, searching for the 
solution on Google or Bing, or on Stack Overflow 
or Stack Exchange, or seeking help from a friend.

https://coderdojo.com/
http://www.raspberrypi.org/jam/
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Collaborating

Software is developed by teams of programmers and 
others, working together on a shared project. Look 
for ways to provide pupils with this experience in 
computing lessons too. Collaborative group work has 
long had a place in education, and computing should 
be no different.

Many see ‘pair programming’ as a particularly 
effective development method, with two 
programmers sharing a screen and a keyboard, 
working together to write software (Williams and 
Kessler, 2000). Typically one programmer acts as the 
driver, dealing with the detail of the programming, 
whilst the other takes on a navigator role, looking at 
the bigger picture.

The two programmers regularly swap roles, so each 
gain a grasp of both detail and big picture. Working 
in a larger group develops a number of additional 
skills, with each pupil contributing some of their 
own particular talents to a shared project. However, 
it’s important to remember that all pupils should 
develop their understanding of each part of the 
process, so some sharing of roles or peer-tutoring 
ought normally to be incorporated into such 
activities.(30)

Software engineering(30)

There’s much more to software development than 
algorithms and coding: the process of developing 
software has much in common with other 
engineering disciplines, and so there are some close 
parallels with design–make–evaluate projects in 
design and technology on the school curriculum, and 
it’s through projects such as these that the above 
approaches of computational doing are perhaps best 
developed. 

The first stage of developing any software project 
isn’t coding, it’s planning. To plan the project as 
a whole, and to plan how the computer will be 
programmed, draws on the set of computational 
thinking concepts discussed above.

Typically, developers need to understand problems or 
a system before they have any chance of being able 
to develop some software for this, and that’s likely 
to draw on processes such as logical reasoning, 

30	Based on an earlier blog post, http://milesberry.net/2014/11/software-engineering-in-schools/ 

to identify the relationships between cause and 
effect; abstraction, where they will focus on the key 
features of the problem or system, leaving others 
to one side; and generalisation, where they might 
think of other projects which have something in 
common with the current project, looking to see 
if there are aspects of the approaches or solutions 
to those which could be reused. Decomposition 
is really important for breaking big projects down 
into manageable tasks, and algorithmic thinking is 
necessary to plan how these will be tackled.

Developers will also need to draw on computational 
thinking in first designing their programs before they 
start coding. How formal this design stage is will vary 
from one development methodology to another, but 
there’s always some thinking and planning necessary 
before the actual coding can begin.

Waterfall

Figure 1.23

In traditional ‘waterfall’ software development, a 
single path is planned through the project from 
beginning to end (see Figure 1.23). If a bespoke 
solution is being developed for a particular client, 
the project will start with the client working 
with analysts to specify requirements for what 
the software needs to do. A more-detailed 
specification can then be worked up, which will 
include much of the technical planning for how 
to program a solution, including consideration of 
systems, language, algorithms and data structures 
but no actual code. The specification then gets 
implemented as code in whatever language for 
whatever system has been decided – often this 
will be by a team of developers, each weighing in 
on one or more particular parts of the project in 
parallel with others. The next stage is to test the 

http://milesberry.net/2014/11/software-engineering-in-schools/
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code rigorously, making sure that it has no bugs and 
that it meets the detail outlined in the specification 
and the original requirements. There’s usually a fifth 
stage in commercial waterfall development, in which 
the software house undertakes to maintain the 
program, updating it if necessary to meet changing 
requirements. Waterfall methods are still used for 
some big, public-sector software deployments.

This approach has something in common 
with curriculum development – moving from 
requirements that children should be taught 
computer science, IT and digital literacy, through a 
detailed specification of programmes of study, to 
implementation through schemes of work, lesson 
plans and activities, and on to testing and evaluation, 
with further support there if necessary.

Iterative development

Figure 1.24

In iterative development, the process of designing, 
coding, testing and evaluating becomes a cycle 
rather than once and for all (see Figure 1.24). 
Most modern software development fits into this 
pattern or a variant of it, hence new versions of 
software are regularly released which fix bugs 
that only became apparent once the software 
was released, or which implement new features 
in response to customer suggestions, technical 
innovations or market pressures. Often, developers 
will release an early ‘beta’ version of their software, 
perhaps to a limited number or quite openly, to 
get help with testing and evaluating the software 
before committing to an official final release. This 
is common practice in open-source development, 
where the users of the software are positively 
encouraged to help with fixing as well as finding 
bugs, or adding code for new features themselves.

31	  http://agilemanifesto.org/

There are parallels between the design–code–
test–evaluate cycle of iterative development 
and the plan–teach–assess–evaluate cycle for 
teaching that many teachers and schools now use 
routinely (Figure 1.25). Similarly, just as assessment 
for learning has produced a tight loop between 
teaching and assessing, so that the results of 
formative assessment feed directly into how the 
rest of the lesson or unit of work proceeds, so in 
iterative development, there’s a tight loop between 
coding and testing – as bugs become apparent in 
testing, they get fixed through more coding.

Figure 1.25

Agile methods

Figure 1.26

Whilst recognising the importance of things such 
as planning, agreeing requirements and producing 
documentation, agile software development moves 
the focus of the effort to producing working, usable 
code typically much earlier in the process (see 
Figure 1.26). It also emphasises the importance of 
collaboration with users and responsiveness to 
change.(31) Whilst by no means universally accepted, 
the effectiveness of agile methods in getting to a 

http://agilemanifesto.org/
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‘minimum viable product’, and then developing this 
further in response to changing needs and rapidly 
developing technologies, has made this approach 
popular with many working in technology-based 
start-ups, as well as for developing new online tools 
and apps for tablets or smartphones.

The emphasis in agile methods on individuals and 
interactions, collaborating with customers, and on 
responsiveness to change, might put us in mind 
of the ‘child-centred education’ pedagogies of an 
earlier generation, but perhaps even today there’s 
scope in some computing lessons for supporting 
and encouraging pupils as they pursue individual, 
independent projects or their own lines of 
investigative enquiry.

So which approach should we use in class?

One of the aims of the programme of study is that 
pupils:

can design, build and test computing 
solutions

At Level 2, pupils should already have had some 
experience of working on larger software projects, 
rather than just learning the key programming 
concepts of sequence, selection and repetition, so 
that they can:

create, develop and evaluate computing 
solutions in response to a design challenge

At Level 3, pupils are taught to:

group related instructions into named 
subprograms 

and to:

identify processes and information to 
create a physical computing and/or 
software solution.

These points allow plenty of scope for larger 
software development projects alongside shorter 
programming tasks.

The way you go about this though is up to you! 
Choose the approach which would work best with 
your pupils, and for the particular project you (or 
they) have in mind.

It’s perhaps best to let pupils have some experience 
of all three of these methodologies. For some 

programming projects, you may only have time 
to work through from planning to debugging 
and evaluation once, in which case guiding pupils 
through the waterfall process may make most 
sense. Other times, it would be worth taking a 
more iterative approach, getting pupils to look for 
ways in which they could add further features to 
their programs, improve the user interface or refine 
their algorithms, as well as emphasising repeated 
coding, testing and debugging as part of the 
programming process itself.

Pupils who find that they really enjoy coding and 
choose to do this independently, outside of formal 
lessons, might often adopt an approach having 
much in common with agile methods – there is 
anecdotal evidence that this is often the case for 
those contributing to the Scratch community or 
pursuing their own project ideas on the Raspberry 
Pi. You might like to look for ways to facilitate this 
approach in curriculum time too: you could perhaps 
set very open challenges to pupils, for example, 
‘make an educational game’, providing support and 
challenge as needed, as well as encouraging pupils 
to help support one another as they rise to meet 
the challenge. There is anecdotal evidence that girls 
seem to find programming projects where there’s 
a clear purpose and scope for creativity more 
engaging than relatively closed, abstract coding 
challenges such as ‘implement bubble sort’.

  Further resources

Apps for Good (n.d.) Available from www.
appsforgood.org/

Bagge, P. (2015) Eight steps to promote problem 
solving and resilience and combat learnt helplessness in 
computing. Available from http://philbagge.blogspot.
co.uk/2015/02/eight-steps-to-promote-problem-
solving.html

Barefoot Computing (2014) Computational thinking 
approaches. Available from http://barefootcas.
org.uk/barefoot-primary-computing-resources/
computational-thinking-approaches/ (free, but 
registration required).

Briggs, J. (2013) Programming with Scratch software: 
The benefits for year six learners. MA dissertation. 
Bath Spa University. 

http://www.appsforgood.org/
http://www.appsforgood.org/
http://philbagge.blogspot.co.uk/2015/02/eight-steps-to-promote-problem-solving.html
http://philbagge.blogspot.co.uk/2015/02/eight-steps-to-promote-problem-solving.html
http://philbagge.blogspot.co.uk/2015/02/eight-steps-to-promote-problem-solving.html
http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking-approaches/
http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking-approaches/
http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking-approaches/


43

Computational Thinking

Brooks, F.P. (1975) The mythical man-month. Reading, 
MA: Addison-Wesley.

CS Field Guide (n.d.) Software engineering. Available 
from http://csfieldguide.org.nz/en/chapters/
software-engineering.html

DevArt: Art Made with Code (n.d.) Available from 
https://devart.withgoogle.com/

Dweck, C. (2012) Mindset: How you can fulfil your 
potential. London: Hachette.

Harel, I. and Papert, S. (1991) Constructionism. New 
York, NY: Ablex Publishing Corporation.

Education Endowment Foundation (n.d.) 
Teaching and learning toolkit. Available from http://
educationendowmentfoundation.org.uk/toolkit/

Kafai, Y. and Burke, Q. (2014) Connected code: Why 
children need to learn programming. Boston, MA: MIT 
Press. 

Peha, S. (2011) Agile schools: How technology saves 
education (just not the way we thought it would). 
InfoQ. Available from www.infoq.com/articles/agile-
schools-education

Philbin, C.A. (2015) Adventures in Raspberry Pi. 
Hoboken, NJ: John Wiley & Sons.
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Programming
WHAT IS PROGRAMMING?
Programming is the process of designing and writing 
a set of instructions (a program) for a computer in 
a language it can understand.

This can be really simple, such as the program to 
make a robot toy trace out a square; or it can be 
incredibly sophisticated, such as the software used 
to forecast the weather or to generate a set of 
ranked search results.

Programming is a two-step process:

●● First, you need to analyse the problem and 
design a solution. This process will use logical 
reasoning, decomposition and generalisation 
to develop computational abstractions which 
capture the right level of detail about the 
state and behaviour of the system, as well as 
algorithms that can solve the problem correctly 
and efficiently.

●● Second, you need to express these ideas 
in a particular programming language on a 
computer, making use of data structures so the 
program can manipulate information. This might 
sometimes be called coding, and we can refer to 
the set of instructions that make up the program 
as ‘code’. 

Coding provides the motivation for learning 
computer science – there’s a great sense of 
achievement when a computer does just what you 
ask it, because you’ve written the precise set of 
instructions necessary to make something happen. 
Coding also provides the opportunity to test out 
ideas and get immediate feedback on whether 
something works or not.

What should programming be 
like in schools?

It is possible to teach computational thinking 
without coding and vice versa, but the two seem to 
work best hand-in-hand. 

Teaching computational thinking without giving 
pupils the opportunity to try out their ideas as 
code on a computer is like teaching science without 
doing any experiments. Similarly, teaching coding 

without helping pupils to understand the underlying 
processes of computational thinking is like doing 
experiments in science without any attempt to 
teach pupils the theories which underpin them.

This relationship is reflected in the new computing 
curriculum, which states that pupils should not 
only know the principles of information and 
computation, but should also be able to put this 
knowledge to use through programming. One of 
the aims of the Scottish curriculum for computing is 
for pupils to be able to:

analyse problems in computational terms, 
and have repeated practical experience 
of writing computer programs in order to 
solve such problems.

At primary school, pupils will have been taught how 
simple algorithms are implemented as programs 
on digital devices, from floor turtles to distant 
web servers. They will have had the opportunity to 
create and debug their own programs, as well as 
to predict what a program will do. They will have 
been taught to design and write programs that 
accomplish specific goals, which should include 
controlling or simulating physical systems. They 
should have learnt to use sequence, selection and 
repetition in their programs, as well as variables 
to store data. They should have learnt to use 
logical reasoning to detect and fix the errors 
in their programs. All this is likely to have been 
in the context of device-specific languages for 
programmable toys such as the Bee Bot and then 
visual, block-based programming languages such as 
Scratch.

The Benchmarks at Level 3 build progressively on 
those from Levels 1 and 2.  There will be initial 
challenges as the Benchmarks are fully implemented 
at primary level, but these will decrease over time.

Programming at Level 3 should include working 
with real-world problems and physical systems, 
with an emphasis on teaching pupils how to 
develop computational abstractions which model 
the state and behaviour of such systems. Pupils are 
also expected to solve a variety of computational 
problems: look to provide as diverse a range as 
possible here of contexts for pupils' programming, 
including cross-curricular opportunities arising out 
of the other subjects pupils are studying. 
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Moving beyond the visual programming pupils will 
have studied at primary school, at Level 4 they are 
taught at least two programming languages, at least 
one of which should be text based (see pages 49 - 
58 for some thoughts on the choice of language). 

It’s fine to continue to work in Scratch for Level 
3, although anecdotal evidence suggests that some 
pupils have become somewhat bored with Scratch 
after much focus on this in primary computing 
lessons. Other visual languages are available which 
extend Scratch’s functionality, such as Snap! or the 
semi-visual TouchDevelop. 

There seems evidence to suggest that it is effective 
to introduce a text-based language alongside a 
visual language during Level 3 (Dorling and White, 
2015), using the familiar blocks to scaffold pupils’ 
understanding of the semantics of their programming 
whilst they become increasingly fluent in the 
syntax of the text-based language (Shneiderman 
and Mayer, 1979). There are very few things in the 
expectations for programming or computational 
thinking at Level 3 that cannot be accomplished 
in a visual programming language, so a sensible 
approach would be to avoid rushing to take on the 
additional cognitive load of programming in a text-
based language, until pupils’ understanding of the 
underpinning ideas is very sound (qv Robins, 2010).

Strange as it may sound, teaching pupils to program 
need not always involve them programming. It is vital 
that pupils think about their solution before they 
start coding it, perhaps documenting their solution 
as pseudocode or a flow chart. Evidence from higher 
education, and emerging models of effective practice 
in schools, suggest that pupils need to be able to 
understand code before they can write code – give 
them programs in block- or text-based languages 
and ask them to trace them through, using logical 
reasoning to predict what would happen when the 
code is run. For pupils, it is often less daunting for 
to be given skeleton code to edit, or buggy code to 
fix, than to have to start from a blank screen. Pair 
programming is a proven, effective development 
methodology in the software industry and is likely 
to have its place in the classroom too. Similarly, 
reviewing code written by peers helps develop 
evaluation skills and gives pupils more experience of 
reasoning about code (see Grover, 2016). 

1	 Pupils often try to debug programs by making random changes, unsupported by any reasoning, and running the changed 		
	 program to see if it behaves better. This isn’t computational thinking; it’s simply guesswork.

In his guide to Decoding the programmes of study for 
computing document, Simon Peyton Jones suggests 
the following approaches to teaching programming 
(Peyton Jones, 2014):

●● Simply experiment with the medium. 
Programming environments like Scratch and 
Kodu make it easy to try things out in a playful, 
exploratory way: ‘I wonder what happens if I 
press that button/drag that shape?’ At this stage 
the goal is to experiment, gain confidence that 
nothing bad will happen, and gain intuition about 
what happens. It’s rather like a toddler playing 
with building bricks.

●● Simply copy an existing program, run it 
and then start making small changes to it. 
The program solves the ‘blank sheet of paper’ 
problem. Some changes are limited but fun (for 
example, change the colour of the monster). 
As confidence builds, pupils will become more 
ambitious (for example, can we have more than 
one monster?).

●● Start to predict what a change will do. 
One important aspect of computational thinking 
is to be able to predict what a program will do 
or what effect a change to the program will 
have. For simple, straight-line programs (that is, 
a simple sequence of instructions) this is pretty 
easy; the more complicated the program, the 
harder it gets. But at every level the ability to 
reason logically about the program is key. 

●● Debug a program that is not working 
properly. For example, if you want to draw a 
square with a floor turtle, you might forget to 
put the pen down, so the turtle crawls around 
but doesn’t draw anything. Debugging always 
involves coming up with a guess (or hypothesis) 
about what is going wrong, performing 
experiments to confirm the guess and making a 
change that you predict will fix it.(1)

●● Explain to someone else how/why your 
program works. The simple act of explaining 
often reveals latent bugs in your program or 
potential simplifications to your code. 
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●● Read a program and figure out its purpose. 
For example  
T := 0 
for I = 1..N { T := T+I }

●● You could talk about loops and variables, but an 
experienced programmer would say ‘oh, that just 
adds up the numbers between 1 and N, and puts 
the total in T’. That is, she has worked out the 
purpose of the code, rather than just following 
the individual steps it takes.

●● Starting from an idea of what you want 
your program to do, write a program from 
scratch to do it.  

 Classroom activity ideas

●● Get pupils to ‘reverse engineer’ some of the 
programs they use. For example, they might 
think through the different states in which a 
simple system, such as a smart TV remote or 
a digital microwave oven, can be, and how one 
links to another (an example of a finite-state 
machine, see page 30). They could think through 
what algorithms have been coded into simple 
or more-complex games they play. Pupils could 
think about how complicated the code would 
have to be for familiar application software such 
as Word or PowerPoint. Draw their attention to 
how the model-view-controller design pattern 
has been applied to many of these examples.

●● Look for (or create) some simple programming 
exercises which focus on particular learning 
objectives. For example, when teaching pupils 
how a sequence of steps in an algorithm can 
be translated into code, give pupils a simple 
algorithm (for example, to draw a regular 
pentagon) and set them the challenge of 
implementing this as code. 

●● Set some extended programming projects in 
which pupils can work through the process 
of software development, from original design 
through writing code to testing and debugging 
their programs. 

●● Here are some ideas for extended programming 
projects:

»» Year 7: turtle graphics in two languages; 
creating an animated dance routine; 
developing a game for the BBC micro:bit; 
developing a maths quiz for primary pupils in 
a feeder school.

 
 

»» Year 8: write a program to encrypt and 
decrypt text using a shared key; program a 
robot to find a path through a maze; create 
a simple chat bot; investigating recursion (for 
example, fractals using turtle graphics).

»» Year 9: composing music; storing and 
retrieving information in a database; analysing 
a large public data set; mobile phone app 
development (Dorling and Rouse, 2014). 

 

  Further resources

Barefoot Computing (2014) Programming. Available 
from http://barefootcas.org.uk/barefoot-primary- 
computing-resources/concepts/programming/ (free, 
but registration required).

BBC Bitesize (n.d.) Controlling physical systems. 
Available from www.bbc.co.uk/guides/zxjsfg8

BBC Cracking the Code (n.d.) For examples of source 
code for complex software systems such as robot 
footballers and a racing car simulator. available from 
www.bbc.co.uk/programmes/p01661pj

Computing at School (2016.) CAS Chair, Prof. Simon 
Peyton Jones’ explanation of some of the computer 
science that forms the basis for the computing 
curriculum. Available from http://community.
computingatschool.org.uk/resources/2936

Code.org (n.d.) For activities and resources. Available 
from http://code.org/educate

Ford, P. (2015) What is code? Business Week, 
Bloomberg. Available from www.bloomberg.com/
graphics/2015-paul-ford-what-is-code/

Norvig, P. (2014) Teach yourself programming in ten 
years. Available from http://norvig.com/21-days.html

Rushkoff, D. (2010) Program or be programmed: 
Ten commands for a digital age. New York, NY: OR 
Books.

http://barefootcas.org.uk/barefoot-primary- computing-resources/concepts/programming/
http://barefootcas.org.uk/barefoot-primary- computing-resources/concepts/programming/
http://www.bbc.co.uk/guides/zxjsfg8
http://www.bbc.co.uk/programmes/p01661pj.
http://community.computingatschool.org.uk/resources/2936
http://community.computingatschool.org.uk/resources/2936
http://code.org/educate
http://www.bloomberg.com/graphics/2015-paul-ford-what-is-code/
http://www.bloomberg.com/graphics/2015-paul-ford-what-is-code/
http://norvig.com/21-days.html
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How do you  
program a  
Computer?

Programming a computer 
involves writing code

The code is the set of instructions needed to make 
the computer do what you want, and this has to 
be written in a programming language which the 
computer understands. There are many languages 
to choose from. Some of these will work on only 
particular devices, or are only intended for a small 
set of particular purposes. Some languages have been 
developed specifically with children or other new 
programmers in mind, whereas others would be best 
left to professional software developers working on 
complex projects (although some more-confident 
and motivated pupils might relish the challenge of 
mastering such a language). In some languages, you 
write a program as a sequence of commands for the 
computer to execute; in others, you might create 
classes of objects with particular properties that can 
interact with one another, or sets of functions, each 
of which will produce certain output from given input. 

Programming languages are formal and have to be 
used in precise ways. Programs are made up of 
precise, unambiguous instructions – there’s no room 
for interpretation or debate about the meaning of a 
particular line of computer code. You are only able to 
write code using the clearly defined vocabulary and 
grammar of the language, but typically you do so using 
words taken from English, so code is something which 
people can write and understand but the computer 
can also follow. Each programming language will have 
its own compiler or interpreter, written, or at least 
customised, for the particular system on which it 
runs. This takes the code written in the programming 
language and converts that, either in one go or a 
bit at a time, into the sort of instructions which 
the computer’s central processing unit (CPU) can 
follow. We call these instructions ‘machine code’: the 
commands here are very simple ones but modern 
processors can execute these at very, very high speed. 

2	 www.touchdevelop.com/docs/touch-develop-in-208-bits
3	 From www.microbit.co.uk/offline

At Level 3, the details of compilers and interpreters 
are unlikely to feature significantly, and often other 
layers of abstraction are present between the 
programming language itself and the CPU – Scratch 
programs run inside a Flash runtime environment 
within the web browser; and Snap!, TouchDevelop 
and the Trinket version of Python are all interpreted 
as JavaScript, itself being executed within the web 
browser that runs on the CPU itself. 

Programming the BBC micro:bit perhaps gives 
pupils more of an insight into the detail here, with 
programs in TouchDevelop, Code Kingdoms and the 
blocks editor being converted to runtime machine 
code (the .hex file) by a JavaScript compiler running 
in the web browser.(2) Python on the micro:bit 
works a little differently: it flashes a micro-Python 
interpreter onto the micro:bit, which then reads 
and interprets the Python source code that’s 
flashed to the micro:bit.

Figure 2.1(3)

How are instructions stored  
and executed?

You can get a feel for what machine code is like 
through emulators such as the Little Man Computer 
(LMC). This abstraction captures the fundamental 
architecture of modern computers well, in which 
data and instructions are stored side by side in 
main memory, with a central processor fetching 
instructions, executing them and then receiving 
or outputting data depending on what those 
instructions are – called Von Neumann architecture, 
after the designer of ENIAC (Electronic Numerical 
Integrator And Computer), one of the first 
electronic stored-program computers which, like 
most computers after it, adopted this approach. 

http://www.touchdevelop.com/docs/touch-develop-in-208-bits
http://www.microbit.co.uk/offline
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The LMC abstraction models a computer as if it 
were a ‘little man’ in a closed room with just 100 
mailboxes (the memory) at one end of the room 
and two further mailboxes, input and output, at the 
other end. In the middle of the room, a calculator 
(the accumulator) allows addition and subtraction 
to be done, and there’s a resettable counter which 
points to the mailbox where the next instruction 
will come from. Normally, the counter increases 
by one each time, so instructions are worked 
through in sequence, although branch and repeat 
instructions can change this. Programming the LMC 
involves putting a sequence of instructions, plus the 
data into the mailboxes, setting the counter to zero 
and letting the LMC work through the instructions 
given.(4) A number of online LMC implementations 
are available.(5) 

Modern processors are somewhat more complex 
than this and obviously run significantly faster, but 
the essential ideas of data and instructions being 
stored in memory, and simple instructions being 
executed one after another, remain the same. 
Between fetching and executing instructions, the 
instructions are decoded, routing the data that 
follows to one of the many logic circuits which 
make up the CPU. Neil Brown puts it like this:

The processor runs a fetch – execute 
cycle. It fetches a single instruction from 
memory, which is then executed. For 
example, a LOAD instruction loads a value 
from memory into a processor register, 
an ADD instruction adds two registers, 
and a STORE instruction stores a value 
from a register back into memory. Once 
an instruction has been executed, the 
next instruction is fetched and executed. 
The number of instructions that can be 
executed in a second is known as the clock 
speed, so 1MHz is one million instructions 
per second.(6)

However, he goes on to explain that modern 
processors are in practice somewhat more 
complex. Apart from the simplest microprocessor-
controlled devices, modern computers are multi-
core devices, with a number of CPUs each able 
to execute instructions independently of and, in 
parallel with, the others. Parallel computing, using 

4	 https://en.wikipedia.org/wiki/Little_man_computer
5	 For example www.peterhigginson.co.uk/LMC/
6	 https://academiccomputing.wordpress.com/2012/04/29/the-computer-is-a-lie/
7	 Prof. Steve Furber discussing the SpiNNaker spiking neural net computer at www.youtube.com/watch?v=wnSjR04qang 

many CPU cores simultaneously, can be used for 
applications such as graphics rendering, search and 
even simulating the brain.(7) 

What programming languages 
should you use?

There are many languages to choose from. The 
majority are more complex than necessary 
for those still getting to grips with the ideas of 
programming, but there are plenty of simple, well 
supported, general-purpose languages that can 
be used very effectively in the lower secondary 
classroom. Try to pick a language that you will find 
easy to learn or, better still, know already.

Consider these points when choosing a 
programming language:

●● Not all languages run on all computer systems.
●● Choose a language that is suitable for your 

pupils. There are computer languages that are 
readily accessible to lower-secondary pupils – in 
some cases this will mean one that has been 
written with pupils in mind, or at least adapted 
to make it easier to learn, but well constructed 
general-purpose languages should not be ruled 
out.

●● Choose a language supported by a good range of 
learning resources. It’s better still if it has online 
support communities available, both for those 
who are teaching the language and those who 
are learning it.

●● It is beneficial to the pupils if they can continue 
working in the language on their home computer 
or, even better, if they can easily continue to 
work on the same project via the internet.

●● Think carefully about primary to secondary 
transition. If many of your pupils have been 
learning, for example, Scratch whilst at primary 
school, then they can hit the ground running with 
some ambitious projects for S1 without having 
to learn the commands and interface of a new 
language. On the other hand, they might perhaps 
have become somewhat jaded with Scratch and 
be ready for something different, now they are at 
‘big school’.

https://en.wikipedia.org/wiki/Little_man_computer
http://www.peterhigginson.co.uk/LMC/
https://academiccomputing.wordpress.com/2012/04/29/the-computer-is-a-lie/
http://www.youtube.com/watch?v=wnSjR04qang
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●● Aim for depth rather than breadth – the 
computing curriculum is about learning the 
principles of computer science through practical 
programming, rather than learning lots of 
different languages. Mastering one or two 
languages will mean pupils can start to tackle 
authentic problems, perhaps from elsewhere in 
the curriculum, with a degree of independence. 
Fluency in a couple of languages is far more 
useful than a vague familiarity with a dozen. 
There is value in learning multiple languages 
and, particularly, different language paradigms, 
but there’s no need to rush into this at Level 
3 or Level 4. Few of your pupils will become 
professional software developers but all ought to 
understand the basics of programming.

(8)

8	 Sentence, S (2016) Computing At School Annual Survey 2016. Available at http://community.computingatschool.org.uk/		
	 files/8106/original.pdf (accessed 28/12/16)
	 http://ishallteach.org/index.php/2016/05/18/survey-results-what-programming-languages-are-being-taught-in-classroom-		
	 edtech-ict-computing-education/
9	 Online at http://cacm.acm.org/blogs/blog-cacm/203554-five-principles-for-programming-languages-for-learners/fulltext; qv 		
	 https://computinged.wordpress.com/2016/06/20/how-to-choose-programming-languages-for-learners/

Mark Guzdial recently blogged about his own set of 
principles for choosing a programming language for 
teaching:(9)

	 (1) Connect to what learners know. 
	 (2) Keep cognitive load low. 
	 (3) Be honest. 
	 (4) Be generative and productive. 
	 (5) Test, don't trust.

There’s a view that some languages are better at 
developing good programming ‘habits’ than others. 
Good teaching, in which computational thinking is 
stressed alongside coding, through an emphasis on 
planning and reasoning about code, should help to 
prevent pupils developing bad coding habits at this 
stage.

Figure 2.2 CAS survey of 1,159 teachers of computing, 2015(8)

http://community.computingatschool.org.uk/files/8106/original.pdf
http://community.computingatschool.org.uk/files/8106/original.pdf
http://ishallteach.org/index.php/2016/05/18/survey-results-what-programming-languages-are-being-taught-in-classroom-			edtech-ict-computing-education/
http://ishallteach.org/index.php/2016/05/18/survey-results-what-programming-languages-are-being-taught-in-classroom-			edtech-ict-computing-education/
http://cacm.acm.org/blogs/blog-cacm/203554-five-principles-for-programming-languages-for-learners/fu
https://computinged.wordpress.com/2016/06/20/how-to-choose-programming-languages-for-learners/
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  Further resources			 
	

CS Field Guide (2016) Programming languages. 
Available from http://csfieldguide.org.nz/en/
chapters/programming-languages.html

Iry, J. (2009) A brief, incomplete, and mostly wrong 
history of programming languages. Available from 
http://james-iry.blogspot.mx/2009/05/brief-
incomplete-and-mostly-wrong.html

Rosettacode.org (n.d.) Many programming languages 
compared for different problems and algorithms. 
Available from http://rosettacode.org/wiki/Rosetta_
Code

Utting, I., Cooper, S., Kolling, M., et al. (2010) 
Alice, Greenfoot, and Scratch – A discussion. 
University of Kent. Available from http://kar.kent.
ac.uk/30617/2/2010-11-TOCE-discussion.pdf

Visual  
Programming 
Languages
There is a number of graphical programming 
toolkits available; these make learning to code 
easier than it’s ever been. In most of these, 
programs are developed by dragging or selecting 
on-screen blocks or icons which represent 
particular instructions in the programming language. 
These can normally only fit together in ways that 
make sense, and the amount of typing –  and thus 
the potential for spelling or punctuation (syntax) 
errors – is kept to an absolute minimum.

With toolkits like these it’s easy to experiment 
with creating code. By letting the programmer 
focus on the ideas of their algorithm, rather than 
the particular vocabulary and grammar of the 
programming language, programming and learning 
to program become easier and often need less 
teacher input.

Kodu

Microsoft’s Kodu (Figure 2.3) is a rich, graphical 
toolkit for developing simple, interactive 3D games.

Each object in the Kodu game world can have its 
own program. These programs are ‘event driven’: 
they are made up of sets of ‘when [this happens], 
do [that]’ conditions, so that particular actions are 
triggered when certain things happen, such as a key 
being pressed, one object hitting another, or the 
score reaching a certain level.

Figure 2.3 Kodu interface

Programmers can share their games with others in 
the Kodu community, which facilitates informal and 
independent learning. There’s also plenty of scope 
for pupils to download and modify games developed 
by others, which many find quite an effective way to 
learn the craft of programming. This can also offer 
pupils a sense of creating games with an audience 
and purpose in mind.

Scratch

In Massachusetts Institute of Technology’s Scratch 
(Figure 2.4), the programmer can create their own 
graphical objects, including the stage background on 
which the action of a Scratch program happens, and 
a number of moving objects (‘sprites’), such as the 
characters in an animation or game.

Figure 2.4 Screenshot of a Scratch program

http://csfieldguide.org.nz/en/chapters/programming-languages.html
http://csfieldguide.org.nz/en/chapters/programming-languages.html
http://james-iry.blogspot.mx/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.mx/2009/05/brief-incomplete-and-mostly-wrong.html
http://rosettacode.org/wiki/Rosetta_Code
http://rosettacode.org/wiki/Rosetta_Code
http://kar.kent.ac.uk/30617/2/2010-11-TOCE-discussion.pdf
http://kar.kent.ac.uk/30617/2/2010-11-TOCE-discussion.pdf
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Each object can have one or more scripts, built up 
using the building blocks of the Scratch language. To 
program an object in Scratch, you drag the colour-
coded block you want from the different palettes 
of blocks, and snap this into place with other blocks 
to form a script. Scripts can run in parallel with one 
another or be triggered by particular events, as in 
Kodu. 

A number of other projects use Scratch as a 
starting point for their own platforms. For example, 
ScratchJr is a tablet app designed for very young 
programmers. There’s a great online community 
for Scratch developers to download and share 
projects globally, making it easier for pupils to 
pursue programming in Scratch far beyond what’s 
needed for the Scottish curriculum. There’s also 
a supportive educator community, which has 
developed and shared high-quality curriculum 
materials.

The current version of Scratch (2.0) allows users 
to create their own new blocks built from Scratch’s 
commands, and allows parameters to be passed to 
these blocks. These custom blocks can display text 
on screen, change sprite or global variables and so 
on, but they cannot return values – that is, they are 
procedures rather than functions, and this can be a 
limiting factor with Scratch.

Scratch is available as a free web-based editor 
or as a standalone desktop application. Files can 
be moved between online and offline versions. 
There’s some support for interfacing with hardware 
components, including webcams, and a way to 
extend Scratch functionality via an application 
programming interface (API).(10) 

Snap!

Berkeley’s Snap!(11) started life as Build Your Own 
Blocks (BYOB) – a fork of the Scratch code which, 
unsurprisingly, allowed users to create their own 
blocks. Scratch now has this functionality, albeit in 
a somewhat limited way, but Snap! has continued 
development, focussing on implementing some 
more-sophisticated computer science ideas in a 
block-based language: perhaps the most immediate 

10	http://scratchx.org/
11	 Introduction by John Stout for CAS TV at www.youtube.com/watch?v=7tjNnF4fAgI 
12	http://snapapps.github.io/
13	http://bjc.berkeley.edu/

offers proper functions that can return values to 
the program or function that called them (see 
Figure 2.5). 

Snap!’s functions, though, are ‘first class’ citizens; 
that is, functions can be passed as arguments to 
other functions. It’s relatively easy in Snap! to 
implement new control structures (such as ‘for’ 
loops) or functional programming ideas (such as a 
map function which applies the same user-specified 
function to each of a list of elements). Snap! also 
supports anonymous ‘lambda’ functions. Snap! has 
better support for lists too, which can be useful 
when teaching data structures, including the ability 
to have lists of lists.

Snap! is implemented in JavaScript so runs in any 
browser, including those without Flash support, 
such as tablet computers. Like Scratch, there’s a 
number of extensions and modifications available, 
including tools to import (but not export) Scratch 
projects, an exporter to create standalone 
applications, and Edgy,(12) a version of Snap! 
designed for programming with graphs. On the 
downside, there is nothing like the vibrant, global 
user community of Scratch, and far fewer teaching 
resources are available. However, it is used as the 
teaching language for Berkeley’s Beauty and Joy of 
Computing course, which is also offered to US high-
school students as an APCS (advance placement 
computer science) Principles course.(13)

Figure 2.5 Recursive implementation of quicksort in 
Snap!

http://scratchx.org/
http://www.youtube.com/watch?v=7tjNnF4fAgI
http://snapapps.github.io/
http://bjc.berkeley.edu/
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  Classroom activity ideas

●● Pupils could develop a game in Kodu, taking 
inspiration from some of the games on the Kodu 
community site. As a starting point, tell them to 
create a game in which Kodu (the player’s avatar 
in the game) is guided around the landscape 
bumping into (or shooting) enemies.

●● Pupils could take photographs of one another 
in a variety of dance poses, then use Scratch 
to create a program which animates these 
to choreograph a simple (or complex) dance 
routine. They could add music to their program, 
either by importing an MP3 or by composing 
music in Scratch. 

●● Scratch lends itself to game programming and 
it can be a good platform for pupils to work on 
projects like this quite independently. Start by 
asking pairs or groups to plan their games very 
carefully, thinking through the rules of their 
games, which will be the algorithms used as the 
basis for their programs. As well as working 
creatively to design the media used in their 
games, pupils will need to think through how 
the user’s interaction with the game will work, 
tweaking their game to provide just the right 
level of challenge to the player. Games based 
on classic arcade names such as Pong, Pacman 
and Duck Shoot can be programmed in Scratch 
without too much difficulty.

●● Pupils could implement fractions arithmetic in 
Snap!, treating fractions as lists with just two 
members. They would need to write helper 
functions to find highest common factors and 
simplify fractions, which could then be used 
in other functions to implement addition, 
subtraction, multiplication and division.

  Further resources

Armoni, M. and Ben-Ari, M. (2013) Computer science 
concepts in Scratch. Available from http://docplayer.
net/14600408-Computer-science-concepts-in-
scratch.html.

Bagge, P. (2015) How to teach primary programming 
using Scratch. Buckingham: The University of 
Buckingham Press. 

Brennan, K., Balch, C., Chung, M. (2014) An 
introductory computing curriculum using Scratch. 

Harvard, MA: Harvard Graduate School of 
Education. Available from http://scratched.gse.
harvard.edu/guide/ [29/12/16]

Harvey, B. and Mönig, J. (2011) Snap! reference 
manual. Available from http://snap.berkeley.edu/
SnapManual.pdf 

Kelly, J. (2013) Kodu for kids. Indianapolis, IN: Que 
Publishing.

Kodu Game Lab Community (n.d.) Available from 
www.kodugamelab.com/

Malan, D. (2007) Scratch for budding computer 
scientists. Available from http://cs.harvard.edu/malan/
scratch/printer.php 

Scratch (n.d.) Available from http://scratch.mit.edu/

ScratchEd (n.d.) Online community for educators. 
Available from http://scratch.mit.edu/educators/

Snap! (n.d.) Available from http://snap.berkeley.edu/

Text-based  
Programming 
Languages
Most software development in academia and 
industry takes place using text-based languages, 
where programs are constructed by typing the 
commands from the programming language at a 
keyboard.

Historically, text-based programming has been a 
real barrier for children when learning to code, 
and there’s no need to rush into text-based 
programming for Level 3. Python is by far the most 
common text-based programming language in 
secondary schools at the moment, and this offers 
many advantages, as it is relatively easy to learn and 
sufficiently flexible to be used for general-purpose, 
real-world development. However, it’s worth looking 
at some of the alternatives as well.

Logo

Logo was developed by Seymour Papert and others 
at MIT as an introductory programming language 
for children. It’s probably best known for its use of 

http://docplayer.net/14600408-Computer-science-concepts-in-scratch.html.
http://docplayer.net/14600408-Computer-science-concepts-in-scratch.html.
http://docplayer.net/14600408-Computer-science-concepts-in-scratch.html.
http://scratched.gse.harvard.edu/guide/
http://scratched.gse.harvard.edu/guide/
http://snap.berkeley.edu/SnapManual.pdf
http://snap.berkeley.edu/SnapManual.pdf
http://www.kodugamelab.com/
http://cs.harvard.edu/malan/scratch/printer.php
http://cs.harvard.edu/malan/scratch/printer.php
http://scratch.mit.edu/
http://scratch.mit.edu/educators/
http://snap.berkeley.edu/
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‘turtle graphics’ – an approach to creating images in 
which a ‘turtle’ (either a robot or a representation 
on screen) is given instructions for drawing a shape, 
such as:

REPEAT 4 [  
	 FORWARD 100 
	 RIGHT 90 ]

Repetition can be nested, allowing relatively 
complex figures to be programmed quite easily:

REPEAT 10 [ 
  REPEAT 5 [ 
     FD 100 
     RT 72 
   ] 
  RT 36 
] 

Figure 2.6

Papert saw Logo as a tool for children to think 
with, just as programming is both the means to and 
motivation for computational thinking.

In Logo programming, more-complex programs 
are built up by ‘teaching’ the computer new words. 
These are called procedures. For example, you 
could define a procedure to draw a square of a 
certain size using the key words of the language. 
Once this is defined, typing it in will then result in 
the turtle drawing a square.

TO SQUARE :SIDE  
	  REPEAT 4 [ 
		  FORWARD :SIDE  
		  RIGHT 90 ] 
	  END  
SQUARE 50

14	The classic introduction to programming in Logo beyond the realm of turtle graphics is Harvey (1997).  

Many associate Logo with these sorts of turtle 
graphics programs. Turtle graphics are supported 
by most programming languages, including Scratch, 
Snap!, TouchDevelop, Small Basic and Python. Logo 
is, however, capable of more-general programming 
so, for example, factorials (the product of the 
integers up to and including a number, for example 
5!=1x2x3x4x5=120) can be calculated using a 
recursive function in Logo:

TO FACTORIAL :NUMBER 
   IF :NUMBER = 1 [OUTPUT 1] 
   OUTPUT :NUMBER * FACTORIAL :NUMBER - 1 
END

Logo’s original development grew out of Lisp, 
and thus it also has good support for lists.(14) 
Whilst not a popular choice at present, the text-
based programming requirements of the Scottish 
curriculum could be met with Logo. 

Microsoft Small Basic

Microsoft Small Basic is a simplified version of 
Microsoft’s Visual Basic programming language and 
associated environments, and indeed Small Basic 
programs can be exported to form the basis of 
more-complex Visual Basic code. The language is 
text based, but has a development studio designed 
to help with many of the difficulties of text-
based programming: thus, there’s a built-in visual 
environment in which programs can be run, and 
‘IntelliSense’ is used to help suggest and complete 
the keywords of the language as you type. The 
language is kept deliberately small (just fourteen 
keywords), although these are supplemented through 
an extensive standard library, with support for turtle 
graphics, as in Logo, as well as external resources 
such as Flickr. For example, the program to draw a 
square in Small Basic would look something like:

Turtle.Show() 
For i = 1 to 4 
  Turtle.Move(100) 
  Turtle.TurnRight(90) 
EndFor

As with Kodu and Scratch, there’s an online gallery 
in which programmers can share the source code 
for their programs, with others using these as a 
starting point for their own work.
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TouchDevelop

Typing code on a tablet computer or a smartphone 
is not easy, and this can be problematic for schools 
that use these devices extensively.

Developed by Microsoft Research, TouchDevelop 
is a programming language and environment which 
takes into account both the challenges posed and 
the opportunities offered by touch-based interfaces 
such as those on tablets and smartphones.

TouchDevelop makes it quite easy to develop an 
app for a smartphone or tablet on the smartphone 
or tablet itself.

Although TouchDevelop is a text-based language, 
programmes aren’t typed but are created by 
choosing commands from the options displayed 
in a menu system. In this way, TouchDevelop is a 
halfway house between graphical and text-based 
programming. Those who have become familiar with 
drag-and-drop or keyboard-based programming 
sometimes find it hard to adapt to the touch-
optimised interface of TouchDevelop.

As with Logo, turtle graphics commands are 
available as standard. On some platforms 
TouchDevelop can also access some of the 
additional hardware built into the device, such as 
the accelerometer or global positioning system 
(GPS) receiver, allowing more-complex apps to 
be developed: these can be hosted online as web-
based apps, or installed directly on the device if 
it’s a Windows phone. TouchDevelop is one of the 
program editors provided for the BBC micro:bit 
(Figure 2.7).

Figure 2.7 TouchDevelop for the BBC micro:bit – 
the function shown implements a decimal-to-binary 
converter

A particularly nice feature of TouchDevelop is 
the use of interactive tutorials to scaffold pupils’ 
learning of the language.

Microsoft Excel

Whilst few would immediately think of it as a 
programming language, the Excel spreadsheet 
package is a text-based programming language, 
although admittedly a rather strange one (Peyton 
Jones et al., 2003). In Excel, rather than creating a 
sequence of instructions, you write code (Excel 
formulae) to create a system of interlinked 
functions, which take values in the spreadsheet cells, 
and return the results of performing computation 
on those functions. This provides some introduction 
to functional programming, as well as being 
really useful in all sorts of situations where a large 
amount of numerical data needs to be processed, 
or where mathematical functions provide a good 
way to model a complex real-world problem. The 
way in which an Excel spreadsheet shows the values 
in each cell can help pupils visualise how this sort of 
computation is performed.

Computational thinking processes such as 
logical reasoning, abstraction, decomposition and 
generalisation apply just as much to developing 
a spreadsheet in Excel as they do to writing 
imperative programs in Scratch, Small Basic or the 
other languages discussed here. There are many 
real-world problems for which a spreadsheet 
may be the most efficient solution. It would be a 
shame for pupils to miss out on developing some 
fluency with this approach to solving computational 
problems.

Python

For many secondary teachers and their pupils, 
Python seems a great introductory text-based 
programming language. Papert argued that a good 
teaching language should have ‘low floors, wide 
walls and high ceilings’, and Python seems to offer 
all three:

●● Whilst text-based programming inevitably 
introduces additional cognitive load over 
graphical languages, Python allows pupils to write 
programs with a similar structure to that which 
they would write in Scratch, at least in the case 
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of Scratch programs made up of just one script 
and some custom blocks – support for multi-
threading, which is easy in Scratch, is much less 
straightforward in Python.

●● Python has a good set of standard libraries to 
extend the functionality of the language, including 
a great implementation of turtle graphics,(15) 
game libraries(16) and support for developing 
programs with graphical user interfaces. There 
are many other libraries available publicly via 
the internet, together with tools to install these 
without too much difficulty. There is very good 
support for science, maths and statistics, plus 
libraries for natural-language processing, working 
with graphs and many, many other specialised 
areas. Python is installed as standard on the 
Raspberry Pi and Macs, and it can be run on 
Android phones and the BBC micro:bit. There’s 
also a good culture of folk sharing Python 
programs for a wide range of applications via 
Github. 

●● Python is a proper, grown-up programming 
language used for real-world software 
development in a range of domains. Whilst not 
an entirely functional programming language, 
Python supports functional programming., and 
whilst not an entirely object-oriented language, 
it supports object-oriented programming. There 
is lots of interest in it in academic computing, 
including as a teaching language for computer 
science degrees as well as for science and 
humanities. It can be used for developing server-
driven web applications, and is used by Google, 
Facebook, Yahoo, EventBrite, Reddit and NASA. 
Python programming skills are in demand for 
jobs in software development. 

Here’s an example of a simple Python program to 
do a drill-and-practice tables test, which illustrates 
some of the features of the language:

import random 
for i in range(10): 
        a = random.randint(1,12) 
        b = random.randint(1,12) 
        question="What is "+str(a)+" x "+str(b)+"? " 
        answer = int(input(question)) 
        if answer == a*b: 
            print("Well done!") 
        else: 
            print("No.")

15	https://docs.python.org/3/library/turtle.html
16	http://www.pygame.org/docs/ref/pygame.html and (more usefully) https://pygame-zero.readthedocs.io/en/latest/

If you’ve never seen Python code before, this might 
be a bit daunting, but spend a couple of minutes 
reading through the code and you should get a 
reasonable feel of what’s going on here.

A few things to mention:

●● The nice, indented layout here is a feature of 
the language – repeated code in the ‘for’ loop 
is indented, as are the different bits of code 
that get executed in the ‘if … else’ selection 
statement. Similarly, the ‘:’ which precedes these 
indented blocks is part of the language.

●● The randint command (which picks a random 
integer from the given range) isn’t part of the 
Python language itself, and so needs to be 
imported as part of the random library.

●● Variables in Python have implied types – ‘a’ and 
‘b’ are integers, ‘question’ is a string. Functions 
allow variables to be converted between one 
type and another.

●● In the print command, the text to be printed is 
inside ( brackets ). This was one of the significant 
changes from Python 2 to Python 3, so it’s worth 
double-checking which version of Python is 
running on your computer.

Don’t be too ambitious as you introduce pupils to 
programming in Python: learning any text-based 
language demands concentration and attention to 
detail, and this makes it hard for pupils to give lots 
of attention to mastering complex algorithmic ideas 
at the same time. 

Starting with something familiar, such as turtle 
graphics, offers a nice way in. The Logo program on 
page 54 can be implemented in Python very easily, 
using the standard Turtle library:

from turtle import *

for i in range(10): 
    for j in range(5): 
        forward(100) 
        right(72) 
    right(36) 
done()

This is very similar to the same program in Scratch 
(Figure 2.8):

https://docs.python.org/3/library/turtle.html
http://www.pygame.org/docs/ref/pygame.html
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Figure 2.8

Many pupils will be able to see the connections 
between the algorithm for their pattern and its 
expression as code in the two languages.

Another good introductory project is to get pupils 
to recreate the ‘choose your own adventure’ 
games of old (Jackson and Livingstone, 1982), 
perhaps providing pupils with the skeleton code of 
a procedure for an individual ‘room’ and allowing 
them to adapt and expand on this:

def room0(): 
    print ("""You are in room 0. 
There are exits here to room 1 and room 2.""")          	
    choice = input ("Choose 1 or 2: ") 
    if choice == "1" : 
        room1() 
    elif choice == "2": 
        room2() 
    else: 
        print("That's not one of the choices!") 
        room0()

Adventure games are based on a binary tree graph 
as the computational abstraction, with the nodes 
being the rooms (the states), and the edges the 
choices between them (the behaviour) at each 
point. With minor adjustments the same program 
could be turned into a ‘branching database’ 
classification key for a group of plants or animals.

17	See http://community.computingatschool.org.uk/resources/446 for a discussion of some of the school infrastructure issues 	
	 associated with providing pupils with access to programming tools.
18	For example https://trinket.io/, https://codio.com/ and https://c9.io/
19	For example Notepad ++, Atom or Mu.
20	 Integrated development environments, for example PyCharm Edu or Visual Studio Python Tools for Windows.
21	Or using the Jupyter/iPython interactive notebook package.

Some practicalities

Python is a free download and can be installed on 
Windows and Linux systems; Python is pre-installed 
on OS X. Python itself does not introduce any 
security risks to a properly configured system or 
network – it doesn’t need to run with administrator 
or root permission and thus can only modify files 
or directories to which the user already has write-
access.(17) An alternative to installing Python locally 
is to access a Python interpreter and editor via the 
web:(18) this is useful for learning the language, but 
can make it difficult to access particular libraries or 
develop more-complex software. 

Downloading and installing Python brings you the 
Python interpreter itself and a simple integrated 
development environment (IDE) called IDLE. 
You can use IDLE to write, save and edit Python 
programs and to run them – the output of the code 
appears in another window (Figure 2.9). 

Figure 2.9 IDLE showing program editor, console 
and turtle graphics output on a Mac

You don’t have to use IDLE to use Python. You can 
write Python code in any text editor,(19) running 
the program you save at the command prompt or 
shell, or you can use more sophisticated IDEs.(20) 
You can also use Python in interactive mode, either 
in IDLE’s console or at the command prompt/shell 
after just typing ‘python’.(21) This can be useful for 
just experimenting with the syntax of the language 
rather than for writing programs.

http://community.computingatschool.org.uk/resources/446
https://trinket.io/
https://codio.com/ and https://c9.io/
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Other languages

Other programming languages are available, which 
could be used as introductory text-based languages 
in secondary schools, for example: JavaScript, Ruby, 
Pyret, Visual Basic, Swift (OS X only) and Java 
(perhaps using Greenfoot).

  Classroom activity ideas

●● Revisit the turtle graphics activities you 
might have been using for programming in 
the old information and communication 
technology (ICT) curriculum. Whilst these can 
be accomplished using the motion and pen 
commands in Scratch, projects such as drawing 
regular polygons, a simple house or complex 
repeating patterns like ‘crystal flowers’ are 
usually well enough understood for pupils to 
get to grips with the additional challenges of 
text-based languages – there’s evidence that it 
can be effective for pupils to work in a visual- 
and a text-based language, side by side, for this 
(Dorling and White, 2015).

●● Explore some of the commands and functions 
available in these languages for working with text. 
For example, can pupils write a program which 
takes any sentence and converts it into capital 
letters, or reverses the sentence, or removes all 
the vowels from the sentence, or reverses each 
word in the sentence?

●● Explore how one or more of these programming 
languages could be used to simulate dice being 
rolled. In Excel, could pupils simulate rolling 
100 dice at the same time and then draw a bar 
chart of the results? Ask them to think how 
they would do that in Scratch. Can pupils create 
an app in TouchDevelop which simulates rolling 
a dice when the phone, tablet or micro:bit 
is shaken? Ask pupils to think about how 
deterministic computers can simulate random 
events such as these.

●● On the Raspberry Pi, Python can be used as a 
scripting language for Minecraft or for simple 
physical computing activities, using the Raspberry 
Pi’s general-purpose input/output (GPIO) pins.

  Further resources

Code Club (n.d.) Python projects. Available from 
www.codeclubprojects.org/en-GB/python/

DfES (1998) Archived lesson plan for creating 
crystal flowers. Available from http://webarchive.
nationalarchives.gov.uk/20090608182316/ 
http://standards.dfes.gov.uk/pdf/primaryschemes/
itx4e.pdf

Downey, A. (2012) Think Python. Sebastopol, CA: 
O'Reilly Media (qv http://greenteapress.com/
thinkpython/html/index.html).

Horspool, N. and Ball, T. (2013) TouchDevelop: 
Programming on the go. New York, NY: Apress. 
Available from www.touchdevelop.com/docs/book

Logo (n.d.) Available from www.calormen.com/
jslogo/ and elsewhere.

Papert, S. (1980) Mindstorms: Children, computers, 
and powerful ideas. New York, NY: Basic Books Inc.

Python (n.d.) Available from www.python.org/ and 
online via trinket.io 

Raspberry Pi (n.d.) Teaching and learning resources, 
many of which include Python programming. 
Available from www.raspberrypi.org/resources/ 
for example www.raspberrypi.org/learning/python-
intro/ 

Shaw, Z.A. (2013) Learn Python the hard way: A very 
simple introduction to the terrifyingly beautiful world of 
computers and code. Boston, MA: Addison-Wesley 
(qv http://learnpythonthehardway.org/book/).

Small Basic (n.d.) Available from www.smallbasic.
com/

TouchDevelop from Microsoft Research (n.d.) 
Available from www.Touchdevelop.com

Tranter, M. (2014) Ten Python lessons. CAS. Available 
from http://community.computingatschool.org.uk/
resources/2155 

http://www.codeclubprojects.org/en-GB/python/
http://webarchive.nationalarchives.gov.uk/20090608182316/
http://webarchive.nationalarchives.gov.uk/20090608182316/
http://standards.dfes.gov.uk/pdf/primaryschemes/itx4e.pdf
http://standards.dfes.gov.uk/pdf/primaryschemes/itx4e.pdf
http://greenteapress.com/thinkpython/html/index.html
http://greenteapress.com/thinkpython/html/index.html
http://www.touchdevelop.com/docs/book
http://www.calormen.com/jslogo/
http://www.calormen.com/jslogo/
https://www.python.org/
http://trinket.io
http://www.raspberrypi.org/resources/
http://www.raspberrypi.org/learning/python-intro/
http://www.raspberrypi.org/learning/python-intro/
http://learnpythonthehardway.org/book/
http://www.smallbasic.com/
http://www.smallbasic.com/
http://www.Touchdevelop.com
http://community.computingatschool.org.uk/resources/2155
http://community.computingatschool.org.uk/resources/2155
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What’s inside a 
Program?
Whilst the detail will vary from one language 
to another, there are some common structures 
and ideas which programmers use over and over 
again, from one language to another and from one 
problem to another:

●● Sequence: running instructions in order (see 
below).

●● Selection: running one set of instructions or 
another, depending on what happens (see page 
61).

●● Repetition: running some instructions several 
times (see page 63).

●● Modularity: building programs from smaller, 
independent blocks of code that return values or 
do specific things (see page 67).

●● Data structures: organising data so that it can 
be stored and retrieved from the computer’s 
memory (see page 73).

These are so useful that it’s important to make 
sure all pupils learn these. Sequence, selection 
and repetition are introduced at Level 2 of the 
computing curriculum, where pupils also learn 
about variables, simple data structures that handle 
just one piece of information.

This Scratch script (Figure 2.10) shows sequence, 
selection, repetition and variables. Can you work 
out which bit is which before we look at these 
ideas in detail?

Figure 2.10

22	 In imperative programming languages such as those discussed here. Declarative languages such as Haskell, F# and Excel work 	
	 rather differently.

This program does the same thing in Python. Can 
you see the similarities and differences between 
the two? Can you work out how Python deals with 
sequence, selection, repetition and variables?

import random 
for i in range(10): 
         a = random.randint(1,12) 
         b = random.randint(1,12) 
         question="What is "+str(a)+" x "+str(b)+"? " 
         answer = int(input(question)) 
         if answer == a*b: 
             print("Well done") 
         else: 
             print("Think again")

  Further resources

BBC Bitesize (n.d.) How do we get computers to do 
what we want? (Covering sequence, selection and 
repetition). Available from www.bbc.co.uk/guides/
z23q7ty 

Berry, M. (2014) Tables Test. Scratch program, 
available from http://scratch.mit.edu/
projects/26116842/#editor [29/12/16]. 

Berry, M. (2016) Tables test. Python program, 
available from https://trinket.io/library/trinkets/
d15c8f972b [29/12/16].

Bitesize programming materials at www.bbc.co.uk/
education/topics/zhy39j6

Cracking the Code clip (n.d.) Available from www.bbc.
co.uk/programmes/p016j4g5

Sequence
Programs are built up of sequences of 
instructions.(22) At Early Years Level and Level 1, 
when pupils start programming with floor turtles, 
their programs consist entirely of sequences of 
instructions, built up as the stored sequence of 
button presses for what the floor turtle should do. 
As with any program, these instructions are precise 
and unambiguous, and the floor turtle will simply 
take each instruction (each button press) and turn 
that into signals for the motors driving its wheels.

http://www.bbc.co.uk/guides/z23q7ty
http://www.bbc.co.uk/guides/z23q7ty
http://scratch.mit.edu/projects/26116842/#editor
http://scratch.mit.edu/projects/26116842/#editor
https://trinket.io/library/trinkets/d15c8f972b
https://trinket.io/library/trinkets/d15c8f972b
http://www.bbc.co.uk/education/topics/zhy39j6
http://www.bbc.co.uk/education/topics/zhy39j6
http://www.bbc.co.uk/programmes/p016j4g5
http://www.bbc.co.uk/programmes/p016j4g5
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Pupils’ first Scratch or Python programs are 
also likely to be made up of simple sequences of 
instructions. Again, these need to be precise and 
unambiguous and, of course, the order of the 
instructions matters. In developing their algorithms, 
pupils have to work out exactly what order to 
put the steps in to complete a task. In more 
complex programs involving variables or other data 
structures, they will need to think through how the 
steps in their programs change the data stored.

Figure 2.11 A simple music program in Scratch

print("Hello!") 
name = input("What is your name?") 
print("It's a pleasure to meet you, "+name+".") 
print("What odd weather it's been of late.") 
today = input("What have you been doing today?") 
print("What a coincidence! I've been "+today.lower()+" too.") 

A simple chat bot in Python.

  Classroom activity ideas

●● Ask pupils to experiment with programming 
Scratch to play music, as in Figure 2.11 above. 
Take a simple, familiar melody, perhaps in score 
notation or just as a list of notes, and have 
pupils translate this into a sequence of Scratch 
commands. Can pupils tell by ear where there 
are mistakes in their code? Pupils could do a 
similar exercise using Python’s winsound library 
for Windows, or Sonic Pi.

●● Ask pupils to design, plan and code scripted 
animations in Scratch, perhaps using a timeline or 
storyboard to work out their algorithm before 
converting this into instructions for sprites in 
Scratch. Animations could be based on historical 
events, scenes from a reading book or dialogue 
in a foreign language pupils are studying. Scratch 
has support for recording and playing back audio. 
Pupils might enter their animation for the UK 
Schools Computer Animation Competition.

●● Pupils could take the chat bot idea above and 
develop this further, either in Python (as shown) 
or Scratch, or perhaps using both languages side 
by side.

  Further resources

Animation 16 (2015) UK schools computer animation 
competition. University of Manchester. Available from 
http://animation16.cs.manchester.ac.uk/. YouTube 
channel for winning entries www.youtube.com/
user/AnimationComp

Barefoot Computing (2014) Sequence. Available 
from http://barefootcas.org.uk/barefoot-primary-
computing-resources/concepts/programming/
sequence/ (free, but registration required).

Barefoot Computing (2014) Viking invasion 
animation in Scratch (for upper KS2). Available from 
http://barefootcas.org.uk/programme-of-study/
use-sequence-in-programs/upper-ks2-viking-raid-
animation-activity/ (free, but registration required).

Code Club (n.d.) Python activities involving 
sequence. Available from https://codeclubprojects.
org/en-GB/python/about-me/ and http://projects.
codeclubworld.org/en-GB/09_python/04/Turtle%20
Power.html 

http://animation16.cs.manchester.ac.uk/
http://www.youtube.com/user/AnimationComp
http://www.youtube.com/user/AnimationComp
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/sequence/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/sequence/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/sequence/
http://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/upper-ks2-viking-raid-animatio
http://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/upper-ks2-viking-raid-animatio
http://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/upper-ks2-viking-raid-animatio
https://codeclubprojects.org/en-GB/python/about-me/
https://codeclubprojects.org/en-GB/python/about-me/
http://projects.codeclubworld.org/en-GB/09_python/04/Turtle%20Power.html
http://projects.codeclubworld.org/en-GB/09_python/04/Turtle%20Power.html
http://projects.codeclubworld.org/en-GB/09_python/04/Turtle%20Power.html


61

Programming

Cracking the Code (2013) Clip on programming 
a robotic toy car.  Available from www.bbc.co.uk/
programmes/p01661yg

Raspberry Pi (n.d.) Python chat bot activity. Available 
from www.raspberrypi.org/learning/turing-test-
lessons/lessons/ 

Selection
Selection is the programming structure through 
which a computer executes one or other set of 
instructions according to whether a particular 
condition is met or not. This ability to do different 
things, depending on what happens in the computer 
as the program is run – or out in the real world – 
lies at the heart of what makes programming such a 
powerful tool.

Selection is an important part of creating a game in 
Kodu. An object’s behaviour in a game is determined 
by a set of conditions, for example: WHEN the left 
arrow is pressed, the object will move left. Similarly, 
interactions with other objects, variables and 
environments in Kodu are programmed as sets of 
WHEN … DO … conditions. For example, WHEN 
I bump the apple DO eat it AND add 2 points 
to score. Scratch can also be programmed in this 
event-driven way (Figure 2.12):

Figure 2.12

Many apps and other programs include this sort of 
event-driven programming for implementing the 
user interface: tapping this button or clicking that 
icon causes the program to respond in a particular 
way, perhaps changing the stored data and the user’s 
view of it.

In Scratch, Python and other languages, you can 
build selection into a sequence of instructions, 
allowing the computer to run different instructions 

depending on whether a condition is met. For 
example, this program tests whether a word has 
more than five letters (Figure 2.13):

Figure 2.13

answer = input("Type a word ") 

if len(answer)>5: 
   print("That's a long word!")

Word length tests in Scratch and Python

Notice that the thing which determines whether 
‘That’s a long word!’ gets displayed is a test (a 
‘condition’) which is either true or false in the 
Boolean sense. If it’s true then the next bit of code 
(here say… or print… ) gets executed; otherwise it 
doesn’t.

We can use more complex Boolean conditions, for 
example the somewhat contrived (Figure 2.14):

Figure 2.14

answer = int(input("Give me a number! ")) 
if (answer % 3 == 0) and (not (answer < 1000)): 
    print("That's a multiple of three that's not less than a thousand!")

Boolean selection in Scratch and Python

Selection statements such as these are at the core 
of most game programs too, for example (Figure 
2.15): 

Figure 2.15

http://www.bbc.co.uk/programmes/p01661yg
http://www.bbc.co.uk/programmes/p01661yg
http://www.raspberrypi.org/learning/turing-test-lessons/lessons/
http://www.raspberrypi.org/learning/turing-test-lessons/lessons/


62

Programming

It’s worth noting that selection statements can be 
nested inside one another, allowing more-complex 
sets of conditions to be used to determine what 
happens in a program. Look at the way some ‘if ’ 
blocks are inside others in the following script to 
model a clock in Scratch, which also uses repetition 
and three variables for the seconds, minutes and 
hours of the time (see Figure 2.16):

Figure 2.16

from time import sleep

hours=7 
minutes=50 
seconds=48

while True: 
     sleep(1) 
     seconds=seconds+1 
     if seconds==60: 
         seconds=0 
         minutes=minutes+1 
         if minutes==60: 
            minutes=0 
            hours=hours+1 
            if hours==24: 
                hours=0 
         print (hours,minutes,seconds)

Simple clock programs in Scratch and Python

Notice that in the Python code here and above we 
use a double == to check for equality; a single = is 
used to assign a value to a variable.

Selection statements in programming languages 
typically also include the ability to say what should 
happen if the condition is false. The usual structure 
for this is:

if <some condition> then: 
        <do something> 
else: 
        <do a different thing> 

At the core of many educational games are 
selection statements like this: if the answer is right 
then give a reward, else say the answer is wrong 
(see Figure 2.17).

 

Figure 2.17

answer=input("what is 7x8? ") 

if answer=="56": 
      print("Well done!") 
else: 
      print("Think again!")

Tables question in Scratch and Python

See also the Scratch and Python programs for the 
times tables game on page 75.

Some programming languages, including Python, 
allow multiple conditions to be combined into a 
single selection statement, with only the code for 
the first condition that’s true being executed:

answer = int(input("What was your mark? ")) 
if answer >= 70: 
    print ("You get an A") 
elif answer >= 60: 
     print ("You get a B") 
elif answer >= 50: 
     print ("You get a C") 
else: 
     print ("You fail!")

Grading program in Python
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Other languages, such as the functional 
programming language Haskell, implement 
something similar through pattern matching:

grade :: Integer->String 
grade mark 
  | mark >=70 = "A" 
  | mark >=60 = "B" 
  | mark >=50 = "C" 
  | otherwise = "fail"

Grading function in Haskell

  Classroom activity ideas

●● Encourage pupils to explore the different 
conditions which the character in Kodu can 
respond to in its event-driven programming. Get 
pupils to think creatively about how they might 
use these when developing a game of their own. 
Give them time to design their game, thinking 
carefully about the algorithm – that is, the rules – 
they are using.

●● Ask pupils to design simple question-and-answer 
games in Scratch. Encourage them to first think 
about the overall algorithm for their game 
before coding this, and then to work to develop 
the user interface, making this more engaging 
than just a cat asking lots of questions. It’s helpful 
if pupils have a target audience in mind for 
software like this.

●● Selection can also be used to design computer 
simulations for real-world systems. Pupils could 
use Scratch to model the outbreak of a disease, 
using colours to represent whether a sprite 
is infected or not, and then nested selection 
statements to determine if a sprite becomes 
infected when it touches another carrying the 
disease. The simulation can be made more 
sophisticated by adding in further selection 
criteria, such as natural immunity or whether 
a sprite has been vaccinated. This approach to 
simulating complex systems is called agent-
based modelling. A more sophisticated approach 
could use Python’s Mesa library(23) or Star Logo 
TNG.(24) 

23	https://pypi.python.org/pypi/Mesa/
24	http://education.mit.edu/portfolio_page/starlogo-tng/

  Further resources

Barefoot Computing (2014) Selection. Available from 
http://barefootcas.org.uk/programme-of-study/use-
selection-programs/selection/ (free, but registration 
required).

Papert, S. (1998) Does easy do it? Children, games, and 
learning. Available from www.papert.org/articles/
Doeseasydoit.html

Raspberry Pi (n.d.) Sorting hat lesson. Available from 
www.raspberrypi.org/learning/sorting-hat-lesson/

Berry, M. (2014) Analogue clock. Scratch 
program, available from  http://scratch.mit.edu/
projects/28742256/#editor [29/12/16].

Berry, M. (2013) Addition race. Scratch 
program, available from  http://scratch.mit.edu/
projects/15905989/#editor [29/12/16].

Repetition

Repetition in programming means to repeat the 
execution of certain instructions. This can make a 
long sequence of instructions much shorter, and 
typically easier to understand.

Using repetition in programming usually involves 
spotting that some of the instructions you want the 
computer to follow are the same, or very similar, 
and therefore draws on the computational thinking 
process of pattern recognition/generalisation. You 
will sometimes hear the repeating block of code 
referred to as a ‘loop’, that is, the computer keeps 
looping through the commands one at a time as 
they are executed (carried out).

Think about a simple turtle graphics program for a 
square (Figure 2.18):

https://pypi.python.org/pypi/Mesa/
http://education.mit.edu/portfolio_page/starlogo-tng/
http://barefootcas.org.uk/programme-of-study/use-selection-programs/selection/
http://barefootcas.org.uk/programme-of-study/use-selection-programs/selection/
http://www.papert.org/articles/Doeseasydoit.html
http://www.papert.org/articles/Doeseasydoit.html
http://www.raspberrypi.org/learning/sorting-hat-lesson/
http://scratch.mit.edu/projects/28742256/#editor
http://scratch.mit.edu/projects/28742256/#editor
http://scratch.mit.edu/projects/15905989/#editor
http://scratch.mit.edu/projects/15905989/#editor
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Figure 2.18

from turtle import *

forward(100) 
right(90) 
forward(100) 
right(90) 
forward(100) 
right(90) 
forward(100) 
right(90)

Squares (without repetition) in Scratch and Python

Notice how for each side we move forward and 
then turn right. In Scratch or Python, you could use 
repetition to simplify the coding for this by using 
the built-in repeat command, replacing this code 
with, for example (Figure 2.19): 

Figure 2.19

from turtle import *

for i in range(4): 
    forward(100) 
    right(90)

Squares in Scratch and Python

Using repetition reduces the amount of typing and 
makes the program reflect the underlying algorithm 
more clearly.

Notice that in Python we use a variable to keep 
track of how many times we’ve been round the 
loop. The Python function ‘range(4)’ is shorthand for 
the list of numbers 0, 1, 2, 3. The iterator variable 
‘i’ takes each of these values in turn. Thus the 
program:

for i in range(12): 
    print(7*i)

prints 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77 on 
screen.

To do something similar in Scratch, we’d need to 
keep track of this ourselves (Figure 2.20):

Figure 2.20

In Snap! this is easier as we have a for loop available 
in the standard tools library (Figure 2.21):

Figure 2.21
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In Python and Snap! the list for the iteration doesn’t 
need to be a sequence of numbers: any list will do. 
For example (Figure 2.22):

for day in ["Monday","Tuesday","Wednesday"]: 
    print day

Figure 2.22 Snap! using standard tools

In the examples above, the repeated code is run 
a fixed number of times, which is the best way to 
introduce the idea. You can also repeat code forever 
(Figure 2.23):

Figure 2.23

from turtle import * 
from random import randint

while True: 
     forward(10) 
     right(randint(0,3) * 90)

Random walks in Scratch and Python

Notice that the Python code here is a particular 
version of a ‘while’ loop (see below), where the 
condition is always true, so the code inside the loop 
runs forever.

This can be useful in real-world systems, such as 
a control program for a digital thermostat, which 
would continually check the temperature of a room, 
sending a signal to turn the heating on when this 
dropped below a certain value. This is a common 
technique in game programming. For example, the 
following Scratch code (Figure 2.24) would make a 
sprite continually chase another around the screen:

25	http://pygame-zero.readthedocs.io/en/latest/hooks.html

Figure 2.24

In event-driven applications, such as a game 
programmed in Kodu, you can think of all the 
different event conditions as sitting inside one big 
‘repeat forever’ loop. It’s easy to program the same 
idea in Scratch, as in the following example (Figure 
2.25) which uses the W, A, S and D keys to move a 
sprite around the screen. 

Figure 2.25

Much the same thing happens in PyGame Zero’s 
main game loop in Python:(25)

while game_has_not_ended(): 
     process_input() 
     update() 
     draw()

You can nest one repeating block of code inside 
another. The ‘crystal flower’ programs in Logo use 
this idea. For example (Figure 2.26):

http://pygame-zero.readthedocs.io/en/latest/hooks.html
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Figure 2.26

from turtle import *

for i in range(6): 
    for j in range(5): 
       forward(100) 
       right(72) 
    right(60)

Repetition can be combined with selection, so that 
a repeating block of code is repeated as many times 
as necessary, until or while a certain condition is 
true. There’s a subtle but important distinction here. 
The <code> in a ‘repeat until <condition> <code>’ 
loop is executed when the <condition> is false, but 
the code in the ‘while <condition> <code>’ loop is 
executed when the <condition> is true.

Compare (Figure 2.27):

Figure 2.27(26)

26	Note that this only works correctly the first time it is run. Can you work out why?

and:

guess = 0 
answer="no"

while answer == "no": 
     guess = guess+1 
     answer=input("Is your number " + str(guess) 
+"? (type yes or no)")

print("Your number is " + str(guess) +"!")

Linear search in Scratch and Python

Scratch and Snap! only provide ‘repeat until’ loops, 
whilst Python only offers ‘while’ loops, which is 
an important teaching point as pupils move from 
programming in one language to the other.

Sometimes it can be useful to break out of a loop 
before the end, and Python provides break and 
‘continue’ commands to allow this. The break jumps 
straight out of the loop, running whatever code 
comes next:

sentence = input('Give me a sentence: ')
firstword = '' 
for letter in sentence: 
    if letter==' ': 
        break 
    firstword = firstword + letter 
print ('The first word was ' + firstword)

Finding the first word of a sentence in Python using 
break

The continue, on the other hand, skips the rest 
of the code inside the loop but then goes back to 
beginning of the repeating loop, with the iterator 
moved on one point:

sentence = input('Give me a sentence: ') 
nospaces = '' 
for letter in sentence: 
    if letter==' ': 
        continue 
    nospaces = nospaces + letter 
print ('Without spaces, you get ' + nospaces)

Stripping the spaces from a sentence in Python using 
continue 
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  Classroom activity ideas

●● Ask pupils to use simple repetition commands to 
produce a ‘fish tank’ animation in Scratch, with 
a number of different sprites each running their 
own set of repeating motion instructions. This 
can be made more complex by including some 
selection commands to change the behaviour of 
sprites as they touch one another.

●● Encourage pupils to experiment with ‘crystal 
flower’ programs in Scratch, Logo, Python or 
other languages that support turtle graphics, and 
investigate the effect of changing the number of 
times a loop repeats, as well as the parameters 
for the commands inside the loop. What 
combination of numbers produces complete, 
symmetrical ‘flowers’? What numbers produce 
particularly aesthetically pleasing images? There 
are some great opportunities to link computing 
with spiritual, social and cultural education here, 
noting that traditional Islamic art uses repeated 
geometric patterns. 

●● Simple game programming in Scratch, Kodu or 
PyGame Zero will often use a combination of 
repetition and selection. Pupils could program a 
simple, one-player squash game by writing scripts 
for the ball which make it move repeatedly 
around the court until hitting the racquet or 
the back wall. The racquet script could use the 
event-driven loop above, but restrict movement 
to just up and down. Scratch has a built-in (if on 
edge bounce) command, so the trickiest thing 
here is determining what should happen to the 
ball when it hits the bat. Once pupils have a game 
like this working, they could adapt it to make a 
two-player version like the classic Pong video 
game. 

  Further resources

Barefoot Computing (2014) Repetition. Available 
from http://barefootcas.org.uk/programme-of-
study/use-repetition-programs/repetition (free, but 
registration required).

Berry, M. (2014) Scratch 2.0 Fishtank Game (tutorial). 
YouTube. Available from www.youtube.com/
watch?v=-qTZ5bFEdC8

Code Club World (n.d.) The Monty Hall problem in 
Python. Available from http://projects.codeclubworld.
org/en-GB/09_python_archive/05/Gameshow.html 
qv Krauss and Wang, 2003.

Digital Schoolhouse (n.d.) Dance scripts. Available 
from www.digitalschoolhouse.org.uk/workshops/
get-algo-rhythm 

Raspberry Pi Learning Resources (n.d.) Drawing 
snowflakes with Python Turtle. Available from www.
raspberrypi.org/learning/turtle-snowflakes/ (qv 
www.youtube.com/watch?v=JO2BTc7s38I).

Modularity
The above ideas of sequence, selection and 
repetition are covered at Level 2 in the curriculum, 
but remain conceptually and practically important 
as pupils continue programming at Level 3 and 
beyond.  At Level 3, pupils should be introduced 
to modularity in their programming, making use of 
ideas such as procedures and functions to bring 
computational thinking concepts like decomposition 
and abstraction into their coding and planning.

Procedures and functions (and other modular 
ideas such as classes) allow programs to be written 
with a far clearer structure, better reflecting the 
decomposition and abstraction that went into their 
design: just as we use decomposition to break a 
problem down into smaller problems, so modularity 
allows us to build programs up out of smaller parts. 
Similarly, as abstraction allows us to set to one side 
details, so modularity means that we can hide the 
details of specific implementation within procedure, 
function or class definitions.

Modularity allows for better generalisation too: 
often someone else might have written a function 
that solves part of a problem – typically we can 
simply call that function, perhaps part of a standard 
library, from our program without generally 
concerning ourselves with how they implemented 
this. Useful as it is to know algorithms for search 
and sort, most software developers will just take 
those as given. Most of the time, sorting a list in 
Python involves simply calling the built-in sort 
function, rather than writing your own code to 
implement bubble sort, quicksort or one of the 
other algorithms.

http://barefootcas.org.uk/programme-of-study/use-repetition-programs/repetition
http://barefootcas.org.uk/programme-of-study/use-repetition-programs/repetition
http://www.youtube.com/watch?v=-qTZ5bFEdC8
http://www.youtube.com/watch?v=-qTZ5bFEdC8
http://projects.codeclubworld.org/en-GB/09_python_archive/05/Gameshow.html
http://projects.codeclubworld.org/en-GB/09_python_archive/05/Gameshow.html
http://www.digitalschoolhouse.org.uk/workshops/get-algo-rhythm
http://www.digitalschoolhouse.org.uk/workshops/get-algo-rhythm
https://www.raspberrypi.org/learning/turtle-snowflakes/
https://www.raspberrypi.org/learning/turtle-snowflakes/
http://www.youtube.com/watch?v=JO2BTc7s38I
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sorted ([31, 41, 59, 26, 53, 58, 97])

To check if a number is prime or not, you can 
write your own function, or you can just use the 
‘isprime’ function from the number theory module 
in SymPy:(27)

from sympy.ntheory import 
isprimeprint(isprime(1301))

Modularity also makes it easy for a programmer to 
reuse her own code between different projects, 
as well-constructed functions and classes can be 
moved between programs quite easily.

Modularity is important for collaborative software 
development, as it makes it easy to share out 
across a team the work of writing software with 
individuals (or pairs) taking responsibility for 
implementing the detail of particular elements, 
according to agreed specifications.

Modularity helps with testing and debugging too, 
as each function, procedure or class can be tested 
independently of the others, making sure it does 
exactly what it’s supposed to do. For this to work, 
it’s important that the modular code doesn’t 
introduce unpredictable side effects which affect 
how other procedures or the main program itself 
operates. 

Modularity also makes it easy to maintain a 
program, gradually or dramatically improving 
efficiency. For example, a function which returns the 
highest common factor of a couple of numbers can 
be replaced by a more efficient one – the outside 
program calling this function will work, irrespective 
of which version of the function is used, but one 
version is (very much) faster than the other.

Figure 2.28

27	A Python library for symbolic mathematics, www.sympy.org/

def hcf(a,b): 
      bestsofar=1 
      test=1 
      while test <= a: 
             if (a % test == 0) and (b % test == 0): 
                  bestsofar = test 
             test = test + 1 
     return bestsofar

Inefficient algorithm to find highest common factors in 
Snap! and Python

Figure 2.29

def hcf(a,b): 
      if a == 0: 
          return b 
      else: 
          return hcf (b % a, a)

Euclid’s (recursive) algorithm to find highest common 
factor in Snap! and Python

Procedures

Procedures are a simple way of using modularity. 
We group together code with a particular purpose 
and give it a name. Then, rather than having to type 
the code each time we want to use it, we simply call 
the name we’ve given it.

To create a procedure in Scratch we use the ‘Make 
a Block’ button; in Python, we write code to define 
the procedure:

def procedure: 
         <procedure code goes here>

http://www.sympy.org/
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Take for example a procedure to draw a square  
(Figure 2.30): 

Figure 2.30

from turtle import * 

def square(): 
      for i in range(4): 
           forward(50) 
           right(90)

Procedure for a turtle graphics square in Scratch and 
Python

Then, code to draw a pattern of squares becomes 
easier to write, and to understand (Figure 2.31):

Figure 2.31

setx(-220) 
clear() 
for i in range(5): 
     pendown() 
     square() 
     penup() 
     forward(100)

Scratch and Python code for drawing five squares 
(Figure 2.32) using the above procedure

Figure 2.32

Parameters

You can pass values (numbers or other data such as 
strings and lists) to procedures, using generalisation 
to make procedures much more flexible. We call 
these values ‘parameters’. For example, we can 
generalise our square procedure to make another 
procedure which draws a regular polygon with sides 
of any given length (Figure 2.33):

Figure 2.33

def polygon(sides, length): 
     for i in range(sides): 
          forward(length) 
          right(360./sides)

Procedure for a turtle graphics regular polygon in 
Scratch and Python

We can then use this procedure to make more-
complex patterns (Figure 2.34):

Figure 2.34
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clear() 
edge = 20 
for i in range(5): 
     polygon(6, edge) 
     edge = edge + 20

Scratch and Python code to draw a nest of hexagons 
(Figure 2.35) using the above procedure

Figure 2.35

Functions

Simply, functions are procedures that return values 
to the code that called them, which might include 
another function. Whereas procedures help with 
structuring what a program does, functions come 
into their own for decomposing and abstracting the 
computation that the program performs.

Thus, to print the average (mean) of a list of 
numbers with a procedure, we might do:

def mean(list): 
      total = 0. 
      for item in list: 
           total = total + item 
      average = total / len(list) 
      print('the mean is ' + str(average))

mean([3,4,5,9])

... whereas a function would simply work out the 
average and then let the outside program decide 
what to do with that; it could be printing, or it 
could be updating a record, or using it in another 
calculation or whatever. This provides much more 
flexibility.

def mean(list): 
      total = 0. 
      for item in list: 
           total = total + item 
      return total / len(list)

The inability to create functions that return values 
is one of the limitations of Scratch but Snap! allows 
this, which makes it useful for a much broader range 
of computation. Thus, for example, we can write a 
function which takes a decimal number and returns 
the binary equivalent (Figure 2.36):

Figure 2.36

def dec2bin(decimal=0): 
       if decimal == 0: 
             return '0' 
       binary = '' 
       while decimal > 0: 
              binary = str(decimal % 2) + binary 
              decimal = decimal // 2 
       return (binary)

Snap! and Python functions for converting decimal 
numbers to a string of bits as their binary 
representation. Note that Python has a built-in function 
for this: bin()

Snap! and Python also allow functions to be 
passed as arguments to other, higher order, 
functions. For example, converting a list of numbers 
into binary can be done using the higher order map 
function, which takes a function and applies it to 
every element of a list, returning a list as a result 
(Figure 2.37):

Figure 2.37

list(map(dec2bin,[65,67,83]))

Mapping the decimal-to-binary conversion function 
above over a list of three numbers
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Functions become important in computer science 
and software engineering later on, partly because 
it’s easier to reason logically and mathematically 
about what a function does, and also because 
functions, at least in strict, functional programming 
languages such as Haskell, cannot have side effects, 
which is important when safety and security are of 
primary concern.

Recursion

Procedures and functions can refer back to 
themselves.

Fractals are geometrical figures where each part 
of the figure is a smaller version of the whole. We 
can draw these in Scratch or Python by defining a 
procedure which calls itself (Figure 2.38).

Figure 2.38

from turtle import *

def tree(size): 
    if size > 1: 
      forward(size) 
      left(20) 
      tree(size*0.5) 
      right(35) 
      tree(size*0.7) 
      left(15) 
      forward(-size) 
   else: 
      return

Procedures to draw fractal ‘trees’ in Scratch and Python

Figure 2.39

We can define functions recursively, for example, 
to work out the factorial of a number (that is, the 
product of all the integers up to and including it, 
represented mathematically as ! – i.e. 4! = 1 x 2 x 3 
x 4) we could code (Figure 2.40):

Figure 2.40

def factorial(n): 
     if n == 0: 
          return 1 
     else: 
          return n * factorial (n-1)

Functions (or procedures) that call themselves allow 
the sort of recursive decomposition of a problem 
that divide-and-conquer algorithms are built on – 
you could easily implement binary search this way. 

In both of the examples above, note that there’s 
an exit condition inside the recursive function or 
procedure; otherwise the code could keep calling 
itself forever.
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Whilst recursion is quite a subtle idea, and not one 
which all pupils are likely to ‘get’ immediately, once 
pupils do understand it and can apply it, it becomes 
a very powerful way of thinking about problems 
and systems, and can offer a far more elegant way 
of expressing computational solutions, both as 
algorithms and as code, than iterating over lists or 
around loops. 

Class

Another example of modularity is the idea of the 
‘class’. One way of thinking about a class is as 
setting up a new data structure to store the state 
or properties of a particular category of things, 
together with functions or methods that describe 
the behaviours of things in that category, including 
how their states might change. A member of the 
class is called an object, and this approach to 
programming is described as ‘object oriented’. 

We might think of a class of cars, and a particular 
car as an object in that class. The properties of any 
particular car might include things like its position, 
its speed, its direction, its engine capacity, its fuel 
level, its fuel consumption and so on. We could 
define methods which operate on all objects in the 
class, such as ‘accelerate’, ‘turn left’ or ‘put petrol 
in’, which would change some of the properties of 
any object to which they were applied. We’re using 
abstraction here as we define the class of objects, 
its properties and methods, to implement those 
that are relevant for our problem, but also to hide 
within the definition of the class the details of the 
implementation.

Whilst most teachers are unlikely to want to 
teach about classes and objects at Levels 3 and 
4, the combination of abstract data structure and 
associated methods can be useful. For example, we 
can implement fractions arithmetic by defining a 
new class in Python and overloading the standard 
arithmetic operators so that they become methods 
to operate on objects in this class. The properties 
of objects in the class are simply the numerator 
and denominator (in their simplest terms); methods 
could include creating a new fraction, printing the 
value of a fraction, adding two fractions together, 
finding the difference between two fractions and  
so on. 

def hcf(a,b): 
     if a == 0: 
          return b 
     else: 
          return hcf (b % a, a)

class fraction:

     def __init__(self,top,bottom): 
           gcd=hcf(top,bottom) 
           self.numerator=top//gcd 
           self.denominator=bottom//gcd

     def __str__(self): 
           return str(self.numerator)+"/"+str(self.
denominator)

     def __add__(self,other): 
           newnum=self.numerator * other.denominator + \ 
                             other.numerator * self.denominator 
           newden=self.denominator * other.denominator 
           return fraction(newnum,newden)

     def __sub__(self, other): 
           return(self + fraction(- 
other.numerator,other.denominator))

This implementation of a fraction class in Python 
always stores each in its lowest terms, using the helper 
hcf (highest common factor) function to simplify by 
dividing by the highest common factor of numerator and 
denominator. Note also how subtraction is defined using 
the addition method

Notice that a person – perhaps another 
programmer –  using our fraction class can type 
things like ‘print(fraction(2,3)+fraction(1,8))’ and 
get back the correct response without needing to 
know how this calculation is performed.

Activities

Turtle graphics are a great way to introduce pupils 
to some of the ideas of procedures. Get pupils 
to create custom blocks to draw simple shapes 
(rectangles, squares, trapeziums) and then use 
these to create a drawing of a house. Get pupils 
to generalise their procedure for drawing squares 
so that it draws regular polygons of any size, and 
explore the repeating patterns which they can use 
with this as a building block.

Cryptography is a great way to introduce pupils to 
some of the ideas of functions, creating functions 
which take plain text (and a key) and encrypt it, or 
take cipher text (and a key) and then decrypt it. 
Pupils could extend these ideas further by writing 
a function which takes a message and converts it 
to Morse code, or vice versa. Pupils could write 
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a function to do frequency analysis on a piece of 
text, counting how many times each letter of the 
alphabet occurs: one approach would be to write 
a function to count how many times a particular 
character comes up, and then to use ‘map’ to apply 
this to all 26 letters, producing a list as a result.

Pupils could extend the idea of the fractions 
arithmetic class to include multiplication, division 
and comparisons, or even mixed number arithmetic. 

  Further resources

BBC Bitesize (n.d.) Procedures and functions. 
Available from www.bbc.co.uk/education/guides/
zqh49j6/revision; and Functions, procedures and 
modules. Available from www.bbc.co.uk/education/
guides/z9hykqt/revision 

Berry, M. (2016) Fractral tree. Scratch program, 
available from https://scratch.mit.edu/
projects/107864391/#editor [29/12/16].

Berry, M. (2016) Trees. Python program, available 
from https://trinket.io/python/6ffbb68412 
[29/12/16].

Berry, M. (2016) Fractions. Python class fragment, 
available https://trinket.io/python/231b9080f3 
[29/12/16].

Berry, M. (2016) Fractions2. Snap! functions, availa-
ble from http://snap.berkeley.edu/snapsource/snap.
html#present:Username=mgberry&ProjectName=-
fractions2  [29/12/16].

Berry, M. (2016) Bindec. Snap! functions, available 
from http://snap.berkeley.edu/snapsource/snap.htm-
l#present:Username=mgberry&ProjectName=bind-
ec [29/12/16].

Berry, M. (2016) Binary and decimal conversion. 
Python functions, available from https://trinket.io/
python/a529b90900 [29/12/16].

Digital Schoolhouse (n.d.) Generating art: Creating 
a shape calculator in Scratch. Available from www.
digitalschoolhouse.org.uk/workshops/generating-
art-creating-shape-calculator-scratch 

Hofstadter, D. (1999) Gödel, Escher, Bach: An eternal 
golden braid. New York, NY: Basic Books Inc.

Papert, S. (1980) Mindstorms: Children, computers and 
powerful ideas. New York, NY: Basic Books Inc.

Raspberry Pi Learning Resources (n.d.) Materials 
on cryptography in Python. Available from www.
raspberrypi.org/learning/secret-agent-chat/ 

Raspberry Pi Learning Resources (n.d.) Morse 
Code decoder. Available from www.raspberrypi.
org/learning/morse-code-virtual-radio/; qv 
an implementation in microPython for the 
BBC micro:bit. Available from http://microbit-
micropython.readthedocs.io/en/latest/tutorials/
network.html 

Raspberry Pi Learning Resources (n.d.) Resources on 
visualising sorting algorithms in Python. Available 
from www.raspberrypi.org/learning/visualising-
sorting-with-python/

Data Structures
Alongside the programming control structures 
of sequence, selection, repetition and modularity, 
implementing any algorithm or computational 
abstraction involves deciding how the computer is 
going to manage the information to be processed – 
how the data on which the program draws are to 
be stored and organised.

Not all data structures are available in all 
programming languages, although often more-
complex data structures can be built up from 
simpler ones. In object-oriented languages, 
classes can be created to implement specific data 
structures out of more primitive ones, as in the 
example of fractions earlier where we implement 
a simple fraction data type using Python’s tuples 
(essentially, ordered lists of two elements).

Variables
Pupils are introduced to variables at primary school: 
a variable is a simple data structure. It is a way of 
storing one piece of information somewhere in the 
computer’s memory whilst the program is running, 
and getting that information back later. There’s a 
degree of abstraction involved here – the detail of 
how the programming language, operating system 
and hardware manage the storing and retrieving of 
data from the memory chips inside the computer 
isn’t important to us as programmers, just as these 

http://www.bbc.co.uk/education/guides/zqh49j6/revision
http://www.bbc.co.uk/education/guides/zqh49j6/revision
http://www.bbc.co.uk/education/guides/z9hykqt/revision
http://www.bbc.co.uk/education/guides/z9hykqt/revision
https://scratch.mit.edu/projects/107864391/#editor
https://scratch.mit.edu/projects/107864391/#editor
https://trinket.io/python/6ffbb68412
https://trinket.io/python/231b9080f3
http://snap.berkeley.edu/snapsource/snap.html#present:Username=mgberry&ProjectName=fractions2
http://snap.berkeley.edu/snapsource/snap.html#present:Username=mgberry&ProjectName=fractions2
http://snap.berkeley.edu/snapsource/snap.html#present:Username=mgberry&ProjectName=fractions2
http://snap.berkeley.edu/snapsource/snap.html#present:Username=mgberry&ProjectName=bindec
http://snap.berkeley.edu/snapsource/snap.html#present:Username=mgberry&ProjectName=bindec
http://snap.berkeley.edu/snapsource/snap.html#present:Username=mgberry&ProjectName=bindec
https://trinket.io/python/a529b90900
https://trinket.io/python/a529b90900
http://www.digitalschoolhouse.org.uk/workshops/generating-art-creating-shape-calculator-scratch
http://www.digitalschoolhouse.org.uk/workshops/generating-art-creating-shape-calculator-scratch
http://www.digitalschoolhouse.org.uk/workshops/generating-art-creating-shape-calculator-scratch
https://en.wikipedia.org/wiki/Douglas_Hofstadter
http://www.raspberrypi.org/learning/secret-agent-chat/
http://www.raspberrypi.org/learning/secret-agent-chat/
http://www.raspberrypi.org/learning/morse-code-virtual-radio/
http://www.raspberrypi.org/learning/morse-code-virtual-radio/
http://microbit-micropython.readthedocs.io/en/latest/tutorials/network.html
http://microbit-micropython.readthedocs.io/en/latest/tutorials/network.html
http://microbit-micropython.readthedocs.io/en/latest/tutorials/network.html
http://www.raspberrypi.org/learning/visualising-sorting-with-python/
http://www.raspberrypi.org/learning/visualising-sorting-with-python/
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details aren’t important when we’re using the 
clipboard for copying and pasting text.  One way of 
thinking of variables is as labelled shoeboxes, with 
the difference that the contents don’t get removed 
when they are used.

The concept of a variable is one that many pupils 
struggle with, and it’s worth showing them lots 
of examples to ensure they grasp this. A classic 
example which pupils are likely to be familiar with, 
particularly from computer games, is that of score.

You can use variables to store data input by the 
person using your program, and then refer to this 
data later on.

Figure 2.41

name = input ('Hello, what is your name?') 
print ('Hello, ' + name) 
print (name + ' is a very nice name.')

Storing user input in a variable and referring to it in 
Scratch and Python

Here (Figure 2.41), ‘name’ is a variable in which we 
store whatever the user types in; it is then used a 
couple of times in Scratch’s or Python’s response. In 
the case of Scratch, ‘answer’ is a special temporary 
variable used to store for the time being whatever 
the user types in. Notice that variables can store 
text as well as numbers. Other types of data can be 
stored in variables too, depending on the particular 
programming language you are working in.

Variables can also be created by the program, 
perhaps to store a constant value so that we can 
refer to it by name (Pi below), or the result of a 
computation (Circumference in the code below), or 
random numbers generated by the computer (for 
example Radius below) (Figure 2.42):

Figure 2.42

pi = 3.14 
radius = randint (1,10) 
circumference = 2 * pi * radius 
print ('If a circle has a radius of ' + str(radius) + 'cm.') 
print ('Its circumference would be ‘' + str(circumference) + 'cm.')

Random circumference calculator in Scratch and Python

The idea that the contents of the ‘box’ are still 
there after the variable is used is sometimes a 
confusing one for those learning to program. Have a 
look at the following code and decide what will be 
displayed on the screen (Figure 2.43):

Figure 2.43

a = 10 
b = 20 
a = b 
print ('a is ' + str(a)) 
print ('b is ' + str(b))

Variable assignment in Scratch and Python

You should see ‘a is 20’ followed by ‘b is 20’. Try it! 
Was it easier to understand in Scratch than Python? 
(Dehnadi and Bornat, 2006; but qv Bornat, 2014).

In Kodu and other game programming, variables 
are useful for keeping track of rewards, such as a 
score, and for introducing some sort of limit, such 
as a time limit or health points that reduce each 
time you’re hit. Kodu’s event-driven approach allows 
particular actions to be done when variables reach 
a predetermined level.
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One particularly useful example of variables in 
programming is as an iterator – this is a way of 
keeping track of how many times you’ve been 
round a repeating loop and of doing something 
different each time you do.  To do this in Scratch we 
initialise a counter to zero or one at the beginning 
of the loop and then add one to it each time we 
go round the loop. In Python, we can iterate across 
values in a list. For example, the following program 
displays the eight times table (Figure 2.44):

Figure 2.44

for i in range (1,13): 
   print (str(i) + ' x 8 = ' + str(i*8))

Code for the eight times table in Scratch and Python. 
Note that range (1,13) means the integers from 1 up to 
but not including 13

As we have seen, you can also use an iterator like 
this to work with strings (words and sentences) 
one letter at a time, or through lists of data one 
item at a time. Take care with the beginning and end, 
as it’s all too easy with iterators to start or end too 
soon or too late.

  Classroom activity ideas

●● Get pupils to create a mystery function 
machine in Scratch or Python, which accepts 
an input, stores this in a variable and then uses 
mathematical operators to produce an output 
shown on screen. Setting the display to full 
screen in Scratch, or running at the command 
line in Python, pupils can challenge one another 
(and you) to work out what the program does 
by trying different inputs.

●● Pupils can use variables in their games programs, 
in say Scratch or Kodu, using a score to reward 
the player for achieving particular objectives 
(such as collecting apples) and imposing a time 
limit.

  Further resources

Barefoot Computing (n.d.) Variables. Available from 
http://barefootcas.org.uk/programme-of-study/
work-variables/variables/ (free, but registration 
required).

BBC Bitesize (n.d.) How do computer programs use 
variables? Available from www.bbc.co.uk/guides/
zw3dwmn

Berry, M. (2014) How to program a Scratch 2.0 times 
table test. YouTube. Available from www.youtube.
com/watch?v=YHGyPfGg1x8

Khan Academy Computing (2013) Teaching variables: 
Analogies and approaches. Available from http://cs-
blog.khanacademy.org/2013/09/teaching-variables-
analogies-and.html

Notes and tutorial on variables in Scratch. Available 
from http://wiki.scratch.mit.edu/wiki/Variable and 
https://wiki.scratch.mit.edu/wiki/Variables_Tutorial

Lists

A list is an ordered collection of data, each element 
of which is of the same type (normally), and where 
we can reference each by its position in the list. 
Remember that this is simply an abstraction 
that allows us to store and retrieve data in the 
computer’s memory, but often it’s a very helpful 
abstraction when we are dealing with lots of related 
data, such as marks for pupils in a test, words 
in a sentence, scores in a game, notes in a tune, 
locations on a route, etc. Just as we might think of 
variables as a special sort of shoebox in which a 
single piece of information can be kept, so we could 
think of a list as a deck of cards, on each of which a 
piece of information can be recorded.

In order to work with variables, we need only a few 
basic operations – creating the variable, retrieving 
information from the variable and storing new 
information to it. For lists, things are more complex. 
Scratch, which has a relatively basic implementation 
of lists as a data structure, allows the following 
operations (Figure 2.45):

http://barefootcas.org.uk/programme-of-study/work-variables/variables/
http://barefootcas.org.uk/programme-of-study/work-variables/variables/
http://www.bbc.co.uk/guides/zw3dwmn
http://www.bbc.co.uk/guides/zw3dwmn
http://www.youtube.com/watch?v=YHGyPfGg1x8
http://www.youtube.com/watch?v=YHGyPfGg1x8
http://cs-blog.khanacademy.org/2013/09/teaching-variables-analogies-and.html
http://cs-blog.khanacademy.org/2013/09/teaching-variables-analogies-and.html
http://cs-blog.khanacademy.org/2013/09/teaching-variables-analogies-and.html
http://wiki.scratch.mit.edu/wiki/Variable
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Figure 2.45

These allow data to be added to the end of the 
list, items to be deleted from the list, items to be 
inserted at any position in the list, the shifting of 
items within the list, and the replacement of an 
item with something else. We can retrieve the data 
stored at any item in the list, find out how long the 
list is and check whether a list contains a particular 
value or not. 

The equivalent commands in Python are as follows. 
Note that Python numbers list elements from zero.

list.append('thing')  
list.pop(0) 
list.insert(0,'thing') 
list[0]=’thing’ 
list[0] 
len(list) 
'thing' in list

Both Snap! and Python extend much further the 
range of commands that can be used to operate 
on a list. For example, Python includes a function 
to sort a list into order (‘sorted’). Both Snap! and 
Python allow lists to be made up of other lists, 
which is one way of providing a multi-dimensional 
data structure, if that’s needed.

To illustrate lists, let’s take the example of a 
shopping list:

●● We start with an empty list: [].
●● We add milk: [‘milk’].
●● We add bread: [‘milk’, ‘bread’].
●● We add butter: [‘milk’, ‘bread’, ‘butter’].
●● We add eggs: [‘milk’, ‘bread’, ‘butter’, ‘eggs’].
●● We can sort the list into alphabetical order: 

[‘bread’, ‘butter’, ‘eggs’, ‘milk’].

●● We can check if we need to buy quinoa: no, not 
on our list, this time.

●● We buy some eggs, removing that from our list: 
[‘bread, ‘butter’, ‘milk’].

●● We remember that we should buy low fat 
spread rather than butter: [‘bread’, ‘low fat 
spread’, ‘milk’].

●● We count up how many things we need to buy: 
three.

Figure 2.46

shopping=[] 
shopping.append('milk') 
shopping.append('bread') 
shopping.append('butter') 
shopping.append('eggs') 
shopping.sort() 
print('quinoa' in shopping) 
shopping.remove('eggs') 
shopping[shopping.index('butter')]='low fat spread' 
print (len(shopping))

Implementing the above operations on a shopping list in 
Scratch (see Figure 2.46) and Python. Note that Python 
allows us to reference elements of the list by their value, 
whereas Scratch only references by position

Python provides a useful mechanism for ‘slicing’ 
a list to extract particular elements or lists of 
elements. For example, take a list of the first ten 
prime numbers – primes = [2, 3, 5, 7, 11, 13, 17, 
19, 23, 29]. We can get the element primes[0], the 
last element (primes[-1]) the first three elements 
(primes[:3]) the last three elements (primes[-3]) or 
the fourth, fifth and sixth (primes[3:6]). Primes[a,b] 
is from the a+1 the position (remembering we 
start at zero) up to –  but not including –  the 
b-th position. Negative numbers count from the 
last item back. It’s worth practising with this, as it’s 
simpler than it sounds.
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Python also provides ‘list comprehensions’, which 
allow new lists with particular properties to be 
created. For example, we can create a list of the 
first ten square numbers with the code:

squares = [n * n for n in range(1,11)]

We can then filter this list to produce another of 
just the even square numbers from the first ten:

evensquares = [s for s in squares if s % 2 == 0 ]

Returning to the deck of cards analogy for lists, we 
might plan how to implement a random shuffle on 
a list.

One algorithm would be to swap the last card with 
one of the cards up to and including it, chosen at 
random. Then, to swap the last but one card with one 
of the ones up to and including it; then the last but 
two with one of the ones up to and including it, and 
so on until we get back to the first card in the pack 
(Fisher and Yates, 1948 [1938]: 26–27; qv Knuth, 1969).

In Scratch we would code (Figure 2.47):

Figure 2.47

In Python this would be:

from random import randint

for currentplace in range(len(pack)-1,-1,-1): 
     swapwith = randint(0,currentplace)

pack[currentplace],pack[swapwith]=pack[swap-
with],pack[currentplace]

After shuffling our cards, we might then want to 
sort them. Combining lists with recursive functions 
allows us to implement divide-and-conquer 
algorithms such as quicksort quite elegantly. We can 
implement quicksort as a function, which calls itself 
on shorter and shorter lists above and below the 
pivot for the previous list, until only an empty list is 
left, which is trivially already sorted (Figure 2.48).

Figure 2.48

def quicksort(list): 
      if len(list)==0: 
          return list 
      else: 
          head = list[0] 
          tail = list[1:] 
          lower = [x for x in tail if x <  head] 
          upper = [x for x in tail if x >= head] 
          return quicksort(lower) + [head] + quicksort(upper)

Recursive quicksort in Snap! and Python. Notice 
the escape clause common to the conquer stage of 
recursive divide-and-conquer algorithms

  Classroom activity ideas

●● Pupils could create lists of notes, perhaps with 
a paired list of durations, to play in Scratch or 
Sonic Pi.

●● Pupils could explore implementing the ‘perfect’ 
riffle shuffle on a deck of cards using list 
manipulations, splitting the pack in two equal 
halves and taking cards alternately from top and 
bottom halves (Diaconis et al., 1983).

●● Pupils could implement one or more of the sort 
algorithms discussed on pages 20 - 21 using list 
manipulations.

●● Can pupils write programs to compute 
descriptive statistics for lists of numerical values 
(for example, to find the mean, median and 
mode, the minimum or maximum, the total, the 
standard deviation)?

●● Can pupils write a program which would 
generate valid National Lottery results giving 
results as ordered lists, noting that no number 
may occur more than once)?
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  Further resources

Code Club World (n.d.) Comment generator. 
Available from http://projects.codeclubworld.org/
en-GB/09_python_archive/06/Compliment%20
Generator.html   

Computing at School (n.d.) Fun with lists by Mark 
Tranter, looking at how Python’s built in list 
functions could be implemented. Available from 
http://community.computingatschool.org.uk/
resources/2683 (free registration). 

Harvey, B. (1997) Computer science logo style: Symbolic 
computing (volume 1). Boston, MA: MIT Press. 

Raspberry Pi Learning Resources (n.d.) Magic 8 ball. 
Available from www.raspberrypi.org/learning/magic-
8-ball/

Raspberry Pi Learning Resources (n.d.) Sonic Pi 
lesson on data structures. Available from https://www.
raspberrypi.org/learning/sonic-pi-lessons/lesson-4/
plan/

Other data structures
Other data structures are available. 

Whilst Scratch does a good job of hiding this from 
the programmer, variables themselves are more 
complex than they might appear, as a variable might 
store data of one of several different data types: 
perhaps a number, but also possibly a Boolean value 
(true or false), or text, each of which might be 
represented quite differently inside the computer, 
and for each of which only certain operations 
would make sense. 

Some programming languages are much more 
demanding (‘strongly typed’) in their treatment 
of data types, demanding that these be declared 
explicitly before the variable is ever used. Python 
is relatively easy-going about data types, but even 
in Python it is sometimes necessary explicitly 
to change (or ‘cast’) a variable from one type to 
another. In some of the examples above we use 
‘str(x)’ to convert a number, ‘x’, into a string so that 
we can join it to other strings; or ‘int(y)’ to take a 

28	See https://docs.python.org/3.5/tutorial/introduction.html#strings and https://docs.python.org/3.5/library/stdtypes.html#string-
methods. Python’s Natural Language Toolkit provides powerful libraries for working with larger bodies of text: www.nltk.org/ 

string of user input and convert it into a number so 
that we can compare it with other numbers.  

Strings of text are quite different from numbers, 
and can be thought of as simply lists of letters or 
other characters. Thus, some of the operations 
we might perform on a list also make sense when 
working with strings – it makes sense to ask how 
long a string is, to be able to reference particular 
characters directly, to be able to replace one 
character with another (such as converting a string 
between different cases), or to be able to join two 
strings together (concatenation).

Scratch provides a few blocks for working with 
strings (Figure 2.49):

Figure 2.49

The equivalent commands in Python are:

'hello ' + 'world' 
'world'[0] 
len('world')

Python provides the same slicing tools for strings as 
it does for lists, thus if:

cas='Computing At School'

then:

●● cas[0] is C

●● cas[-1] is l

●● cas[:9] is Computing

●● cas[-6:] is School

●● cas[10:12] is At 

But as with lists, Python’s string-handling capabilities 
extend far beyond this.(28)

A variable can be thought of as a single number 
and a list as an ordered, one-dimensional set of 
numbers. We could also have two-dimensional 

http://projects.codeclubworld.org/en-GB/09_python_archive/06/Compliment%20Generator.html
http://projects.codeclubworld.org/en-GB/09_python_archive/06/Compliment%20Generator.html
http://projects.codeclubworld.org/en-GB/09_python_archive/06/Compliment%20Generator.html
http://community.computingatschool.org.uk/resources/2683
http://community.computingatschool.org.uk/resources/2683
http://www.raspberrypi.org/learning/magic-8-ball/
http://www.raspberrypi.org/learning/magic-8-ball/
https://www.raspberrypi.org/learning/sonic-pi-lessons/lesson-4/plan/
https://www.raspberrypi.org/learning/sonic-pi-lessons/lesson-4/plan/
https://www.raspberrypi.org/learning/sonic-pi-lessons/lesson-4/plan/
https://docs.python.org/3.5/tutorial/introduction.html#strings
https://docs.python.org/3.5/library/stdtypes.html#string-methods
https://docs.python.org/3.5/library/stdtypes.html#string-methods
http://www.nltk.org/
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(or greater) collections of data. These are called 
arrays. Python doesn’t support arrays as standard 
(although it offers good support through the 
NumPy library(29)), nor does Scratch. It is possible in 
Python and Snap! to construct higher-dimensional 
collections of data using nested lists, but this is 
unlikely to be particularly appealing or accessible to 
pupils at this stage.  

Rather than working in Python or Snap! for two-
dimensional arrays of data, revisiting Excel may be 
much more useful and accessible, given the direct 
and immediate view of all the contents of the 
array. Excel (and other spreadsheet software such 
as Google Sheets) can be used for genuinely two-
dimensional data, such as heights, temperatures or 
rainfall at locations on a grid; or the presence or 
absence of a cell in a Life simulation; or greyscale 
values for a monochrome pixel bitmap. It allows 
calculations to be done to and with these data. 

Many pupils might be familiar with Minecraft, in 
which the world is represented as a 3D array of 
data about the block at each location. Strategy or 
construction games, such as Sim City or Civilisation, 
represent the world as a 2D array. Pupils can 
develop an understanding of arrays, and practise 
their Python programming skills, using a Python 
API for Minecraft, which is provided as standard for 
the Raspberry Pi and is also available, with a little 
ingenuity, on other platforms. In the Raspberry Pi 
version of Minecraft, we can create a floating cube 
of 1000 stone blocks using this code:

29	www.numpy.org/
30	From www.raspberrypi.org/learning/getting-started-with-minecraft-pi/worksheet/, CC by-sa Raspberry Pi Foundation. 

from mcpi.minecraft import Minecraft 
mc = Minecraft.create() 
stone = 1 
x, y, z = mc.player.getPos() 
mc.setBlocks(x+1, y+1, z+1, x+11, y+11, z+11, stone)

Notice the three parameters necessary to specify 
locations in this 3D virtual world (see Figure 2.50). 

Figure 2.50(30)

Whilst a table in a spreadsheet could be a 2D array 
of data, more often we might think of a table of 
values in a spreadsheet or a database as providing 
a structured collection of data about a number of 
different things – each row of the table becomes 
a record of an individual case, each column the 
different fields of those records. For example, a 
spreadsheet might be used by a teacher to track 
assessment data for pupils in her class, with each 
row storing data on an individual pupil, and each 
column recording attainment on particular tasks or 
tests, as well as additional personal information such 
as name, roll number and date of birth. 

(Anonymised example of teacher’s mark book, with thanks to Firefly Learning)

http://www.numpy.org/
http://www.raspberrypi.org/learning/getting-started-with-minecraft-pi/worksheet/
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The spreadsheet is really then being used as 
a single-table database, and our focus moves 
somewhat from performing computation 
to managing and processing this structured 
information.

Further tables, typically in a database now rather 
than a spreadsheet, could link to these data, perhaps 
providing further personal details, or information 
about the objectives of each assessment. Relating 
tables of data in this way means that we only need 
to store information once, in one place, but can 
use it in many different ways – typically we would 
use other software to manage this database (a 
‘relational database management system’ [RDBMS], 
such as SQLite, MySQL or Microsoft Access).

Pupils learn to ‘structure related items of information’ 
at Level 2.  At Level 3, pupils should ‘represent and 
manipulate structured information in programs, 
or databases’. Pupils certainly don’t need to create 
database management programs themselves in order 
to do this, but can write programs using APIs to work 
with data stored in a standard database. 

Whilst not supporting arrays or databases without 
additional libraries, Python does include another very 
useful data structure, the dictionary. Like a normal 
dictionary, this makes it easy to look up one value 
(the key) and get back a bit of associated information: 
the value. Unlike normal dictionaries, Python 
dictionaries aren’t in any particular order – they are 
unordered collections of key:value pairs, where the 
value is stored or retrieved using the associated key.

For example, the command:

languages=dict([('Alex', 'Python'), \ 
		    ('Bobbie', 'Snap!'), \ 
		    ('Chris', 'Python'), \ 
		    ('Drew', 'Scratch'), \ 
		    ('Elliott', 'Visual Basic')])

creates a new dict, ‘languages’, in which we might 
store the preferred language of each of five 
students. Notice that no two students have the 
same name, but a couple of them like the same 
language – which is fine.

31	https://networkx.github.io/

We can type: 

print(languages['Alex'])

and get back the response ‘Python’, as expected. 

We can change an entry too:

languages['Drew']='Snap!'

We can remove an entry from the dict:

del languages['Bobbie']

And we can add a new entry very simply:

languages['Frankie']='Kodu' 

Graphs were discussed on page 30 as a particularly 
useful form of computational abstraction. Graphs 
can be stored and manipulated programmatically 
as lists of edges, plus perhaps associated ‘weights’, 
or as an array showing which nodes are connected 
to which, with the weight of the edge given in the 
array. Python has a number of libraries for working 
with graphs, including NetworkX,(31) and a variant 
of Snap!, Edgy, provides tools for dealing with graphs 
using a block-based language. 

As mentioned earlier (page 72), object orientation 
allows programmers to define their own classes of 
abstract data types – in which different properties 
of objects can be drawn together – as well as the 
methods which operate on objects in those classes. 

  Classroom activity ideas

●● You can set pupils many challenges with string 
handling – can they remove all the spaces or all 
the vowels from a sentence? Can they reverse 
the order of letters in a word? Can they make 
a list of all the words in a sentence and order 
these alphabetically? Can they count how many 
times each letter occurs in a piece of text? And 
so on.

●● Can pupils use a dictionary to convert text into 
Morse code or vice versa? Can they then play 
the Morse code?

https://networkx.github.io/
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●● If you have access to Raspberry Pis (or can 
install Python scripting for Minecraft on another 
platform) encourage pupils to experiment 
building things, or changing things, in Minecraft 
using Python programming. Can they create 
charts in Minecraft to visualise data? Can they 
import a low-res photo into Minecraft?

●● If you have a school weather station, could 
pupils use their programming to interface with 
this, adding readings to an external database, or 
analysing or visualising data from a database of 
weather records? 

  Further resources

BBC Bitesize (n.d.) Arrays and lists. Available from 
www.bbc.co.uk/education/guides/zy9thyc/revision 

BBC Bitesize (n.d.) Databases. Available from www.
bbc.co.uk/education/topics/zwm6fg8 

Code Club World (n.d.) Introductory Python game 
inspired by Minecraft, but treating the world 
as a 2D array. Available from http://projects.
codeclubworld.org/en-GB/08_python_02/06/
CodeCraft.html

Code Club World (n.d.) Project using a dictionary 
to convert ‘text’ speak into English. Available from 
http://projects.codeclubworld.org/en-GB/09_
python_archive/08/Text-speak%20Converter.html

Raspberry Pi Learning Resources (n.d.) Activity 
covering lists, dictionaries and comprehensions. 
Available from www.raspberrypi.org/learning/n-
days-of-christmas/

Raspberry Pi Learning Resources (n.d.) Morse 
Code decoder. Available from www.raspberrypi.
org/learning/morse-code-virtual-radio/; qv 
an implementation in microPython for the 
BBC micro:bit. Available from http://microbit-
micropython.readthedocs.io/en/latest/tutorials/
network.html 

Raspberry Pi Learning Resources (n.d.) Resources 
on getting started with Minecraft Pi. Available from 
www.raspberrypi.org/learning/getting-started-with-
minecraft-pi/ 

32	See, for example, www.theregister.co.uk/2014/04/09/heartbleed_explained

Richardson, C. (2015) Learn to program with 
Minecraft. San Francisco, CA: No Starch Press.

Whale, D. and O’Hanlan, M. (2014) Adventures in 
Minecraft. Hoboken, NJ: Wiley.

Can we fix the 
Code?
Back in the days when there were very few 
computers, which took up a whole room and used 
electro-mechanical relays rather than transistors, 
there was a story of one machine that just wouldn’t 
work as it should – careful investigations revealed 
that a moth, a literal ‘bug’, had become lodged 
between the blades of a relay switch, stopping the 
switch from closing and thus the computer from 
operating. 

Errors in algorithms and code are still called ‘bugs’, 
and the process of finding and fixing these is called 
‘debugging’. Debugging can often take much longer 
than writing the code in the first place, and whilst 
fixing a program so that it does work can bring a 
great buzz, staring at code that still won’t work, 
apparently no matter what you do, can be the 
cause of great frustration too: this can be tricky to 
manage in class. It is worth spending time getting 
the code right in the first place, through careful 
planning, logical reasoning and a good command of 
the language, rather than having to spend time fixing 
things later. Not all bugs get spotted, and those that 
don’t can have profound consequences.(32) 

Bugs fall into two main categories – those in the 
algorithms, which sometimes are called logic bugs, 
and are often due to not quite understanding the 
problem properly; and those in the code. 

In text-based languages, many of the bugs in the 
code are ‘syntax’ errors, where the formal rules of 
the language’s vocabulary and grammar haven’t been 
adhered to, and so the computer isn’t able to turn 
the code you’ve written into machine code that 
its CPU can execute. Not all software engineers 
see these as ‘bugs’, merely as relatively easy-to-fix 
syntax errors which a good IDE or text editor 
should prevent from getting made in the first place. 
Seemingly cryptic error messages about the syntax 

http://www.bbc.co.uk/education/guides/zy9thyc/revision
http://www.bbc.co.uk/education/topics/zwm6fg8
http://www.bbc.co.uk/education/topics/zwm6fg8
http://projects.codeclubworld.org/en-GB/08_python_02/06/CodeCraft.html
http://projects.codeclubworld.org/en-GB/08_python_02/06/CodeCraft.html
http://projects.codeclubworld.org/en-GB/08_python_02/06/CodeCraft.html
http://projects.codeclubworld.org/en-GB/09_python_archive/08/Text-speak%20Converter.html
http://projects.codeclubworld.org/en-GB/09_python_archive/08/Text-speak%20Converter.html
https://www.raspberrypi.org/learning/n-days-of-christmas/
https://www.raspberrypi.org/learning/n-days-of-christmas/
http://www.raspberrypi.org/learning/morse-code-virtual-radio/
http://www.raspberrypi.org/learning/morse-code-virtual-radio/
http://microbit-micropython.readthedocs.io/en/latest/tutorials/network.html
http://microbit-micropython.readthedocs.io/en/latest/tutorials/network.html
http://microbit-micropython.readthedocs.io/en/latest/tutorials/network.html
http://www.raspberrypi.org/learning/getting-started-with-minecraft-pi/
http://www.raspberrypi.org/learning/getting-started-with-minecraft-pi/
http://www.theregister.co.uk/2014/04/09/heartbleed_explained
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error are generated, which are at least a starting 
point for identifying exactly where indentation or 
a colon has been missed out or similar. This can be 
a good teaching opportunity for emphasising the 
importance of spelling, punctuation and grammar in 
all pupils’ work. 

In graphical languages like Kodu and Scratch it’s 
almost impossible to make syntax errors, so as 
pupils make the transition from graphical- to text-
based languages, much of their time might be spent 
on getting the syntax right. 

Much more important than these syntax errors are 
the logical or semantic errors, where the code runs 
or compiles perfectly but doesn’t quite do what is 
intended. These errors are more likely to be about 
having the wrong algorithm, of not translating the 
ideas of the algorithm into code quite correctly, or 
sometimes misunderstanding the semantics – the 
meaning – of the commands of the language or 
even of how the computer itself operates. Because 
it’s normally clear when a program isn’t working 
properly (particularly if we test programs, procedures 
and functions carefully), it is often easier to address 
misconceptions like these in computing than it is in 
other subjects, where feedback is less immediate. 

Sometimes bugs in algorithms or code only become 
apparent in certain circumstances – a program 
might function perfectly well most of the time 
and then crash (suddenly stop working) very 
occasionally. For example, normally a program could 
find the mean of a list of numbers by adding them 
up and dividing by how many there are, but if given 
an empty list, it might attempt to divide by zero, 
which in some programming languages would cause 
the code to crash. Creating a good, comprehensive 
set of test data with known outcomes is important 
for tracking down these sorts of bugs in a 
systematic way, but even working out from the 
input what caused the crash is a great chance for 
pupils to put logical reasoning to work. 

From primary school onwards, pupils should 
be taught to use logical reasoning to detect 
and correct errors in algorithms and programs, 
so it’s not really enough for pupils to fix their 
code without being able to give an explanation 
for what went wrong and how they fixed this. In 
programming classes, pupils focussed on the task 
of writing a program for a particular goal might 
want help from you or others to fix their programs. 
Tempting as this may be, it’s worth you and they 

remembering that the objective in class is not to get 
a working program but to learn how to program, 
and their being able to debug their own code is a 
big part of that.

One way that you can, and should, help is to provide 
a reasonably robust, general set of debugging 
strategies which they can use for any programming, 
or indeed more-general strategies which they can 
use when they encounter problems elsewhere.

The Barefoot Computing team suggests a simple set 
of four points, emphasising the importance of logical 
reasoning:

1.	 Predict what should happen.

2.	 Find out exactly what actually happens.

3.	 Work out where something has gone wrong.

4.	 Fix it.

One way to help predict what should happen is to 
get pupils to explain their algorithm and code to 
someone else (or even an inanimate object such 
as a rubber duck) – in doing so, it’s quite likely that 
they will spot where there’s an error in the way 
they are thinking about the problem or in the way 
they’ve coded the solution.

In finding out exactly what happens, it can be useful 
to work through the code, line by line. Seymour 
Papert described this as ‘playing turtle’: in a turtle 
graphics program, pupils could act out the role of 
the turtle, walking and turning as they follow the 
commands in the language themselves, or following 
the instructions with a pencil on paper. Away from 
the easily visualised world of turtle graphics, pupils 
could maintain a trace table, keeping a record of 
the values of variables and lists as they step through 
their code one line at a time. Some IDEs include 
debuggers, allowing this process to be automated. 
However, the careful thought involved in doing this 
by hand might still make it easier to spot, and learn 
from, what’s going wrong. 

In working out where something has gone wrong, 
encourage pupils to look back at their algorithms 
before they look at their code: before they can get 
started with fixing bugs, they will need to establish 
whether it was an issue with their thinking or with 
the way they’ve implemented it. Another technique 
is to use something like the ‘divide and conquer’ 
algorithm (for guessing a hidden number) to find a 
bug – working out whether the bug is in the first 
or second half of the code, or in the first or second 
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quarter, and so on. Sometimes this is called ‘wolf-
fencing’ – i.e. to find the wolf, build a fence and 
listen whether the howl comes from one side or 
another; repeat with smaller and smaller areas until 
you find the wolf.

Debugging is a great opportunity for pupils to 
learn from their mistakes and to get better at 
programming. Encourage your pupils to adopt 
a ‘growth mindset’, making the most of the 
opportunities their bugs present them to learn 
more about how to program. 

  Classroom activity ideas

●● Pupils are likely to make many authentic errors 
in their own code, which they will want to fix. 
You might find that it’s worth spending some 
time giving pupils some bugs to find and fix in 
other programs, both as a way to help develop 
strategies for debugging and to help with 
assessment of logical reasoning and programming 
knowledge. Create some programs with 
deliberate mistakes in, perhaps using a range of 
logical or semantic errors, and set pupils the 
challenge of finding and fixing these. For example, 
can pupils find all the errors in the following 
Python program, designed to ask ten different 
multiplication-test questions?

    import Random 
    a = random.randint(1,12) 
    b = random.randint(1,12) 
    for i in range(l0): 
       question = "What is "+a+" x "+b+"? " 
       answer = input(question) 
       if answer = a*b 
         print (Well done!) 
       else: 
         print("No.")(33)

●● Encourage pupils to debug one another’s code. 
One approach is for pupils to work on their own 
program for the first part of the lesson and then 
to take over their partner’s project, completing 
and then debugging it for their friend.

●● A similar paired activity is for pupils to write 
code with deliberate mistakes, setting a challenge 
to their partner to find and then fix the known 
errors in the code.(34)

33	Try online at https://trinket.io/library/trinkets/2da63b4823
34	See https://teachcomputing.wordpress.com/2013/11/23/sabotage-teach-debugging-by-stealth/

  Further resources

Barefoot Computing (2014) Debugging. Available 
from http://barefootcas.org.uk/barefoot-primary-
computing-resources/computational-thinking- 
approaches/debugging/ (free, but registration 
required).

BBC Bitesize (n.d.) What is debugging? Available 
from www.bbc.co.uk/guides/ztkx6sg; Writing error-
free code. Available from www.bbc.co.uk/education/
guides/zcjfyrd/revision

Brennan, K. (2010) Debug it! ScratchEd. Available 
from http://scratched.gse.harvard.edu/resources/
debug-it

Cutts, Q. (2007) Cribsheet. Available from http://
level1wiki.wikidot.com/cribsheet

Jonassen, D.H. (2004) Learning to solve problems: An 
instructional design guide (volume 6). Hoboken, NJ: 
John Wiley & Sons.

Berry, M (2014) Switched on Computing Scratch 
Projects. Available from http://scratch.mit.edu/
studios/306100/ [29/12/16].

Wikipedia (n.d.) Rubber duck debugging. Available 
from http://en.wikipedia.org/wiki/Rubber_duck_
debugging

https://trinket.io/library/trinkets/2da63b4823
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http://scratched.gse.harvard.edu/resources/debug-it
http://scratched.gse.harvard.edu/resources/debug-it
http://level1wiki.wikidot.com/cribsheet
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http://scratch.mit.edu/studios/306100/
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WHAT IS A COMPUTER?
The term ‘computer’ originally referred to people 
whose job it was to perform repeated numerical 
calculations according to some pre-determined set 
of instructions; that is, an algorithm. At the beginning 
of modern computing, Alan Turing captured the 
essence of what human computers did – of what 
calculation or computation were: that all this could 
be understood as making or changing marks on 
paper according to some set of rules, and that 
those rules could be determined by the marks on 
the paper. This model became known as the Turing 
machine, and it still forms one of the foundations of 
theoretical computer science.

Since the 1940s the term ‘computer’ has been used 
pretty much exclusively to refer to digital machines 
which accept some sort of input data, process this 
according to some set of stored instructions (that 
is, a program) and output some sort of information. 

The power of digital computers comes from their 
ability to run through these stored instructions 
incredibly quickly: the chip at the heart of a modern 
smartphone might execute up to a couple of 
billion instructions per second! On the other hand, 
without programming, a computer can do nothing – 
it needs to be given instructions to follow.

 You can think of digital technology as baing made 
up of two inter-related systems: the hardware, 
being the physical components, from processor 
and memory to power supply and screen; and 
the software, being the core operating system, 
embedded control programs, compilers or 
interpreters for high-level programming languages, 
and all the many application programs used by or 
written by the computer’s user.

Computers now seem almost ubiquitous, with an 
incredible variety of electronic devices each having 
some sort of digital computer controlling how 
they operate, according to stored programs. It’s 
worth distinguishing between devices that contain 
computers, where the computer controls the 
operation of the device for one specific purpose, 	

1	 Physical objects that collect, share and access data via the internet; see, for example, https://en.wikipedia.org/wiki/Internet_of_	
	 Things
2	 We call these conditions Turing completeness – systems that can simulate Turing’s theoretical computing machine can, in 		
	 theory, simulate one another; see, for example, https://en.wikipedia.org/wiki/Turing_completeness

and more-general programmable computers, where 
one computer can do many different things. 

In the former category, the computer-controlled 
device, we might count digital watches, digital 
radios, digital televisions, computerised central 
heating controllers, digital cameras, the engine 
management system of a car and many, many 
other devices now commonplace. Even in these 
categories, convergence of technologies and the 
Internet Of Things(1) has meant that previously 
‘dumb’ digital devices such as watches, televisions, 
cameras and cars can now connect to the internet, 
have apps installed on them and, in some cases, be 
reprogrammed by their users. 

When thinking about general-purpose computers 
(see Doctorow, 2012), it can sometimes be helpful 
to distinguish between those which the user 
themselves can program and those which can only 
run software written specifically for the device. 
For example, a smart TV or a games console could 
be thought of as a general-purpose computer, 
capable of doing many different things, and whilst it’s 
possible to create smart TV apps or write a video 
game, you would normally need to use another 
computer to do that. Originally, smartphones and 
tablet computers fell into this category too: they 
would only be able to run programs written and 
licensed for them on other systems, but tools 
such as TouchDevelop and Codea now mean that 
programs for devices like these can be written on 
the smartphone or tablet itself. Indeed, even some 
games consoles can be directly programmed, to a 
limited extent, using programs such as Kodu and 
Project Spark.

General-purpose programmable computers, 
from laptops to the large and fast computers 
running data centres and ‘cloud computing’, are 
capable of running many, many different types of 
program, including the compilers or interpreters 
necessary to write and run programs in many 
different programming languages. At a theoretical 
level, if something can be computed by one 
system that meets certain basic conditions,(2) it 
can be computed by any system that meets those 
conditions. 

https://en.wikipedia.org/wiki/Internet_of_Things
https://en.wikipedia.org/wiki/Internet_of_Things
https://en.wikipedia.org/wiki/Turing_completeness
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It’s not quite true that programming lets us solve 
any problem we might imagine.(3) However, by using 
computational thinking processes to understand a 
problem and develop algorithms for solving it, and 
then to write the computer code which implements 
that algorithm as a program, on hardware that 
accepts input, produces output and connects to 
other machines, computers can be used to solve 
many, many interesting and difficult real-world 
problems, as well as allowing us to watch videos of 
cats playing the piano.

Binary
All the data that computers work with, and all the 
instructions they follow, have to be represented 
as numbers. There are particular conventions or 
codes for particular types of data (or instructions). 
An understanding of the ways in which information 
can be represented, organised and processed 
by computers can be seen as of comparable 
importance to the concepts of computational 
thinking (Michaelson, 2015).

Binary Numbers
Whereas we think of numbers as expressed in 
base 10 (decimal) notation, expressing any (whole) 
number using our digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 
9, it’s much, much easier for computers to work 
with just two symbols, a 0 and 1, as each ‘switch’ 
in the computer can be simply set as off or on(4) 
to represent these – this is the case with modern 
integrated circuits as well as the relays, valves and 
discreet transistors that preceded them. Binary 
representation isn’t really fundamental to the ideas 
of computing (Brown, 2012), but the numerical 
representation of information and instructions 
is, and binary is important in the low level 
implementation of digital computing on current 
and past hardware.

The programme of study expects pupils to learn 
about binary:

Demonstrates an understanding that all 
computer data is represented in binary, for 
example, numbers, text, black and white 
graphics

3	 For example, computers cannot solve the halting problem – that is, they cannot determine if any arbitrary code would 		
	 terminate or not (Turing, 1936).
4	 More strictly, low or high voltages.

In base 10 (decimal or ‘denary’ notation), we use 
place value so that the same digit can represent 
different numbers:

Thousands	 Hundreds	 Tens	 Units

 	 2	 3	 9	  5 

Thus, 2395 is interpreted as two thousands, three 
hundreds, nine tens and five units, 2000+300+90+5. 
Note how each place is ten times larger than the 
one that follows it.

A similar place value system works in binary, but 
the places carry twice the value of the following 
one:

64	 32	 16	 8	 4	 2	 1

0	 1	 0	 1	 0	 1	 0

So 101010 is interpreted as one thirty-two, one 
eight and one two, 32+8+2, that is, 42 in base ten. 
Note that you never get more than one in each 
place in binary, so converting a binary number to 
a decimal one is simply the process of adding up 
the respective place values. Given the number 
10011101, simply write out the place values of each 
‘bit’ (binary digit), starting at the right (the least 
significant bit) and doubling each time:

128	 64	 32	 16	 8	 4	 2	 1

1	 0	 0	 1	 1	 1	 0	 1

Then, add up the values of the places where you 
have a 1: 128+16+8+4+1=157.

This approach gives us an algorithm for converting 
from binary to decimal, which, of course, we can 
implement as code (Figure 3.1):
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Figure 3.1

	 def bin2dec(binary=’0’): 
                decimal = 0 
                place = 1 
                for i in range(len(binary)-1,-1,-1): 
                     decimal = decimal + int(binary[i])*place 
                     place=place*2    
                return (decimal) 

Binary to decimal conversions in Snap! and Python. 
Python allows numbers to be input in binary, they are 
stored internally in binary, as all numbers are, but are 
printed in decimal. Thus print(0b101010) produces the 
output 42

Going in the other direction is easy enough too. 
The easiest approach is to start with writing down 
place value headings, again starting at the right (the 
least significant bit) and doubling until you get to 
a column that would mean the next one would be 
bigger than the number. So with 150, we would have 
column headings:

128	 64	 32	 16	 8	 4	 2	 1

We then start at the left, including any place we can, 
and keeping track of how much is left. Taking 150 as 
our example:

1	 (and 22 left)

1	 0	 0	 1	 (and 6 left)

1	 0	 0	 1	 0	 1 (and 2 left)

1	 0	 0	 1	 0	 1	 1	 (and 0 left)

1	 0	 0	 1	 0	 1	 1	 0

There are quicker approaches, for example we 
could use repeated division by two, keeping track of 
the remainders. 

150 / 2  = 75 r 0 
75 / 2 = 37 r 1 
37 / 2 =18 r 1 
18 / 2 = 9 r 0 
9 / 2 = 4 r 1 
4 / 2 = 2 r 0 
2 / 2 = 1 r 0 
1/ 2 = 0 r 1

The remainders then give the binary, in reverse 
order, so reading from the bottom up, we get 
10010110 which is the binary representation for 
150 as above.

Because of the repetition here, it’s relatively easy to 
code this algorithm (Figure 3.2):

Figure 3.2

	 def dec2bin(decimal=0): 
                 if decimal == 0: 
                     return ‘0’ 
                 binary = ‘’ 
                 while decimal > 0: 
                      binary = str(decimal % 2) + binary 
                      decimal = decimal // 2 
                 return (binary)

Decimal to binary conversion functions in Snap! and 
Python. Python has a built-in bin command to do this too

It’s possible to represent numbers less than one in 
binary too, using the binary equivalent of decimal 
numbers, sometimes called ‘bicimal’. So, just as 
in decimal we extend place value to the right as 
tenths, hundredths, thousandths and so on, each 
place being a tenth the size of the previous one, so 
in binary we halve each time: one-half, one-quarter, 
one-eighth and so on.

Thus, 3/8 would be 0.011 in binary, as three-
eighths = one-quarter + one-eighth. In binary, 
recurring ‘bicimal’ numbers are quite common; so, 
for example, one-tenth would be represented as  
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0.0001100110011… which will leave a rounding 
error wherever it’s truncated. 

Given that computers only have limited memory, 
for very large or very small numbers it’s inefficient 
to store all the bits in a simple place value 
representation, so we use a floating point form, 
equivalent to scientific notation, storing both 
a mantissa and exponent. So, just as 1.14 x 102 
is another representation of 114, so we could 
represent 1110010 as 1.110010 x 2110 where the 
‘bicimal’ (radix) point has been shifted six places 
(six being 110 in binary), storing the binary mantissa 
(1.110010) and exponent (110) to represent 
decimal 114.

It’s also possible to store negative numbers in a 
binary representation. Given a fixed word length 
(the number of bits set aside for the number), the 
usual method is called ‘two’s compliment’: for a 
negative number we reverse the bits (0 becomes 
1, 1 becomes 0) and add one. For example, 75 is 
1001011 in binary: 

128	 64	 32	 16	 8	 4	 2	 1

0	 1	 0	 0	 1	 0	 1	 1

but with two’s compliment and an eight-bit word 
(a ‘byte’), –75 would be 10110100+1, that is, 
10110101. 

–128	 64	 32	 16	 8	 4	 2	 1

1	 0	 1	 1	 0	 1	 0	 1

Note though that the first bit no longer represents 
128s; it now shows 0 for positive and 1 for negative; 
thus, instead of using eight bits to store numbers 
from 0 to 255, we instead would store –128 to 127. 

It’s worth bearing in mind that binary and decimal 
are just different ways of representing the same 
number: forty-two is still forty-two, whether we 
write it as ‘forty-two’, 42, XLII or in binary as 
101010. Don’t let pupils confuse the thing itself with 
the way the thing is represented.

Arithmetic

Counting in binary is easy, and a really nice pattern 
quickly emerges. Start with one, changing the 
rightmost bit by one each time, carrying into the 
next column when you would get to two:

1 
10 
11 
100 
101 
110 
111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 
10000 
...

Like counting, binary arithmetic is surprisingly easy 
to master, and it’s a good way to revisit the standard 
algorithms for the four rules of arithmetic that 
pupils will have learnt in primary school. The key 
to this is to remember that we carry when we get 
to 2, not 10, as we only ever have 1s and 0s in any 
place.

Figure 3.3

Look at the addition example in Figure 3.3, starting 
from the units column on the right. 0 plus 1 is 1. In 
the twos, 1 plus 0 is 1. In the fours, 1 plus 1 is two, 
so we put 0 down and carry the 1. In the eights we 
have 0 plus 0 plus 1 which is 1, and so on. The sum 
and carry operations in binary addition here can be 
carried out using a relatively simple combination of 
logic gates –  see page 103.

Subtraction can be done easily by hand too, 
in the example below (Figure 3.4) using the 
decomposition method that most schools use for 
decimal subtraction.
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Figure 3.4

Again, starting from the right: 1 minus 1 is 0. In 
the twos column, 1 minus 0 is 1. In the fours we 
have a problem, as we can’t do 0 minus 1, so we 
decompose the eight into two fours, then 10 minus 
1 is 1 in binary. In the eights we have 0 minus 0, 
which is 0. In the sixteens we have a problem again, 
as we can’t do 0 minus 1. We can’t decompose the 
thirty-twos, so we decompose one sixty-four into 
two thirty-twos, then decompose one of them into 
two sixteens, and 10 minus 1 is 1 as before. Finally 
in the thirty-twos, 10 minus 1 is 1.

The times tables for binary are quite easy to learn: 

•	 0 x 0 = 0

•	 0 x 1 = 0

•	 1 x 0 = 0

•	 1 x 1 = 1

which is the same as the truth table for Boolean 
AND, if we represent True as 1 and False as 0. Again, 
we can apply the usual decimal long multiplication 
to multiplication in binary (Figure 3.5):

Figure 3.5						    

5	 See, for example, www.cut-the-knot.org/Curriculum/Algebra/PeasantMultiplication.shtml
6	 See https://en.wikipedia.org/wiki/Division_algorithm#Integer_division_.28unsigned.29_with_remainder for a version 		
	 expressed as pseudocode.

Again, starting from the right of the number 
we’re multiplying by, in the units column, 1101 x 
1 is 1101; in the twos column, 1101 x 0 is 0; in 
the fours column, 1101 x 1 is 1101, but we shift 
across into the fours column (that is, a couple of 
places) to write this down (1101 x 100 = 110100). 
Adding these answers up using binary addition, we 
get 1000001. Notice that multiplication is simply 
repeated shifts of the original number together 
with binary addition, both of which are easy to 
accomplish in digital circuits.

The process here matches the ‘Egyptian’ or ‘Russian 
Peasant’ method for long multiplication:(5) start by 
writing down the two numbers to be multiplied, the 
larger on the left, the smaller on the right. Double 
the numbers on the right, halve the numbers on the 
left, discarding any remainders:

13	 5 
26	 2 
52	 1

Now, discard any lines with an even number on the 
right:

13	 5 
52	 1

and then just add the numbers on the left:

13+52 = 65

The first step here, doubling the numbers on 
the left, is simply a left shift in binary. Halving and 
ignoring the even values is the equivalent of binary 
conversion, so we only add up the shifted values 
corresponding to a 1 in the binary representation.

Pupils can also do division in binary, again using 
the same algorithm as for decimal long division,(6) 
but here with the advantage that the divisor either 
divides or does not divide into the dividend at each 
stage. There’s an argument that binary is a far better 
base for learning the mechanics of this algorithm, 
as the additional cognitive load of estimating how 
many times the divisor goes into the dividend at 
each step is removed. 

http://www.cut-the-knot.org/Curriculum/Algebra/PeasantMultiplication.shtml
https://en.wikipedia.org/wiki/Division_algorithm#Integer_division_.28unsigned.29_with_remainder
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Figure 3.6

Working this time from the most significant bit of 
the dividend, on the left (Figure 3.6):

101 doesn’t go into 1. It doesn’t go into 10. It 
doesn’t go into 100. It does go into 1000, once, 
so we now work out the remainder in the eights 
column, using binary subtraction, 1000–101=11. 
Bringing down the next bit, a 0, 101 does go into 
110, once, with a remainder of 110–101, that is, 
1. Bringing down the next bit, 0, 101 doesn’t go 
into 10, so we write 0 in the twos column of the 
quotient. Bringing down the next bit, 1, 101 goes 
into 101 once, with a remainder of 101–101, that is, 
0.

Text

As well as being able to work with numbers 
in a binary form, the programme of study also 
expects pupils to understand how other forms 
of information are represented in a computer 
numerically, requiring that the pupil

Understands that different information 
could be represented in exactly the same 
representation

In order for computers to store, process or 
transmit information as text, it’s necessary for 
this to be coded as numbers (with the numbers 
themselves stored as binary). 

7	 https://en.wikipedia.org/wiki/Baudot_code 

From Victorian times, way before the advent of 
digital computers and the internet, electrical circuits 
were used to transmit information, originally 
using simple, binary state, on-off switches (the 
telegraph), before the use of analogue sound signals 
(the telephone). Rather than converting text to 
numbers, a different form of representation was 
soon agreed on, in which each letter of the alphabet 
(plus punctuation, digits and other symbols) had an 
agreed sequence of short or long pulses associated 
with it – this was Morse code, named after its 
inventor (Figure 3.7). 

Figure 3.7

The key thing here is not the details of the 
representation, but the idea that there needed to be 
a single, agreed system for communicating via the 
telegraph’s infrastructure: the same held true with 
the adoption of digital computers and, particularly, 
their connection via the internet. Morse’s system 
took account of the relative frequency of letters in 
English, thus e and t, the most frequently occurring 
letters in typical English prose, have very short 
symbols, (. and -) respectively, but other letters, 
such as q and j, which occur far less frequently, 
have longer pulse patterns, and thus take longer to 
transmit. 

Another system, Baudot code,(7) represented each 
letter as a pattern of five on or off signals, which 
subsequently became the standard for telegraph 
communications and the teleprinters used as terminals 
to communicate with the first computers. Five bits 
allowed only 32 different symbols to be represented, 
but shift codes were used to swap between letters 

https://en.wikipedia.org/wiki/Baudot_code
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and symbols (including numbers). A version of this, the 
International Telegraph Alphabet (ITA2) remains in use 
for some applications even today. 

For a long time, the most widely adopted code was 
US-ASCII (United States-American Standard Code 
for Information Interchange; American Standards 
Association, 1963). In US-ASCII, numbers from 0 
to 127 are used to represent upper- and lower-
case letters of the Latin alphabet, the digits 0–9, 
commonly used punctuation, and necessary control 
characters (such as new lines and the backspace). By 
this point, eight bits (enough for the numbers 0–255) 
had become a standard unit of memory, the byte, 
and one byte was thus more than enough to store or 
transmit any single character of standard English text, 
with room to spare if needed. 

Number Binary Character Number Binary Character Number Binary Character
32 00100000 (space) 64 01000000 @ 96 01100000 `
33 00100001 ! 65 01000001 A 97 01100001 a
34 00100010 “ 66 01000010 B 98 01100010 b
35 00100011 # 67 01000011 C 99 01100011 c
36 00100100 $ 68 01000100 D 100 01100100 d
37 00100101 % 69 01000101 E 101 01100101 e
38 00100110 & 70 01000110 F 102 01100110 f
39 00100111 ‘ 71 01000111 G 103 01100111 g
40 00101000 ( 72 01001000 H 104 01101000 h
41 00101001 ) 73 01001001 I 105 01101001 i
42 00101010 * 74 01001010 J 106 01101010 j
43 00101011 + 75 01001011 K 107 01101011 k
44 00101100 , 76 01001100 L 108 01101100 l
45 00101101 - 77 01001101 M 109 01101101 m
46 00101110 . 78 01001110 N 110 01101110 n
47 00101111 / 79 01001111 O 111 01101111 o
48 00110000 0 80 01010000 P 112 01110000 p
49 00110001 1 81 01010001 Q 113 01110001 q
50 00110010 2 82 01010010 R 114 01110010 r
51 00110011 3 83 01010011 S 115 01110011 s
52 00110100 4 84 01010100 T 116 01110100 t
53 00110101 5 85 01010101 U 117 01110101 u
54 00110110 6 86 01010110 V 118 01110110 v
55 00110111 7 87 01010111 W 119 01110111 w
56 00111000 8 88 01011000 X 120 01111000 x
57 00111001 9 89 01011001 Y 121 01111001 y
58 00111010 : 90 01011010 Z 122 01111010 z
59 00111011 ; 91 01011011 [ 123 01111011 {
60 00111100 < 92 01011100 \ 124 01111100 |
61 00111101 = 93 01011101 ] 125 01111101 }
62 00111110 > 94 01011110 ^ 126 01111110 ~
63 00111111 ? 95 01011111 _ 127 01111111  (delete)

The spare capacity in US-ASCII (it only took seven 
bits of an eight-bit byte) allowed other alphabets to 
be represented by the numbers 128–255, swapping 
in and out different code pages depending on the 
particular alphabet and language to be represented 
– thus Russian Cyrillic characters could be 
represented using the same numbers as would be 
used to represent Arabic characters, depending on 
the particular code page added on for the 128–255 
range above standard US-ASCII.

Back in the days when memory was expensive 
and scarce, such a swappable code page system 
would work well enough with single, alphabet-
based languages, but what hope would it have of 
representing the characters of a language such as 
Chinese? 

Table 3.1
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Subsequent development saw the extension or 
perhaps, more accurately, the replacement of ASCII 
with Unicode, which uses (up to) 32 bits, that is, 
four bytes, to store each character, representing 
linguistic (and other) symbols with numbers 
between 0 and 4,294,967,295, although thus far 
only 120,000 or so characters from 129 scripts 
are encoded. The characters coded with 0–127 
in Unicode (UTF-8) match exactly the characters 
given these numbers in US-ASCII, so for those 
working with standard English there are few 
practical differences between the two systems. It’s 
fascinating to explore the full Unicode table(8) to 
see the diversity of symbols used to write human 
languages.

A couple of lines of code allow text to be 
converted to its numeric representation and vice-
versa.

Figure 3.8

	 list(map(chr,[72,101,108,108,111]))		
	 list(map(ord,”Hello”))

Snap! (Figure 3.8) and Python code to convert between 
character codes and text. Note that Snap! works in 
Unicode by default, whereas Python defaults to ASCII

Editing text is, in essence, simply about making 
changes to the sequence of numbers which 
represent any particular string of characters. 
Familiar operations such as cut, copy and paste 
involve manipulating sequences of numbers: thus, 
cut involves removing some numbers from the 
sequence, making a copy in another memory 
location (essentially a variable); copy involves 
duplicating part of the sequence; paste would be 
inserting one sequence within another. Whilst 
strings of characters and lists are typically thought 
of as different data structures, their internal 
representation as sequences of numbers will have 
much in common: and cut, copy and paste for text 
directly parallel common operations on lists.

One interesting development has been the way 
in which the US-ASCII punctuation and other 
characters have been combined in ways previously 

8	 https://unicode-table.com/en/ [2/1/17]
9	 http://unicode.org/emoji/charts/full-emoji-list.html

absent from language to succinctly convey emotions 
which would otherwise be cumbersome to write: 
thus emoticons such as the following are commonly 
used in online communication:

•	 :-)
•	 :-(
•	 ;-)
•	 8-()

More recently, this has extended into the novel 
linguistic form of the ‘emoji’, in which pictorial 
representations of words can take the place of 
more conventional, character-based forms. Emojis(9) 
too are represented as numbers, with many now 
being included in the Unicode table. 

The way in which a particular character is shown 
on screen or when printed out is different from 
its internal representation. Part of the job of the 
operating system and application software is to 
take the internal numerical representation of 
the character and display or print it as a specific 
glyph using a particular font, converting the code 
for the character into patterns in pixels, lines and 
curves, or ink that can be read on screen or paper 
respectively. Similarly, text-to-speech interfaces 
must take the character-by-character numerical 
representation, process this according to the 
grapheme/phoneme correspondence for the 
language, and produce appropriate audio using one 
of perhaps several ‘voices’. 

Images

There are two main ways to represent images 
digitally: the most common involves imposing some 
form of grid on the image, and then allocating 
numbers to the colour of each cell (square) in the 
grid – we call this a ‘bitmap’ representation; an 
alternative is to describe the shapes (lines, curves, 
polygons and so on) from which the image is made, 
essentially writing a program to reproduce the 
image from its components.

https://unicode-table.com/en/
http://unicode.org/emoji/charts/full-emoji-list.html
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A colour bitmap, then, is typically, made up of a 
rectangular grid of small squares, called pixels, each 
of which is thought of as having one of a fixed 
number of possible values for red, green and blue 
components. Digital cameras take this approach for 
input, using a lens to focus light onto an array of 
light-sensitive receptors, usually with red, green and 
blue filters in front. LCD (and similar) screens take 
the same approach to output, shining light through a 
semi-transparent grid through which brightness can 
be controlled to a particular level, again with red, 
green and blue filters in front. 

Figure 3.9 A microphotograph of a webcam image 
sensor (CC by-sa Natural Philo)

In storing bitmaps, as with any digitisation process, 
there’s a trade-off here between the amount of 
storage (memory) needed for the image and the 
resolution and colour fidelity stored. 

Using just one bit per pixel reduces the 
representation to simply black or white, but 
even with only a few pixels it’s often possible to 
recognise the image (Figure 3.10–3.11):

Figure 3.10 3,550 pixel bitmap, 1 bit per pixel, so 
419 bytes of memory

Figure 3.11 120,000 pixel bitmap, 1 bit per pixel, so 
15KB memory

Eight bits (one byte) per pixel allows 256 shades 
of grey to be represented, greatly improving the 
quality of the representation, but taking eight 
times as much memory as a black-and-white image 
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(Figure 3.12–3.13).

Figure 3.12 3,550 pixel bitmap, 8 bits per pixel, so 
3.55KB of memory

Figure 3.13 120,000 pixel bitmap, 8 bits per pixel, so 
120KB of memory

With three times the memory, using one byte 
(eight bits, 256 levels) for each red, green and blue 

colour channel, we have the full 16 million-colour 
representation that we are used to in digital media 
(Figure 3.14–3.15).

Figure 3.14 3,550 pixel image, 24 bits per pixel, so 
10.65KB of memory

Figure 3.15 120,000 pixel image, 24 bits per pixel, so 
360KB of memory
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Image manipulation software(10) allows pupils 
to experiment with the effect of reducing the 
resolution of an image and the number of bits used 
to store the colour or brightness information. 
Pupils can also explore creating ‘pixel’ art, choosing 
the colour for each pixel of the image, typically at 
a very low resolution. They can do this by hand 
on gridded paper or using a spreadsheet, perhaps 
using conditional-formatting tools to shade cells 
according to the number entered. 

Mathematician and comedian Matt Parker makes 
an online tool available to convert images in 
standard file formats into suitably coloured-in Excel 
spreadsheets.(11) Once the pixel colour values of the 
image are in a spreadsheet format, it’s easy enough 
to apply formulae to cells and groups of cells, to see 
how simple image manipulation can be accomplished: 
increasing the brightness of the image means 
increasing the values in each cell; reducing an image 
to greyscale involves replacing each colour value 
with the average of the red, green and blue values 
for a pixel; blurring an image can be accomplished by 
replacing each red, green or blue pixel value with the 
average of the corresponding values for the nine or 
25 surrounding cells; and so on. 

Similar effects, and indeed much more, can be 
accomplished in programming languages, for 
example using Python’s pillow or scikit-image 
libraries, or using the tools built into standard image 
manipulation packages. 

The other approach to working with images, 
vector graphics, in which we give the instructions 
for the lines and curves that make up an image, 
has a number of advantages: the files here tend to 
be more compact, there’s no fundamental limit to 
the resolution at which images can be displayed, 
and there’s no ‘pixelation’. However, this approach 
is much more suitable for working with drawings 
created originally on the computer than for 
digitising images of the real world. 

10	For example, Photoshop, The Gimp or Pixlr.
11	www.think-maths.co.uk/spreadsheet, qv www.youtube.com/watch?v=UBX2QQHlQ_I
12	Note: 2 channels * 2 bytes per sample * 44,100 samples a second * 60 seconds in a minute.
13	Note that 32bit, 384KHz audio is also available.

Audio

In the case of sound, again there are a couple of 
options: the first involves storing a sequence of 
numbers to represent the volume of sound at 
different points in time; the other is closer to 
composing music, creating a set of instructions for 
sound to be played.

Let’s take the case of recording some sound on a 
computer. A microphone takes the pressure waves 
in the air that we hear and converts these into an 
analogue electrical signal. The analogue signal is then 
sampled lots of times a second and each of the 
sampled voltage values is then simply converted 
to a number. This is called pulse code modulation 
(PCM) and is used in the .WAV file format. ‘CD-
quality’ audio is sampled 44,100 times a second 
(that is, a sampling frequency of 44.1KHz), and 
sixteen bits are used to store the different sound 
or voltage values (that is, from 0 to 65,535) for 
both left and right channels. Thus, one minute of 
CD-quality stereo audio takes just over 10MB of 
storage.(12)

As with image representation, there’s a trade-off 
between the storage capacity needed and the 
veracity of the digital representation. It’s possible 
to store reasonable audio with a lower quality than 
this, and for spoken-word recording this may suffice 
– mono recordings at 11KHz storing just eight 
bits for each sample are usually acceptable, with 
quality comparable to long wave radio or analogue 
telephone calls. It’s also possible to store at a higher 
quality – so called ‘high definition’ audio uses 24 bits 
for each sample, allowing 8,388,608 different audio 
intensity values to be stored, and sample rates 
as high as 192KHz.(13) Even here though, a digital 
representation can never be a perfect match to the 
even-finer-grained analogue signal.

http://www.think-maths.co.uk/spreadsheet, qv www.youtube.com/watch?v=UBX2QQHlQ_I
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Digital sound wave

Original sound wave

Analogue sound wave

Figure 3.16

Editing digital audio essentially means manipulating 
the sequence of numbers that represents the 
audio signal – making a recording louder can be 
accomplished by multiplying all the numbers by 
a number bigger than one; making the recording 
quieter involves multiplying by a number less than 
one; silencing part of a recording means replacing 
the audio signal values with 0; cutting a section 
of a recording involves deleting the numbers 
corresponding to that section from the sequence of 
numbers in the file. 

It is possible to view and edit the contents of an 
audio file (for example the .WAV format) using 
a hexadecimal editor for binary files,(14) although, 
given the very high number of samples per second, 
it’s hard work to do so in any meaningful way. With 
some ingenuity, .WAV audio files can be imported 
and exported from Excel or other spreadsheets,(15) 
and the data manipulated directly using cell-based 
formulae. Audio files can also be manipulated as 
data in Python(16) or other programming languages. 
Audio editing software such as Audacity provides a 
graphical user interface and simple, intuitive tools 
for working with audio files at a higher level of 
abstraction, hiding the numerical representation of 
the audio from the user.

14	https://mh-nexus.de/en/hxd/ [2/1/17]
15	For example, using the .DAT text data format for SoX, http://sox.sourceforge.net/
16	Using the standard wave library: https://docs.python.org/3/library/wave.html
17	Adapted from https://soledadpenades.com/2009/10/29/fastest-way-to-generate-wav-files-in-python-using-the-wave-module/

     import wave 
     import random 
     import struct

     noise_output = wave.open(‘noise.wav’, ‘w’) 
     noise_output.setparams((2, 2, 44100, 0, ‘NONE’, ‘not compressed’))

     for i in range(0, 44100): 
              value = random.randint(-32767, 32767) 
              packed_value = struct.pack(‘h’, value) 
              noise_output.writeframes(packed_value) 
              noise_output.writeframes(packed_value)

     noise_output.close()

Python program to generate 1 second of stereo random 
noise in 16 bit 44.1KHz PCM format(17)

For music, it’s possible to think in terms of 
representing the composition digitally, rather 
than the sound that’s heard, essentially writing a 
sequence of instructions (a program) which when 
executed would play the music – the MIDI file 
format does this, storing the order of note values 
and durations that make up the music, and then 
using software to play these back, typically using 
short samples of audio from recorded instruments 
or digitally-generated (synthesized) tones. 

It’s possible to create midi format files using a wide 
range of applications, including sequencing and 
traditional stave-notation composition software, and 
pupils can get a feel for this more programmatic 
approach to music using Scratch or Sonic Pi, both of 
which use MIDI note values as a starting point.

Compression

Often it is useful to take large text, image or sound 
files and store them in a more compact form, using 
fewer bytes to store the same, or almost the same, 
information. Although computer storage capacities 
have increased exponentially for unit cost (Walter, 
2005), ever increasing amounts of data at higher and 
higher resolutions are stored. Moreover, a more-
slowly increasing internet bandwidth is used to 
transmit these files, with many applications – from 
text, audio and video chat or conferencing to the 
streaming of audio and video content – requiring 
low-latency, real-time transmission. 

https://mh-nexus.de/en/hxd/
http://sox.sourceforge.net/
https://docs.python.org/3/library/wave.html
https://soledadpenades.com/2009/10/29/fastest-way-to-generate-wav-files-in-python-using-the-wave-mod
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Pioneering work by Claude Shannon in 1948 
(Shannon and Weaver, 1949) established the 
theoretical foundation for information theory, 
including the idea of information entropy, which 
measures the degree of uncertainty in any message. 
This uncertainty is determined by the nature of the 
message: if an English message includes the letter 
q, the next letter is very likely to be u; if a message 
in English contains ee, the next character cannot 
be another e; t is more likely to be followed by h 
than any other letter, and so on. For example, given 
a sentence in English presented without vowels, 
it’s possible to recover much, if not all, of the 
original using our knowledge of English vocabulary, 
permitted syllables, and - in this case - English 
literature to help:

t s  trth nvrslly cknwldgd, tht  sngl mn n 
pssssn f  gd frtn, mst b n wnt f  wf.(18)

Note that whilst we have saved space here, this is 
at the expense of some fairly intensive processing 
to uncompress this text. Shannon’s insight was 
to recognise that the limits of a communication 
system were determined, not by the message 
communicated, but by the possible messages 
that could be communicated, and their relative 
likelihood. As Morse had recognised earlier, some 
letters, such as e and t, are far more frequent 
than others, and hence had shorter signals; in 
contrast, not all US-ASCII and Unicode characters 
are equally likely to occur in a message, and yet 
each takes the same number of bits to transmit. 
Shannon’s information entropy uses probability to 
determine the minimum number of bits needed 
to communicate a message in a particular system. 
His original estimate, based on the patterns from 
looking at groups of eight characters, was about 
2.3 bits per character for English, but subsequent 
work, using longer-range characteristics of the 
language, suggested an entropy of as little as 
one bit per character (Shannon, 1951). Users of 
predictive text systems will be familiar with how 
quickly smartphones are able to guess the word 
that is being typed: these systems draw directly on 
Shannon’s ideas.

Compression techniques draw on Shannon’s work 
too, finding clever ways to represent the same (or 
in some cases, similar) information in a smaller 
number of bytes. 

18	 It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife.

Huffman coding is closely related to Shannon’s 
information entropy idea. Rather than using the 
same number of bits for each symbol, Huffman 
formalised the idea of assigning shorter codes to 
more-frequently occurring symbols (Huffman, 1952) 
in such a way that there would be no ambiguity in 
decoding. 

One simple approach to compression is run-length 
encoding. If we wish to communicate a message 
about coin tosses: 

HHHTTHHTTTHHTTTTTTHHTHHTTTT 

run-length encoding shortens the message by simply 
encoding how many instances of each symbol there 
are in each run of it:

H3T2H2T3H2T6H2T1H2T4

Similarly, our black-and-white image of Ada Lovelace 
(Figure 3.17) 

Figure 3.17

has very long runs of black pixels with short runs of 
white pixels: run-length encoding would compress 
this very efficiently.

Another technique involves looking for patterns 
in the information. In the case of English text, we 
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might simply choose to replace common words 
(such as ‘the’, ‘is’, ‘to’, ‘of’, ‘and’, etc) with short, one-
byte codes to represent them. A more-sophisticated 
system would be to recursively look for longer and 
longer patterns in the text, image or audio, replacing 
these with codes and storing the pattern against 
the code. LZW (Lempel-Ziz-Welch) compression 
(Welch, 1984) takes this approach:

1.	 Initialize the dictionary to contain all strings 
of length one.

2.	 Find the longest string in the dictionary that 
matches the current input.

3.	 Emit the dictionary index for the string to 
output and remove the string from the input.

4.	 Add the string followed by the next symbol 
in the input to the dictionary.(19)

5.	 Go to Step 2.

For English text, this typically achieves a 50 
percent compression saving. The algorithm most 
commonly used with the .ZIP compression format 
is a combination of Huffman coding and an earlier 
version of LZW compression, which might save 65 
percent of the space for a text file. 

In the case of text, scientific data and, particularly, 
program source or binary files, any compression 
has to be lossless: it is essential that we can 
recover an exact copy of the original information. 
Huffman codes, run-length encoding, LZW and .ZIP 
compression all achieve this, and can be applied 
to any form of data. Other media formats have 
particular compression algorithms that can be even 
more efficient, taking account of the particular 
properties of the medium. For images, .TIFF and 
.PNG formats both support lossless compression. 
For audio, .FLAC supports lossless compression. 

However, in many cases, it is not absolutely essential 
to be able to uncompress a file to recover all the 
information originally present: close enough is 
often good enough. In these circumstances, we 
can use lossy compression. Very high compression 
ratios can be obtained but only at the expense of 
discarding some of the information contained in the 
original data. 

19	See https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch#Example for a worked example, qv www.cs4fn.	
	 org/internet/crushed.php

For images, the .JPEG format (Austin, 2009) offers 
high compression ratios, saving up to 90 percent of 
the space required for a full bitmap representation, 
with little loss of image quality. .JPEG makes use of 
Huffman coding, but it also takes account of how 
we perceive images – that changes in brightness are 
noticed more than subtle changes in colour, and 
that low-frequency changes are more noticeable 
than high-frequency ones. 

Similar ideas are used for audio compression using 
the .MP3 format (Sellars, 2000): we notice relatively 
loud noises more than relatively quiet ones, so 
the data from the relatively quiet noise can have 
fewer bits devoted to storing it without significantly 
impacting our perception of the sound. Transient 
high- or mid-frequency sounds capture our 
attention more than repetitive low-frequency ones, 
and thus deserve more bits for their storage. 

We mentioned the idea of creating images and 
audio using vector graphics or midi notation: these 
formats are far more compact than high-resolution 
bitmap or PCM audio respectively, as in both cases 
we store instructions for making the image rather 
than the image itself. This is related to the idea 
of Kolmogorov complexity (Kolmogorov, 1998), 
in which the information of a file or message is 
measured not by the bits needed to store it but by 
the bits needed for a program to reproduce it. Take 
for example the sequence: 

       31415926535897932384626433832795028841971693993751058209 

       749445923078164062862089986280348253421170679

This appears to take 100 bytes to represent as text. 
An alternative form, using just 35 characters, would 
be ‘the first 100 decimal digits of Pi’. A genuinely-
random sequence (such as is needed for a ‘one-time 
pad’ in cryptography; see page 152) requires as 
many bytes to describe it as it contains. However, a 
pseudorandom sequence from a computer random 
number generator (that is, one which has similar 
properties to a genuinely-random sequence but 
is generated by an entirely deterministic system), 
can be described fully by the program for that 
generator and its initial seed state.

https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch#Example
http://www.cs4fn.org/internet/crushed.php
http://www.cs4fn.org/internet/crushed.php
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Video

Video is a particular challenge for storing and 
transmitting: if we simply store a single bitmap at full 
HD resolution (1920 x 1080 pixels), it needs over 
6MB assuming three bytes per pixel. Video might 
typically show 25 frames per second, so one minute 
of video without any compression would require 
over 9GB, plus a further 10MB for uncompressed 
PCM audio. Obviously such figures are impractical 
for storing, processing or transmitting video and 
necessitate some clever uses of lossy compression, 
including those discussed earlier for images and 
audio. 

Video compression can also make use of the 
generally-static nature of most of what’s seen 
on screen. Between one frame and the next in a 
video, relatively little changes and, furthermore, our 
perception generally tunes out things that don’t 
change much. Thus, video standards such as H.264 
(Wiegand et al., 2003) need only pay attention to 
the changing bit of a video signal, perhaps using 
keyframes a couple of times a second (or, for video 
conferencing, much less frequently) in which all 
pixels are captured; the other frames need only 
store the changes from the previous frame or 
from the keyframe. For H.264 compression, these 
techniques reduce the file size for our one minute 
of 1080p video from over 9GB to around 400MB; 
with the later HEVC (H.265) standard (Sullivan 
et al., 2012), this figure drops to around 200MB.  
Streaming at a lower resolution would obviously 
reduce the file size further still. 

To give pupils some feel for video compression, 
they could compare the file size of all the frames 
in a stop-motion animation to that of the H.264 
compressed video exported from a video editor. 
Telling the same story using scripted animation, 
such as in Scratch or Blender, would be a useful 
exercise. Whilst screencast output from Scratch or 
rendered output from Blender would produce files 
of a comparable size, the Scratch program files or 
Blender project files would be significantly smaller, 
reflecting the Kolmogorov complexity.

20	http://microbit-micropython.readthedocs.io/en/latest/tutorials/network.html
21	www.raspberrypi.org/learning/morse-code-virtual-radio/
22	For example Photoshop, The Gimp or Pixlr.com.
23	For example http://www.pixilart.net/
24	www.think-maths.co.uk/spreadsheet
25	See also https://people.csail.mit.edu/hubert/pyaudio/ for basic Python audio input/output handling.

  Classroom activity ideas 

●● Spend time helping pupils develop fluency in 
converting between binary and decimal numbers, 
and in doing arithmetic in binary. Counting 
games, arithmetic drill-and-practice, worksheets 
and having pupils record screencast tutorials are 
all likely to be useful here. Using functions to 
convert between binary and decimal, pupils could 
write their own drill-and-practice programs in 
Snap!, Python or other programming languages.

●● Introduce pupils to the idea of encoding and 
decoding text through Morse code activities, 
perhaps using torches or electrical circuits to 
transmit messages, or using the automatic Morse 
decoders for the BBC micro:bit(20) or Raspberry 
Pi.(21) Pupils could go on to experiment with 
converting between text and ASCII or Unicode 
representations, or develop programs to do so.

●● Pupils can explore bitmap images using the 
tools available in image editing software.(22) They 
can create small images pixel by pixel in Excel 
or pixel art editors.(23) Matt Parker’s tool(24) to 
create Excel spreadsheets from image files is 
highly recommended. Pupils should construct 
formulae in the spreadsheet to manipulate the 
image to desired effects.

●● It’s harder to work with audio files, but Audacity 
provides a simple editor for files in this format 
and, once pupils’ programming has reached a 
level of some fluency, they can explore creating 
or editing PCM-encoded audio in Python using 
the wave library.(25) 
 

  Further resources

BBC Bitesize (n.d.) Data representation. Available 
from www.bbc.co.uk/education/topics/zxnfr82

CIMT (n.d.) MEP exercises on binary conversion and 
arithmetic. Available from www.cimt.org.uk/projects/
mepres/book9/bk9_1.pdf [2/1/17]; qv www.cimt.
org.uk/projects/mepres/book9/book9.htm#unit1 
[2/1/17] and www.cimt.org.uk/projects/mepres/
book9/book9int.htm [2/1/17].

http://microbit-micropython.readthedocs.io/en/latest/tutorials/network.html
http://www.raspberrypi.org/learning/morse-code-virtual-radio/
http://Pixlr.com.
http://www.pixilart.net/
http://www.think-maths.co.uk/spreadsheet
https://people.csail.mit.edu/hubert/pyaudio/
http://www.bbc.co.uk/education/topics/zxnfr82
http://www.cimt.org.uk/projects/mepres/book9/bk9_1.pdf
http://www.cimt.org.uk/projects/mepres/book9/bk9_1.pdf
http://www.cimt.org.uk/projects/mepres/book9/book9.htm#unit1
http://www.cimt.org.uk/projects/mepres/book9/book9.htm#unit1
http://www.cimt.org.uk/projects/mepres/book9/book9int.htm
http://www.cimt.org.uk/projects/mepres/book9/book9int.htm
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CS Unplugged (n.d.) Resources on counting in 
binary. Available from http://csunplugged.org/binary-
numbers/; image representation: http://csunplugged.
org/image-representation/; text compression: 
http://csunplugged.org/text-compression/; sound 
representation: http://csunplugged.org/modems-
unplugged-2/; and information theory more 
generally: http://csunplugged.org/information-
theory/

CS4FN (n.d.) Resources on run-length encoding. 
Available from  www.cs4fn.org/compression/
burrowswheeler.php; mp3 audio compression: 
www.cs4fn.org/mathemagic/sonic.html; LZW 
compression applied to Vicky Pollard: www.cs4fn.
org/internet/crushed.php; and bitmaps: www.cs4fn.
org/pixels/pixels.html 

CS Field Guide (2016) Data representation. Available 
from http://csfieldguide.org.nz/en/chapters/data-
representation.html; Coding: http://csfieldguide.
org.nz/en/chapters/coding-introduction.html; and 
Coding-Compression: http://csfieldguide.org.nz/en/
chapters/coding-compression.html

Digital Schoolhouse (n.d.) Crazy graphics. Available 
from www.digitalschoolhouse.org.uk/workshops/
crazy-graphics

Gleick, J. (2012) The information: A history, a theory, a 
flood. New York, NY: Harper Collins.

Guzdial, M. and Ericson, B. (2015) Introduction to 
computing and programming in Python: A multimedia 
approach. Harlow: Pearson Education. Also online 
resources for Mark Guzdial’s highly regarded media 
computation course (http://coweb.cc.gatech.edu/
mediaComp-teach) and the Jython development 
environment for media computation (https://github.
com/gatech-csl/jes)

Kolas, O. (2005) Image processing with gluas. Available 
from http://pippin.gimp.org/image_processing/chap_
dir.html

Petzold, C. (2000) Code: The hidden language of 
computer hardware and software. Redmond, WA: 
Microsoft Press.

Shannon, C. and Weaver, W. (1949) The mathematical 
theory of communication (PDF). Urbana, IL: University 
of Illinois Press.

Logic Circuits
We discussed the principles of Boolean logic on 
pages 13 - 14. Inside the central processing unit 
(CPU) that controls the computer, all operations 
are implemented by using logic gates to switch the 
bits that make up digital data between different sets 
of logic circuits. 

We can introduce pupils to the AND, OR and NOT 
gates through simple electrical circuits (Figures 
3.18–3.20):

Figure 3.18 Circuit to illustrate an OR gate – 
LAMP1 lights if SW1 OR SW2 is closed

Figure 3.19 Circuit to illustrate an AND gate – 
LAMP1 lights if SW1 AND SW2 are closed

http://csunplugged.org/binary-numbers/
http://csunplugged.org/binary-numbers/
http://csunplugged.org/image-representation/
http://csunplugged.org/image-representation/
http://csunplugged.org/text-compression/
http://csunplugged.org/modems-unplugged-2/
http://csunplugged.org/modems-unplugged-2/
http://csunplugged.org/information-theory/
http://csunplugged.org/information-theory/
http://www.cs4fn.org/compression/burrowswheeler.php
http://www.cs4fn.org/compression/burrowswheeler.php
http://www.cs4fn.org/mathemagic/sonic.html
http://www.cs4fn.org/internet/crushed.php
http://www.cs4fn.org/internet/crushed.php
http://www.cs4fn.org/pixels/pixels.html
http://www.cs4fn.org/pixels/pixels.html
http://csfieldguide.org.nz/en/chapters/data-representation.html
http://csfieldguide.org.nz/en/chapters/data-representation.html
http://csfieldguide.org.nz/en/chapters/coding-introduction.html
http://csfieldguide.org.nz/en/chapters/coding-introduction.html
http://csfieldguide.org.nz/en/chapters/coding-compression.html
http://csfieldguide.org.nz/en/chapters/coding-compression.html
http://www.digitalschoolhouse.org.uk/workshops/crazy-graphics
http://www.digitalschoolhouse.org.uk/workshops/crazy-graphics
http://coweb.cc.gatech.edu/mediaComp-teach
http://coweb.cc.gatech.edu/mediaComp-teach
https://github.com/gatech-csl/jes
https://github.com/gatech-csl/jes
http://pippin.gimp.org/image_processing/chap_dir.html
http://pippin.gimp.org/image_processing/chap_dir.html
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Figure 3.20 Circuit to illustrate a NOT gate – 
LAMP1 lights if SW1 is open

With somewhat more authenticity, these gates can 
be built from individual transistors, perhaps on a 
breadboard (Figures 3.21–3.23):

Figure 3.21 Electronic circuit for AND

Figure 3.22 Electronic circuit for an OR gate

Figure 3.23 Simple electronic circuit for a NOT gate

Before the invention of the integrated circuit, 
digital computers would be made using logic gates 
composed of surface-mounted, transistor-based 
circuits such as these. 
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Figure 3.24 Digital clock using only transistors and 
other surface-mounted components. CC by-sa 
Wtshymanski. See also http://monster6502.com/ for 
a 6502 CPU implementation using surface-mounted 
components

The beauty of abstraction though is that we don’t 
need to worry about the internal operation of logic 
gates; we can treat them as ‘black boxes’ which 
produce certain output for certain input, according 
to their truth tables.

Thus we can create simple logic circuits using 
individual logic gates as the components, rather 
than thinking about switches or transistors. 

For example, we can build (or simulate) the circuits 
(Figures 3.25–3.26):

Figure 3.25 NOT (A AND B)

and: 

Figure 3.26 (NOT A) OR (NOT B)

We can use this symbolic representation of the 
gate, rather than needing to show its internal 
structure. Note that the two circuits above have the 
same truth tables:

A	 B	 Output 
False	 False	 True 
False	 True	 True 
True	 False	 True 
True	 True	 False

Thus the two are functionally equivalent. A gate 
with this truth table is called NAND (NOT AND). 

More complex circuits can be constructed. Thus, for 
the truth table:

A	 B	 Carry	 Sum 
False	 False	 False	 False 
False	 True	 False	 True 
True	 False	 False	 True 
True	 True	 True	 False

we have Carry = A AND B and Sum  = (A OR B) 
AND NOT (A AND B) (Figure 3.27):

Figure 3.27

http://monster6502.com/
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If we replace False with 0 and True with 1, the table 
becomes:

A + B	 Carry	 Sum

0	+ 0	 0	 0 
0	+ 1	 0	 1 
1	+ 0	 0	 1 
1	+ 1	 1	 0

This allows binary addition, at least for just one bit, 
to be implemented using nothing more than logic 
gates. This circuit is known as a half adder. 

Two half adders can be combined using an OR gate 
to allow three inputs, one from a previous carry, 
plus two bits of data, producing a sum and carry for 
bitwise addition (Figure 3.28):

Figure 3.28 Full adder

A set of eight of these, connecting the Carry output 
of each to the Previous Carry input of the next 
would allow two bytes to be added together.

More complex logic circuits still can be designed 
and built. Given any truth table, it’s possible to 
construct a logic circuit that will produce the 
desired output using just a combination of NOT, 
OR and AND gates.(26) All logic circuits, including 
NOT, OR and AND gates, can be built using NAND 
gates.(27) 
 

  Classroom activity ideas

●● Provide pupils with increasingly sophisticated logic 
circuit diagrams, asking them to work out the 
truth table by tracing the output at each gate for 
all the possible combinations of TRUE and FALSE 
inputs to the circuit. A more challenging problem 
is to create the logic circuit for a given truth table. 

26	Conjunctive normal form: https://en.wikipedia.org/wiki/Conjunctive_normal_form
27	https://en.wikipedia.org/wiki/NAND_logic
28	www.neuroproductions.be/logic-lab/

●● Circuit simulators such as logic.ly, circuitlab.com 
and logic lab(28) allow pupils to experiment with 
electrical, electronic and logic circuits on screen. 
It’s well worth giving pupils some experience 
of creating simple logic circuits using switches, 
transistors or integrated circuits if the resources 
are available.

●● You can get pupils themselves to act as a 
logic circuit, some taking on the role of gates, 
others the part of bits. See this BBC clip of 
implementing a two-bit adder: www.bbc.co.uk/
programmes/p01m5xfs

●● Give pupils particular scenarios to create logic 
circuits: home security systems and traffic 
management are popular contexts. 

●● Pupils can build simple logical circuits out of 
redstone in Minecraft.

  Further resources

BBC Bitesize (n.d.) Boolean logic. Available from 
www.bbc.co.uk/education/guides/zc4bb9q/revision

BBC Joy of Logic (2014) Available from www.
youtube.com/watch?v=ZO__UZ6iV0A

Gregg, J. (1998) Ones and zeros: Understanding 
boolean algebra, digital circuits, and the logic of sets. 
New York, NY: Wiley-IEEE Press.

Intel (n.d.) Lesson resources on circuits and 
switches. Available from www.intel.com/content/
www/us/en/education/k12/the-journey-inside/
explore-the-curriculum/circuits-and-switches.html

Minecraft (n.d.) Logic circuit. Available from 
http://minecraft.gamepedia.com/Logic_circuit; 
and introductory tutorial. Available from http://
minecraft.gamepedia.com/Tutorials/Basic_logic_
gates

PyroEdu (n.d.) Course on digital electronics. 
Available from www.pyroelectro.com/edu/digital/

https://en.wikipedia.org/wiki/Conjunctive_normal_form
https://en.wikipedia.org/wiki/NAND_logic
http://www.neuroproductions.be/logic-lab/
http://www.bbc.co.uk/programmes/p01m5xfs
http://www.bbc.co.uk/programmes/p01m5xfs
http://www.bbc.co.uk/education/guides/zc4bb9q/revision
http://www.youtube.com/watch?v=ZO__UZ6iV0A
http://www.youtube.com/watch?v=ZO__UZ6iV0A
http://www.intel.com/content/www/us/en/education/k12/the-journey-inside/explore-the-curriculum/circuits-and
http://www.intel.com/content/www/us/en/education/k12/the-journey-inside/explore-the-curriculum/circuits-and
http://www.intel.com/content/www/us/en/education/k12/the-journey-inside/explore-the-curriculum/circuits-and
http://minecraft.gamepedia.com/Logic_circuit
http://minecraft.gamepedia.com/Tutorials/Basic_logic_gates
http://minecraft.gamepedia.com/Tutorials/Basic_logic_gates
http://minecraft.gamepedia.com/Tutorials/Basic_logic_gates
http://www.pyroelectro.com/edu/digital/
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Hardware  
Components
One quite intuitive and generally helpful way of 
thinking about computers is as machines which 
accept input, process this according to some stored 
set of instructions and produce output (Figure 
3.29).

 
Figure 3.29

In thinking about hardware components, it’s worth 
considering each function here separately. 

Input

The form of input will vary, depending on the 
type of computer and the uses to which it is put. 
On a laptop, you might typically find a keyboard, 
a trackpad, a microphone and a webcam, as well 
as ports which other input devices, such as a USB 
mouse, could be plugged into. On a smartphone, you 
would probably find a touch-sensitive screen, some 
other buttons, a microphone or two, a couple of 
cameras, a global positioning system (GPS) receiver, 
an accelerometer, perhaps a barometer and again 
one or more ports for additional input devices. 

Both Raspberry Pi and BBC micro:bit have support 
for a broader range of sensor input, including 
simple switches and the digitisation of analogue 
signals connected to their general-purpose input/
output (GPIO) pins or connector. Sensors can be 
connected to these pins which can, for example, 
be used to capture temperature levels over time, 
or proximity in some robot-control applications. 
With other computers, an interface can be used to 
provide similar functionality. 

For trackpads, touch screens, microphones and 
cameras it’s necessary for the computer to convert 

29	http://techtalks.tv/talks/54443/
30	Neil Brown explains that modern processors use optimisations such as caches, pipelining, out-of-order execution, 	
	 speculative execution and microcode, in addition to the basic fetch–decode–execute cycle: 				  
	 https://academiccomputing.wordpress.com/2012/04/29/the-computer-is-a-lie/ 

the continuous, analogue real-world data into a 
digital format before it can be processed, stored 
or transmitted by the computer. As discussed on 
pages 92 - 96 in the context of images and sound, 
digitisation inevitably involves throwing away some 
of the fine detail of the real-world information. 

Some pre-processing can be applied to the raw 
input signals, for example voice recognition provides 
an alternative form of input using the microphone, 
or positions of objects in three dimensions can be 
determined using two cameras or a linked laser 
and sensor for establishing depth, as in Microsoft’s 
Kinect.(29) A basic form of brain–computer interface 
is possible using current technology, typically 
through sensing electrical activity in the brain.

Processing

The fetch–decode–execute cycle in which 
processors execute machine code instructions is 
described on pages 48 - 49. Programs written in 
high-level languages are converted into machine 
code using interpreters or compilers – most 
of the programs that run on the computer are 
already compiled as machine code binaries, and so 
this process is typically hidden from the user. The 
machine code instructions and the data on which 
the programs operate are all stored together in 
memory (see later), and the computer provides a 
fast way of moving both program instructions and 
data out between the processor and memory: the 
internal (or ‘front side’) bus.(30)

Processors work very, very quickly. Modern 
operating systems are efficient at managing the 
load on the processor so that, despite giving the 
appearance of always being ready for whatever 
instruction it is next required to execute, it can also 
run instructions from many of the other programs 
on the computer almost simultaneously. This is 
called multi-tasking.

The processors inside modern computers are 
typically multicore chips, containing perhaps four 
(or more) CPU cores and cache memory (see 
later), each operating independently and being 
capable of running instructions from quite separate 

http://techtalks.tv/talks/54443/
https://academiccomputing.wordpress.com/2012/04/29/the-computer-is-a-lie/
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programs literally at the same time. Multicore 
processing isn’t confined to the desktop or laptop 
form factor either: some current smartphone 
models have eight-core processors. 

As well as the main, typically multicore, processor, 
modern computers often have other processors 
–  most notably graphical processor units (GPUs), 
now often designed specifically for the parallel 
processing needed for physics simulation and fast 
2D and particularly 3D rendering – most commonly 
deployed for video games (Sony’s PlayStation 4 has 
some 1,152 parallel cores for its GPU). For the 
iPhone 5s, Apple introduced a ‘motion’ coprocessor 
(the M7) alongside the smartphone’s main CPU, 
dedicated to processing sensor data and running on 
low power even with the phone asleep. 

Current developments include massively parallel 
processing, in which complex computing problems 
are shared between many processors with results 
being subsequently combined;(31) and processing ‘in 
the cloud’, in which complex tasks are handled not 
by the user’s own computer but by running programs 
on computers to which it communicates via the 
internet.(32) Speech-to-text processing of services, 
such as Apple’s Siri, is accomplished in this way. 

Storage

Both the programs a computer needs to operate, 
and the data that it processes, are stored in 
the computer’s memory. In modern computer 
architecture, the same memory is used to store 
both the programs and the data, side by side. 

There are different types of computer memory, and 
usually there’s a trade-off between speed and cost 
or capacity: the fastest, most expensive memory is 
used for the data that’s needed most immediately 
and most frequently; the cheapest and slowest 
storage is used for data that may or may not be 
needed again at some distant point in the future. 
This structuring of memory, from small and fast to 
vast and slow, has proven a particularly powerful 
way of organising data for processing and programs 
for execution. Moving data between one level of 
memory and another takes time.

31	See, for example, www-01.ibm.com/software/data/infosphere/hadoop/mapreduce/
32	For example Google Compute, Microsoft Azure and Amazon EC2. 
33	www.extremetech.com/extreme/210492-extremetech-explains-how-do-ssds-work

The fastest memory available will be the registers 
and ‘level 1 cache’ memory built into each CPU 
core itself but, even with modern processors, the 
amount of data that can be stored here is very 
limited. Elsewhere on the CPU chip, and connected 
to the rest of the computer via the bus, is the 
‘level 2 cache’ – larger than the level 1 cache, and 
somewhat slower, but still much faster to access 
than the main memory. 

On the internal bus, and connected directly to 
the main circuit board of the computer (the 
‘motherboard’) is fast, high-capacity memory called 
‘RAM’, although this is typically ‘volatile’, meaning it 
loses all the data stored in it when the computer is 
switched off. 

Rather slower, but again of much larger capacity, 
will be the computer’s main drive: until recently, 
this would typically contain magnetic disks able to 
retain data with the power turned off, but these are 
increasingly being replaced by faster, non-volatile 
‘flash’ memory or solid-state drives(33) (SSDs), 
similar to what you might also find in USB sticks or 
the memory cards used for digital photography.

Optical storage, such as CD-ROMs, DVDs and Blu-
ray disks, is slower still, but costs for these media 
are low, making them suitable for long-term storage 
of data rarely needed for processing. These media 
are not, by modern standards, of particularly high 
capacity, and thus many find the need to connect 
high-capacity external hard drives or SSD drives 
to the computer, perhaps via USB or a higher-
bandwidth external bus interface. 

Storage capacity has grown at an even quicker pace 
than the increase in processing speeds (Walter, 
2005), and thus, now, data centres connected via 
the internet can provide very high capacity, but 
relatively slow storage, for data, at a very low cost. 
Whilst once upon a time, long-term archival storage 
might have made use of magnetic tape, there are 
interesting developments using low-cost, high-
capacity hard drives for this sort of ‘cold’ storage. 

http://www-01.ibm.com/software/data/infosphere/hadoop/mapreduce/
http://www.extremetech.com/extreme/210492-extremetech-explains-how-do-ssds-work
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Internet pioneer Vint Cerf has, perhaps surprisingly, 
argued(34) that the best approach to very long-term 
(for example, millennium-long) archival storage 
might more reliably use paper than digital media, 
given that no special systems need to be maintained 
to ensure that paper remains readable.   

Power and cooling

Other internal hardware components are needed 
too. 

Processing requires power, and so one of the most 
noticeable components inside a desktop computer 
will be the power supply unit, providing regulated 
current at the various voltage levels needed for the 
computer’s components. In the case of business-
critical machines some, form of alternative power 
supply, such as an uninterruptible power supply 
(UPS – essentially a large battery and associated 
monitoring sensors and software), or perhaps even 
an emergency generator, may be necessary. Battery 
life remains a problem for portable technology 
including laptops, tablets and smartphones, although 
battery technologies have advanced significantly in 
recent years, alongside advances in processor and 
storage efficiency, and better power management 
software at operating-system level. A relatively 
recent development has been the use of additional, 
external batteries to provide a top-up charge for 
the smartphones on which many have come to rely. 
Convenient access to a cheap source of power is 
one of the principal considerations when siting a 
data centre.

The processing that computers do generates lots of 
heat (and thus the second law of thermodynamics 
holds, as entropy increases overall). Processors 
stop working if they get too hot and thus attention 
must be given to keeping processors cool. In a 
traditional desktop computer, CPUs are mounted 
with passive heatsinks and active fan cooling, and 
a smaller version of these components will also 
feature on laptop computers. Tablet computers 
and smartphones typically do not include active 
cooling with a fan although much care is taken in 
their design to ensure effective passive cooling. 
Bareboard computers such as the Raspberry Pi and 
BBC micro:bit achieve sufficient cooling in normal 
use, as air can freely circulate over the processor. 

34	www.theguardian.com/technology/2015/feb/13/google-boss-warns-forgotten-century-email-photos-vint-cerf

Cooling becomes a particularly important 
consideration in building data centres, where a large 
number of processors and other components are 
packed together in a small space.

Output

Computers are able to produce many different 
forms of output. On a laptop or desktop computer, 
these are likely to be the screen and speakers, 
together with connections for external peripherals 
such as printers or headphones. 

On a smartphone, tablet or games console 
controller, outputs might also include a small motor 
to produce vibrations. Smartphones typically include 
bright light-emitting diodes (LEDs) used as a flash 
for photography, or to provide extra light when 
recording video. 

Other output devices can be connected too, for 
example the computer can be used to control 
motors, such as in a robot. In addition to traditional 
2D display technologies, computers can also power 
virtual- or augmented-reality headsets: the former 
replaces the wearer’s view of the world with a 3D 
computer generated image (shown as different 
images to each of the wearer’s eyes), the latter adds 
an additional layer of information to the wearer’s 
view of the world. 

Similar to the way in which a computer can print 
information on paper through sending instructions 
to a printer, computers can send instructions to 
3D printers, producing 3D objects through detailed 
layering of a plastic resin (or other material) 
according to the instructions received. 

Connectivity

The traditional model of input – processing – 
output has evolved to include network connections. 
The data a computer processes need not be 
provided directly through input devices attached to 
the machine; it could easily come via one or more 
network connections. Similarly, the information 
the computer outputs could be transmitted via a 
network connection.

http://www.theguardian.com/technology/2015/feb/13/google-boss-warns-forgotten-century-email-photos-vint-cer
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For example, a typical web server is unlikely to 
have a keyboard or screen connected to it directly 
– it accepts requests for web pages or commands 
via its internet connection, and responds with the 
HTML for the page or other output via its internet 
connection. 

A smartphone includes a number of different 
network connections, including: near-field 
communication (NFC) for passing small packets 
of data, such as cashless payments over very short 
distances; Bluetooth for external keyboards and 
hands-free audio; WiFi for high-speed internet 
access and longer-range connection to the phone 
network for voice and data, possibly at high speed 
using 3G or 4G systems. WiFi and Bluetooth 
connectivity is typically provided as standard on 
laptop and tablet computers, and is also built into 
the Raspberry Pi 3. The BBC micro:bit includes 
Bluetooth connectivity. Traditional cabled network 
connections provide greater communication 
bandwidth, and are less likely to suffer from 
contention issues than the WiFi equivalents.

Many devices now contain microprocessors and 
should be thought of as small, dedicated-use 
computers with their own input/output systems: 
for example, a digital thermostat includes a heat 
sensor, some form of control interface for user 
input, processing capabilities and a stored program, 
a display and a control interface for the heating 
system itself. Increasing numbers of these devices 
now provide network connectivity too, most often 
via WiFi, but perhaps via Bluetooth or the mobile 
phone system, becoming part of the ‘Internet 
Of Things’. Such connectivity provides greater 
convenience, such as the ability to turn on central 
heating via smartphone on the journey home, or 
to upload photos directly to the internet from 
a digital camera, but also allows integration with 
other internet-based systems and cloud-based 
processing. For example, a smart thermostat 
could ‘learn’ typical use patterns and adjust these 
predictively to take account of weather forecasts, 
or a smart, internet-connected refrigerator 
could autonomously submit orders to an online 
supermarket as staple supplies run low. Many are 
concerned over the privacy and security issues 
associated with such systems. 

  Classroom activity ideas

●● Show pupils how input and output devices 
and the network are connected to a 
computer. Disassemble a computer as pupils 
watch, explaining the purpose of each of 
the components in turn. Explain that the 
components pupils see are made up of smaller 
components, to illustrate the multi-layered 
nature of abstraction in computing. Some 
teachers make displays of computer components.

●● Compare the components of different types 
of computer system, showing how the internal 
components of desktop, laptop, smartphone and 
Raspberry Pi computers must all accomplish 
the same function, but that these different form 
factors mean that their physical forms can be 
quite different. 

●● Demonstrate CPU usage using operating system 
tools to monitor activity (Performance Monitor 
for Windows, Activity Monitor on OS X and the 
top command on Linux). 

●● Pupils in an extracurricular computer club 
could perhaps build their own computer from 
component parts, or fix a broken computer.

  Further resources

Barefoot Computing (2014) Computer systems. 
Available from http://barefootcas.org.uk/barefoot-
primary-computing-resources/concepts/computer-
systems/ (free registration required).

BBC Bitesize (n.d.) Digital devices. Available from 
www.bbc.co.uk/education/guides/zxb72hv/revision; 
and the CPU: www.bbc.co.uk/education/guides/
zws8d2p/revision

Bishop, C. (2008). Royal Institution Christmas 
Lecture on ‘chips with everything’. Available from 
www.richannel.org/christmas-lectures-2008-chris-
bishop--chips-with-everything

Google Data Centres (n.d.) Available from www.
google.co.uk/about/datacenters/ 

IFixit (n.d.) Repair and ‘tear down’ guides to 
common devices, including some great photos of 
internal components. Available from https://www.
ifixit.com

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computer-systems/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computer-systems/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computer-systems/
http://www.bbc.co.uk/education/guides/zxb72hv/revision
http://www.bbc.co.uk/education/guides/zxb72hv/revision
http://www.bbc.co.uk/education/guides/zxb72hv/revision
http://www.richannel.org/christmas-lectures-2008-chris-bishop--chips-with-everything
http://www.richannel.org/christmas-lectures-2008-chris-bishop--chips-with-everything
http://www.google.co.uk/about/datacenters/
http://www.google.co.uk/about/datacenters/
https://www.ifixit.com
https://www.ifixit.com
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Intel (n.d.) Teaching resources on microprocessors. 
Available from www.intel.com/content/www/us/
en/education/k12/the-journey-inside/explore-the-
curriculum/microprocessors.html

Lockwood, B. and Cornell, R. (2013) School ICT 
Infrastructure Requirements for Teaching Computing: A 
Computing at School (CAS) Whitepaper. Available 
from http://community.computingatschool.org.uk/
resources/446 

SpiNNaker (n.d.) Novel, massively parallel computer 
architecture modelled on how the brain works. Available 
from http://apt.cs.manchester.ac.uk/projects/
SpiNNaker/. See also Steve Furber on this for CAS 
TV: www.youtube.com/watch?v=wnSjR04qang 

Software  
Components
None of this computer hardware would do 
anything if it had no software: the programs that 
make it work, that make it useful. The many layers 
of software that make up a computer system are 
each abstractions of the software systems, and 
ultimately the hardware, beneath them. At each 
layer of the system, assumptions are made about 
how the layer lower down behaves, without needing 
to know how it works, which means that: 

●● There’s no need to deal with the complexity of 
the system at that layer since this has already 
been addressed in a reliable way. 

●● There’s no duplication of the functionality 
provided by the lower layer, as this is done once 
for all the different programs running at the 
upper layers. 

●● The internal operations of the lower layer are 
generally something with which we don’t need to 
concern ourselves; indeed, in many systems the 
internal operation of lower layers is deliberately 
hidden from those working at upper layers, 
sometimes for reasons of security, but also for 
proprietary, commercial reasons.

Working from the bottom of the software stack 
up, and thinking in terms of a general-purpose 
computer such as a laptop, desktop, smartphone, 
tablet or Raspberry Pi, we typically begin with 
a very small set of firmware instructions, 
compiled into machine code, providing just enough 
functionality to load and run (to ‘bootstrap’) an 
operating system. Many of the internal components 
of the computer, such as disk drives, will have 

their own firmware too, and modern CPUs often 
include a layer of ‘microcode’, which is essentially an 
interpreter for machine code which sits between 
the hardware itself and the abstraction of the 
internal architecture that’s presented to the rest of 
the system.

Operating systems (OS) such as Windows, OS 
X, Linux, iOS and Android sit between the user’s 
experience of the computer and the computer 
hardware itself. Operating systems are themselves 
multi-layered. One level deals with fundamental 
operations, including: managing multi-tasking for 
the different system and user programs to be 
run on the CPU; main memory and longer-term 
storage; input; output; network connectivity; power 
and cooling; and presenting abstractions (such as 
a file system, virtual memory and inter-process 
communication) of all these complex sub-systems 
in a simple, consistent and reliable way to other 
programs on the system. 

The various hardware components typically have 
device driver software, running at operating 
system level, (although not formally part of the 
operating system), which allows components 
from different manufacturers and with different 
specifications to be used by the operating system 
without the OS having to deal with the specifics of 
implementation.

Outside of the operating system itself there’s often 
a number of utility programs that are useful, if 
perhaps not absolutely essential, to the operation 
of the computer, such as programs to find files, to 
protect against viruses and other malware and to 
manage the installation of other programs.

The operating system also provides one or more 
user interfaces – a way for the user to interact 
with the computer’s core functions and with other 
software that might be running on it. The most 
basic of these is a command line interface (CLI), 
in which commands can be typed on screen and 
responses displayed on screen. Some computers 
(for example Linux servers) start up in this mode, 
but more often you can access this interface 
through launching a shell or terminal program. 
Whilst seeming to lack the functionality, familiarity 
and ease of use of more familiar graphical user 
interfaces (GUIs; see below), this stripped-down 
way of interacting with computers offers power and 
flexibility, and can sometimes be the only, or more 
often the fastest, way to get things done.

http://www.intel.com/content/www/us/en/education/k12/the-journey-inside/explore-the-curriculum/microprocess
http://www.intel.com/content/www/us/en/education/k12/the-journey-inside/explore-the-curriculum/microprocess
http://www.intel.com/content/www/us/en/education/k12/the-journey-inside/explore-the-curriculum/microprocess
http://community.computingatschool.org.uk/resources/446
http://community.computingatschool.org.uk/resources/446
http://apt.cs.manchester.ac.uk/projects/SpiNNaker/
http://apt.cs.manchester.ac.uk/projects/SpiNNaker/
http://www.youtube.com/watch?v=wnSjR04qang
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The other layer of a modern operating system 
is the graphical user interface (GUI), which 
provides a consistent look and feel for the user’s 
interaction with the computer in a way that’s more 
intuitive and easier to learn through exploration 
than the CLI. The GUI provides a way to interact 
with the computer through keyboard, mouse 
and now voice input, task switching, an interface 
to manage files and folders, control interfaces 
for sound, networking, dates and times, and so 
on, as well as managing windows for programs, 
displaying text and graphics, looking after the 
printer and providing accessibility support such as 
voice synthesis. It’s typically the GUI that people 
think of when talking about Windows or Mac (OS 
X) operating systems. All of this of course needs 
processing capacity in order to operate, and so 
computers running as servers or in data centres 
would typically not run, or even have, a GUI.

Whilst the CLI or GUI allow us to interact with the 
computer and run utility programs if needed, they 
don’t, in themselves, provide software for getting 
useful work done. For this, we use application 
software, and most of the programs which we 
think of as running on a computer fall into this 
broad category. Within this category are, for 
example:

●● Office productivity programs: such as a word-
processor, spreadsheet and presentation 
software, desktop publishing software, calendars, 
task management, contact management.

●● Media production tools: such as image editors, 
drawing programs, audio editors, music 
composition software, video-editing software, 3D 
animation packages.

●● Media management tools: for example music 
players, video players, image galleries, photo 
browsers.

●● Communication software: a web browser, 
email client, video conferencing tools, instant 
messaging.

●● Technical software: computer algebra systems, 
bibliography management tools.

●● Games and educational software.

Software in all of these categories can run on 
traditional Windows, OS X or Linux desktop 
computers or laptops, but these categories 
of software are also available as ‘apps’ (short 
for application programs) on iOS or Android 
smartphones and tablets, and can be run on remote 
web servers and accessed using just a web browser 

via the internet (as is the case with Google’s 
Chrome operating system).

A few special categories of application software 
deserve particular mention:

●● Server software: via the internet (or perhaps 
just a local network), one computer can run 
a program to provide services to many other 
computers, for example managing user accounts 
and password authentication on a school 
network; saving files centrally; storing, forwarding 
and providing access to email; serving static 
or dynamically-generated web pages when 
requested; managing a database of records so 
that connected computers can each update or 
interrogate a single consistent version of the 
information contained in it; and so on.

●● Programming language software and 
associated tools: converting a program written 
in a human-readable, high-level language such as 
Scratch or Python requires an interpreter or 
compiler although, once compiled, the program 
could be treated as any other application or 
system program. Programmers also use a range 
of tools to support the process of writing 
programs, including text editors or integrated 
development environments (such as the Scratch 
web and offline editors, or Python’s IDLE). 

●● Virtualisation: theoretically, one computer 
system can simulate any other; in practical terms, 
this allows computers to run virtual emulations 
of other computer systems. Programs such as 
Virtual Box or VMWare provide a simulation of 
computer hardware, running as software, onto 
which other operating systems can be installed. 
This is a great way to explore other operating 
systems safely, cheaply and securely, and also 
offers a useful way to deploy preconfigured 
combinations of operating systems and 
application software for particular purposes.

As with other application software, these categories 
can be used on Windows, Mac (OS X) and Linux 
operating systems, or accessed remotely via the 
web. With the exception of providing some simple 
web-based services to the local network, support 
for these categories is at present largely absent 
from iOS or Android platforms.
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  Classroom activity ideas

●● Use the operating system tools to monitor 
activity (Performance Monitor for Windows, 
Activity Monitor on OS X and the top command 
on Linux) to show pupils all the programs 
which run on the CPU, to demonstrate how the 
operating system manages multi-tasking.

●● Provide pupils with the opportunity to try 
out several operating systems, perhaps setting 
them the same task (sending an email, making 
a presentation, writing a short program) to 
accomplish using the Windows GUI, Linux at 
the command line, a smartphone and just a web 
browser. 

●● Give pupils the opportunity to install an 
operating system from scratch, perhaps using 
virtual hardware. If using open-source software 
such as Linux, pupils could then assemble and 
test a suite of application programs selected with 
a particular user in mind.

●● Work with your network manager to ensure 
pupils get some experience of working with 
a command line interface, perhaps using the 
command prompt on Windows, or a Linux shell 
via terminal access, or virtualisation.

  Further resources

BBC Bitesize (n.d.) Software. Available from www.
bbc.co.uk/education/guides/zcxgr82/revision and 
www.bbc.co.uk/education/guides/z6r86sg/revision, 
also operating systems: www.bbc.co.uk/education/
guides/ztcdtfr/revision 

Bishop, C. (2008). The ghost in the machine. Royal 
Institution Christmas Lecture from 2008. Available 
from www.richannel.org/christmas-lectures-2008-
chris-bishop--the-ghost-in-the-machine

Moody, G. (2002) Rebel code: The inside story of Linux 
and the open source revolution. New York, NY: Basic 
Books Inc.

Raymond, E.S. (2001) The cathedral & the bazaar: 
Musings on linux and open source by an accidental 
revolutionary. Sebastopol, CA: O’Reilly Media, Inc.

Smedley, R. (2016) Conquer the command line. 
Raspberry Pi. www.raspberrypi.org/magpi-issues/
Essentials_Bash_v1.pdf

Stephenson, N. (1999) In the beginning... was the 
command line. New York, NY: Avon Books.

Physical  
Computing
In order for a computer to be able to do anything 
with the real world, it needs some form of input 
to get data in, and some form of output to put 
information back out. 

Traditional ‘control’ activities certainly have their 
place in the new Computing Science and Digital 
Literacy programmes of study.

Teaching control technology is perhaps implied by 
the requirement that pupils be taught to:

Interpret a problem statement, and 
identify processes and information to 
create a physical computing and/or 
software solution

and that he or she:

Writes code which receives and responds 
to real world inputs (in  a visual language).

It is also a requirement that pupils can

Identify the transfer of information 
through complex systems involving both 
computers and physical artefacts

Perhaps the easiest way into the realm of physical 
computing is through using computers to monitor 
activity in the real world. A very simple introduction 
might involve recording or plotting the level of 
noise in the classroom using Scratch’s microphone 
input (Figure 3.30):

http://www.bbc.co.uk/education/guides/zcxgr82/revision
http://www.bbc.co.uk/education/guides/zcxgr82/revision
http://www.bbc.co.uk/education/guides/z6r86sg/revision
http://www.bbc.co.uk/education/guides/ztcdtfr/revision
http://www.bbc.co.uk/education/guides/ztcdtfr/revision
http://www.richannel.org/christmas-lectures-2008-chris-bishop--the-ghost-in-the-machine
http://www.richannel.org/christmas-lectures-2008-chris-bishop--the-ghost-in-the-machine
http://www.raspberrypi.org/magpi-issues/Essentials_Bash_v1.pdf
http://www.raspberrypi.org/magpi-issues/Essentials_Bash_v1.pdf
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Figure 3.30 Scratch sound level monitor 

The Makey Makey interface board(35) plugs into a 
computer’s USB port, allowing other conductive 
objects to function as a replacement for some of 
the keys on the computer’s keyboard. This can be 
combined with pupils’ own Scratch programs to 
produce, for example, a maze game controlled by 
jumping in buckets of water, or a piano with keys 
made from bananas. The PicoBoard(36) provides an 
alternative input interface for Scratch. 

Integrating monitoring software with web-based 
services allows pupils to explore some aspects of 
the ‘Internet Of Things’, for example, setting up a 
bird box camera which uploads a photograph to 
the web when a bird enters or leaves the box. Data 
could be tweeted from a school weather station in 
response to particular queries.

There are some great cross-curricular 
opportunities here, for example, the use of data 
loggers in science experiments, activity monitors 
in PE or weather station data(37) for science and 
geography. Working with real-world data such 
as this provides a very motivating context for 
visualisation and exploratory analysis, and perhaps 
some scope for introducing ideas of machine 
learning.

35	www.makeymakey.com/
36	www.picocricket.com/picoboard.html
37	See, for example, www.raspberrypi.org/blog/school-weather-station-project/
38	https://vimeo.com/4313755

Beyond monitoring activities, many teachers report 
success with having pupils write software which 
controls real-world components. The ‘Hello, world’ 
of this sort of programming is typically flashing an 
LED on and off (see Figure 3.31). 

Figure 3.31 Scratch code to flash an LED connected 
to GPIO pin 17 on a Raspberry Pi. CC by-sa 
Raspberry Pi Foundation

	 from gpiozero import LED 
	 from time import sleep

	 led = LED(17)

	 while True: 
	        led.on() 
	        sleep(1) 
	        led.off() 
	        sleep(1)

The equivalent Python code using Raspberry Pi’s GPIO 
Zero library. CC by-sa Raspberry Pi Foundation

From here, it’s a relatively simple step to producing 
a set of working traffic light signals using the correct 
sequence. 

It’s when monitoring (input) and control (output) 
aspects of physical computing are combined using 
a single computer program that the most exciting 
and creative elements of physical computing open 
up. For example, pupils could ‘hack’ a soft toy so 
that its eyes light up and a noise plays when the toy 
in tapped,(38) or write a program to play a game of 
noughts and crosses on a small LED screen such as 

http://www.makeymakey.com/
http://www.picocricket.com/picoboard.html
http://www.raspberrypi.org/blog/school-weather-station-project/
https://vimeo.com/4313755
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on Raspberry Pi’s Sense HAT,(39) or create a digital 
musical instrument.(40)

Pupils might take these ideas of monitoring and 
control and apply them to projects involving 
robotics. For example, pupils can build a model 
or robot out of Lego NXT or EV3 Mindstorms 
kit, incorporating sensors and motors, and then 
write code in Enchanting Scratch or EV3’s own 
programming language to control how their model 
moves in response to the input signals received from 
the sensors.

One way of thinking about a robot is as a computer 
which can move, perhaps as a single, integrated 
system following a sequence of instructions, such 
as the Pro-Bot, Bigtrak or a floor turtle, or a flying 
drone under the direct control of its operator, or a 
largely stationary device with one or more motors 
controlling moving parts – e.g. a robotic arm under 
computer control, used in industrial manufacturing, 
or a surgical robot under the remote control of a 
human operator.

Robotics has long had wide applications in industry, 
where repetitive tasks can be performed effectively 
and efficiently by machines, but as better or ‘smarter’ 
algorithms have been developed by computer 
scientists, more and more decision-making capabilities 
have been built into the robot, so that the robot 
is able to autonomously react to changes in its 
environment. Autonomous, self-driving cars such as 
those pioneered by Google are an example, even if 
we may think of them as cars rather than robots.  The 
long communication delays between Earth and Mars 
mean that the robotic Mars rover(41) must use lots of 
event-driven, ‘when...do’ programming to be able to 
respond to what happens in its environment without 
waiting for control instructions from Earth. One 
application of machine learning will be programming 
robots to respond to input data to improve their own 
operation over time, perhaps particularly in such far-
flung settings.

Whilst few might attempt such projects with a whole 
class, an advanced group of pupils or an extracurricular 
club might combine Design & Technology and 
computing skills, knowledge and understanding to 
build and program its own robot, perhaps entering a 
competition with the work or focussing on developing 
a solution to a real-world problem.

39	www.raspberrypi.org/products/sense-hat/
40	For example a digital theramin: www.raspberrypi.org/magpi/ultrasonic-theremin/
41	http://mars.nasa.gov/mer/overview/

There are many platforms available on which 
pupils can develop their understanding of physical 
computing:

●● Interface boards such as Makey Makey provide 
an easy way to connect the ‘real world’ beyond 
keyboard and mouse to a computer, and can be 
used directly with lots of different programs. 

●● Small microcontroller-based boards such as 
CodeBug and Crumble allow pupils to write 
programs on screen and then flash (download) 
them to the board to run independently; each of 
these examples can be used for both monitoring 
and control. 

●● Lego WeDo hardware provides simple sensors 
and a motor, and is connected to a computer or 
tablet via Bluetooth; it can be programmed using 
Scratch as well as its own tile-based language. 

●● Lego Mindstorms is a more sophisticated 
system, with a wider range of sensors and 
motors. Programs are downloaded to the 
Mindstorm control brick and can then run 
independently of the computer on which they 
were written.

●● Arduino microcontrollers provide a range of 
boards able to work with a variety of different 
components. Again, programs are written on one 
computer and then downloaded to the Arduino 
board.

The two most common platforms for physical 
computing activities at present are the BBC 
micro:bit and the Raspberry Pi, both of which have 
been mentioned elsewhere in this guide, but both 
merit further discussion here.

Raspberry Pi

The Raspberry Pi is a small, cheap and high-
powered bare-circuit-board general-purpose 
computer. It was created by a small, Cambridge-
based team who had noticed the decline in 
undergraduate admissions to university computer 
science courses, and who believed that easy 
access to a computing platform which positively 
encouraged tinkering, programming and making 
would be helpful in supporting computing 
education. The first model went on sale to the 
general public in 2012.

http://www.raspberrypi.org/products/sense-hat/
http://www.raspberrypi.org/magpi/ultrasonic-theremin/
http://mars.nasa.gov/mer/overview/
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The Raspberry Pi foundation sees its mission as:

to put the power of digital making into the 
hands of people all over the world, so they 
are capable of understanding and shaping 
our increasingly digital world, able to solve 
the problems that matter to them, and 
equipped for the jobs of the future.

Figure 3.32 Raspberry Pi 3 (CC by-sa Herbfargus)

Version 3 of the Raspberry Pi (Figure 3.32) is a 
capable machine: the board provides four USB 
inputs, such as for mouse and keyboard, HDMI 
video and audio output to connect to a monitor 
or television screen, Bluetooth, WiFi and wired 
networking, a connector for a camera module (sold 
separately), and a set of general-purpose input/
output pins used for the control and monitoring 
needed for physical computing. The processor is 
a four-core ARM chip running at 1.2GHz, similar 
to that used in smartphones, and it is powered by 
a micro-USB connector. It has 1GB of RAM but 
has no built-in permanent storage; instead, the 
operating system, application software and any data 
are stored on a removable Micro SD card, from 
which it boots.

The Raspberry Pi can use a number of different 
operating systems, including a version of Windows 
10, as well as Acorn’s RISC OS first released in 1987 
and popular at the time in UK schools. Most users, 
however, use a version of Debian Linux, Raspbian, 
that has been tailored to both the Raspberry Pi 
hardware platform and the foundation’s educational 
mission. Raspbian has an easy-to-navigate desktop 
GUI, using a similar system of icons and menus to 
other operating system GUIs.

42	www.raspberrypi.org/resources/
43	http://projects.codeclubworld.org/en-GB/index.html

The bundled software focusses, unsurprisingly, 
on programming but includes a broader range of 
application software too: there’s the Libre Office 
suite, a web browser and an email client, as well as 
the high-end computer algebra system Mathematica. 
On the programming side, we have Python with the 
IDLE IDE (integrated development environment), 
a bespoke version of Scratch with support for the 
GPIO pins, and Sonic Pi, a Ruby-like language for 
composing (and performing) music. Raspbian includes 
Minecraft as standard, with the API (application 
programming interface) to allow Minecraft to be 
controlled through programming in Python. Many 
additional programs can be installed very easily: for 
example, the command (typed in the shell):

      sudo apt-get install tree

is all it takes to install the tree utility.

The Raspberry Pi Foundation has assembled a 
collection of curriculum resources, many of which are 
directly relevant to the Level 3 computing curriculum, 
with others providing much that might inspire pupils 
in extracurricular computing clubs within or beyond 
school.(42) The Foundation merged with Code Club 
towards the end of 2015. Whilst the Code Club 
activities(43) have been written with primary pupils in 
mind, many, particularly those on HTML and Python, 
would be appropriate for Level 3. 

The Raspberry Pi Foundation has developed two-
day face-to-face PiCademy workshops. Day 1 is 
spent learning about computing and the Raspberry 
Pi, including physical computing, Minecraft and 
Sonic Pi. On day 2, participants work in teams, 
with contributions from the Raspberry Pi team, to 
develop their own project ideas. The Raspberry Pi 
community also hosts frequent local ‘Raspberry 
Jam’ events, in which community members meet to 
share their knowledge, learn new things and show 
off what they’ve done with their Raspberry Pi.

BBC micro:bit

Back in the 1980s the BBC played a pivotal role in 
the early days of computing education. The BBC 
sponsored the development of a home computer 
by Acorn, the BBC Micro, and developed television 
content to promote computer literacy in the home. 

http://www.raspberrypi.org/resources/
http://projects.codeclubworld.org/en-GB/index.html
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The BBC Micro was chosen as one of the computer 
models that would be supplied to every school. 

Building on this legacy, and as part of a year-long 
‘Make it digital’ initiative across the BBC’s media, 
the BBC drew together a consortium of some 29 
partner organisations (including ARM, Samsung, 
Microsoft and Lancaster University) to develop 
the BBC micro:bit, with the aim of inspiring ‘young 
people to get creative with digital and develop core 
skills in science, technology and engineering’.

In 2016, close on 1 million micro:bits were 
distributed to the entire Year 7 national cohort. 
Significantly, the micro:bits, whilst distributed via 
schools, are intended to be given to the pupils 
themselves. Schools, pupils and others are able to 
buy further micro:bits if they desire.

The micro:bit (Figures 3.33–3.34) is smaller than 
the Raspberry Pi and, unlike the Raspberry Pi, it 
cannot be programmed directly, but rather must 
have programs downloaded to it from a connected 
computer, tablet or smartphone.

Figure 3.33 BBC micro:bit showing buttons, 25 
pixel display and IO connector. CC by-sa Gareth 
Halfacree

Figure 3.34 The other side of the BBC micro:bit 
showing power and data connectors, processor, 
accelerometer, compass and reset button

44	https://microbit-micropython.readthedocs.io/en/latest/tutorials/network.html
45	Alternative programming platforms are available such as Microsoft’s www.pxt.io/

The hardware includes an ARM microcontroller, 
running at 16MHz, 16KB of RAM and 256KB 
of flash memory, in which programs are stored. 
Input is through two buttons, an accelerometer, 
a magnetometer and the GPIO edge connector. 
Output is through a 25-pixel display or via the 
GPIO connector (for example, a speaker can 
be wired between connectors 0 and GND to 
produce simple audio). Connectivity is via USB and 
Bluetooth, as well as, somewhat unexpectedly, the 
GPIO pins.(44) 

Programming the micro:bit is done via a web-
based interface at www.microbit.co.uk/create-code 
which provides access to four different editors: 
a block-based javascript-like editor from Code 
Kingdoms, a blockly-based block editor, Microsoft’s 
TouchDevelop, and an online version of the Mu 
educational IDE for microPython (see Figures 
3.35–3.36).(45) 

Figure 3.35 Simple micro:bit dice program in Blocks

Figure 3.36 The same program converted to 
TouchDevelop

https://microbit-micropython.readthedocs.io/en/latest/tutorials/network.html
http://www.pxt.io/
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      // When the microbit runs. 
      function onStart(  ) {

      }

      function onShake(  ) { 
              microbit.say(Random.number(1, 6)); 
              wait(1000); 
              microbit.clear(); 
     }

A similar program in CodeKingdoms’ Javascript editor 
(code view)

         
       from microbit import * 
        import random

        while True: 
               if accelerometer.is_gesture(“shake”): 
                    display.show(str(random.randint(1, 6))) 
                    sleep(1000)

A similar program in microPython

There are a couple of particularly nice features 
of the micro:bit code editors. Firstly, there’s an 
on-screen emulator, so (with the exception of 
microPython) it is possible to test your code on 
screen without downloading it to the micro:bit 
(Figure 3.37).

Figure 3.37 On-screen micro:bit emulator running 
the above program

Secondly, although these editors work in the web 
browser, they don’t need any server side-processing 
to work: compiling the program you write happens 
inside the browser itself so, once they have been 
accessed online, they can be subsequently used 
offline. Micro:bit source code files can be uploaded 
or downloaded to the editor from the desktop.

Once you have written your program, to run 
it on the micro:bit itself you first compile the 

program, which produces a .hex machine code 
file. This contains a pre-compiled run-time 
environment, a device abstraction layer that sits 
between the hardware and your program, and your 
program compiled into ARM mbed machine code. 
Connecting the micro:bit to your computer via a 
USB cable, it shows up as if it were a USB memory 
stick, so you can simply drag the compiled .hex 
file across onto the micro:bit. A quick press of the 
reset button and your code should run very happily 
on the micro:bit itself. You can now plug in the 
micro:bit’s own battery pack and disconnect the 
USB cable.

As you would expect, there’s a good range of 
support materials available from the BBC itself 
and many of the other partner organisations. The 
project site at www.microbit.org/ is the best place 
to get started.

CAS (Computing At School) regional centres and 
Master Teachers have been active in supporting 
teachers with introductory CPD (continuing 
professional development) courses for the 
micro:bit, as have many of the partner organisations. 

  Classroom activity ideas 

●● Pupils could use the micro:bit, Raspberry Pi 
Sense HAT or GPIO pins, or a Makey Makey to 
control a simple game.

●● Pupils might use sensors to collect weather 
data for school and then analyse for patterns, 
relationships and interesting exceptions.

●● Ask pupils to write a program which could 
control a set of traffic lights in the correct 
sequence, perhaps on screen initially. Can they 
connect suitable LEDs to the computer and 
control these directly?

●● Pupils could build and program a robot that 
could find its way out of a maze.

http://www.microbit.org/
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  Further resources

BBC Bitesize (n.d.) Raspberry Pi and Arduino. 
Available from www.bbc.co.uk/education/guides/
zdsbwmn/revision

BBC Cracking the Code clips (2013) Robots. Available 
from www.bbc.co.uk/programmes/p01661tn; and 
aerial photography using the Raspberry Pi: www.
bbc.co.uk/programmes/p01661f7

BBC micro:bit site (n.d.) Available from www.
microbit.org/

Berry, M. and Chambers, R. (2015) Quick start guide 
to the BBC micro:bit. London: Hodder Education.

IBM (n.d.) Workshop on robotics. Available from 
www.ibm.com/ibm/responsibility/initiatives/
activitykits/robotics/ 

Philbin, C.A. (2015) Adventures in Raspberry Pi. 
Hoboken, NJ: John Wiley & Sons.

PiCademy (n.d.) Available from www.raspberrypi.
org/picademy/

Raspberry Pi (n.d.) Education resources. Available 
from www.raspberrypi.org/education/ including a 
teacher’s guide to using Raspberry Pi in the classroom: 
www.raspberrypi.org/guides/teachers/

Royal Academy of Engineering (2015) Applying 
computing in D&T at KS2 and KS3: The 2014 national 
curriculum requirements. Available from http://
community.computingatschool.org.uk/files/6994/
original.pdf

Technology will Save Us (n.d.) Available from www.
techwillsaveus.com/
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Computer  
Networks
HOW DO COMPUTERS 
COMMUNICATE?
Useful as individual computers are for running 
programs, such as games, calendars and 
spreadsheets, to perform calculations and help 
manage information, it has really been through 
connecting computers together to form networks, 
and particularly through the internet – a network 
of networks – that they have had the most 
immediate impact on our lives. Consider how 
limited our use of technology in school would be 
if we had no access to the local network or the 
internet. Consider how frustrating many find it 
when, even temporarily, we have no data signal for 
smartphones, or no WiFi for a tablet or laptop. 

The internet has made possible communication 
and collaboration with a diversity and immediacy 
as never before, and yet, perhaps like writing, 
printing and the telephone before it, it’s something 
that most of us take for granted, and possibly have 
little understanding of. The computing curriculum 
sets out to change this: alongside developing 
pupils’ computational thinking through practical 
programming, it includes requirements that 
primary pupils be taught to ‘access websites and 
use navigation skills to retrieve information for 
a specific task’ and ‘use search engines to search 
the internet for specific or relevant information’.  
At Level 3, pupils have to ‘demonstrate an 
understanding of how computers communicate 
and share information over networks, including the 
concepts of sender, receiver, address and packets.’

How does the  
Internet work?
The internet is a physical thing: it is the cables, fibre, 
transmitters, receivers, switches, routers and all the 
rest of the hardware that connect computers, or 
networks of computers, to one another.

The internet has been designed to do one job: to 
transport data from one computer to another. This 
information might be an email, the content of a web 
page or the audio and video for a video call.

The data that travels via the internet is digital: this 
means it is expressed as numbers. All information 
on the internet is expressed this way, including 
text, images and audio. These numbers are 
communicated using binary code, which is made 
up of 1s and 0s, using on/off (or low and high) 
electrical or optical signals. Binary code is similar to 
the Morse code used for the telegraph in Victorian 
times, but it’s much, much faster. A good telegraph 
operator could work at maybe 70 characters 
(letters) a minute, but even a basic school network 
can pass data at 100 million on/off pulses a second, 
enough for some 750 million characters per minute. 
One transatlantic fibre connection has the capacity 
for up to 24 trillion characters per minute.

Digitised information needs to be broken down 
into small chunks by the computer, before it can 
be sent efficiently. These smaller chunks of data are 
known as ‘packets’.

The small packets can be passed quickly through 
the internet to the receiving computer where they 
are re-assembled into the original data. The process 
happens so quickly that high-definition video can be 
watched this way, normally without any glitches.

The packets don’t all have to travel the same way 
through the internet: they can take any route from 
sender to recipient. However, there is generally a 
most efficient route, which all the packets would 
take (Figure 4.1). 
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Server

Server

Most efficient route 
for packets

Key

Router

Figure 4.1 A sample network: Note there is more 
than one route for packets to travel

It is perhaps easier to understand how the internet 
works nowadays by looking at a picture of how it 
worked in 1969 when it started (Figure 4.2):

Figure 4.2(1)

Here you see the internet made up of just four 
routers: UCLA, SRI, UCSB and UTAH. Each router 
is a piece of hardware that passes packets of data 
from the computer it is connected to (in the case of 
UTAH, that’s PDP10; in the case of UCLA, it’s SIGMA 
7) –  and perhaps any terminals connected to those 
computers – to any of the other three computers 
and their terminals.

So, if you were using the PDP10 computer at the 
University of Utah and sent a message to someone at 
UCLA, your message would be passed first to your 
router at Utah, then on to the router at Stanford 
Research Institute (SRI), then (normally) to UCLA’s 
router, where it would be passed on to the intended 
recipient on their SIGMA 7.

1	 From www.computerhistory.org/internet_history/
2	 Simple Scratch-based simulation of DNS lookups at https://scratch.mit.edu/projects/105316834/#editor

The internet is obviously much, much bigger than 
this example. In real life, the journey of a packet 
of data from your home computer to one of 
Microsoft’s server farms might look something like 
this:

●● your home WiFi access point;
●● your home switch and router (usually all in the 

same black box);
●● switches in your nearest BT green cabinet;
●● more switches in your local telephone exchange;
●● London internet exchange;
●● routers near Porthcurno in Cornwall;
●● fibre optics under the Atlantic;
●● further switches and routers in the USA. until 

Microsoft’s internet connection at whichever of 
its data centres you are communicating with. 

When you type a URL (such as www.bbc.co.uk or 
www.computingatschool.org.uk) into your browser, 
you send a packet of data requesting the content 
of these pages to be returned to you. But, before 
this can happen, the domain name first needs to 
be converted into numbers. This is the job of the 
Domain Name Service (DNS), which converts 
these familiar web addresses into numbers known 
as Internet Protocol (IP) addresses. The DNS itself 
uses the internet to look up (in the equivalent 
of huge phone books) the numeric address 
corresponding to the domain names, but it keeps a 
local record (cache) of these, so that the next time 
the domain name is requested, the IP address can 
be returned more quickly.(2)

Each packet has a destination IP address on it. With 
it the router can easily look up which way to pass 
the packet on.

http://www.computerhistory.org/internet_history/
https://scratch.mit.edu/projects/105316834/#editor
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Who can see the data we 
transmit? 

There’s nothing to stop routers from looking at the 
data in the packet before they pass it on (just as 
there was nothing to stop telegraph clerks reading 
the messages they passed on in Morse code).

To be able to send information, such as passwords 
or bank account details, secretly via the internet, it’s 
important to encrypt the data first. This happens 
automatically when using the ‘https’ version of 
websites. In these situations, you will see a little 
green padlock displayed in your browser’s address 
bar. The data are decrypted when they reach their 
destination – see pages 151 - 154 for more on 
cryptography.

  Classroom activity ideas

●● Ask pupils to draw a picture of the internet. This 
will allow you to spot any misconceptions they 
have, and provide an opportunity for pupils to 
share their understanding.

●● Carry out this ‘unplugged’ activity to model how 
the internet passes packets of data.

»» Organise all but four of your pupils into 
groups.

»» Tell the pupils to choose one pupil in their 
group to be the ‘group router’. The rest of the 
group will be ‘computers’.

»» Ask the remaining four pupils to take on the 
role of ‘internet routers’, which connect the 
group routers together.

»» Give each ‘computer’ a numerical address, 
comprising a group number and a computer 
number (for example 1.1, 1.2, 1.3; 2.1, 2.2, 2.3, 
and so on; Figure 4.3).

»» Ask each ‘computer’ to write a short message 
to another ‘computer’ in a different group, 
splitting their message over three different 
slips of paper and marking their slips ‘1 of 3’, 
‘2 of 3’ and ‘3 of 3’. Tell them to write their 
numerical address and the numerical address 
of the recipient, for example ‘To: 2.2; From: 
3.4; 2 of 3’. This is the ‘packet header’.

 
 

»» Ask the ‘computers’ to pass their slips to 
their ‘group router’, who can pass these on 
one at a time to the ‘internet routers’. They in 
turn pass them to the correct ‘group router’ 
who passes them to the recipient themselves, 
who can reassemble the message as their 
other packets arrive. 
 

Figure 4.3 Role-playing a computer network in class

●● Investigate the physical infrastructure of the 
school network. Tell the pupils to walk from 
their laptop to the local WiFi point or to follow 
the network cable from the computer to the 
classroom switch. Next, walk together to the 
school’s main network switch, firewall and 
router. If you can, then walk down to the nearest 
BT green cabinet, and perhaps to your local 
telephone exchange, depending on how close 
this is to you.

●● Explore the steps on the journey of a packet 
using the ‘tracert’ command at the Windows 
command prompt, if you have access to this. Also 
see the Visual traceroute reference in Further 
resources.

●● Ask your school network manager to talk pupils 
through how the school network connects their 
computers to the rest of the internet.

  Further resources

Bagge, P. (n.d.) Network, internet and web search 
planning. Code-it. Available from http://code-it.co.uk/
netintsearch

Barefoot Computing (2014) Internet services. 
Available from http://barefootcas.org.uk/
programme-of-study/multiple-services-provided-
networks-internet/internet-services/ (free, but 
registration required).

http://code-it.co.uk/netintsearch.
http://code-it.co.uk/netintsearch.
http://barefootcas.org.uk/programme-of-study/multiple-services-provided-networks-inte
http://barefootcas.org.uk/programme-of-study/multiple-services-provided-networks-inte
http://barefootcas.org.uk/programme-of-study/multiple-services-provided-networks-inte
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Barefoot Computing (2014) Modelling the internet 
activity. Available from http://barefootcas.org.uk/
programme- of-study/understand-computer-
networks-including- internet/ks2-activity-modelling-
the-internet/ (free, but registration required).

BBC Bitesize (n.d.) Introduction to networks. Available 
from www.bbc.co.uk/education/guides/zc6rcdm/
revision and Internet and communication: www.bbc.
co.uk/education/guides/z8nk87h/revision 

Blum, A. (2012. Discover the physical side of the 
internet. TED. Available from www.ted.com/talks/
andrew_blum_what_is_the_Internet_really

Blum, A. (2012) Tubes: Behind the scenes at the 
internet. London: Penguin Books.

Digital Schoolhouse (n.d.) Mark Dorling and 
others: Networks unplugged. Available from www.
digitalschoolhouse.org.uk/documents/networks-
unplugged-workshop-pack

Naughton, J. (2012) From Gutenberg to Zuckerberg: 
What you really need to know about the internet. 
London: Quercus.

Raspberry Pi Learning Resources (n.d.) Networking 
lessons. Available from www.raspberrypi.org/
learning/networking-lessons/

Visual traceroute to find the path from their web 
server to an internet address. Available from www.
yougetsignal.com/tools/visual-tracert/

What can you  
do with the  
Internet?
One way to think of the internet is as the train 
network, efficiently routing trains of all kinds from 
one point to another, irrespective of what those 
trains contain: some will have passengers, others 
freight, others are perhaps maintenance stock. 
Similarly the infrastructure of the internet can be 
used for lots of different things. At present, we are 
most familiar with the web as the main application 
of the internet, but the internet pre-dates the web 
by a couple of decades and there are many who 
think we will be using the internet, or something 
very like it, long after the web becomes a historical 
curiosity. 

The services which run on computer networks, 
including the internet, fall into roughly two groups 
(Figure 4.4):

(1) client–server: one computer (the client) 
accesses services or content running or stored on 
another, typically larger, computer (the server);

(2) peer-to-peer: two computers communicate 
directly as equals, passing data directly to and from 
each other.

Client–server 

Client computer

Client computer

Server computer

Client computer

Peer-to-peer

Figure 4.4

The World Wide Web (see page 122) fits into 
the client–server model, but so do lots of other 
services which use computer networks and the 
internet as a means of communicating.

A school network will often have one or more 
computers acting as servers, responding to requests 
from the desktop, laptop and tablet computers 
which act as clients. On a local area network 
(LAN) like this, the servers might provide central 
storage and backup for files, access to documents 
and so on, from any computer on the network; a 
management information system (such as SIMS – 
the Student Information Management System); local 
email accounts; access to printers; username and 
password authentication; filtering and logging of 
access to the web; and even locally-stored copies of 
frequently visited web pages.

Email is a good example of a client–server system 
using the internet (although many people’s 
experience of email is as webmail accessed through 
a browser like Internet Explorer or Chrome). The 
journey of an email might be something like this:

http://barefootcas.org.uk/programme- of-study/understand-computer-networks-including- internet/ks2-a
http://barefootcas.org.uk/programme- of-study/understand-computer-networks-including- internet/ks2-a
http://barefootcas.org.uk/programme- of-study/understand-computer-networks-including- internet/ks2-a
http://barefootcas.org.uk/programme- of-study/understand-computer-networks-including- internet/ks2-a
http://www.bbc.co.uk/education/guides/zc6rcdm/revision
http://www.bbc.co.uk/education/guides/zc6rcdm/revision
http://www.bbc.co.uk/education/guides/z8nk87h/revision
http://www.bbc.co.uk/education/guides/z8nk87h/revision
http://www.ted.com/talks/andrew_blum_what_is_the_Internet_really
http://www.ted.com/talks/andrew_blum_what_is_the_Internet_really
http://www.digitalschoolhouse.org.uk/documents/networks-unplugged-workshop-pack
http://www.digitalschoolhouse.org.uk/documents/networks-unplugged-workshop-pack
http://www.digitalschoolhouse.org.uk/documents/networks-unplugged-workshop-pack
http://www.raspberrypi.org/learning/networking-lessons/
http://www.raspberrypi.org/learning/networking-lessons/
http://www.yougetsignal.com/tools/visual-tracert/
http://www.yougetsignal.com/tools/visual-tracert/
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●● Alice opens up Outlook and starts typing in her 
email to Bob. She includes Bob’s email address, 
bob@builders.com, in the ‘To’ line of the email 
and clicks ‘send’.

●● The email is transmitted via the internet (or the 
local network) to her outgoing mail server. If the 
email is intended for another domain (builders.
com here) rather than Alice’s own (lookingglass.
org) then Exchange will forward the email as 
packets of data via the internet, which routes 
these through to the incoming mail server for 
builders.com as discussed above.

●● The inbound mail server at builders.com (again, 
perhaps running Exchange) re-assembles the 
message from the packets of data, accepts this 
and stores it ready for Bob to collect.

●● Later on, Bob’s email client (perhaps also 
Outlook) connects to his mail server and asks 
if there are any messages for him. The one from 
Alice gets transmitted to Bob’s computer via the 
local network or the internet, where Bob can 
read it in his email software.

Although it might look to Alice and Bob as though 
they are communicating directly with each other, 
all their emails are going via the outbound and 
inbound mail servers. Notice that the contents of 
their emails are not encrypted, so the organisations 
running the two mail servers can read the contents 
of these messages if they wish.

Not all communication on the internet uses a 
client–server model. For example, peer-to-peer 
communication is a model used for Skype and a 
number of other video conferencing or voice-
over-internet systems. Although Skype uses a 
server to maintain a list of logged-in users and 
the IP addresses of their computers, when a call is 
connected, the packets of data that make up the 
digitised video and audio for the call are routed 
directly through the internet between the two 
parties.

Some online gaming websites use a similar peer-
to-peer system, as does BitTorrent (Cohen, 2003), 
a protocol which allows large files to be shared 
between many computers by allowing direct peer-
to-peer connections, and blockchain (Nakamoto, 
2008), a distributed ledger system for transactions 
in cryptographically-generated (‘mined’) currency. 
Because peer-to-peer connections are harder for 
large organisations to monitor, they are favoured by 
those using the internet for criminal purposes, for 
example the use of the BitTorrent protocol 

for illegally sharing copyrighted material, or the 
blockchain-based Bitcoin for purchasing illegal 
goods.

  Classroom activity ideas

●● Role-play can be used very effectively to teach 
how email works and issues with email security. 
Explain to pupils that email addresses can be 
‘spoofed’ or accounts hacked –  So, not all emails 
are from whom they appear to be. Warn pupils 
that files attached to emails can contain viruses. 
Also explain that links in emails can sometimes 
point to websites that are set up to capture 
personal information such as passwords. You 
might like to run this as part of a larger topic 
looking at the effective and safe use of email, 
perhaps in a twinning project with a class in this 
or another country.

●● Use a video conferencing system to allow 
experts to talk to the class or to allow two 
classes to communicate. As you set up the 
computer, talk through the technical aspects of 
the call with your pupils. Note: Skype and most 
other video conferencing systems don’t allow 
children to register for accounts, so you will 
need to run this as a whole-class activity.

●● Encourage pupils to talk about how they and 
their families use the internet to communicate, 
highlighting any services they use in addition to 
the World Wide Web.

  Further resources

Google Green (2012) Story of send on Google Green 
(a short cartoon about the journey of a Gmail-
based e-mail). Available from www.youtube.com/
watch?v=5Be2YnlRIg8

Guha, S., Daswani, N. and Jain, R. (2006) An 
experimental study of the Skype peer-to-peer VoIP 
system. Available from http://saikat.guha.cc/pub/
iptps06-skype.pdf

The journey of a letter. Available from www.
anpost.ie/anpost/schoolbag/primary/our+people/
the+journey+of+your+mail/

http://www.youtube.com/watch?v=5Be2YnlRIg8
http://www.youtube.com/watch?v=5Be2YnlRIg8
http://saikat.guha.cc/pub/iptps06-skype.pdf
http://saikat.guha.cc/pub/iptps06-skype.pdf
http://www.anpost.ie/anpost/schoolbag/primary/our+people/the+journey+of+your+mail/
http://www.anpost.ie/anpost/schoolbag/primary/our+people/the+journey+of+your+mail/
http://www.anpost.ie/anpost/schoolbag/primary/our+people/the+journey+of+your+mail/
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What is the World 
Wide Web?
In 1989, British computer scientist Tim Berners-Lee 
decided to combine the capabilities of the internet 
with the functions of hypertext (documents that 
include hyperlinks that allow connections to be 
made between different files; see Figure 4.5) to 
manage information systems at CERN where he 
was working (Berners-Lee, 1989). 

Hypertext

Figure 4.5 The links in the hypertext take the reader 
to different documents which extend or support 
the information in the original document

Berners-Lee developed a specification for how an 
internet-based version of hypertext would work, 
and then wrote the software for the first web 
servers and web browsers. The result was the 
World Wide Web.

The internet is about connecting computers 
together, but the World Wide Web is about the 
connections between documents (Figure 4.6). 
When you click on a web link, another web page 
is requested from (typically) a different web server 
somewhere else on the internet.

The content of this web page is then delivered to 
your web browser.

Figure 4.6 The World Wide Web is about the 
connection (the links) between documents

What standards does  
the World Wide Web use?

To ensure that all computers could communicate 
with one another, Berners-Lee developed a set of 
standards (called protocols) for the web. Versions of 
these are all still used today.

HTTP (HyperText Transfer Protocol) 

This is the process that computers use to request 
and transfer hypertext to one another.

The web is a client–server system: we use a web 
browser on our computer to request a web page 
from one of the many, many web servers connected 
to the internet. The request travels as a packet 
of data via switches and routers until it reaches 
the intended web server. The server responds by 
sending back the content of the page, together 
with any images and formatting instructions and 
mini programs (typically in JavaScript) needed for 
the page. If the page isn’t there, it sends back a ‘404: 
Not found’ error message – sometimes you will see 
other error messages too.

Remember that the internet doesn’t encrypt 
packets of data: there’s another version of HTTP, 
called HTTPS, where the request for a page, the 
contents of the page and any information entered 
into a form (such as a password) are sent over the 
internet in an encrypted form. This encryption can 
sometimes be bypassed by network managers and 
government agencies.
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URL (Uniform Resource Locator)

URLs are the precise location on the web where 
web pages or their components are stored. They 
are what you type in to your browser’s address bar 
to request a page.

Each bit of a URL means something. Let’s look at 
the URL of one of the first web pages –  Berners-
Lee’s home page for the World Wide Web project 
itself – to work out what each bit means:

http://info.cern.ch/hypertext/WWW/TheProject.
html

●● ‘http’ is the protocol we are using to request 
hypertext and the content that comes back – 
see above.

●● ‘://’ is just punctuation – Berners-Lee now thinks 
it would have been better if he’d skipped the // 
bit!.

●● ‘info’ is the name of the web server we are 
connecting to. Often this will be ‘www’ these 
days, or it’s just omitted, as the main web server 
for the organisation will be assumed.

●● ‘cern’ is the name of the organisation, in this case 
the European Centre for Nuclear Research.

●● ‘ch’ is an abbreviation for the country where 
the organisation has registered its domain name, 
in this case Switzerland. Some countries also 
show what sort of organisation is registered; for 
example, ‘co.uk’ for a commercial site and ‘.sch.
uk’ for a school site in the UK. If no country 
is shown, then it will be registered in the USA: 
‘.com’ for commercial sites, ‘.edu’ for university 
sites, and so on.

●● ‘hypertext’ is a directory (folder) on the web 
server.

●● ‘WWW’ is a directory inside the ‘hypertext’ 
directory on the web server.

●● ‘TheProject’ is the name of the actual file we 
are requesting, in this case a web page about the 
World Wide Web project. Sometimes you don’t 
see a file name at the end of a URL, in which 
case the web server will send back the default 
file for the directory, often an index page such as 
‘index.html’.

●● ‘.html’ is the file extension, which shows what 
format the page is written in, in this case HTML. 
This is like ‘.doc’ or ‘.docx’ for a Word file or 
‘.jpg’ or ‘.jpeg’ for an image.

Although it is often convenient to use search 
engines like Google or Bing to find pages rather 
than typing in URLs, the URL is a good way to 

check that you’re connecting to the intended web 
server (rather than a spoof website). URLs are also 
needed when acknowledging sources of information 
and for creating links between pages (and so 
building more of the connections that make the 
web so useful).

HTML (HyperText Mark-up Language) 

HTML is the computer language (code) in which 
the content and structure of a web page are 
described, or ‘marked up’.

The content of web pages is stored in HTML 
format on web servers. Creating a web page 
involves writing (or getting a computer to generate) 
the HTML that describes the page. HTML can be 
read, and written, by humans as well as computers. 
You can view the HTML source code for any web 
page using tools built into your web browser. 
(There’s a menu command to do this, or you can 
press ‘ctrl-u’ in Internet Explorer.)

These days, the HTML for a web page might not 
be stored as a file on the web server:  in content 
management systems, when a page is requested, it 
will be generated automatically using a database of 
content, a template and some programs running on 
the web server, perhaps written in Python or PHP. 
For example, every time you visit www.bbc.co.uk/
newsround/, the page will be generated using the 
latest news in the database.

More recently, a couple of other languages have 
come to play an important part in developing the 
web.

CSS (Cascading Style Sheets)

CSS provides formatting information alongside the 
content and structure of HTML, allowing designers 
and developers to specify exactly how the content 
of the page should be displayed in the web browser 
on a computer, tablet, smartphone or printer.

JavaScript

JavaScript is a programming language that can be 
interpreted by the web browser itself, allowing 
interaction with the content of a page to be 
handled by the user’s computer (the client) rather 
than on the server itself. The web-based version of 
Office 365 relies heavily on JavaScript.
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What’s the most amazing  
thing about the web?

The amazing thing about the web isn’t really these 
technologies though. It’s that, from its early days 
as the preserve of academic scientists, so many 
organisations and individuals have connected their 
own web servers to the internet and added their 
own content to the web. In part, this was because 
Berners-Lee created a system that was accessible, 
scalable and extensible, capturing the imagination 
of many, but it’s also because he and CERN gave 
it to the world for free – the standards and the 
technology were entirely open, without any central 
authority or commercial company licensing or 
charging for their use.

  Classroom activity ideas

●● Encourage pupils to look at the different parts 
of the URLs for the web pages they visit, asking 
them to explain what each part of the URL 
means. Make a display showing the different parts 
of some interesting or common URLs.

●● Ask pupils to talk to their parents, grandparents 
or carers about the difference the World Wide 
Web has made in their lives.

●● Tell pupils to keep a diary of the different ways 
they use the web over a week.

●● It’s not too tricky to set up a web server in 
school, although providing access to this from 
the rest of the internet may be harder. With 
access to a web server, either on the school 
network or via the internet, pupils could create 
their own web pages either in HTML or using 
a content management system, for others to 
view. They could install a number of open-source 
applications such as Moodle or Wordpress, 
configuring these as they wish. They might also 
watch and analyse the data logged by the web 
server as it responds to page requests across the 
network.(3)

3	 GitHub offers free hosting of static webpages: https://pages.github.com/

  Further resources

BBC Bitesize (n.d.) What is the world wide web? 
Available from www.bbc.co.uk/guides/z2nbgk7

Berners-Lee, T. (n.d.) Answers for young people. 
Available from www.w3.org/People/Berners-Lee/ 
Kids.html

CERN (n.d.) The original CERN home page for the 
web. Available from http://info.cern.ch/hypertext/
WWW/TheProject.html

Mozilla Webmaker (n.d.) Web literacy whitepaper. 
Available from http://mozilla.github.io/webmaker-
whitepaper/

Raspberry Pi Learning Resources (n.d.) Build a 
Python webserver with Flask. Available from www.
raspberrypi.org/learning/python-web-server-with-
flask/

Wayback Machine (n.d.) To search for historic web 
pages. Available from http://archive.org/web/

How do you make 
a Web Page?
There are plenty of tools available for you and your 
pupils to create your own content for the web.

Your school’s learning platform, or Virtual Learning 
Environment (VLE), provides one way to get 
content online, as do blogging platforms like 
WordPress. These platforms usually include a 
‘WYSIWYG’ (‘what you see is what you get’) editor.  
This makes writing content for the web similar to 
using Microsoft Word, with a range of formatting 
controls built in. In most of these editors, you can 
swap into code (or source view), seeing and editing 
the HTML itself. This can be a good introduction to 
working directly in HTML, as you can always swap 
back to the WYSIWYG view to see the effects of 
editing the code.

Giving pupils some experience of writing content 
for the web through editing HTML ‘by hand’ is 
well worth doing, although it isn’t, strictly speaking, 
programming. It adds to their understanding of 
networks, including the internet, that the curriculum 

https://pages.github.com/
http://www.bbc.co.uk/guides/z2nbgk7
http://www.w3.org/People/Berners-Lee/ Kids.html
http://www.w3.org/People/Berners-Lee/ Kids.html
http://info.cern.ch/hypertext/WWW/TheProject.html
http://info.cern.ch/hypertext/WWW/TheProject.html
http://mozilla.github.io/webmaker-whitepaper/
http://mozilla.github.io/webmaker-whitepaper/
http://www.raspberrypi.org/learning/python-web-server-with-flask/
http://www.raspberrypi.org/learning/python-web-server-with-flask/
http://www.raspberrypi.org/learning/python-web-server-with-flask/
http://archive.org/web/
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expects, and is one more way of using software 
on a range of devices to create content. It is also 
a good way to get pupils used to working in a 
formal, text-based computer language. As with 
other text-based languages, working in HTML helps 
reinforce the importance of spelling, punctuation 
and grammar: mistakes in the mark-up of the page 
usually become quite apparent in the way the 
browser displays the page.

Many pupils are likely to find these skills useful in 
the long term too, both at secondary school and 
beyond: developing content for the web is part of 
many jobs, teaching included.

What does HTML look like?

Let’s compare the HTML code for a simple web 
page and the page itself.

<!doctype html> 
<html> 
    <head> 
          <meta charset=”utf-8”> 
        <title>A simple webpage</title> 
    </head> 
    <body> 
        <h1>Origins of the Web</h1> 
        <p>Tim Berners-Lee started working on 
the world-wide web project in 1989.</p> 
        <p>He was working at <a href=”http://
home.web.cern.ch/”>CERN</a> in Switzerland 
at the time.</p> 
        <img src=”http://www.w3.org/Press/Stock/
Berners-Lee/2001-europaeum-eighth.jpg”> 
   </body> 
</html>

Figure 4.7

Can you see where the content for the page (Figure 
4.7) comes from in the code? Can you see what 
effect some of the HTML tags (the bits in the <...> 
angle brackets, like <h1> and <p>) have on how the 
content is structured?

Notice how most of the tags come in matched 
pairs, for example:

●● <html> and ending </html> for the whole 
page;

●● <head> to </head> for the information 
about the page, such as its character set and 
title;

●● <body> to </body> for the content of the 
page;

●● <h1> to </h1> around the main heading for 
the page;

●● <p> to </p> around each paragraph. 

Compare the underlined link in the web page with 
the corresponding code. In the code, <a> to </a> 
shows where the link should be, and href=”http://
home.web.cern.ch/” inside the <a> tag details 
where the link should point to.

An image is inserted from elsewhere on the 
web, using a single <img> tag, this time without a 
matched closing tag, and again giving the location of 
the image, using src=” http://www.w3.org/Press/
Stock/Berners-Lee/2001-europaeum-eighth.
jpg” inside the <img> tag.
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How do I get started with 
HTML?

Mozilla’s Thimble tool for creating websites 
(available at: https://thimble.webmaker.org/) makes 
it easy to get started with coding in HTML, as it 
displays the source code alongside the resulting 
web page, as does Trinket.io in HTML (rather than 
Python) mode.

Instead of starting from a blank page, pupils can try 
editing other web pages, exploring the structure 
and HTML code of these pages, and seeing what 
effect changing the code has on how the page is 
displayed in the browser.

On Internet Explorer or Chrome, you can use the 
Developer Tools (hit F12 or launch via the menu) 
to view and edit the source code (the HTML code 
which describes the content and structure) for a 
page. Alternatively, you can install Mozilla’s X-Ray 
Goggles as an active bookmarklet (see Further 
resources) to remix and share edited web pages.

  Classroom activity ideas

●● When using their learning platform, VLE or 
class blog, encourage pupils to swap from the 
normal WYSIWYG (what you see is what you 
get) mode of the built-in editor, into the code, 
source or HTML mode and try writing their 
post or page in that. Remind them that they 
can swap back and forth to see how the code 
relates to the page that’s displayed. Give pupils a 
list of some common HTML tags to try out for 
themselves.

●● Set pupils the challenge of making a parody of 
a web page by using either the Developer Tools 
in Internet Explorer, or X-Ray Goggles, to edit 
the code for the page. It’s wise to decide some 
ground rules for this activity in advance. Show 
pupils how easily a spoof page can be created 
this way, and explain why it’s so important to 
check the address of the page they are visiting, 
to confirm it is authentic rather than merely one 
which looks convincing. 

●● Rather than asking pupils to write up a story 
or a report using Word, challenge them to do 
this using HTML code to make a web page. 
Emphasise that they need to concentrate on 
the content and structure of their page, which is 
what HTML is designed for. Encourage them to 
add in links to supporting material using the <a> 
tag if they are creating a non-fiction account, and 
perhaps to add in some images from elsewhere 
on the web using the <img> tag.

  Further resources

Codecademy (n.d.) Curriculum materials. Available 
from www.codecademy.com/schools/curriculum 
(registration required). See also: www.codecademy.
com/learn/make-a-website

CodeClub World (n.d.) Resources. Available 
from http://projects.codeclubworld.org/en-
GB/05_html_01/index.html and http://projects.
codeclubworld.org/en-GB/06_html_02/index.html 

Howe, S. (n.d.) Learn to code HTML and CSS 
(tutorials). Available from http://learn.shayhowe.
com/

Mozilla X-Ray Goggles (n.d.) See the source code 
behind web pages using X-Ray Goggles. Available 
from https://goggles.webmaker.org/

Playto (n.d.) App design basics. Learn to code using 
HTML and CSS. Available from https://learn.playto.io/
html-css/lesson/0

Raspberry Pi Learning Resources (n.d.) Google Coder 
resources. Available from www.raspberrypi.org/
learning/coder-html-css-lessons/ 

Thimble (n.d.) Available from https://thimble.
webmaker.org/

W3schools.com (n.d.) Tutorials on a wide range 
of computer languages. Available from www.
w3schools.com/

http://www.codecademy.com/schools/curriculum
http://www.codecademy.com/learn/make-a-website
http://www.codecademy.com/learn/make-a-website
http://projects.codeclubworld.org/en-GB/05_html_01/index.html
http://projects.codeclubworld.org/en-GB/05_html_01/index.html
http://projects.codeclubworld.org/en-GB/06_html_02/index.html
http://projects.codeclubworld.org/en-GB/06_html_02/index.html
http://learn.shayhowe.com/
http://learn.shayhowe.com/
https://goggles.webmaker.org/
https://learn.playto.io/html-css/lesson/0
https://learn.playto.io/html-css/lesson/0
http://www.raspberrypi.org/learning/coder-html-css-lessons/
http://www.raspberrypi.org/learning/coder-html-css-lessons/
https://thimble.webmaker.org/
https://thimble.webmaker.org/
http://www.w3schools.com/
http://www.w3schools.com/
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How does a 
Search Engine 
work?
Search engines like Google and Bing have 
transformed the way we use the web. Instead of 
having to remember URLs for the pages we want, 
or following the links from one page to another, we 
can normally rely on these web-based programs to 
give us the most relevant results for our query.

Given how much we use search engines, it’s 
important to use them effectively and efficiently, 
to show some discernment in deciding how far a 
particular page can be trusted, and to have some 
grasp of the algorithms that underpin them.

In order for Google or Bing to be able to respond 
to a search query, they use their index of the web. 
A search engine builds its index by using specially 
written programs called ‘web crawlers’. The 
web crawlers create a huge copy of the publicly 
accessible bits of the web (called a cache) which is 
stored on the search engine’s servers.

When a new or updated copy of a web page is 
added to the cache, an entry for the page will be 
added to, or updated in, the search engine’s index 
of the web for each of the words on the page 
(typically ignoring small, common words like ‘and’, 
‘the’ and so on). The web crawlers continue to build 
and update the cache by following all the hyperlinks 
in the page, requesting and making copies of those 
pages too, adding or updating index entries for 
them and following the links on those pages too. 
And so on.

So, when we type a keyword such as ‘dog’ into a 
search engine, it consults the index and returns 
a list of all the web pages on which that keyword 
appears. Typing in several keywords, for example 
‘dog’ and ‘bowl’ would only return pages with both 
of these keywords, which helps to narrow down the 
set of results.

How are search results ranked?

The really clever bit about web searches is not the 
list of results but the rank order the results are put 
into. How do the search engine algorithms decide 
what to put top of the list?

Google’s founders, Larry Page and Sergei Brin, 
recognised that the key to determining the 
relevance of a particular result was likely to lie in 
the links between other pages and the result. They 
realised that a high-quality page is a one that has 
lots of links pointing to it from other web pages, 
particularly if they too are high-quality results (Page 
et al., 1999). This is shown in Figure 4.8, where the 
larger the circle is, the higher the quality of the web 
page.

Figure 4.8

The cached and indexed copy of the (publicly 
accessible) web on the servers of search engines 
also includes the links between them. This allows 
Page and Brin’s PageRank algorithm to work out 
which pages are considered the highest quality to 
other web developers (as they add links to those 
into their own content). Thus, for many queries, 
the Wikipedia entry will often be at the top of, or 
at least high up, the results list, not because of its 
accuracy or authority, or even because people click 
on this more than other results, but because lots of 
the other high-quality search results link to it.

The actual algorithms that search engines use can 
be very complicated and are frequently tweaked 
to keep one step ahead of the ‘search engine 
optimisation’ (SEO) industry, that tries to improve 
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the ranking for its clients’ pages. These days, the 
ranking of results is typically personalised, based on 
location, the history of what the user has searched 
for and clicked on before, and close to 200 other 
factors or ‘signals’.

When teaching pupils about how search engines 
work, point out the sponsored results which are 
shown above or to the side of those generated 
using this relevance algorithm. The sponsored 
results are also algorithmically generated, based on 
the keyword, some quality measure for the advert, 
the page it points to and often your search history. 
They are placed on a ‘pay per click’ basis: the search 
engine doesn’t charge for showing the advert, but 
the advertiser pays when you click on it, so it’s in 
the interests of the search engine to only show the 
most relevant adverts here.

The mechanics will vary from one search engine 
to another, but a good search engine should also 
filter out explicit content automatically, allow you 
to search within a particular site, and allow results 
to be filtered by their location (for example, just 
the UK) and by date range (for example, just pages 
created or edited in the last year). 

  Classroom activity ideas

●● Encourage pupils to use search engines for 
independent or guided research projects. Get 
pupils to experiment with the effect that adding 
further keywords, or searching for phrases, (by 
putting quotation marks around the phrases) has 
on a set of results.

●● Demonstrate, and ask pupils to use, some of the 
more advanced search features, such as filtering 
by date. Show pupils how they can view the 
cached copy of a web page (for both Google and 
Bing this is hidden under the green drop-down 
next to the URL on the results page).

●● Read through the Digital Schoolhouse notes 
on a simulation of how a search engine works, 
based on Google engineer Doug Aberdeen’s 
presentation at the 2012 CAS Conference (see 
Further resources). Print off the resources and 
run this as an activity with your class.

            

 	                                                  Further resources

Aberdeen, D. (2011) Simulation from the CAS 
conference. Available from https://youtu.
be/bNp4ZP5CDcA?t=20m35s; qv www.
computingatschool.org.uk/data/uploads/conf2011/
real-life.pdf

Bing (n.d.) Useful list of advanced search keywords in 
Bing. Available from http://onlinehelp.microsoft.com/
en-gb/bing/ff808421.aspx [2/1/17].

Cutts, M. (2010). How search works. 
YouTube. Available from www.youtube.com/
watch?v=BNHR6IQJGZs

Dickman, P. (2012) How Google search works. 
YouTube. Available from www.youtube.com/
watch?v=C8v7AM1o7uM

Digital Schoolhouse (n.d.) Simulation of how a search 
engine works. Available from http://community.
computingatschool.org.uk/files/3874/original.pdf

Pariser, E. (2011) Beware online ‘filter bubbles’ (how 
individually focussed our search results are). TED. 
Available from www.ted.com/talks/eli_pariser_
beware_online_filter_bubbles?language=en
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Productivity and 
Creativity
CAN WE CARRY ON TEACHING 
OUR OLD TOPICS?
The 2017 Technologies Benchmarks make a clear 
distinction between Digital Literacy and Computing 
Science.  The organisers for Digital Literacy:

Using digital products and services in a 
variety of contexts to achieve a purposeful 
outcome.  Searching, processing and 
managing information responsibly. Cyber 
resilience and internet safety

These encompass the older concept of ‘ICT across 
the curriculum’ and, as such, are the responsibility 
for all subject areas but in many establishments 
much specific teaching of these elements will be 
done alongside the Computing Science delivery.

The topics which encompassed the broad areas of 
productivity and creativity will remain an important 
part of the new curriculum.

Level 1 requires that the pupil ‘uses digital 
technology to collect, capture, combine and 
share text, sound, video and images’.  At Level 2 
this extends to selecting the most appropriate 
applications and techniques and to ‘share and 
collaborate’.

At Level 3, it extends to pupils being able to ‘gather 
and combine data and information from a range 
of sources to create a publication, presentation or 
information resource, and that the pupil ‘uses the 
most appropriate applications and software tools to 
capture, create and modify text, images, sound, and 
video to present and collaborate’.

In planning what to include, think back to the 
units that worked particularly well in your old 
scheme of work. Avoid having too many units which 
do little more than allow pupils to practise or 
reinforce skills they already have. Do include any 
opportunities to make connections between Digital 
Literacy and Computing Science – for example, 
video-editing work provides a great opportunity 
to develop the ideas of sequencing, which can be 
linked to sequencing in programming, as well as a 
chance to consider compression algorithms and 

file formats. Also it can link to digital literacy: have 
pupils consider the privacy implications of videoing 
one another and potentially sharing this with an 
audience beyond the class or school.

How can we make IT activities 
more meaningful for pupils?

Back in 2008, David Jonassen (Jonassen, 2008) 
coined the term ‘meaningful learning’ to describe 
learning that met a number of criteria: he and his 
colleagues were thinking particularly about learning 
activities that involved using technology, but the 
principles can be applied more broadly. Jonassen’s 
list was:

●● Active: a good IT activity should be one in 
which learners are doing something, not merely 
reading about something, watching someone else 
do something or listening to someone talking 
about something.

●● Constructive: a good IT activity should be 
both constructive in the sense of pupils making 
something – that is, working creatively – but also 
in the sense of ‘making meaning’, of developing 
their mental model of how a particular 
technology works.

●● Intentional: ideally, IT activities should allow 
pupils some element of choice in what they 
do, or how they accomplish something: this 
can often be done through specifying some 
required outcomes in functional terms, rather 
than particular tools that should be used to 
accomplish these.

●● Authentic: where possible, IT activities should 
be embedded in pupils’ experience, including, 
perhaps particularly, that of school: look for 
connections with other areas of the curriculum, 
for example, embedding the teaching of IT skills 
in work which develops pupils’ understanding of 
other topics. 

●● Co-operative: again, where possible, look for 
activities where pupils can learn with and from 
one another, ensuring that they have the chance 
to talk purposefully and productively with one 
another, to share their ideas and insights with 
each other.

These ideas can be applied directly to projects 
in IT: for example, pupils could work together to 
create an online survey of other pupils about their 
views on the breadth of the school’s curriculum, 
choosing for themselves how they might analyse 
and present the results. It is just as easy though to 
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apply these to topics in computer science, perhaps 
setting pupils the challenge of working together to 
develop a simple phonics game for younger pupils, 
leaving many of the decisions over implementation 
to pupils themselves.

There’s some quantitative evidence to support 
some of Jonassen’s ideas. In his survey of meta-
analyses of education research, John Hattie (2008) 
considers the evidence for the most effective use of 
technology in education. He argues:

	 The use of computers is more effective 			
	 when:

●● There is a diversity of teaching strategies.
●● There is teacher pre-training in the use of 

computers as a teaching and learning tool.
●● There are multiple opportunities for 

learning.
●● The student, not the teacher, is in control  

of the learning.
●● Peer learning is optimised.
●● Feedback is optimised.

In terms of IT, notice Hattie’s emphasis on the 
student rather than the teacher being in control 
of the learning, and compare this with Jonassen’s 
expectation of intentionality, and indeed the Level 
2 curriculum requirement that pupils should 
be able to select as well as use and combine 
applications. Similarly, Hattie’s emphasis on peer 
learning mirrors Jonassen’s focus on co-operation. 
An emphasis on the collaborative use of technology 
is also supported in Steven Higgins and colleagues’ 
(Higgins et al., 2012) synthesis of meta-analyses of 
technology in education; they state: ‘collaborative 
use of technology (in pairs or small groups) is 
usually more effective than individual use.’

How should pupils go about 
project work?

It is important to find a balance between getting 
things done, adopting an agile approach of 
producing a ‘minimum viable product’ in the limited 
time available, and developing good working habits 
for more extended projects. One way to achieve 
this balance is to include a mix of short activities, 
in which pupils simply roll up their sleeves and 
create a spreadsheet, make a presentation or shoot 

and edit some digital photos, and more extended 
projects, in which the processes of planning, 
implementing, revising and evaluating the project are 
fully explored, including some occasions when these 
become part of a cycle of iterative development. 
Note that these phases mirror the computational 
thinking concepts and approaches of algorithms and 
decomposition, creating, debugging and evaluation. 
Working through the stages of a project in detail, 
sometimes repeatedly, is good experience for 
project work elsewhere in the curriculum and 
beyond school although, obviously, extended 
projects will take longer to complete than short, 
focussed tasks. 

Where possible, look for ways to get pupils 
themselves involved in the work of managing 
the projects, including deciding what particular 
programs, and what equipment, they will need 
to use, and even in managing their time and the 
work of others in the team, if they are working 
collaboratively.  The sort of project management 
skills involved in creative IT or digital media work 
are very similar to those required in developing 
computer software, so a similar approach can 
be applied to project work in both the IT and 
computer science strands of the curriculum.
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What applications should  
pupils work with?

The 2017 Benchmarks are quite careful not to 
specify particular digital media, partly in recognition 
that new forms of digital content are likely to 
develop over time, and partly through a desire not 
to limit the forms in which pupils could explore 
ideas and express their creativity. 

Technology currently available in most schools 
can be used for work across a very wide range 
of media, including: text (in both print and digital 
formats), images (both as vector illustrations and 
bitmap photographs), sound (as both recorded 
audio and composed music), animations (as stop-
frame and scripted), video, and 3D (typically virtual 
representations, but some schools are starting to 
explore 3D printing). 

Pupils need not be limited to working in just one 
medium – creative work in digital media will often 
combine multiple forms: a simple PowerPoint 
presentation or a website is likely to include text 
and images and perhaps video, audio and animations.  
Notice that the programme of study expects pupils 
to be able to combine applications across a range 
of devices. Pupils might begin by shooting video and 
recording audio using a tablet computer, importing 
this to a laptop to use video-editing software, 
combining this live footage with appropriately 
licensed images sourced from the web, before 
uploading their final edited film to an online video-
hosting site.

Digital media can also be interactive – perhaps 
using little more than hyperlinks to allow non-
linear navigation, but potentially drawing on more-
complex scripting or programming.

1	 Confusingly, the term also means ‘any undesired or unintended alteration in data introduced in a digital process by an involved 	
	 technique and/or technology’. The programme of study uses it in its anthropological sense of ‘an artifact that is of a digital 	
	 nature or creation’.

What are digital artefacts?

A digital artefact(1) is a thing made using digital 
technology. The thing may not have a physical 
existence – it might be a virtual or a transient 
thing, but it must be something that has been made, 
something which provides evidence of its maker’s 
creative work.

There’s a very wide variety of digital artefacts 
which pupils might create. Oliver Quinlan identifies 
a number of categories in his landscape review of 
young people’s digital making for Nesta (Quinlan, 
2015):

●● digital pictures;
●● edited videos or visual effects;
●● music;
●● animation;
●● games;
●● websites;
●● remixes and mashups;
●● apps;
●● software;
●● robots;
●● 3D-printed objects;
●● edited photos.

Note that the list includes a number of artefacts 
which are made with code: games, apps and 
software, but perhaps also animation, visual effects, 
websites and robots. To this list we might add more 
conventional categories of artefacts created using 
digital tools: text, word-processed documents and 
desktop publishing, web content below the level of 
a site (such as a blog post), fan fiction or a forum 
contribution, spreadsheets, presentations, audio 
other than music, and 3D virtual objects (apart 
from in the context of games and animation).

Sir Ken Robinson defines creativity as ‘the process 
of having original ideas that have value’ (Robinson, 
2011): both aspects here matter. Creative work 
should be original: in school, this should at least 
mean that it’s a pupil’s own work, not something 
where they have simply filled in a blank or copied 
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something made by their teacher. Creative work 
should also be of value: at the very least, to the 
pupil herself, but perhaps also to her teacher and a 
wider audience. This means that pupils should aim 
to produce the best work they possibly can, and 
that their teachers and peers should be unafraid 
to offer constructive critical feedback on work 
so that it can be improved, further developing the 
computational thinking concept of evaluation. 

As well as originality and value, creative work also 
implies that the pupil has made something. An 
emphasis on creativity recognises how powerful the 
process of making things for others is as a means 
to learning, as Seymour Papert did in the very early 
days of Logo programming in schools, coining the 
term ‘constructionism’ for this as a theory of how 
people learn (Papert and Harel, 1991). Pupils seem 
far more likely to develop an understanding of how 
software works, as well as becoming more skilful in 
using it, if they have the chance to use it creatively 
to make something original and valuable for others.

Related to this are ideas of craftsmanship. In 
describing craftsmanship values, Hoover and 
Oshineye (2009) discuss much that should have a 
place in creative computing lessons, such as the idea 
of a growth mindset, recognising the importance of 
hard work to the mastery of any craft, a willingness 
to experiment and be proven wrong, and the need 
for craftspeople to have some control over and 
responsibility for their work. Richard Sennett (2008) 
discusses the relationship of the craftsperson to 
their tools, recognising the importance of mastering 
the tools of a trade, and that tool use can be bound 
up with creative expression: ‘tools used in certain 
ways organize this imaginative experience ... with 
productive results’. In the classroom, help pupils 
to become masters of the software tools and 
digital devices they use, helping them to develop 
confidence, competence and independence as they 
do so, and then encourage them to employ these, 
playfully or experimentally, as a means towards the 
expression of their own insights and ideas.

2	 https://creativecommons.org/
3	 www.gov.uk/guidance/exceptions-to-copyright#parody-caricature-and-pastiche
4	 See https://opensource.org/licenses

How can pupils learn to reuse, 
revise and repurpose digital 

artefacts?

Pupils do not have to work from scratch in creating 
digital artefacts. It is entirely legitimate for them to 
start with someone else’s work, adapting this for 
their own particular purpose and audience, or using 
others’ work as components within their own. 

The Creative Commons licensing scheme(2) enables 
artists to license their work for others to reuse or 
develop without the need for further permission, 
and current copyright legislation permits some 
reuse, for purposes of parody(3) and for private 
study, subject to reasonable fair dealing limits. There 
are extensive online repositories of text, images and 
audio that can be reused, revised and repurposed, 
either in the public domain or licensed for reuse 
under the Creative Commons scheme. Public-
domain or Creative Commons video resources 
are somewhat harder to obtain in general, in part 
due to the restrictions on downloading imposed by 
YouTube, however some downloadable, remixable 
content is available via Vimeo and the Internet 
Archive.  

Figure 5.2 Creative Commons scheme

Content shared on the Scratch community site 
automatically carries a Creative Commons licence 
and can thus be freely remixed by any other Scratch 
users. Much other software is licensed in a way that 
permits reuse and further development, and there’s 
a number of different licence terms available.(4) In 
general open-source software will permit free reuse 
and further development of source code, although 

https://creativecommons.org/
http://www.gov.uk/guidance/exceptions-to-copyright#parody-caricature-and-pastiche
https://opensource.org/licenses
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the specific conditions vary according to the licence 
that applies. Projects such as Moodle, Wordpress, 
Firefox, Scratch, Android and Python have freely 
downloadable and editable source code, although 
it would be a brave pupil who decided to develop 
their own version of Android. To help manage the 
process of access to, remixing of and contributing 
back to the main development process for open-
source projects, GitHub seems to be the platform 
of choice now. 

The negative side of reuse is plagiarism. Reusing 
another’s work as a basis for your own creative 
work is acceptable only if the original work is 
duly acknowledged. Artists sharing their work 
under a Creative Commons licence, or developers 
releasing code under open-source licences, are 
entitled to have their work, and their contribution 
to other’s creative work, properly recognised; such 
recognition may be the only reward they have for 
freely sharing their work in this way. Passing off 
another’s creative work as one’s own is unethical, 
in breach of most forms of the Creative Commons 
licence and in contravention of academic discipline 
codes for higher education and public exams. With 
code, it is okay to look for others’ solutions on 
StackOverflow or other sites, and it’s (usually) okay 
to make use of their solutions in your own work, 
but only if you acknowledge that you have done so.

Are there principles  
for good design?

Whilst there are purely artistic, creative projects 
accomplished in digital media, very often in 
computing, pupils are likely to have a sense of 
audience and purpose for their work. Their creative 
work is closer to architecture than to sculpture 
– in most cases it has to be something which its 
audience will find useful as well as beautiful. That’s 
not to say that its beauty is unimportant but, the 
design of a product should be led by the needs of 
its users, rather than just the desire for creative 
expression of its developer.

Any approach to user-centred design must 
acknowledge that functionality is fundamental. As 
Steve Jobs put it:

5	 See www.usability.gov/what-and-why/user-centered-design.html 
6	 www.vitsoe.com/gb/about/good-design

It’s not just what it looks like and feels like. 
Design is how it works. (Walker, 2003)

User-centred design doesn’t in itself specify 
principles of good design, but it does suggest a 
process that helps ensure that any design is fit for 
its audience and purpose:

●● Specify who will be the users of a product 
and what they will use it for – audience.

●● Identify the goals that must be met for the 
product to be a success – purpose.

●● Plan and implement a solution.
●● Evaluate the solution.(5)

A common design approach is to plan, and perhaps 
partially implement or prototype, many possible 
solutions, evaluating each against the audience and 
purpose criteria, before taking one solution through 
to full implementation. 

Many lists of design principles have been drawn up. 
Dieter Rams, the designer of many of Braun’s iconic 
20th-century products, had the following list:

●● Good design is innovative.
●● Good design makes a product useful.
●● Good design is aesthetic.
●● Good design makes a product 

understandable.
●● Good design is unobtrusive.
●● Good design is honest.
●● Good design is long-lasting.
●● Good design is thorough down to the last 

detail.
●● Good design is environmentally friendly.
●● Good design is as little design as possible.(6) 

http://www.usability.gov/what-and-why/user-centered-design.html
http://www.vitsoe.com/gb/about/good-design
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Figure 5.3 Some of Dieter Rams’s designs for Braun. 
From https://www.flickr.com/photos/42035325@
N00/15538137829/ CC by-nc-nd albyantoniazzi

More recently, the Government Digital Service 
has adopted the following principles for its work 
developing and refining the UK Government’s 
online presence and interaction:

●● Start with needs.
●● Do less.
●● Design with data.
●● Do the hard work to make it simple.
●● Iterate. Then iterate again.
●● This is for everyone.
●● Understand context.
●● Build digital services, not websites.
●● Be consistent, not uniform.
●● Make things open: it makes things better.(7)

Comparing these and similar lists, there seems 
some agreement over some core principles of 
good design, such as utility, inclusion, honesty and 
simplicity. Simplicity seems particularly striking in 
the context of Digital Literacy where, until recently, 
many of us might have encouraged pupils to include 
all the possible ‘bangs and whistles’, clipart and 
animation in their media work to demonstrate that 
they could use every last aspect of the application 
software. Perhaps, when developing digital artefacts 
as part of the curriculum, we should encourage 

7	 www.gov.uk/design-principles

pupils to strive for a simpler design aesthetic, 
prioritising function over form, and placing the 
needs of users before the need to demonstrate 
prowess with particular tools. 

As Apple’s lead designer, Sir Jonathan (Jony) Ive, 
explains: 

Simplicity is not the absence of clutter; 
that’s a consequence of simplicity. 
Simplicity is somehow essentially 
describing the purpose and place of 
an object and product… The quest for 
simplicity has to pervade every part 
of the process. It really is fundamental. 
(Richmond, 2012)

  Classroom activity ideas

●● Take a topic in which pupils are interested, 
perhaps from computing or from another area of 
the curriculum, and ask them to document it in 
a rigorous, critical way using the digital medium 
and tools of their choice.

●● Working in a medium such as digital images 
or audio, provide pupils with some Creative 
Commons licensed content and set them the 
challenge of remixing this in the most original 
way that they can.

●● Extend pupils’ skills, knowledge and 
understanding in digital media work beyond 
what they covered in primary school, for 
example introducing them to the techniques of 
3D animation using the open-source Blender 
platform.

  Further resources

Design thinking for educators (n.d.) Available from 
www.designthinkingforeducators.com/

Duarte, N. (2008) Slide:ology: The art and science of 
creating great presentations. Sebastopol, CA: O’Reilly 
Media, 417–421.

Government Digital Service (n.d.) Design principles. 
Available from www.gov.uk/design-principles

https://www.flickr.com/photos/42035325@N00/15538137829/
https://www.flickr.com/photos/42035325@N00/15538137829/
http://www.gov.uk/design-principles
http://www.designthinkingforeducators.com/
http://www.gov.uk/design-principles
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Kemp, P. (n.d.) Introduction to 3D animation using 
Blender. Available from https://goo.gl/5F9esz 

Martinez, S.L. and Stager, G. (2013) Invent to learn: 
Making, tinkering, and engineering in the classroom. 
Torrance, CA: Constructing Modern Knowledge 
Press.

Nielsen, J. (2003) Usability 101: Introduction to 
usability. Available at https://www.nngroup.com/
articles/usability-101-introduction-to-usability/ 
[2/1/17].

Norman, D.A. (2013) The design of everyday things: 
Revised and expanded edition. New York, NY: Basic 
Books Inc.

Quinlan, O. (2015) Young digital makers surveying 
attitudes and opportunities for digital creativity across 
the UK. London: Nesta.

Reynolds, G. (2011) Presentation Zen: Simple ideas 
on presentation design and delivery. Vancouver: New 
Riders.   

Sefton-Green, J. (2013) Mapping digital makers: A 
review exploring everyday creativity, learning lives and 
the digital. Oxford: Nominet Trust.

Williams, R. (2014) The non-designer’s design book: 
Design and topographic principles for the visual novice. 
Upper Saddle River, NJ: Pearson Education.

What can pupils 
do with Data?
The new computing curriculum places an emphasis 
on pupils working with numerical, quantitative data. 
This is a hugely important application of computer 
systems, and seems likely to become even more 
so in the future. There’s much that you can do 
to provide pupils with a meaningful, authentic 
experience of working with both small and large 
datasets, and the skills and insights this work 
provides can be applied immediately in studying 
other subjects, as well as being useful for pupils 
as they work with datasets in the future. Given 
the ready access to tools with which pupils can 
generate interesting sets of data or access large 
open-data repositories on the web, the rather 
artificial database activities that many teachers and 
pupils found understandably dull should now be a 
thing of the past.

Online survey tools, such as Google Forms, allow 
pupils to design and deploy quick opinion polls 
or surveys, and then analyse, evaluate and present 
the results. Choosing topics of genuine interest 
to pupils, perhaps concerned with aspects of 
school life, can make activities like this much more 
engaging; or pupils could use these to survey 
opinion more broadly on local or national issues 
about which they have become concerned. In this 
case, care needs to be taken to avoid written-in, 
free-text responses, to avoid potential e-safety 
issues. Pupils should think about privacy and ethical 
aspects of such surveys – good practice includes 
principles of informed consent and anonymity; the 
latter is particularly important as, otherwise, data 
protection legislation might apply to the processing 
of personal data.

Data activities can also draw on automatically-
generated data, perhaps using sensors to record 
environmental information (for example, a Scratch 
script to record the level of sound in class over 
a school day, or a Raspberry Pi-based weather 
station, or the data generated automatically in 
the log files of the school’s website or its VLE 
(virtual learning environment) if you have access to 
these. Often there will be a ‘dashboard’ interface 
available to explore summaries of these data, but 
you might also be able to provide pupils with the 
raw data, so they gain some insight into how they 
are structured and so they can experiment with 

https://goo.gl/5F9esz
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
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analysing them in Excel or other software. You or 
your pupils could create random simulations to 
generate large datasets, for example using Excel to 
simulate rolling two dice 1,000 times. Pupils could 
then analyse these data to learn more about what 
was being modelled in the simulation – this is called 
the ‘Monte Carlo method’ and is an important 
application of computer modelling. 

Figure 5.4 Raspberry Pi weather station,  
(picture, Miles Berry)

Pupils can also analyse some genuinely big datasets 
made publicly available on the internet: for example, 
Google makes it easy to run searches for the 
occurrence of words or phrases in the vast number 
of books it has digitised, seeing how this changes 
over time.(8) Google also allows the trends in 
search-term popularity over time to be explored(9) 
– for example looking at the relative popularity of 
searches for ‘ICT’ and ‘Computing’ over time in the 
UK. The DfE provides detailed data on performance 
and other measures for all English schools,(10) and 
pupils could use Excel to analyse these data, for 
example exploring for themselves whether there’s 
any relationship between proportions of pupils 
receiving free school meals and a school’s GCSE 
results.

8	 https://books.google.com/ngrams
9	 www.google.co.uk/trends
10	www.compare-school-performance.service.gov.uk/download-data

Figure 5.5 Screenshot from Google Trends, 
e.g. https://www.google.co.uk/trends/
explore?date=all&geo=GB&q=computing,ict

There is an opportunity here to touch on some 
of the ethical implications of data processing. 
Pupils might think about the data which the school 
routinely stores about their activities, particularly 
that which becomes part of the DfE’s national pupil 
database. 

  Classroom activity ideas

●● Carry out activities that draw on automatically-
generated data, perhaps using sensors (for 
example a Scratch script to record the level of 
sound in class; see Further resources). 

●● Organise your pupils to analyse some big 
datasets made publicly available on the internet. 
Help them to use n-gram viewer to search for 
the occurrence of words or phrases in the vast 
number of books that Google has digitised, and 
to see how this changes over time (see Further 
resources). Analyse how search-term popularity 
has changed over time, for example look at the 
relative popularity of searches for ‘Britain’s Got 
Talent’ and ‘The X Factor’ over time in the UK, 
using Google Trends (see below). 

●● Discuss the ethical implications of data 
processing (that is, what others do with our 
data). Ask pupils to think about the detailed 
profile which internet, email or search-engine 
providers might build up through analysing 
each user’s activity, as well as to what uses this 
information might be put.

https://books.google.com/ngrams
http://www.google.co.uk/trends
http://www.compare-school-performance.service.gov.uk/download-data
https://www.google.co.uk/trends/explore?date=all&geo=GB&q=computing,ict
https://www.google.co.uk/trends/explore?date=all&geo=GB&q=computing,ict
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  Further resources

BBC Two: The Code (2011) Using Google searches 
to predict flu. Available from www.youtube.com/
watch?v=uEt8NuqBvPQ; see also Google Trends: 
www.google.com/trends/

Google (n.d.) Google forms. Available from www.
google.co.uk/forms/about; or Excel Surveys: http://
blogs.office.com/2012/11/16/excel-surveys/ for 
creating online surveys. 

Mayer-Schönberger, V. and Cukier, K. (2013) Big data: 
A revolution that will transform how we live, work, and 
think. Boston, MA: Houghton Mifflin Harcourt.

Nelson, S.L. and Nelson, E.C. (2014) Excel data 
analysis for dummies. Hoboken, NJ: John Wiley & 
Sons.

Raspberry Pi Learning Resources (n.d.) Weather 
station guide. Available from www.raspberrypi.org/
learning/weather-station-guide/

TED (n.d.) Data talks. Available from www.ted.com/
topics/data

TED (2011) A picture is worth a thousand words: 
what we learned from 5 million books. Available from 
www.youtube.com/watch?v=5l4cA8zSreQ; see also 
n-gram viewer: https://books.google.com/ngrams

Wikipedia (n.d.) Monte Carlo method. Available from 
http://en.wikipedia.org/wiki/Monte_Carlo_method

How can we  
best support  
Collaboration?
The research cited earlier by Jonassen, Hattie 
and Higgins et al. all attests to the benefit of 
collaboration when using technology in education, 
but how can such collaborative use of technology 
be best developed?

The use of digital technology such as smartphones 
and the internet for communication has had a huge 
impact on the personal and professional lives of 
many: over 3 billion are connected to the internet 
worldwide, and the number of iPhones sold per day 
has exceeded the number of children born. It’s hard 
to think of any sphere of life, including secondary 
education, which hasn’t been changed by the near-
ubiquitous nature of communication technology.

There’s substantial evidence that young people 
are comfortable making use of a range of digital 
technologies to communicate with one another, 
although the extent to which they act safely and 
responsibly, or show discernment or wisdom when 
doing so, cannot be taken for granted. There’s rather 
less evidence that young people are skilled in using 
technologies to work collaboratively on shared 
projects. Whilst the fit is far from perfect, one way 
of thinking about communication technology is to 
look at the size of the groups sending and receiving 
information, for example:

●● one to one: email, skype, instant messaging;
●● one to many: blogging, personal website, 

publishing on YouTube, podcasting, posting 
to social media, uploading projects to the 
Scratch community site;

●● many to one: searching the web, watching 
YouTube, browsing social media, downloading 
and remixing projects from the Scratch or 
Kodu community sites;

●● many to many: discussion forums, Wikipedia.

Irrespective of their access to or familiarity with 
technology outside of school, Level 2 pupils learn to 
collaborate using an online cloud-based service, for 
example, Glow or other platforms. 

http://www.youtube.com/watch?v=uEt8NuqBvPQ
http://www.youtube.com/watch?v=uEt8NuqBvPQ
http://www.google.com/trends/
http://www.google.co.uk/forms/about
http://www.google.co.uk/forms/about
http://blogs.office.com/2012/11/16/excel-surveys/
http://blogs.office.com/2012/11/16/excel-surveys/
http://www.raspberrypi.org/learning/weather-station-guide/
http://www.raspberrypi.org/learning/weather-station-guide/
http://www.ted.com/topics/data
http://www.ted.com/topics/data
http://www.youtube.com/watch?v=5l4cA8zSreQ
https://books.google.com/ngrams
http://en.wikipedia.org/wiki/Monte_Carlo_method
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In the best primary schools, this will have been 
about developing children’s understanding of these 
technologies, and some critical discernment about 
their use, rather than merely a set of skills in using 
one platform or another.

Can communication  
technology be embedded across 

the whole curriculum?

Yes! Many schools are now routinely using digital 
communication and collaboration technologies as 
part of their day-to-day work. Learning platforms, 
VLEs and systems such as Glow provide a 
reasonably convenient way for teachers to share 
resources and activities with a class, groups of 
pupils or even parents. They also offer one way in 
which pupils’ work can be completed, submitted 
and sometimes marked online. Whilst the take-
up of such technologies has been far lower than 
originally expected, the digital domain has become 
the default place for teachers’ and pupils’ work in at 
least some schools. In schools that have gone down 
this route, pupils can continue to access content, 
complete exercises, take part in discussion forums 
and contribute to collaborative projects from 
their home computers as well as within school. 
The enthusiastic take-up of tablet technology by 
many schools must almost assume ubiquitous 
connectivity, so that resources and outcomes can 
be stored, shared and, in the latter case, assessed.

Are pupils able to communicate 
with pupils in other schools?

Again, yes! Looking beyond the confines of an 
individual school’s network, the internet can 
provide many opportunities for pupils in one class 
to communicate with or work collaboratively 
with pupils in another class, elsewhere in the local 
authority, the country or internationally. There’s 
so much that can be gained through even a simple, 
email-based e-Twinning project, in which pupils, 
either collectively as a class or one-to-one as 
individual pupils, share opinions and experiences: 
think of the scope for exploring ‘contrasting 
localities’, for practising modern languages or 
looking at a period in history from a global 
perspective. As well as email, a shared discussion 

forum, perhaps hosted in one or other school’s 
virtual learning environment, can make it easier to 
see the multiple perspectives on a topic, as well 
as allaying some of the e-safety concerns raised 
by providing pupils with individual email accounts. 
Digital media has a role here too, with pupils 
perhaps recording videos, taking photos or making 
presentations to share with the other class. 

What sort of audience can  
pupils reach with their work?

For a previous generation, those who would read 
a pupil’s work were perhaps just their teacher and 
maybe their parents; even if the work was put on 
display, the audience would rarely reach beyond 
the class itself. These days, it’s easy enough for a 
school, an individual teacher or even particularly 
keen pupils to set up a blog, with the option of 
open access to all those connected to the internet 
worldwide, so that a child’s work can reach an 
audience, potentially, of close on 3 billion others. 

There’s been a great deal of interest and enthusiasm 
of late in blogging in education: for many, this has 
been about sharing their educational insights with 
a community of fellow professionals, but it’s also 
a great way to provide an authentic audience 
for pupils’ work. Blogs can be used as a basis for 
partnership projects, as described above, with 
another class or group of classes. 

There are obviously aspects to the safe and 
responsible use of blogging which teachers and 
pupils need to be aware of. Pupils should be 
taught to keep personal information private, so 
they will need to think carefully about what sort 
of content is suitable to post to a public blog. It’s 
really important that comments posted to a class 
or school blog are moderated by a teacher before 
pupils get to see these – the workload here isn’t 
too bad, but this needs doing to keep a blog free of 
unwanted advertising, inappropriate links or hurtful 
comments.
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Even without blogging, pupils could share their 
programming work through community sites 
for tools such as Scratch, Trinket.io and GitHub, 
although take care that you and they observe 
the terms and conditions which apply to these 
platforms.

What opportunities are 
there for pupils to work 

collaboratively?

The web and the internet make it easy for pupils 
to work collaboratively online, just as they have 
always been able to do in class, working together 
to research a topic, to draft, revise and complete 
documents or to make original, creative artefacts of 
their own, drawing on one another’s skills and ideas. 

Web-based platforms such as Google Apps for 
Education and Office 365 mean that pupils can 
work on documents, spreadsheets and presentation 
files together, either inviting comment and review 

from others, in much the same way as professional 
writers might, or through real-time collaboration in 
which several pupils edit the same document at the 
same time, seeing the changes made by others as 
they happen. Although this takes a little getting used 
to for some, the efficiency with which joint projects 
can be undertaken and reviewed can make this a 
very appealing, and exciting, mode of work.

On a broader canvas, teachers and pupils alike will 
be aware of the collaborative nature of Wikipedia, 
and that the contents of Wikipedia pages can be 
edited by anyone who has access to them. Whilst 
many in education steer clear of Wikipedia as a 
result, worrying about its reliability, this actually 
provides a good opportunity for pupils to become 
more discerning in evaluating digital content, 
and indeed to correct errors or add content to 
Wikipedia when they can.

Figure 5.6 Screenshot of setting for moderating comments
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Online collaborative working is a very important 
part of software development – whilst much of 
the industry will keep these processes behind 
closed doors, those interested can get some 
flavour of this through open-source software 
projects such as Wordpress, Moodle and Firefox, 
and pupils themselves can get some experience in 
collaborative software development through the re-
mix feature built into the Scratch community site. 

GitHub supports version control and collaboration 
on software projects and online text. Whilst the 
learning curve can be quite steep, and the interface 
and associated vocabulary are not particularly 
intuitive, it has become the platform of choice for 
open-source software development. GitHub offers 
unlimited private repositories for students and 
those wishing to use it in school. 

What ground rules should  
we establish?

It’s important to establish an agreed set of rules 
for any online communication or collaboration 
activities, as can be seen from the importance given 
to specifying acceptable-use policies, and terms 
and conditions of use for computer networks and 
online platforms. Whilst pupils need to be aware 
that these conditions do apply to them, these are 
rarely written in a language which pupils will find 
particularly accessible, so teachers ought to spend 
time briefing pupils on what is expected of them.

It’s helpful to have a simple set of guiding principles 
here: for example, pupils should behave online just 
as they would offline; this would include not being 

Figure 5.7 Screenshot of editing a Wikipedia entry
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deliberately hurtful, taking care of shared resources, 
leaving things as they would hope to find them, 
being prepared to stand up for doing the right thing, 
even if it’s unpopular, and not talking to strangers.

Pupils ought to be aware that most online systems 
automatically log the activities that take place 
in them: that is, that someone (or something) is 
watching what they do online.

The Wikipedia community has established a set 
of community guidelines, its ‘five pillars’, which 
outline how contributors can work together and 
what constitutes acceptable behaviour in their 
online system, just as you are likely to have a code 
of conduct as a school or a class. These principles 
include ideas such as assuming good faith, being 
bold but not reckless, and striving for a neutral 
point of view which recognises both sides where 
there is disagreement.

  Classroom activity ideas

●● Set up a blog for computing in your school or 
for each class you teach, and ask pupils to share 
the best examples of their work, and comments 
on computing stories in the news, on the blog, 
reading and commenting positively on one 
another’s posts.

●● Request a school account from GitHub 
Education and use this as a way of sharing notes 
on lessons with your pupils, allowing them to 
‘fork’ any handouts, notes or plans, to annotate 
these with their own notes from lessons.

●● Pupils could work collaboratively to create a 
multi-page website, perhaps using GitHub Pages 
or a wiki platform, to present an informed, 
balanced review of issues around online safety, 
responsibility, privacy and security. 

  Further resources

Blog platforms for education. Available from http://
kidblog.org/home/, http://creativeblogs.net/ and 
http://primaryblogger.co.uk/ 

Davies, J. and Merchant, G. (2009) Web 2.0 for 
schools. Learning and social participation. New York, 
NY: Peter Lang Publishing.

eTwinning (n.d.) Connect with classes across 
Europe. Available from www.eTwinning.net  

GitHub Education (n.d.) Available from https://
education.github.com/

Richardson, W. (2010) Blogs, wikis, podcasts, and other 
powerful web tools for classrooms. Thousand Oaks, 
CA: Corwin Press.

Wikipedia (n.d.) Five pillars (the guiding principles 
behind Wikipedia). Available from http://
en.wikipedia.org/wiki/Wikipedia:Five_pillars 

Wikispaces (n.d.) Wikispaces classroom (creating 
wikis in school). Available from www.wikispaces.
com/content/classroom

http://kidblog.org/home
http://kidblog.org/home
http://primaryblogger.co.uk/
https://education.github.com/
https://education.github.com/
http://en.wikipedia.org/wiki/Wikipedia:Five_pillars
http://en.wikipedia.org/wiki/Wikipedia:Five_pillars
http://www.wikispaces.com/content/classroom
http://www.wikispaces.com/content/classroom
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Safe and  
Responsible Use
HOW CAN WE BEST KEEP YOUNG 
PEOPLE SAFE ONLINE?
Schools have long had a responsibility to keep pupils 
safe, and the recommendations from Tanya Byron 
(2008), Ofsted (2010) and others have emphasised 
that the best way to do this is through teaching 
pupils how they can best keep themselves safe. 
This is perhaps akin to cycling: pupils cycling to 
school are exposed to risks which could otherwise 
be avoided, but many see the benefits (for 
independence, health, the environment, the easing 
of road congestion, and so on) as being worth the 
additional risk, so we then do all we can to mitigate 
the risks through teaching pupils to cycle well and 
safely.

The computing curriculum includes the requirement 
that pupils are taught to keep themselves safe, and 
indeed goes beyond just teaching ‘online safety’, 
teaching pupils how to act respectfully, responsibly 
and securely when using technology, to know 
what constitutes inappropriate content, contact or 
conduct, and how to report concerns that they may 
have.

Including these requirements in the computing 
programmes of study does not mean that these 
should only be taught in computing lessons, or 
that the computing head of department becomes 
responsible for these things: good practice is to 
see these as a whole-school responsibility, and to 
embed their teaching across the curriculum and the 
life of the school. Within computing, these matters 
can be addressed very effectively, emphasising 
them as you teach other topics. A few online-safety 
lessons and an assembly for Safer Internet Day 
seem less effective than an approach in which safe, 
responsible and secure practices for the use of 
technology are taught and followed in all aspects of 
the school’s life and work.

Stepping back from the risk-mitigation approach 
to online safety, seeing the development of the 
responsible use of technology as just one aspect 
of values or character education (see, for example, 
Department for Education [DfE], 2014) may be 
particularly effective. If, over pupils’ time in school, 
we can help develop a strong sense of moral 

responsibility and the ‘grit’ necessary to stand up 
for doing the right thing, they will leave us far better 
at coping with the challenges of adult life, and far 
less likely to fall prey to the more sinister aspects of 
the internet and other technology.

What are the risks?

In her 2008 report, Safer children in a digital world, 
clinical psychologist Prof. Tanya Byron (2008) 
outlined three broad categories of risk to which 
young people are exposed through their use of 
digital technology: content, contact and conduct 
(see Figure 6.1). 

Commercial Aggressive Sexual Values

Content
(child as 
recipient)

Adverts
Spam
Sponsorship
Personal info

Violent/hateful
content

Pornographic
or unwelcome 
sexual
content

Bias
Racism
Misleading info 
or advice

Contact
(child as 
participant)

Tracking
Harvesting
personal info

Being bullied, 
harassed or 
stalked

Meeting
strangers
Being
groomed

Self-harm
Unwelcome
persuasions

Conduct
(child as actor)

Illegal
downloading
Hacking
Gambling
Financial scams 
Terrorism

Bullying or 
harassing
another

Creating and 
uploading
inappropriate
material

Providing
misleading info/
advice

Figure 6.1 (from Byron, 2008)

Content

Young people are naturally curious and, as teachers, 
we would hope to nurture and develop that innate 
curiosity, doing what we can to establish a lifelong 
love of learning in our pupils. However, whilst a 
previous generation’s curiosity might have led 
them to look up rude words in a dictionary or 
encyclopaedia, today’s young people are far more 
likely to search the words they overhear on Google 
or Bing. The loss of innocence through exposure 
to highly graphic depictions of sex or violence 
is far too prevalent. Schools must have effective 
filters and monitoring in place to prevent access to 
inappropriate or harmful material (DfE, 2016), but 
this in itself does little to mitigate the risk to young 
people through access to such material outside of 
school, including on smartphones. 

Both Google and Bing have SafeSearch settings 
which, whilst not infallible, will do much to prevent 
pupils accessing particularly inappropriate content 
via these; these settings can be locked in place, and 
a number of organisations have developed search 
engines targeted at children, often through using 
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a combination of SafeSearch and custom search 
tools in Google Search. Pupils might consider how 
algorithms can be designed to filter search results 
as effectively as they do.(1) 

It would be wrong to think of filtering merely in terms 
of preventing access to inappropriate or harmful 
sexual content. Schools have a duty to promote 
fundamental British values and should prevent access 
to terrorist or extremist material which might lead to 
pupils’ radicalisation (DfE, 2014, 2015).  

Just as schools typically receive a filtered internet 
connection, in which access is blocked to content 
considered inappropriate, so parents can request 
filtered internet access at home and on mobile 
devices: it’s worth teachers explaining to parents 
how to do this, and the reasons why they should. 
Even with filters in place, young people may still 
encounter content that concerns them, and 
establishing a ‘no blame’ culture, in which they can 
alert you or their parents to such content, can be 
helpful. Many schools operate a policy of teaching 
young people to close the laptop, switching off 
the monitor or turning over the iPad if ever they 
find content they know they shouldn’t view or are 
otherwise concerned about.

Byron identified other risks associated with 
content, including commercialisation (qv Bailey, 
2011). When teaching pupils about the internet, 
and particularly the web, it’s worth helping them 
to become more discerning and critical about 
the commercial aspects. You could address the 
prevalence of spam in email, how this can be filtered 
semi-automatically, as well perhaps as what sort 
of algorithms might be used in doing so.(2) It’s also 
worth helping pupils to become aware of the use of 
advertising on the web and how this can be avoided 
through the use of browser plugins such as AdBlock, 
and covering the difference between sponsored 
and other results in search engines. It’s important 
to help pupils become aware of the difference 
between altruistically-created content (e.g. 
Wikipedia, many blogs and much of YouTube), and 
content created with a perhaps hidden or implicit 
commercial purpose, noting the absence of a ‘free 
lunch’ in many apparently free online services. 

1	 www.youtube.com/watch?v=H2EIN24r-3M, qv Edelman (2003). 
2	 See https://gmail.googleblog.com/2007/10/how-our-spam-filter-works.html and www.wired.com/2015/07/google-says-ai-		
	 catches-99-9-percent-gmail-spam/ 
3	 www.ceop.police.uk/
4	 www.childline.org.uk/explore/onlinesafety/Pages/Sexting.aspx

Contact

Much good work has been done to teach young 
people about the dangers of posting personal 
information online, and of contact via the internet 
from those they don’t already know.  The  Child 
Exploitation and Online Protection Centre (CEOP)    
makes some excellent resources available to 
support teachers in effectively delivering a clear 
message to pupils about these risks, and what they 
can do to minimise them.(3) 

Teachers and parents can do much to help young 
people become more discerning in their use of the 
internet or other communication technologies, 
thinking carefully about strange or otherwise 
unanticipated contact or communication, and 
the potential long-term consequence of sharing 
information online. 

‘Sexting’, the sharing of sexually explicit text, images 
or video via smartphones, perhaps using apps such 
as Snapchat, seems increasingly prevalent amongst 
some groups of young people. This is in part due to 
peer pressure, but also short-term perspectives and 
some misconceptions about online privacy. There 
can be profound consequences for both the sender 
and recipient of the content. The advice from 
Childline, if someone keeps asking a young person 
for inappropriate photos, is:

●● ‘Ask them to stop … or just don’t reply at all 
and hopefully they will get the hint. But if they 
are still bothering you or making you feel upset 
it’s okay to block them – even if it’s just for a bit’.

●● ‘If an adult has been making you feel 
uncomfortable by asking you to send them 
images, you can report them on the CEOP site. 
If an adult does this it is sometimes called online 
grooming’.

●● ‘It is wrong for anyone to be pressuring you in 
this way. If you are under 18, they are breaking 
the law’.(4)   

Whilst acknowledging that it’s illegal for a person 
under 18 to take or share indecent images 
of themselves, current ACPO (Association of 
Chief Police Officers) advice does not support 

http://www.youtube.com/watch?v=H2EIN24r-3M
https://gmail.googleblog.com/2007/10/how-our-spam-filter-works.html
http://www.wired.com/2015/07/google-says-ai-catches-99-9-percent-gmail-spam
http://www.wired.com/2015/07/google-says-ai-catches-99-9-percent-gmail-spam
http://www.ceop.police.uk/
http://www.childline.org.uk/explore/onlinesafety/Pages/Sexting.aspx
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prosecution, and emphasises the need to put 
safeguarding at the heart of any intervention.(5)  

As with any safeguarding issue in school, teachers 
have a responsibility to report concerns to the 
designated person, in accordance with school 
policies. 

Conduct

The curriculum requires that pupils understand 
how to use technology responsibly and respectfully. 
Supporting young people’s moral development is 
a vital part of secondary education, a statutory 
requirement for a school’s curriculum and, as part 
of ‘spiritual, moral, social and cultural development’, 
an element of all Ofsted inspections. Kohlberg’s 
stages of moral development (for example, 
Kohlberg, 1984) offers one model for thinking about 
this:

1.	 obedience and punishment orientation (how 
can I avoid punishment?);

2.	 self-interest orientation (what’s in it for me?);

3.	 interpersonal accord and conformity (the 
good boy/girl attitude);

4.	 authority and social-order-maintaining 
orientation (law and order morality);

5.	 social contract orientation (Do unto 
others…);

6.	 universal ethical principles (principled 
conscience).

Under this model, we would hope to see pupils 
already taking responsibility for their own moral 
and ethical decisions and behaviour when they get 
to secondary school. We then support them as 
they learn to do the right thing out of a respect 
for others and, ultimately, on the basis of their 
personal adoption of universal ethical principles, 
probably including such ‘fundamental British values’ 
as ‘democracy, the rule of law, individual liberty 
and mutual respect and tolerance of those with 
different faiths and beliefs’. If schools take seriously 
moral education, focussing on character and values, 
seriously, many aspects of pupils’ inappropriate 
conduct using technology can perhaps be avoided, 
or their consequences reduced.

5	 https://ceop.police.uk/Documents/ceopdocs/externaldocs/ACPO_Lead_position_on_Self_Taken_Images.pdf
6	 www.bbc.co.uk/news/education-35524429
7	 www.gov.uk/government/uploads/system/uploads/attachment_data/file/375951/Education_and_Teaching.pdf
8	 www.copyrightandschools.org/

In many schools, cyberbullying is a common 
problem: a BBC/Comres survey reported 22 
percent of 10–12-year-olds had experienced 
bullying or ‘trolling’.(6) Whilst this is more likely 
to happen outside of school, it’s common for 
both bully and victim to be members of the same 
class, year group or school, and the cause and 
consequences may often be connected to school. 
As with bullying in general, a focus on moral 
education might reduce the prevalence of such 
hurtful behaviour in the school community, but a 
clear zero tolerance message is essential, together 
with a culture in which this can be reported, safe in 
the knowledge that swift and effective action will 
follow. Alongside this, it’s worth building up young 
people’s resilience to off-hand, unintentionally 
hurtful remarks from others, recognising that not 
every online disagreement or critical comment 
constitutes bullying. 

Copyright, and other aspects of intellectual 
property, is another area in which young people’s 
(and sometimes teachers’) conduct isn’t all that it 
could be. Perhaps because the web works through 
automatically making copies of the content from 
a distant web server in the user’s web browser 
when a page is accessed – and the ease with which 
digital content can be perfectly copied – it’s all 
too easy to assume that content found online can 
be used wherever and however someone wants, 
without paying attention to the legal and ethical 
aspects of intellectual property. There are generous 
exemptions from much copyright legislation 
for clearly specified educational use,(7) as well 
as educational-use licences for a range a media 
purchased centrally by the DfE on behalf of state-
funded schools in England.(8) However, it remains 
important to teach and show best practice in the 
use of copyrighted material, including properly 
acknowledging the source of content and respecting 
any associated licence terms. 

The Creative Commons family of licences makes 
it easy for those who create work in any medium 
to license it for reuse, under a range of different 
conditions: you can teach pupils about this approach 
to sharing online, and show them how they can 
search for, acknowledge and reuse Creative 
Commons licensed content in their own work. 

https://ceop.police.uk/Documents/ceopdocs/externaldocs/ACPO_Lead_position_on_Self_Taken_Images.pdf
http://www.bbc.co.uk/news/education-35524429
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/375951/Education_and_Teaching.pdf
http://www.copyrightandschools.org/
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Both Google and Bing image searches allow results 
to be filtered to show just images that have been 
licensed in this way. 

Figure 6.2 Screenshot to show filtering by licence in 
Google image search

Furthermore, the work uploaded to the Scratch 
website is covered by a Creative Commons by-
share-alike licence, as are resources shared on the 
CAS (Computing At School) community site, except 
where stated otherwise. There’s ample scope in 
the curriculum for pupils to make use of Creative 
Commons and public-domain(9) content: the Level 
2 Benchmarks state that pupils ‘Demonstrate an 
understanding of usage rights and can apply these 
within a search’.

It’s worth bearing in mind that pupils automatically 
own the copyright in their own work, including 
that which they produce in school, and that we as 
teachers should respect this, for example checking 
with pupils and their parents before publishing 
their work online in a class or school blog. Asking 
parents to license their children’s work for these and 
other uses by the school might seem unnecessarily 
legalistic, but it’s important that pupils learn about, 
and have respect shown for, their rights as well as 
their responsibilities.

It’s important that pupils be taught to respect the 
terms and conditions of any websites or other 
online services which they use, and indeed see you 
doing so yourself. The terms and conditions of most 
online services run to many, many pages, but when 
signing up for new services, or asking pupils to do 
so, it’s well worth checking through the sections 
on any age restrictions as well as through those on 
copyright and data privacy. US-based companies are 
required to abide by American COPPA (Children’s 
Online Privacy Protection Act) legislation,(10) which 
prevents their storing personal data on under-13s 
without parental consent. As a result, many US-based 

9	 That is, content which can be used without any restriction, sometimes called Creative Commons
10	http://bit.ly/ftccoppa
11	www.legislation.gov.uk/ukpga/1990/18

internet services and websites (including Facebook) 
prohibit under-13s from creating accounts or 
using the service. Pupils under 13 using these 
services would be doing so without the operator’s 
permission, which could be considered an offence 
under the Computer Misuse Act. 

A number of services, including Google Apps for 
Education and Office 365, allow schools to create 
accounts on behalf of children, with the school 
taking responsibility for obtaining the necessary 
parental consent. Other websites, such as Scratch, 
allow teachers to create multiple accounts in their 
own name and share these with pupils, but this is an 
exception rather than the rule: it’s much better to 
check, and abide by, the terms and conditions, rather 
than making these assumptions.

Concern is sometimes expressed that young people 
might use their knowledge of programming and 
computer networks for harmful or illegal purposes, 
including cybercrime. Even in the context of school 
networks, it’s not unheard of for pupils to attempt 
to obtain administrator or teacher password details, 
bypass filtering through proxy servers or VPNs 
(virtual private networks), or attempt to install 
keyloggers or password sniffers: all of these are likely 
to be prohibited under the school’s acceptable-use 
policy. Pupils investigating the tools and techniques 
involved here may get drawn in further to a 
subculture in which circumventing computer security 
is seen as an acceptable intellectual challenge.

The Computer Misuse Act(11) was introduced to 
make hacking computer systems illegal. It covers 
a number of offences involving the unauthorised 
use of computers, with or without the intention 
of committing further crimes, or impairing the 
operation of computers. As well as account hacking, 
using malware (including rootkits) is against the law, 
as is conducting distributed denial-of-service attacks. 
The National Crime Agency suggests a number of 
warning signs that parents might watch out for, to 
alert them to a young person’s involvement in cyber-
crime:

●● Are they resistant when asked what they do 
online?

●● Do they get an income from their online 
activities, do you know why and how? 

http://bit.ly/ftccoppa
http://www.legislation.gov.uk/ukpga/1990/18
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●● Is your child spending all of their time 
online?

●● Do they have irregular sleeping patterns?
●● Have they become more socially isolated?

Whilst parents of many teenagers not involved 
in cybercrime might answer yes to many or all of 
these, it’s important that parents and teachers feel 
able to discuss any concerns or suspicions they 
have over an individual’s interest in or involvement 
with criminal activities. A clear emphasis on 
character or values education in school, including in 
computing lessons, might do much to help prevent 
young people becoming involved in computer-based 
crime. 

Finally, be aware, and make your pupils aware, of 
the opportunity cost associated with screen 
time – time spent using a computer, tablet or 
smartphone is time not spent doing other things, 
such as reading a (paper-based) book, learning a 
musical instrument, playing in a team and socialising 
face-to-face with family and friends. Whilst digital 
technology is seen by many as transformative of 
so many aspects of learning and life, many would 
count it a great shame if it came to dominate 
childhood, within or beyond school, to any greater 
extent than it already has. Helping young people 
to become more discerning users of technology, 
knowing when it would be useful, and when it might 
be more of a distraction, is perhaps also one of our 
responsibilities as teachers.

Reporting concerns

The new curriculum requires that pupils are taught 
how to report concerns they have over technology. 
In most cases, pupils should talk to their parents or 
their teachers about such concerns: if pupils report 
such concerns to you, this may be covered by 
your safeguarding policy, so make sure you follow 
this very carefully. Sometimes, pupils might be too 
embarrassed about something to turn to either 
you or their parents, so it’s worth making them 
aware that there are others whom can they talk to, 
including Childline and CEOP.

12	www.childnet.com/new-for-schools/childnet-digital-leaders-programme
13	See www.thinkuknow.co.uk/14_plus/help/Contact-social-sites/ for links to policies and reporting portals for many social 		
	 media providers.
14	Pupils might enter their film for Childnet’s annual competition: www.childnet.com/resources/film-competition/ 

Pupils need not be directly affected by something 
to report it: it’s important to establish a classroom 
and school culture in which pupils feel that they 
can discuss any concerns openly with teachers and 
one another, including if they believe any of their 
friends are involved in risky online activity, or if they 
notice unusual changes in a friend’s behaviour. A 
number of schools have established a ‘digital leader’ 
role for pupils,(12) which might include particular 
responsibilities around supporting other pupils in 
staying safe online.

Older pupils should also know how they can 
address concerns they have, particularly over 
content or conduct, with social media sites 
directly.(13) And reputable sites, including Facebook, 
Twitter, Tumblr, Instagram and YouTube, will act 
promptly in the case of illegal activity or where the 
site’s terms and conditions have been infringed. 

  Classroom activity ideas

●● Online safety and responsibility provide great 
topics in which pupils can develop their creative 
use of technology. From making and giving 
high-quality presentations and blogging advice 
for younger pupils, to creating short live-
action video(14) or animations exploring these 
issues, there’s ample scope here for pupils to 
collaborate and produce high-quality work 
across a range of digital media.

●● Pupils might work together to develop a website 
summarising the terms and conditions, and the 
reporting arrangements, for popular social media 
platforms and apps.

●● Keep abreast of media stories concerning illegal 
or unethical use of technologies, using these as 
starting points for class discussions. Encourage 
pupils to use a framework of ethical principles 
when discussing these. 

●● Online content, conduct and contact issues 
might be effectively explored through role-play 
and discussion, although you should be aware 
that some pupils might be directly affected by 
some of these issues, and thus a particularly 
sensitive approach may be necessary. Dilemma 
cards might be particularly useful.

http://www.childnet.com/new-for-schools/childnet-digital-leaders-programme
http://www.thinkuknow.co.uk/14_plus/help/Contact-social-sites/
http://www.childnet.com/resources/film-competition/
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  Further resources

Computing At School (n.d.) Computing starters: 
Social, ethical, economic and philosophical issues. 
Available from http://community.computingatschool.
org.uk/resources/2212

Childnet (n.d.) Secondary hub. Available from www.
childnet.com/young-people/secondary; see also 
advice for teachers: www.childnet.com/teachers-
and-professionals 

Creative Commons (n.d.) For information and 
free licences to use. Available from http://
creativecommons.org/

Cutts, M. (2011). Google’s Matt Cutts on how Google 
Safe Search works. YouTube. Available from www.
youtube.com/watch?v=H2EIN24r-3M 

Dredge, S. (2014) How do I keep my children safe 
online? What the security experts tell their kids. The 
Guardian. Available from www.theguardian.com/
technology/2014/aug/11/how-to-keep-kids-safe-
online-children-advice 

Intellectual Property Office (2014) Exceptions to 
copyright: Education and teaching. Available from 
www.gov.uk/government/uploads/system/uploads/
attachment_data/file/375951/Education_and_
Teaching.pdf 

Kohlberg, L. (1981) The philosophy of moral 
development: Moral stages and the idea of justice 
(Essays on moral development, volume 1). San 
Francisco: Harper & Row.

Ofsted (2015) Ofsted on inspecting safeguarding. 
Available from www.gov.uk/government/
publications/inspecting-safeguarding-in-early-years-
education-and-skills-from-september-2015

South West Grid for Learning (n.d.) Digital literacy 
& citizenship curriculum: Teaching resources. Available 
from www.digital-literacy.org.uk/Home.aspx

Thinkuknow.co.uk (CEOP) (n.d.) Resources for lower 
secondary pupils. Available from www.thinkuknow.
co.uk/11_13/; and for teachers: www.thinkuknow.
co.uk/Teachers/ 

15	https://ico.org.uk/for-organisations/guide-to-data-protection/key-definitions/ 

UK Safer Internet Centre (n.d.) Available from www.
saferinternet.org.uk/

UNICEF (n.d.) Children’s rights: United Nations 
Convention on the Rights of the Child. Available from 
www.unicef.org.uk/Documents/Publication-pdfs/
UNCRC_PRESS200910web.pdf

Privacy, Security 
and Identity
Online safety is linked directly with issues of 
privacy, security and identity, and these topics lend 
themselves to further exploration within computing 
lessons. Privacy and security are closely related 
ideas but are not synonymous: we put curtains at 
our windows to protect our privacy but fit locks to 
our doors to maintain security. 

Privacy

Pupils at Level 1 are taught that they should keep 
personal information private.  At Level 3 they learn 
how to use technology to protect their privacy. 

Pupils ought to have a good idea of what’s meant 
by personal information. The Data Protection Act 
defines personal data as data about a person who 
can be identified from the data.(15) This includes 
names, home addresses, personal phone numbers 
and email addresses, as well as photographs or 
videos showing the face of a person, but it might 
also be reasonably seen as including the Internet 
Protocol (IP) or Media Access Control (MAC) 
addresses of connections or computers used by the 
person, or details of their social media accounts.

There’s other information which a person might 
reasonably expect to be kept private, such as 
their internet history, their search history, mobile 
cell or Global Positioning System (GPS) location 
information, personal photographs, and records of 
mobile phone calls or email correspondence. 

Keeping all this information entirely private is, to 
all intents, incompatible with the use of online 
technology – when using a standard mobile phone, 
the network operator must know the cell to which 

http://community.computingatschool.org.uk/resources/2212
http://community.computingatschool.org.uk/resources/2212
http://www.childnet.com/young-people/secondary
http://www.childnet.com/young-people/secondary
http://www.childnet.com/teachers-and-professionals
http://www.childnet.com/teachers-and-professionals
http://creativecommons.org/
http://creativecommons.org/
http://www.youtube.com/watch?v=H2EIN24r-3M
http://www.youtube.com/watch?v=H2EIN24r-3M
http://www.theguardian.com/technology/2014/aug/11/how-to-keep-kids-safe-online-children-advice
http://www.theguardian.com/technology/2014/aug/11/how-to-keep-kids-safe-online-children-advice
http://www.theguardian.com/technology/2014/aug/11/how-to-keep-kids-safe-online-children-advice
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/375951/Education_and_Teaching.pdf
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/375951/Education_and_Teaching.pdf
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/375951/Education_and_Teaching.pdf
http://www.gov.uk/government/publications/inspecting-safeguarding-in-early-years-education-and-skills-from-september-2015
http://www.gov.uk/government/publications/inspecting-safeguarding-in-early-years-education-and-skills-from-september-2015
http://www.gov.uk/government/publications/inspecting-safeguarding-in-early-years-education-and-skills-from-september-2015
http://www.digital-literacy.org.uk/Home.aspx
http://www.thinkuknow.co.uk/11_13/
http://www.thinkuknow.co.uk/11_13/
http://www.thinkuknow.co.uk/Teachers/
http://www.thinkuknow.co.uk/Teachers/
https://ico.org.uk/for-organisations/guide-to-data-protection/key-definitions/
http://www.saferinternet.org.uk/
http://www.saferinternet.org.uk/
http://www.unicef.org.uk/Documents/Publication-pdfs/UNCRC_PRESS200910web.pdf
http://www.unicef.org.uk/Documents/Publication-pdfs/UNCRC_PRESS200910web.pdf
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any call should be routed; when communicating by 
email, the email provider of sender and recipient 
must have access to the email and its contents; 
search providers must know what it is that you 
are searching for if they are to provide results; web 
servers automatically maintain records of pages 
requested and the IP address of the computer 
requesting them: such information has to be 
provided through the very nature of the technology 
used. Similarly, without encryption there’s nothing 
to prevent routers, gateways and switches sniffing 
the contents of the packets transmitted through 
them across the internet’s infrastructure. Users 
particularly concerned about privacy issues might 
set up their own virtual private network,(16) use 
an anonymising routing protocol such as TOR,(17) 
set up their own server and domain for email and 
other services,(18) and avoid social media: for users 
outside of oppressive regimes, such steps might 
suggest an excessive degree of paranoia or that 
they have something to hide.

Rather than such an entirely paranoid approach, 
it’s worth getting pupils to think in terms of circles 
of trust, thinking carefully about with whom they 
would choose to share information. There are some 
people whom a pupil should trust to a very great 
extent, secure in the knowledge that that person 
has the pupil’s own best interests at heart: one 
would hope that for almost all children this would 
include their parents and their teachers. With those 
in this circle of trust, pupils might confidently share 
almost any information. Close friends and relatives 
might be trusted somewhat less, but we would be 
predisposed to consider them worthy of our trust 
in most matters. There’s then a looser circle of 
friends and acquaintances, whom we are perhaps 
somewhat more wary of, but in whom we are still 
willing to invest some trust to strengthen such 
relationships – although we might exercise some 
degree of caution in doing so.

In a benign, liberal democracy, and in an education 
system which places its pupils’ well-being as its 
number one concern, we might also consider 
the police, other government agencies and those 
maintaining the security of the school’s information 
systems as meriting a high degree of trust, although 
not all would necessarily agree. 

16	For example using a Raspberry Pi: www.bbc.co.uk/news/technology-33548728
17	www.torproject.org/
18	Perhaps using https://owncloud.org/ or https://sandstorm.io/ 

Many of us feel confident placing our trust in large, 
multinational corporations, not because we believe 
they act in our best interests, but because what 
they provide in return for what they ask seems 
a good deal, and many such organisations have 
stated policies in which they seem to take their 
customers’ privacy very seriously, even if it’s on 
their own terms rather than ours.

Those whom we don’t know are another matter. 
Back in Jane Austen’s day, new acquaintances would 
only be accepted once they had been introduced, 
either by letter or in person, by someone already 
known and trusted, and perhaps something similar 
operates at a lower level of trust on the web and 
through social media. 

It seems clear that some degree of caution and 
discernment is needed when navigating the complex 
web of personal, commercial and regulatory 
relationships that our online life makes us part of. 
To share nothing of oneself denies the opportunity 
for participation, but to share everything seems 
foolhardy. A middle path seems the appropriate way 
to strike a balance between these extremes, sharing 
some things more generally whilst keeping other 
things to a closer circle.

In sharing information online, pupils should 
be aware of the long-term persistence of the 
information they share – what goes online typically 
stays online. Once a photograph, video or message 
is available on the open web, then anyone with 
access to it may be able to make a copy of it – 
indeed, the very act of viewing the content involves 
transferring that content from a web server to a 
computer. Google’s Page Rank algorithm can only 
operate through indexing a cached copy of the 
web. The Internet Archive similarly makes regular 
copies of many websites to preserve this content for 
the future. Even within password-protected sites, it’s 
essentially impossible to prevent what other users 
with access to content will do with that content. A 
photograph might be shared in the expectation that it 
would remain private, but the other person might still, 
in a breach of trust, share a copy of that with others 
or on the open web. That which a pupil thinks is 
worth sharing at the age of 14 might subsequently be 
regretted when it remains permanently associated.  

http://www.bbc.co.uk/news/technology-33548728
http://www.torproject.org/
https://owncloud.org/
https://sandstorm.io/
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As well as deciding for themselves with whom to 
share particular information, based on the extent to 
which they trust the other, pupils should be aware 
of the routine and almost inevitable recording or 
surveillance of their online activities. As mentioned 
above, schools now have a duty to monitor pupils’ 
access to the internet; internet service providers 
maintain records of sites visited; mobile phone 
companies maintain records of the cell masts to 
which a mobile phone automatically transmits its 
location; search-engine providers build detailed 
profiles of users based on their search queries and 
other activities; social media sites and app providers 
similarly know much about whom any one of us is 
friends with or follows. 

With the Investigatory Powers Act(19) becoming 
law, much of this information has to be disclosed to 
investigators in certain defined circumstances. Many 
would argue that such recording or surveillance is 
a not an unreasonable price to pay for the online 
services provided, and to ensure that individuals and 
society are protected from those who would wish 
them harm. 

Pupils should have a reasonable expectation that any 
data held about them is kept private, as the Data 
Protection Act(20) requires; that personal information 
is not, without one of a few very good reasons, or the 
subject’s explicit permission, shared with third parties; 
and that, when others are, of necessity, involved 
in processing data, they too have an obligation to 
protect the privacy of those to whom it relates. 
This expectation applies to schools as much as to 
any other organisation processing personal data, and 
including that data be kept securely in such a way that 
unauthorised users cannot access it.

19	www.gov.uk/government/collections/investigatory-powers-bill
20	www.gov.uk/data-protection/the-data-protection-act
21	See, for example, www.theguardian.com/world/2014/jul/15/germany-typewriters-espionage-nsa-spying-surveillance
22	https://en.wikipedia.org/wiki/Air_gap_(networking)

Security

Security is about preventing those who shouldn’t 
have access to data, information or systems from 
gaining such access.

Security is related to privacy – in general it’s a 
necessary but not sufficient condition: that is, you 
cannot expect privacy without security, but privacy 
needs more than just security.

At one level, information can be kept secure by 
physical means – recording information on paper 
only, and storing that information in a safe or locked 
filing cabinet, would foil all but the most intrepid.(21) 

On a computer, an ‘air gapped’ machine(22), without 
network access and without support for removable 
media, would provide a high degree of security for 
any data stored on it, assuming that the physical 
security of the system itself could be guaranteed – 
although it would be a far-from-convenient system 
to use for most practical tasks.

Beyond the physical security of a system, some 
attention should be given to the security of the 
data stored on it, or on removable media used 
with it – whilst challenge-and-response passwords 
provide a degree of protection, encrypting the data 
is the best way to ensure that, even if unauthorised 
users were to gain access to the system or find the 
memory stick, it would be essentially impossible 
for them to read the data stored on the device 
without knowing the secret key with which 
the data had been encrypted. These days, most 
operating systems include the ability to encrypt 
all of the data on the startup disk or equivalent 
system, and communication via the internet can be 
routinely encrypted without any additional efforts. 
Smartphones can be set to delete any data stored 
on them if a wrong passcode is entered more than 
a set number of times, and can be wiped remotely 
when connected to the internet. 

http://www.gov.uk/government/collections/investigatory-powers-bill
http://www.gov.uk/data-protection/the-data-protection-act
http://www.theguardian.com/world/2014/jul/15/germany-typewriters-espionage-nsa-spying-surveillance
https://en.wikipedia.org/wiki/Air_gap_(networking)
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Cryptography

Cryptography is central to an understanding of 
the security of digital data, and particularly to its 
communication via the internet, over what are 
essentially insecure, open channels. The encryption 
techniques used to transmit messages securely can 
also be used to store those messages securely.

In classical cryptography, we take a plain text 
message to be encrypted, some agreed protocol 
for encrypting the message and, crucially, a secret 
key that’s used to encrypt the message into some 
‘ciphertext’. The idea is that, even if the enemy has 
access to the ciphertext and full knowledge of the 
protocol used, they cannot recover the original 
plain text without knowing (or guessing) the 
encryption key used. 

Figure 6.3 Image of Caesar cipher wheel: this 
from https://commons.wikimedia.org/wiki/
File:CipherDisk2000.jpg

The history of cryptography long and interesting. 
One of the earliest cryptographic systems was the 
Caesar cipher (Figure 6.3), in which the letters in 
the plain text message were simply shifted along the 
alphabet by an agreed number of places – thus the 
plain text 

attack at dawn

would become the ciphertext 

BUUBDL BU EBXO

Decrypting the message is simply the reverse of this 
process, shifting each letter of the ciphertext back 
along the alphabet the correct number of places.

Whilst this is an easy system to implement by 
hand and to code on a computer, it’s very far from 
secure: to break the encryption, the enemy only 
needs to try the 25 possible shifts until something 
in English turns up.

A more sophisticated system might involve 
replacing each letter in the plain text alphabet with 
another, agreed letter. For example, we might swap

a b c d e f g h i j k l m n o p q r s t u v w x y z 

with

E G L J H O T U P V F S X A W Q K R M Z D Y N C I B

Using this key, the message 

attack at dawn

would become the ciphertext 

EZZELF EZ JENA

With knowledge of the key, this is reasonably easy 
to decipher by hand, and easy enough to program 
on a computer (Figure 6.4). 

Figure 6.4

def encode(message, cipher, 
plain=”abcdefghijklmnopqrstuvwxyz”): 
    ciphertext = “” 
    for i in range(len(message)): 
         letter = message[i] 
         position = plain.find(letter)
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       if position > -1: 
            ciphertext = ciphertext + cipher[position 
       else: 
              ciphertext = ciphertext + “ “ 
    return ciphertext

Simple substitution functions in Snap! and Python

At first sight, it looks very hard to break by trying 
out all the possible key combinations (of which there 
are 26 x 25 x 24 x … x 2 x 1 possible keys, roughly 
4 x 1026), but such brute-force approaches are only 
ever the last resort of cryptanalysts or hackers. If the 
language of the original message is known or can be 
guessed, and the message is long enough for statistical 
techniques to work, then the enemy can use the 
relative frequency of letters (and pairs of letters) in 
the original language to start making plausible guesses 
at which letter had been swapped for which (see 
the discussion of Shannon and information entropy 
on pages 96 - 98). For example, E and T are the 
most common letters in English, T is more likely to 
be followed by H than any other letter, and so on. 
Unsurprisingly, it is possible to automate or at least 
semi-automate this frequency-analysis approach to 
breaking a simple substitution cipher. Automated 
or semi-automated breaking of codes has figured 
prominently in the history of computing, most 
notably in the work of Turing, Flowers, Welchman and 
others at Bletchley Park in the Second World War.

A more sophisticated system still is the Vigenère 
or polyalphabetic cipher in which different Caesar 
shift covers are applied to different letters of the 
plain text, according to some predefined system. For 
example, one could take the letters of a key word 
and use these to determine different Caesar shifts: 
the key word ‘FAB’ could suggest shifts of 6, 1 and 
3 positions repeatedly, or a longer text, such as an 
agreed passage from a book could be used. This is far 
less amenable to frequency analysis.

def vigenere(message, key): 
    ciphertext = “” 
    for i in range(len(message)): 
         letter = message[i] 
         newletter = (ord(letter) - 96 + ord(key[i % 
len(key)]) - 96) % 26 
         ciphertext = ciphertext + chr(newletter + 
64) 
     return ciphertext

Simple implementation of a Viginere or polyalphabetic 
cipher in Python

Such a system can form the basis of an unbreakable 
code – a ‘one-time pad’ (Shannon, 1949) in which 
Caesar shifts or their equivalents are applied 
according to a genuinely random stream of values 
known only to sender and recipient in advance of 
communication. If there’s no pattern to the shifts 
that are applied, and if the random stream is known 
only to sender and recipient, then even a brute-
force attack cannot recover the original plain text, 
as all information about the plain text is hidden 
within the randomness of the key. The downside 
is that the key must be the same length as the 
plain text and cannot be used again – hence the 
‘one-time’ name for this method. Furthermore, the 
security of the communication now becomes about 
‘marinating’ the security of the one-time pad, which 
is at least as hard as marinating the security of the 
message it was designed to protect.

Figure 6.5 One-time pad

PD: https://upload.wikimedia.org/wikipedia/
commons/thumb/6/62/One-Time_Pads_-_Flickr_-_
The_Central_Intelligence_Agency.jpg/399px-One-
Time_Pads_-_Flickr_-_The_Central_Intelligence_
Agency.jpg

https://upload.wikimedia.org/wikipedia/commons/thumb/6/62/One-Time_Pads_-_Flickr_-_The_Central_Intelligence_Agency.jpg/399px-One-Time_Pads_-_Flickr_-_The_Central_Intelligence_Agency.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/6/62/One-Time_Pads_-_Flickr_-_The_Central_Intelligence_Agency.jpg/399px-One-Time_Pads_-_Flickr_-_The_Central_Intelligence_Agency.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/6/62/One-Time_Pads_-_Flickr_-_The_Central_Intelligence_Agency.jpg/399px-One-Time_Pads_-_Flickr_-_The_Central_Intelligence_Agency.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/6/62/One-Time_Pads_-_Flickr_-_The_Central_Intelligence_Agency.jpg/399px-One-Time_Pads_-_Flickr_-_The_Central_Intelligence_Agency.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/6/62/One-Time_Pads_-_Flickr_-_The_Central_Intelligence_Agency.jpg/399px-One-Time_Pads_-_Flickr_-_The_Central_Intelligence_Agency.jpg
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Whilst the one-time pad is secure, it is impractical 
for general-purpose communication on the internet, 
due to the key exchange problem. If Alice and Bob 
are to communicate securely, they need to agree in 
advance the key they will use, and this would need to 
be communicated securely – and if Alice and Bob can 
do this already, they have no need to establish a new 
secure-communication channel…

The breakthrough to the key exchange problem 
came with finding mathematical functions which 
are easy to perform but very hard to reverse. For 
example, if I take two very large prime numbers, it’s 
easy to multiply them together; however, given the 
product of two very large prime numbers, it’s very 
hard, even for a very fast computer, to reverse the 
factorisation. Without the aid of a calculator, you 
should be able to multiply 7,919 and 8,863, but even 
with a calculator it would take a long time for you to 
find the factors of 62,080,727. Factoring this number 
is relatively trivial, but finding the factor of a number 
some 620 digits in length seems beyond the reach of 
even the fastest computers, for some time to come. 

There’s a little more to Diffie-Hellman (see Diffie 
and Hellman, 1976; and also Merkle, 1978) key 
exchange than simply multiplying large prime 
numbers together, but the idea here is that it allows 
two people wishing to communicate to decide a 
secret key that could be used for encryption using 
another cryptographic system, in such a way that 
anyone eavesdropping on the communication about 
the key couldn’t work out the key, because it relies 
on secret information that is never shared. Thus, 
when communicating over the internet, my browser 
and the server it is communicating with can, across 
an open channel, establish a secret key known only 
to them, and then use this for subsequent encrypted 
communication – without the key itself ever being 
transmitted, and in such a way that no third party 
can guess that key.

Another approach to the key exchange problem, 
again based on the difficulty of factoring a product 
of primes compared to the ease with which they 
can be multiplied, is the RSA public/private key 
algorithm.(23) Here, two different keys are needed 
for the cryptographic system: one which allows data 
to be encrypted, the public key, and another which 
allows a message to be decrypted, the private key. 
If I wish to encourage folks to communicate with 
me securely, I can publish my public key on the web 

23	www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-rsa-cryptography-standard.htm

and invite anyone to use it. Folks can then send 
me encrypted messages using this key, but even 
with access to the public key, no eavesdropper can 
reverse the encryption process to read the message, 
as this is only possible using the associated private 
key, which only I have access to. RSA offers another 
advantage in that it allows me to cryptographically 
‘sign’ messages – I could, for example, encrypt an 
outbound message using my private key; anyone 
reading this could then decrypt it using my public key, 
and the fact that it can be decrypted using my public 
key proves that it was originally encrypted (that is, 
signed) using the associated private key that only I 
hold. 

The HTTPS protocol, used for secure 
communication for web traffic over the internet, 
builds on these ideas. HTTPS does two things: it 
establishes that the computer you are talking to is 
the one you think you are talking to, by presenting 
(and checking) a signed cryptographic certificate; 
and it sets up secure communication for subsequent 
communication between you and the far web 
server. Thus, when I visit my bank’s home page over 
HTTPS, my browser checks that the site carries 
a cryptographic certificate signed by someone 
I already trust (one of a number of supposed 
incorruptible certificate authorities accepted by 
my browser); assuming all is well, key exchange 
for the session takes place and all the following 
communication is done in secret, from my password, 
through my statement, to setting up new payments - 
even though this is over the insecure channels of the 
internet.

HTTPS has vulnerabilities, but it’s not vulnerable to 
folk in the same coffee shop sniffing otherwise open 
or poorly-encrypted WiFi traffic. The vulnerability 
lies in the acceptance of certificate authorities 
(Callegati et al., 2009) – on a school network, you 
may be expected to accept, to trust, a security 
certificate from the school for internet access. Once 
you’ve done so, it’s possible for the school’s gateway 
computer or router to sit between you and distant 
web servers (a man-in-the-middle attack) routinely 
decrypting and re-encrypting any traffic between 
you whilst assuring you that all is very well, as you’ve 
trusted it to sign and to encrypt traffic on your 
behalf. Assuming HTTPS access is permitted, it could 
be possible for pupils to use HTTPS to access web-
based content in school, without the school being 
able to monitor or filter what they were accessing.

http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-rsa-cryptography-standard.htm
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Beyond encryption of data and communication, it’s 
worth considering some other elements of security. 

As well as ensuring that unauthorised users cannot 
access data, it’s important for the security of 
data that those who should have access do have 
access, even if disaster strikes. In part, this involves 
implementing a robust approach to backing-up and 
archiving data. In the case of data stored locally 
on hard drives or removable media, a sensible 
approach would be to make copies of this at regular 
intervals, wherever possible ensuring this happens 
automatically, thus protecting against hardware 
failure of a drive or memory stick, and, in some 
cases, against operator error too. It’s wise to store 
one copy of the data in another location, to protect 
against fire or theft. If the capacity and availability 
of back-up media isn’t an issue, then an incremental 
back-up policy is wise, keeping older copies of 
data as well as recording subsequent changes, thus 
allowing older versions of files to be retrieved if 
subsequent changes harm their integrity.

In the case of data stored ‘in the cloud’ on 
remote servers, it’s important to establish whose 
responsibility it is to back-up data. Google, 
Microsoft and other reputable providers will have 
robust and well-tested back-up strategies in place, 
and you might consider using a service like this as 
an additional back-up for locally-stored files. For 
sensitive data, you should consider encrypting such 
files locally before storing them remotely. 

It’s particularly important to protect the integrity 
of any admin or root accounts on a computer or, 
particularly, a server or domain. Such accounts 
should not normally be used when operating 
the computer at a user level, as it’s possible for 
accounts with these privileges to make far-reaching 
and long-lasting changes to other users’ data and 
the system itself. If installing software using these 
accounts, you should take particular care that any 
programs installed come from a trusted source. 

24	https://xkcd.com/936/

Identity

Pupils construct their identity in many ways, often 
presenting different persona in different contexts, 
behaving quite differently at school, at home and 
when out with their friends. Online identity can 
make this harder, as multiple accounts across 
different services are often linked, either explicitly 
or implicitly. Many social media sites, most notably 
Facebook, prohibit multiple accounts and require 
that one registers using a real name. Furthermore, 
open platforms and an eagerness to share content 
can make it hard for young people to maintain 
different persona in different online contexts. 
Both the deliberately shared and the automatically 
recorded aspects of a digital footprint become 
inextricably linked to a user’s online identity. Young 
people, and their teachers, can do much to promote 
their best selves to the world online: and some 
recognition of the persistence of online data and of 
their responsibilities might encourage them to be 
so. This is less about using the web to experiment 
with the cyberculture (Turkle, 1995) of the past, as 
it is about presenting an authentic picture of one’s 
best self. 

As more and more aspects of pupils’ learning 
and life are mediated through online systems, it’s 
important that they learn to protect their own 
online identity and respect the online identity of 
others. 

Typically, online identity is established through 
some form of password system. Pupils should treat 
passwords as they do toothbrushes: only use their 
own, and change them regularly! Encourage pupils 
to use long passwords that cannot easily be guessed 
(for example CorrectHorseBatteryStaple,(24) or in 
accordance with the rules enforced on the systems 
they access), to use different passwords for different 
sites or services, and to change passwords regularly. 

https://xkcd.com/936/
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Discourage pupils from sharing passwords with 
one another, as this is usually their only way to 
prove who they are in any online system, and avoid 
encouraging pupils to share their passwords with 
their parents: many difficulties could arise through 
one parent impersonating their son or daughter in 
an otherwise secure ‘walled garden’ environment 
such as a school VLE or learning platform. Remind 
pupils that they should log off when they have 
finished using a computer or website, and that they 
should only allow browsers to maintain logged-
in status if they are the only person with access 
to that browser. Similarly, they should only ever 
use the ‘remember my password’ feature in a web 
browser if they are certain that they are the only 
person who will use that browser. Pupils should 
consider which accounts they care particularly 
about and ensure that passwords for these are 
unique and particularly secure, for example a main, 

personal email account should always have a unique 
password since it would be the principal means 
of requesting a password reset for other online 
accounts.

Encourage pupils to consider the security of their 
passwords on the server they are connecting to. 
There have been well-publicised stories of user-
account databases being hacked and passwords 
sold on, which is particularly worrying for users 
who happen to have used the same password 
across multiple sites. Passwords should never be 
transmitted in an unencrypted form. A secure 
password system must never store the password 
itself in an unencrypted form, and it should never 
be possible for those who maintain the system 
to recover the original password: distrust (and 
stop using) any system which, when you ask for 
a password reminder, is able to tell you what 
password you set. 

Figure 6.6 From XKCD at https://xkcd.com/936/, licensed CC by-nc
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When setting a password online, the minimum 
acceptable approach is for the browser to transmit 
the password via an encrypted connection, then 
for the server to cryptographically ‘hash’ the 
password and store this hash in the database. 
To check the password, the user transmits their 
password over an encrypted connection; this is 
again hashed by the server and the hash compared 
to the stored version. If they match, the user can 
access the system. This system too is vulnerable 
if the password table is available to an attacker, 
as possible passwords can simply be hashed and 
compared to the hashed value in the table. By 
adding some predetermined, unique, random ‘salt’ 
to the password before it’s hashed, the risk here 
can be mitigated.(25)

For particularly sensitive accounts, consider 
some form of two-factor authentication. User 
authentication can be based on who a person is, 
what they know or what they have. Usual password 
protocols rely on one factor only: what a person 
knows. Simple swipe cards, or biometric systems 
sometimes used for registration, catering or 
library access, rely on what a person has or who a 
person is. Two-factor systems require two distinct 
elements before allowing access. For example, 
an ATM uses a relatively insecure four-digit PIN 
because it only provides account access if the user 
has the corresponding card. Online systems which 
send authentication codes to mobile phones, or 
require codes to be generated on a previously 
authenticated app or device, provide a similar 
degree of security – even if an attacker guesses the 
account password, they cannot get access without 
also having the associated phone. If the phone 
used can only be unlocked with a fingerprint or 
biometric, then this could be considered a three-
factor authentication system.

Any such authentication systems are vulnerable 
if users can be tricked into giving away their 
passwords, and it’s important to teach pupils 
how to spot phishing or other social engineering 
attempts. For example, pupils should learn to 
distrust the links shown in emails or similar 
messages, as these might be spoof and point to 
websites other than those suggested. Pupils should 
never give passwords out in response to questions, 
whether online, face to face or by phone. 

25	See www.owasp.org/index.php/Authentication_Cheat_Sheet for more details about secure password systems.
26	www.tnmoc.org/
27	www.bletchleypark.org.uk/

  Classroom activity ideas

●● Help pupils to consider the extent of their 
digital footprint, perhaps keeping a diary of the 
apps they use in one day, or reviewing their 
own browser or search histories for a day. Take 
care here as some pupils might be particularly 
sensitive to the associated issues around privacy 
and surveillance. What do pupils find if they type 
their name into Google? Ask pupils to review 
their privacy settings on any social media sites 
they use. If they have accounts for services they 
no longer use, why don’t they delete them?

●● A combined visit to the birthplace of 
computing(26) and the home of wartime 
codebreaking efforts(27) is highly recommended, 
although places for school visits tend to be 
booked months in advance. 

●● Talk through some of the issues of privacy and 
surveillance with pupils. Do they consider this an 
appropriate way to keep them and others safe? 
Is it acceptable to use search or browser history 
or tracking cookies to better target marketing 
information? Do they mind automated systems 
reading their emails? 

●● Cryptography is rich territory for linking pupils’ 
computational thinking and programming skills 
to issues of privacy and security. Can pupils write 
programs to implement simple cryptography 
systems in Snap! or Python? Can they write 
programs which can crack or help crack simple 
encryption? Can they implement a program to 
securely store salted and hashed passwords and 
then check passwords against these?

http://www.owasp.org/index.php/Authentication_Cheat_Sheet
http://www.tnmoc.org/
http://www.bletchleypark.org.uk/
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  Further resources

British Library (n.d.) Education resources on ‘My 
Digital Rights’. Available from www.bl.uk/my-digital-
rights/ 

CESG / CPNI (n.d.) Password guidance. Available 
from www.gov.uk/government/uploads/system/
uploads/attachment_data/file/458857/Password_
guidance_-_simplifying_your_approach.pdf

CIMT (n.d.) Codes and ciphers resources. Available 
from  http://www.cimt.org.uk/resources/codes/ 
[2/1/17].

Cyber Security Challenge UK (n.d.) Available from 
https://cybersecuritychallenge.org.uk/

Electronic Frontier Foundation (US) (n.d.) Resources 
on student privacy. Available from www.eff.org/issues/
student-privacy/

Open Rights Group (n.d.) Available from www.
openrightsgroup.org/ 

Raspberry Pi Learning Resources (n.d.) One 
time pad activity (Python). Available from www.
raspberrypi.org/learning/secret-agent-chat/

Schmidt, E. and Cohen, J. (2013) The new digital age: 
Reshaping the future of people, nations and business. 
London, Hachette UK.

Schneier, B. (2009) Schneier on security. Hoboken, NJ: 
John Wiley & Sons.

Singh, S. (1999) The code book: the evolution of secrecy 
from Mary, Queen of Scots, to quantum cryptography. 
London: Harper Collins. See also interactive tools 
at www.simonsingh.net/The_Black_Chamber/
chamberguide.html and Singh’s Science of Secrecy 
programme on public key cryptography: www.
youtube.com/watch?v=_ZTWLAqYf9c and  www.
youtube.com/watch?v=oR0_LPbWxe4 
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