
UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

INVESTIGATING ABSTRACT ALGEBRA STUDENTS’ REPRESENTATIONAL 

FLUENCY AND EXAMPLE-BASED INTUITIONS 

A DISSERTATION 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfllment of the requirements for the 

Degree of 

DOCTOR OF PHILOSOPHY 

By 

JESSICA LAJOS 
Norman, Oklahoma 

2021 



INVESTIGATING ABSTRACT ALGEBRA STUDENTS’ REPRESENTATIONAL 
FLUENCY AND EXAMPLE-BASED INTUITIONS 

A DISSERTATION APPROVED FOR THE 
DEPARTMENT OF MATHEMATICS 

BY THE COMMITTEE CONSISTING OF 

Dr. Sepideh Stewart, Chair 

Dr. Stacy Reeder 

Dr. Milos Savic 

Dr. Keri Kornelson 

Dr. Jonathan Kujawa 



© Copyright by JESSICA LAJOS 2021 
All Rights Reserved. 



Acknowledgements 

I would like to express immense appreciation for my advisor Dr. Stewart for 
her support and positivity. Thank you for the enormous amount of time and energy 
you spent to help me reach my goals. You introduced me to classics that inspired me, 
taught me the ropes of being a mathematics education researcher, helped me to be a 
better writer, guided me through the job application process in academia, and allowed 
me creative freedom. Thank you for believing in me, now I can stand on my own. 

Next, I would like to thank Dr. Reeder, Dr. Kornelson, Dr. Savic, and Dr. 
Kujawa for serving on my committee as well as Dr. Moore-Russo, Dr. Brady, and Dr. 
Petrov for taking the time to attend my talks and for your support while I was just getting 
started. Your insights and feedback have been everything to me. To Dania, Ashley, 
Paul, Connor, Melody, Casey, Thomas, Andrew, Ling, Farzana, Manami, and Chloe, 
you have all been a wonderful support and I am thankful for your friendship. Special 
thanks to Ryan, Dustin, and Jordan for the representation theory conversations and 
making class more enjoyable. My sincere gratitude to the participants, this dissertation 
would not have been possible without your efforts. To Mike and Cristin for helping me 
with scholarship applications, funding opportunities, and managing conference travels. 
To Dr. Hall, thank you for your advice on how to help students over the years. To 
Lorraine, you were always cheering me on. Thank you for helping me to believe in 
myself through qualifying exams, the general exam and conference nerves. I’ll never 
forget the sound of your spirit and voice saying ”You’ve got this baby!” 

I am deeply grateful for Preston. Thank you for your support during every 
struggle and celebration, patience, love, and sacrifce. Finally, I am blessed to have my 
dad, mom, and sister. Thank you for your unconditional love. Dad, I’m lucky to have 
you to think deeply about life with and ask big questions. Drives to school, no matter 
how old I get, have been cherished moments. To my mom for raising me, listening to 
me talk research for hours, and letting me convert the upstairs into a library. To Lauren 
for showing me how to live in the moment and stay in touch with food, culture and 
travel. To my angel cat Miyagi for being by my side during the entire writing process. 

iv 



Abstract 

The quotient group concept is a diffcult for many students getting started in ab-
stract algebra (Dubinsky, Dautermann, Leron, & Zazkis, 1994; Melhuish, Lew, Hicks, 
& Kandasamy, 2020). The frst study in this thesis explores an undergraduate, a frst 
year graduate, and second year graduate student’s representational fuency as they work 
on a “collapsing structure” quotient task across multiple registers: Cayley tables, group 
presentations, Cayley to Schreier coset digraphs, and formal-symbolic mappings. The 
second study characterizes the (partial) make-up of the two graduate students’ example-
based intuitions related to orbit-stabilizer relationships induced by group actions. The 
(partial) make-up of an intuition as a quantifable object was defned in this thesis as a 
point viewed in R17 with: 12 attribute values collected with a new prototype instrument 
called The Non-Creative versus Creative Forms of Intuition Survey (NCCFIS), 2 values 
for confdence in truth value, and 3 additional values for error to non-error type, unique 
versus common, and network thinking. The revised Fuzzy C-Means Algorithm (FCM) 
by Bezdek et al. (1981) was used to classify students’ reported intuitions into fuzzy sets 
based on attribute similarity. 
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Chapter 1 

Introduction 

1.1 Motivation 

A considerable amount of work, over the past two decades, has been put forth to de-
velop a research-based curriculum for introductory group theory under the Teaching 
Abstract Algebra for Understanding (TAAFU) research program. TAAFU affliated 
researchers continue to emphasize the need for educators to transition towards active 
inquiry-instructional styles for undergraduate Abstract Algebra courses (Larsen, John-
son, & Bartlo, 2013; Johnson, Keller, Peterson, & Fukawa-Connelly, 2019). Topics 
that the TAAFU curriculum covers are: groups, subgroups, isomorphisms, homomor-
phisms, and quotient groups with classroom activities that refect the principles of 
guided reinvention and Realistic Mathematics Education (RME). The following is a 
brief description of this curriculum from the TAAFU group: “Each unit begins with a 
reinvention phase in which students develop concepts based on their intuitions, informal 
strategies, and prior knowledge. The end product of the reinvention phase is a formal 
defnition (or defnitions) constructed by students and a collection of conjectures...” 
(Lockwood, Johnson, & Larsen, 2013, p. 777). 

Even with NSF funding and training support on how to incorporate this curricu-
lum in the classroom, there has been “almost no uptake” (Fukawa-Connelly, Johnson, 
& Keller, 2016, p. 280). Traditional lecturing is still the dominant method. Recent 
work has uncovered that Abstract Algebra instructors’ apprehension towards inquiry 
and active learning is complex. It involves an entanglement of many factors such as: 
perceived lack of preparation time, diffculty to maintain coverage of intended course 
content, concerns that it would not work, and limited awareness of resources (Fukawa-
Connelly, Johnson, & Keller, 2016; Johnson, Keller, Peterson, & Fukawa-Connelly, 
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2019). 
Another concern is the lack of suffcient evidence to either support or reject the 

effcacy of this curriculum compared to traditional lecture approaches. Evaluative stud-
ies are still needed to determine the effcacy of this curriculum from multiple perspec-
tives compared to other forms of instruction (Johnson, Andrews-Larson, Keene, et al., 
2020; Kuster, Johnson, Rupnow, & Wilhelm, 2019). In an early small-scale assement 
administered by the IOAA group on quotient groups tasks, IOAA students signifcantly 
outperformed non-IOAA students. However, “...more work will need to be done to es-
tablish effcacy of the curriculum. For example, these tasks may be specifcally suited 
to students who have engaged with the IOAA curriculum. It is possible that different 
tasks could capture defciencies in IOAA students’ understanding that are not typically 
present in students who learn group theory via more traditional approaches” (Larsen, 
Johnson, & Bartlo, 2013, p. 710). Another descriptive contrast to more traditional 
ways of teaching Abstract Algebra, was also given by Carter (2009). He emphasized 
experimentation with Cayley digraphs towards formal results. Carter’s textbook was 
characterized as, “a nonstandard approach to group theory...” with “more than 300 im-
ages, and average of more than one per page. The most used visualization tool is Cayley 
diagrams because they represent group structure clearly and faithfully” (Carter, 2009, 
p. 1). 

To address the tug of war between inquiry and more traditional instructional 
styles, Kuster, Johnson, Rupnow, and Wilhelm (2019) published the Inquiry Oriented 
Instructional Measure (IOIM), a quantitative instrument that measures how much class-
room instruction resembles Inquiry-Oriented instruction. This instrument has opened 
new doors for effcacy research. Kuster et al. (2019) stated that “The IOIM repre-
sents our attempt to characterize instruction - with the idea that this characterization 
will allow for further research into the relationship between instructional practice and 
student learning” (p. 201). An aspect of student learning of central importance and 
long-standing interest in mathematics culture is the development of students’ intuition 
(Bruner, 1960; Wilder, 1967; Fischbein, 1987; Burton, 1999; Bubp, 2014; Thomas, 
2015). By leveraging the new advance of the IOIM, the following motivating hypothe-
sis was formulated, with the IOIM score as the independent variable and student gains 
related to intuition associated factors as the dependent variable. 

Motivating hypothesis: Learners in environments characterized by higher 
IOIM scores have more signifcant gains on evaluations for intuition asso-
ciated factors than those that learn in environments characterized by lower 
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IOIM scores. 

A quasi-experimental study that can be used to test the above hypothesis is still 
not accessible for researchers at this time. Even though instruments like the IOIM that 
characterize the instructional environment exist, too many theoretical and methodolog-
ical obstacles remain with respect to the dependent variable. For example, theoretically 
characterizing the intuition construct and quantifying intuition at a single point in time 
has been an open problem in mathematics education research for at least half a century. 
Moreover, the phrase ‘intuition associated factors’ is ambiguous. Bruner (1960) stated 
“it is certainly clear that procedures or instruments are needed to characterize and mea-
sure intuitive thinking, and that the development of such instruments should be pursued 
vigorously” and that “precise defnitions in terms of observable behavior is not readily 
within our reach at this time...” (p. 61). 

To date, there are no accepted quantitative or mixed-methods techniques that 
have been specifcally designed to evaluate facets of mathematical intuition with the 
exception of Fischbein, Tirosh, and Melamed’s (1981) measure of intuitive acceptance 
of geometry problems at a middle to high-school level. A major hurdle among many to 
overcome is to provide a “workable defnition” or framework to guide university level 
mathematics education research that is focused on the intuition construct and is pow-
erful enough to extend qualitative case to mixed-methods studies (Noddings & Shore, 
1984; Fischbein, 1987; Bubp, 2014). Mathematical intuition, as a research construct, 
continues to be a “slippery concept that carries a heavy load of mystery and ambiguity” 
(Davis, Hersh, & Marchisotto, 2012, p. 433; Bubp, 2014). 

In order to move forward, the previously stated motivating hypothesis, like a 
conjecture, was decomposed into sub-problems and more fundamental research ques-
tions that if fgured out could provide new insights and tools that could be used to 
eventually return to the motivating hypothesis. At times, it felt like the theories and 
methodologies in mathematics education, in their current state, were not enough to 
handle this pursuit. Reading papers or books in psychology was like taking a trip to the 
future of what things could look like and that what was diffcult was not impossible. For 
example, in the preface of “Foundations for Tracing Intuition”, Glöckner and Witteman 
(2010) wrote, 

The study of intuition is a burgeoning research topic in psychology and be-
yond. While the area has the potential to radically transform our conception 
of the mind and decision making, the procedures used for establishing em-
pirical conclusions have often been vaguely formulated and obscure. This 
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book flls a gap in the feld by providing a range of methods for explor-
ing intuition experimentally and thereby enhancing the collection of new 
data...by introducing the different methods and their applications in a step-
by-step manner, this text is an invaluable reference for individual research 
projects. It is also very useful as a course book for advanced decision-
making... (para. 1-4). 

Glöckner and Witteman’s (2010) course book comes after the psychology felds in-
tensely focused efforts on intuition research for over seven decades beginning with de 
Groot’s (1946) investigations of chess players and Noble prize winning work that laid 
the foundations for behavioral economics (Kahneman, 2003). 

Today, no such course book specialized for investigations of mathematical in-
tuition in university level education research exists. This along with a community of 
researchers, who were interested in how to ‘draw out mathematics learners’ intuitions’, 
motivated a goal of this thesis: to bring together theories and illustrate methodology 
that could support research on intuition within a group theory setting. The general 
Networking of Theories Group (2014) methodology text for mathematics education re-
search was a major resource and guide. The Networking Theories approach of placing 
multiple theoretical lenses on the same set of data seemed to be a key for dealing with 
the multifaceted nature of the intuition construct. Research on intuition, at the least, 
involves a mix of semiotics, creativity, and affect. 

1.2 Outline of chapters 

Chapter 2 covers the past and current state of research in the area of mathematical intu-
ition with an integrative literature review. This review included a N = 781 papers from 
the four highest quality ranked university level mathematics education journals: Journal 
for Research in Mathematics Education (JRME), Educational Studies in Mathematics 
(ESM), Journal of Mathematical Behavior (JMB), and ZDM (Williams & Leatham, 
2017). Seventy additional papers identifed as highly relevant were also included. The 
review addressed the research question: How should mathematical intuition be rep-
resented as a research construct? A major breakthrough made while working on this 
chapter, was viewing mathematical intuition as a fuzzy class-concept and framing the 
coarsest theoretical classifcation between non-creative and creative forms of intuition 
in terms of various attributes. This resulted in new explicated connections between the 
research areas of mathematical creativity and mathematical intuition along with the in-
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corporation of semiotics. Collectively, this integrative literature review, interviews with 
mathematicians, and personal experiences as a mathematics learner led to a theoretical 
framework that organized four intuition-associated factors: representational fuency, 
example-based intuitions, counter-example stance, and affective impacts. 

Following the integrative literature review on intuition, an additional literature 
review was carried out in chapter 3 to cover prominent types of research that have oc-
curred for introductory Abstract Algebra education. This included: instructional design 
research with teaching experiments, evaluative investigations of learners’ thinking re-
lated to group theory topics, and effcacy-based studies that compare Inquiry-Oriented 
Abstract Algebra instruction (IOAA) to non-IOAA instruction. Evaluative investiga-
tions of learners’ thinking can inform instructional design research by identifying their 
strengths and diffculties with respect to particular mathematical concepts. Evaluative 
investigations can also provide groundwork for articulating units of analysis and de-
signing instruments for effcacy-based studies. 

Chapter 4 introduces inner frameworks for the four previously stated intuiton 
associated factors. The factors for which the most progress was made was the represen-
tational fuency and example-based intuition factor. The inner framework for represen-
tational fuency combined three theoretical lenses: the Theory of Semitic Representa-
tions (Duval, 2017), uni-modal versus multi-modal register use (Arzarello, 2006), and 
metarepresentational competence and sanctioned versus non-sanctioned modes of aqui-
sition (diSessa, 2004). The non-creative versus creative distinction, initially made by 
Policastro (1995) and Dane and Pratt (2009), was added to the example-based intuition 
factor to further typify and analyze a pool of students example-based intuitions. 

This distinction was of primary focus due to its potential use in characterizing 
what it means to develop intuition. For example, if the content of an intuition is fxed the 
transition from a creative form at an initial point to a non-creative form at a subsequent 
point is a sign of memory consolidation. The activation of non-creative forms allows for 
more cognitive energy to explore more complex or different angles of a problem. This 
provides an opportunity for new creative intuitions to be produced by non-conscious 
processes (Bastick, 1982; Dane & Pratt, 2009; Hogarth, 2010). While the distinction of 
non-creative and creative forms is important, just looking at differences in the frequency 
of each type of intuition to infer something about the development of intuition is not 
enough. It is necessary to eventually pay attention to transitions from a creative to non-
creative intuiting states or vice a versa, the content, along with additional attributes, and 
how affective factors like motivation and anxiety act on the learner’s intuiting state. 

Under the expansive umbrella of intuition covered in previous chapters, this 
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study narrowed in on and targeted two intuition associated factors: representational fu-
ency and example-based intuitions. Chapter 5 details methodology and instrument de-
velopment for a multi-part mixed case study design. Two tasks, the collapsing structure 
and adding structure task, were designed to collect data on learners’ representational 
fuency for quotients, direct-product and semi-direct product constructions across mul-
tiple registers: Cayley tables, Cayley to Schreir digraphs, group presentations, formal-
symbolic mappings, and objects of symmetry. The three participants in this study, an 
undergraduate, a frst year graduate, and second year graduate student, represented three 
consecutive levels. Data analysis for the collapsing structure task was predominantly 
done through a Duvalian semiotic lens with a four-level analytic framework developed 
in this thesis. These four levels were: 1) collapsing or losing structure interpretation 
themes, 2) strategies, 3) register use, 4) pseudo-semiotic triangles, semiotic triangles, 
and conversions. Two additional lenses: a default-interventionist (Kahneman, 2011) 
and affective lens (Fischbein, 1987), were also used. The following research questions 
were addressed for the collapsing structure task: 

1. What are learners’ diffculties and strengths with quotients or homomorphisms, 
detected through a semiotic lens during the collapsing structure task? 

1a. What are learners’ interpretation of the losing or collapsing structure? 

1b. Do learners produce semiotic representations that are inconsistent with 
quotient maps or homomorphism across multiple registers? Which registers? 

1c. Did learners make quotient map conversions from registers that they 
natural started in to a prompted register for valid Z2 or Z2 × Z2 strategies? 

2. What are learners’ diffculties and strengths on the quotient task detected through 
additional intuition-associated lenses? 

Researchers who have made progress in the area of mathematical intuition in 
the past have stressed the importance and need to better understand the construct (Fis-
chbein, 1987). This need along with my experience as a psychology and mathematics 
learner activated associations between how I tried to understand a class of mathematical 
objects and how I might go about trying to understand learners’ intuitions as a class of 
cognitive objects. At the point of conception, a mathematical object and a cognitive ob-
ject seemed to be more alike than different. I wrestled with this thought for a long time 
trying to understand how to understand a cognitive object like intuition. The frst step 
was to fgure out what a subset of theoretically relevant invariant and variable attributes 
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attached to the objects were. The second step was to fgure out how to practically ex-
tract these attributes attached to a given object. The third step was to develop or fnd 
existing tools that could be used to classify these objects in various ways by paying 
attention to different choices of attributes or restrictions. The fourth step would be to 
ask additional questions, hypothesize and explore the validity of implication statements 
regarding these objects by calling on their attributes. Classifcation problems have been 
explored by many disciplines and are considered to be of great value. Biologists classify 
species. In mathematics, one may classify irreducible linear representations or other 
mathematical objects. What would a classifcation problem for learners’ intuitions look 
like and would it be of value to education researchers? 

Both quantitative and qualitative data attached to learners’ reported example-
based intuitions related to group actions was obtained. A frst prototype version, of a 
self-report survey instrument was created to extract numerical values for the (partial) 
make-up of each reported example-based intuition. The (partial) make-up of a learner’s 
example-based intuitions, as a quantifable object, was defned in this thesis as a point 
in R17 , 12 attribute values collected with the Non-Creative versus Creative Forms of 
Intuition Survey (NCCFIS), 2 values for the confdence in truth value, and 3 additional 
variables: error to non-error type, unique versus common content, and network think-
ing. The NCCFIS was administered with a baseline questionnaire, student self-report 
intuition logs and journals to collect additional qualitative data. The revised Fuzzy C-
Means Clustering Algorithm (FCM) by Bezdek et al. (1981) was used to classify the 
(partial) make-up of learners’ reported intuitions into fuzzy sets according to attribute 
similarity. The following research questions were addressed: 

3. Is it possible to quantitatively characterize the (partial) make-up of learners’ example-
based intuitions during a group actions task? 

3a. What is the (partial) quantitative make-up of learners’ reported intuitions 
related to orbit-stabilizer relationships induced by group actions? 

3b. Is it possible to measure intuitive feelings of rightness or wrongness? Are 
learners’ feelings of rightness and wrongness working properly? 

4. What is the qualitative content of learners’ intuitions related to orbit-stabilizer 
relationships? 

Chapter 6 presents results from the collapsing structure, quotient fuency, task 
and learner’s reported example-based intuitions for group actions. Chapter 7 discusses 
fndings in the context of relevant literature and answers research questions. Finally, 
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chapter 8 provides concluding remarks, a list of contributions, and revisits the motivat-
ing hypothesis with directions for future research. 
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Chapter 2 

Integrative Literature Review: 
Building a Conceptual Structure for 
Mathematical Intuition as a Research 
Construct 

2.1 Introduction 

On September 1959, a group of 35 educators, physicists, biologists, chemist, historians, 
mathematicians, and psychologists attended the Woods Hole Conference, the frst edu-
cational reform conference held in the United States. The Role of Intuition in Learning 

and Thinking was a theme that this group regarded as imminent for working group dis-
cussions. A chronicle of these discussions were published in The Process of Education 

(Bruner, 1960). The Woods Hole group stood frm that intuition played a major role 
in student learning. They came to the consensus that to facilitate intuition educators 
should: increase the connectedness of knowledge, teach heuristics, guide learners to 
formulate conjectures peaked by their own interests and questions, evaluate the impact 
grading systems of rewards and punishments on intuition, and provide a safe environ-
ment for learners to experiment with their ideas and gain confdence (Bruner, 1960). In 
1976, the International Group for the Psychology of Mathematics Education (PME) was 
founded. At the second PME conference in 1978, Intuitive and Refective Processes in 

Mathematics was a conference theme. 
In contrast to the early emphasis on intuition in mathematics education, a lack 

of emphasis was signaled in 1999 with the question: “Why is intuition so important 
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to mathematicians but missing from mathematics education?” (p. 27). This was fol-
lowed by an eyebrow raising claim made by Burton (1999), based on interviews with 
70 mathematicians: 

...with the notable exception of the work of Fischbein, accounts of the de-
liberate nurturing of intuition and insight is absent from the mathematics 
education literature, even from process based research, and, despite the 
claim for the centrality of it to mathematical work, it is equally absent from 
practices with students I would like to encourage mathematicians, indeed 
anyone who has the responsibility for the learning of mathematics, to open 
mathematical activity to include the subjectivity of intuitions, to model their 
own intuitive processes, to create the conditions in which learners are en-
couraged to value and explore their own and their colleagues’ intuitions and 
the means that they use to gather them (p. 32). 

Fast forward in time to the current year. Education research with a focus on in-
tuition at the university level has disappeared from a visible and collaborative platform 
of conference working groups or special issues in journals. Moreover, a comprehensive 
work in this area has not been disseminated since the foundational text Intuition in sci-

ence and mathematics: An educational approach (Fischbein, 1987). This text pre-dates: 
the frst special session on Research in Undergraduate Mathematics Education (RUME) 
at JMM in 1991, the frst RUME conference in 1996, the formation of the Special In-
terest Group of the MAA, RUME, in 2001, and the surge of advances generated by this 
growing research community. There is now a need in the feld to establish some internal 
consistency (Darragh, 2016; Czocher & Weber, 2020). More recently, researchers have 
expressed repeated concerns with the lack of a coherent representation of constructs 
situated in mathematics education research. In the area of identity research, Darragh 
(2016) asked “Without the knowledge of the perspectives taken, how can we engage in 
a productive conversation within this area? How can we build appropriately on others’ 
ideas and develop greater understanding about this topic without a common language 
or defnition of the term (p. 20)?” 

The purpose of this chapter is to provide a vantage point of what has transpired 
in the research area of intuition within the 1987 to 2020 gap. The specifc aim is to 
provide an updated response to the questions: 1) How can mathematical intuition be 
represented as a research construct? 2) What are instructional practices that may en-
hance the development of learners’ intuition? 

With regard to the frst question, Fischbein (1987) cautioned that: 
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The attempt to fnd a common defnition for this great variety of meanings, 
features and connotations seems to represent an impossible task. Intuitive 
knowledge seems to cover the whole domain cognition (p. 7). 

Refecting on Fischbein’s work, Keene, Hall, and Duca (2014) stated: 

Fischbein seems to be alluding to the fact that while we all know we have 
intuition regarding various subjects, pinpointing exactly what constitutes 
our intuition is altogether more diffcult to illustrate. 

While Fischbein’s (1987) text has been cited for general properties of intuition, 
such as self-evidence and immediacy, researchers are not currently using his theorized 
types of intuitions. Instead researchers are producing new types rooted in different 
theoretical frameworks. This is a point at which new perspectives diverge away from 
Fischbein’s theoretical core and away from one another. For example, Bubp (2014) ex-
perienced frst-hand issues due to insuffcient theory on intuition specifc to mathemat-
ics at the university level and explicitly stated that in the future, “theoretical research on 
developing a standard working defnition of intuition in mathematics would beneft the 
mathematics education community” (p. 243). Bubp (2014) went on to introduce six ad-
ditional types of mathematical intuition. Likewise, Semadeni (2008) moved away from 
Fischbein’s (1987) types and into the older theoretical core of concept image/concept 
defnition to term “deep intuition” out of necessity to describe cases of intuition he en-
countered in proof construction that Fischbein’s (1987) framework could not account 
for (p. 9). 

Efforts must be made to fnd ways to connect perspectives in a way that renders 
an organized conception of the constructs researchers work with. From stable theoreti-
cal cores, new ideas are sparked and researchers fan out in all directions. At some point, 
various collections of diverging perspectives must be strung together to establish new 
cores with common threads of language. The process of many researchers fanning out 
from stable cores to enter new theoretical territory, connecting back up at points of com-
patibility, and production of resultant many-to-one compressions must repeat to avoid 
“an exponential theoretical infation” (Prediger, Bikner-Ahsbahs, & Arzarello, 2008, p. 
170-172). For intuition research in mathematics education a past compression was Fis-
chbein’s (1987) work. Examples of past compressions in the psychology literature are 
Kahneman (2011), Glöckner and Witteman (2010), Dane and Pratt (2007, 2009), and 
Bastick (1982). What would a compression for mathematical intuition, that accounts 
for advances post 1987 look like and how can some progress be made towards this? 
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2.2 An integrative literature review methodology and 
descriptive statistics 

An integrative literature review methodology was chosen to make some initial progress 
towards an updated compression. An “integrative literature review is a form of research 
the reviews, critiques, and synthesizes representative literature on a topic in an inte-
grated way such that new frameworks and perspectives on the topic are generated” (Tor-
raco, 2005, p. 356). Integrative literature reviews are typically conducted on “emerging 
topics or mature topics” that have stimulated a high volume of research output (Torraco, 
2016, p. 404). A major requirement of an integrative literature review, that distinguishes 
it from more traditional literature reviews, is that it must contain a methodology sec-
tion that details the reviewing procedure: how literature will be searched, collected, 
analyzed, and integrated (Cooper, 1982; Russel, 2005; Torraco, 2016). 

2.2.1 Literature search and sampling procedure 

Literature search and collection for this review was carried out in three phases: an 
(1) exploratory search phase, (2) a systematic follow-up search to obtain high quality 
literature that may have been missed or blocked due to a focus induced by the ex-
ploratory sample, and (3) an ongoing phase. During the exploratory phase, several 
sources where used: Google Scholar, PsychInfo, coursework materials, notes taken at 
national mathematics education conferences, and literature recommendations made by 
faculty mathematics education researchers and cognitive psychologists. During this 
phase, the author underwent an extended period of immersion in the literature with 
publication dates that ranged from 1911 to 2019 and followed the hermeneutic litera-
ture review process framed by Boell and Cecez-Kecmanovic (2014). As a result, two 
exploratory review drafts were written, one in July 2018 and an overhauled version on 
April 2019. These drafts refected a gradual progression from scattered information and 
across-feld segregation to an organization of connected components with some across-
feld connections between mathematics education and psychology research. In total, 49 
mathematics education and 30 psychology references were collected and stored in End-
Note. Notes of possible gaps in the literature were documented during the exploratory 
phase that could not be suffciently backed up due to a lack of citation or evidence to 
confrm the gap. Following this exploratory review phase, a systematic literature search 
and collection was conducted. This would later provide a larger sample that could be 
used to more accurately test whether or not possible noted gaps were actually gaps. 
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The online databases JSTOR Arts and Sciences IV, ScienceDirect, and SpringerLink 

Table 2.1: Total publication counts in JRME, ESM, JMB, and ZDM from 1987-2020 
on March 11, 2020 

Search criteria JRME ESM JMB ZDM Total 
intuition in title 1 9 2 3 15 
intuition in abstract 
intuition in article 

5 
116 

19 
297 

9 
179 

11 
189 

44 
781 

Journals Complete were used to systematically search mathematics education literature 
published from 1987 to 2020. This search was restricted to four high quality jour-
nals: the Journal for Research in Mathematics Education (JRME), Educational Studies 
in Mathematics (ESM), The Journal of Mathematical Behavior (JMB), and Zentral-
blatt fur Didaktik der Mathematik (ZDM) (Williams & Leatham, 2017). References for 
journal articles that contained the word “intuition” were exported as a RIS fle or from 
the online databases and imported into EndNote with abstracts. PDFs for each journal 
article were attached to their reference in EndNote. Abstracts that were not automati-
cally imported were attached manually. Table 2.1 gives a summary count of the journal 
papers collected in this systematic search. 

Figure 2.1: Total number of journal papers that contain intuition in paper and in abstract 
from 1987 to Dec. 2019. 

Figure 2.1 shows the collective number of journal papers in the systematic sam-
ple published per year with intuition in the paper or more strictly in the abstract. The 
moving average shows an overall gradual uptrend in the number of papers using the 
term intuition. This uptrend may appear more prominent between 1987 and 1997 be-
cause JMB began to publish in 1994 and ZDM began in 1997. This fgure also shows 
a large gap between the number of papers that used the term intuition and papers that 
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Figure 2.2: Number of JRME, ESM, JMB, and ZDM papers and abstracts per year 
containing the term intuition from 1987 to Dec. 2019. 

placed a major focus on intuition. Figure 2.2 separates this information for each journal, 
JRME, ESM, JMB, and ZDM. 

2.2.2 Methodological design trends 

The initial methodological norm in undergraduate mathematics education research was 
experimental quantitative designs. Over time, this research community began to regard 
quantitative methods as inferior, they washed out important details in the data (Asiala et 
al., 2007). At the time of this transition, from quantitative to qualitative methods, Asiala 
et al. (1997) stated, “In the last decade or so, there has been a growing concern with the 
impossibility of really meeting the conditions required to make application of statistical 
tests to mathematics education valid” and “developing understanding that the funda-
mental mechanisms of learning mathematics are not as simplifable and controllable...” 
(p.2). Asiala et al. (1997) pushed for qualitative methods to be the prominent method 
used by researchers and called for the development of new qualitative approaches. 

To capture a more general climate of this feld, Hart et al. (2009) conducted a 
systematic review of research methods in mathematics education to determine the cov-
erage of different research designs published between 1995 and 2005 in journals such 
as Educational Studies in Mathematics (ESM), Journal for Research in Mathematics 

Education (JRME), and Proceedings of the International Group for the Psychology 

of Mathematics Research. Hart et al. (2009) found that within the collective ESM, 
JRME, and Proceedings sample (N=571), 28 % of the studies were mixed designs, 58 
% were qualitative only, and 14 % were quantitative only. While qualitative case stud-
ies have dominated the last few decades, research advisory committee’s and funding 
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organizations have put pressure on this research community to consider mixed designs 
to evaluate instructional practices or learning environments (Hart et al., 2009; Ross & 
Onwuegbuzie, 2012). In a follow up to Hart et al.’s (2009) evaluation, Ross and On-
wuegbuzie (2012) found that the percentage of mixed methods studies in JRME and 
The Mathematics Educator (TME) decreased from 40 % in 2002 to 20 % in 2004 and 
increased to 30 % in 2006. Ross and Onwuegbuzie (2014) also found that the quan-
titative analysis portions of studies remained on the less complex end of their scale 
which ranged from descriptive, univariate, and multivariate analysis. They speculated 
that “...the mathematics education researchers’ use of lower level statistical analyses 
might suggest that mathematics education researchers are not asking the most complex 
questions” (p. 71). This statement was made without any mention of the complexity 
of the qualitative portion that these researchers may also be juggling, such as grounded 
theory, or limitation in resources. However, the circumstance of a small number of par-
ticipants is not completely impervious to the application of more advanced quantitative 
techniques such as longitudinal case studies of individuals with dynamic factor model 
analysis (Ferrer & Nesselroade, 2003). 

To capture a more current climate within the scope of intuition research, 44 
journal papers from the systematic sample that contained intuition in the abstract were 
examined from the angle of methodology. Out of the 42 papers in English, 8 (19.05 
%) of the papers were theoretical and 2 (4.76 %) systematic reviews. The systematic 
reviews examined literature on school-aged learners’ inhibitory control and their detec-
tion of errored intuitive judgements (Lubin et al., 2015; Star & Pollack, 2015). From the 
remaining 32 empirical studies: 17 (40.7 %) were coded as solely qualitative, 6 (14.29 
%) quantitative, and 9 (21.43 %) mixed using Creswell and Creswell’s (2018) research 
design framework. 

Using Ross and Onwuegbuzie’s (2014) 8 level Quantitative Analysis Complex-

ity Continuum framework, 9 (60.00 %) of the combined mixed and quantitative pa-
pers were coded as level 1-descriptive summary stats, 4 (26.67 %) level 2-univariate, 
2 (13.33 %) level 3-multivariate. Przenioslo (2004) was the only mixed study in the 
sample with university level learners. She used elements of the qualitative grounded 
theory approach to classify learners’ concept images of the limit of functions in terms 
of “intuitive conception” combinations (p. 104). The notion of intuitive conception was 
described by Fischbein (1987) as a mental representation of a concept that comes to the 
mind quickly, feels obvious, and viewed as true. Przenioslo (2004) identifed several 
specifc intuitive conceptions under broader themes such as limits in terms of neigh-
borhoods. She turned frequencies of qualitative classifcation codes, based on prior 
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research and data of 420 university students, into descriptive statistics. No quantitative 
data collection instruments for mathematical intuition were found, with the exception 
of Fischbein, Tirosh, and Melamed’s (1981) measure for intuitive acceptance. 

2.2.3 Empirical studies at the university level 

A quarter, 10 (22.73 %), of the 44 papers with intuition in the abstract included par-
ticipants at an undergraduate level or beyond: 8 (18.18 %) undergraduate level, 1 with 
graduate students in an educational studies program and frst year psychology students 
taking statistics (Lem, 2015), and 1 (2.27 %) with mathematicians. The 10 undergradu-
ate level studies focused on the limit concept in calculus (Keene, Hall, & Duca, 2014), 
derivatives (Kidron, 2011), optimization of area and discrete algorithms (Malaspina 
& Font, 2010), complex analysis (Hancock, 2019), the limit of a function for met-
ric spaces generalized to topological spaces (Przenioslo, 2004), differential equations 
(Rasmussen, 2001), and Bertrand’s paradox (Wilensky, 1995). Lem (2015) examined 
students’ applications of the law of large numbers in statistics. Sriraman (2009) inter-
viewed fve mathematicians’ on their creative processes and expanded on Hadamard’s 
(1954) investigation. Sriraman (2009) found that these mathematicians’ creative pro-
cesses coincided the four stage Gestalt model preparation, incubation, illumination, and 
verifcation. Intuition was a theme that surfaced in these interview transcripts after pe-
riods of preparation and incubation. 

Bubp’s (2014) and Adiredja (2018) stood out in the exploratory sample. Next, 
the sample of journal papers that incorporated intuition in the theoretical background 
sections without the strict criteria that intuition be in the title or abstract were re-
examined. Five more papers that stood out were included: Kidron and Dreyfus (2014), 
Kaisari and Patronis (2010), Antonini (2019), and Hanna, de Bruyn, Sidoli, and Lo-
mas (2004), and Alcock and Simpson (2004). A memo was kept for each of the 16 
remaining empirical studies, that were in English or had English translation, to log how 
researchers have grappled with mathematical intuition as a research construct. Memos 
included: notes on the mathematical topic area, research questions, aim, method, par-
ticipant sample, key constructs and theoretical frames. 

A key practice taken by many researchers in these studies was to refrain from 
explicitly asking participants to prove a given statement and phrase problems in a: 

...not quite conventional way in order to avoid automatic solutions. For ex-
ample, there were no problems directly asking the student to prove that a 
given number is a limit of a given function or sequence. In a pilot study, 

16 
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such problems were found to trigger attempts to recall some standard solu-
tion method, which obstructed constructive thinking (Przeniosolo, 2004, p. 
108). 

Amount of mixing across mathematics education research areas 

Next, the computer assisted qualitative data analysis software NVivo 12 was used to 
further evaluate the 781 JRME, ESM, JMB, and ZDM journal papers that contained 
the keyword intuition. Separate text search queries for the terms intuition, proof, rep-
resentational shift, semiotics, visualization, and creativity were conducted. These were 
identifed in the exploratory review phase as broad areas that were related to intuition. 
The text search query for intuition was used to determine the amount of focus on in-
tuition in each of the papers. The remaining text search queries were used to measure 
the amount of mixing among the broad research areas within each of the papers. The 
amount of focus and mixing was measured by word coverage and frequency of the word 
representatives for the research areas. Query settings “with stemmed words”. 

Out of the 781 journal papers, 333 (42.58 %) used the term intuition ≤ 2 times. 
Over half of the journal sample used intuition as an ambiguous term leaving the reader 
to interpret it without citing a nominal, conceptual or operational description. Overall, 
many researchers are using the term intuition in their writing but few conduct empirical 
studies that place an intentional focus on it. Figure 2.3 fxes the top 150 journal papers 
with respect to intuition frequency coverage and visually displays the amount of focus 
of intuition in each paper along with the amount of across area mixing. In total, 447 of 
the 781 journal papers met the text search criteria for proof 447 (57.23 %), 651 (83.35 
%) for representation, 431 (55.19 %) for visualization, 219 (28.04 %) for creativity, and 
118 (15.11 %) for semiotics. 

17 
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2.2. AN INTEGRATIVE LITERATURE REVIEW METHODOLOGY AND 
DESCRIPTIVE STATISTICS 

Infrequent mixed area conversations and a blind spot: intuition, semiotics, and 
creativity 

After removing 12 duplicates between the exploratory mathematics education and sys-
tematic journal search and collection phases, 851 unique references remained for further 
evaluation. The sample needed to be reduced further in order to narrow in on journal 
papers that placed a focus on mathematical intuition within more dominant areas such 
as proof. At the same time faint links between mathematical intuition and areas, such as 
creativity and semiotics needed to be preserved and explored further. Creative intuition, 
a type of intuition that occurs after an incubation period, was highlighted in several 
psychology references (Policastro, 1995; Raidl & Lubart, 2001; Eubanks, Murphy, & 
Mumford, 2010; Sadler-Smith, 2015; Gilhooly, 2016). Viewing creative intuition as 
a type of intuition with incubation as a variable attribute that separates creative in-
tuiton from other forms, such as the quick default intuitive judgements studied under 
the Heuristics and Biases Program, seems to be a blind spot to mathematics education 
researchers. Out of the entire mathematics education sample, 781 journal papers plus 
the exploratory collection, only one paper, Krummheuer (2007), mentioned creative in-
tuition a single time without a description or citation for the term. This was the only 
time intuition was mentioned in the entire paper. A slightly more frequent occurrence 
of incubation was found. 10 journal papers discussed incubation, all within the context 
of creativity research (Savic, 2015; Sriraman, Haavold, & Lee, 2013). 

Tanguay and Venant (2016) provided a statement that mixed semiotic theory 
and intuition. The more ways one can represent a mathematical object the better in-
formed their intuition is and “the process of amalgamation described by Arzarello is 
of a synthetic nature, and allows the different meanings to be aggregated with the help 
of analogies and metaphors, glued, condensed so to be more easily internalized and 
mobilized by intuition” (Tanguay & Venant, 2016, p. 889). To preserve these faint or 
less frequent links between mathematical intuition and mixed areas the decision was 
made to include all 851 journal papers in further analysis. NVivo text search query was 
used at various stages to narrow in further on a more relevant and manageable subset of 
papers within the big set. That is an inclusion function ι from the big set of papers to it-
self with different word restrictions W was applied at different times to render different 
images of ι. The lens of focus shifted many times throughout the analysis and synthesis 
process. 
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DESCRIPTIVE STATISTICS 

Figure 2.3: Across area mixing in the top 150 intuition papers out of 781 journal paper 
sample based on frequency. 

The more dominant conversation: intuition and proof 

In contrast to the more numerous theoretical, philosophical, or historical accounts of 
intuition in proof (Brouwer, 1913; Poincaré, 1969; Heyting, 1966; Otte, 1990; Dum-
mett, 2000), empirical education studies on intuition in proof have been regarded as 
needles in a haystack. Kidron and Dreyfus (2014) claimed that, “only a small part of 
this research [on proof] has addressed the question of how people, mathematicians, and 
students go about constructing a proof and even less has explored about the intuitive 
aspects of that process” (p. 302). Out of the sample of journal papers in the systematic 
sample that contained ‘intuition’ in the abstract, 97.73% of them also contained ‘proof’, 
‘prove’, or ‘proving’ in the paper. This dropped to 15.91 % with the stricter criterion 
that proof terms need to be in the abstract. The self-evident property was often a point 
of focus in papers on intuition and proof. 

22 



2.2. AN INTEGRATIVE LITERATURE REVIEW METHODOLOGY AND 
DESCRIPTIVE STATISTICS 

Antonini (2019) studied the self-evident property of intuition and used the term 
“evident” to also include “obvious to sight; recognizable at a glance”, “clear to the 
understanding or the judgement; obvious; plain” (Murray et al. 1961, p. 346-347, 
cited in Antonini, 2019, p. 795). He then investigated the confict between the logic 
of proofs by contradiction and self-evident truths suggested by indirect argumentation 
based on drawings of geometric fgures. “Indirect argumentation” as defned by Fre-
duenthal (1973) as an argument of the form “...if it were not so, it would happen that...” 
(p. 629). A proof by contradiction is an indirect argumentation, but an indirect argu-
mentation is looser or more hand wavy than a proof. Stated logically, if P is a proof by 
contradiction then it is an indirect argumentation but the converse of this statement need 
not hold. Antonini (2019) explored learners’ indirect argumentation based on drawings 
of geometric fgures was of the form: if a statement is not so then, the geometric fg-
ure X must exist, but the existence of this geometric fgure X is an impossible case or 
optical illusion. 

Mariotti and Pedemonte’s (2019) study on intuition and proof in high school 
geometry and defnition of “constructive argumentation, that contributes to the con-
struction of the conjecture and commonly precedes the formulation of the statement; 
and a structurant argumentation, that justifes a conjecture reached as an intuition and 
commonly comes afterwards” provided insight into a resonating point (p. 761). Intu-
ition reached as a conjecture, a conjectural intuition, may be arrived at through simple 
observations and without a constructive argumentation. This leads to a statement that 
‘what’ is arrived at is felt as true but does not illuminate to the student ‘why’ it is true. 
On the other hand, a constructive argumentation reveals aspects of ‘the why’. To put 
this into the context of proof construction in abstract algebra, take Lagrange’s Theorem 
and a common activity where students write down examples of groups, subgroups, and 
a list of their orders to arrive at the conjecture: If H is a subgroup of G then |H| divides 
the |G|. These numerical observation lists tell you what the conjecture is, but does not 
reveal hints as to why it should be true. In other words, the constructive argument in 
such an activity is missing prior to the formulation of the conjecture. A ‘why’ in this 
case is embedded in understanding the orbits of the action in which H acts on G and 
that orbits partition the set being acted on. 

Collectively, this microcosm of empirical investigations on intuition in proof 
emphasized that learners’ diffculties associated with intuition in proof construction 
stems from cognitive aspects: lack of language needed to externally express an intu-
ition, not familiar with proof-based techniques to go from intuitions to a formal proof 
or a formally stated conjecture; diffculty with detection and rejection of errored intu-
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itions, struggling to see or express connections between an intuition and a given for-
mal associate; diffculty moving towards a structurant argumentation; and absence of 
a prior constructive argumentation. Data from Stewart, Thompson and Brady’s (2017) 
study surrounding a geometer’s teaching episodes in an algebraic topology course at 
the graduate level uncovered that “there were alot of questions about how to pass from 
an intuition to a formal proof (many of these examples used techniques/results from 
quotient spaces) (p. 2262).” Kidron and Dreyfus (2014) found that it can be diffcult to 
go from intuitions to more formal communicable products at all mathematical levels. 
The distance between intuition and a formal proof product can vary depending on the 
type of intuition, the context, the learners background, and additional factors. 

For example, the transition from intuition(s) to a formal proof product may also 
be slowed or blocked as a result of emotion-based factors such as “local affect” or 
“global affect”. Goldin (1998) described “local affect” as emotional reactive response 
or “changing states of feelings that problem solvers experience, and utilized during 
problem solving” (p. 154). For example, Weber and Alcock (2009) found that under-
graduate learners, who felt strong feelings of contentment in the truth of an informal 
argument or visual observations, did not feel the need to develop a more formally rigor-
ous argument in a syntactic system. Along these lines with a specifc focus on intuition 
Fischbein (1987) found that intuitions are often “directly acceptable” before a formal 
proof product is obtained. This may cause the prover to feel so confdent that their 
intuition is true that they do not feel the need to give a formal justifcation (p. 200). 
In contrast the previous examples, studies have also shown that emotion-based factors, 
such as intrinsic motivation and accompanied positive emotions, can support the con-
tinuation of work towards a formal proof product (Kidron & Dreyfus, 2010; 2014; Fis-
chbein, 1987). In other words, emotion-based affective factors can open or constrict the 
passage way the enables the prover to go from an informal representation or intuition(s) 
towards a corresponding proof product. 

2.3 Method of synthesis 

It has become apparent that investigations on mathematical intuition requires an in-
tegration of a wide range of theoretical frames and compression of multiple areas of 
mathematics education research. As an added factor that increases research complex-
ity, mathematical intuition as a construct tends to behave like a fuzzy class-concept in 
which the membership of an intuition to a particular class can be partial. The char-
acterization of intuition as a fuzzy class-concept was supported by the literature and a 
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study on abstract algebra learners’ intuitions, conducted and presented later on in this 
thesis. According to the psychology literature, intuition represents an enormous class 
of cognitions and mathematics education researchers, like psychologists, have not been 
studying the same psychological phenomenon under the label of intuition. Instead, they 
are studying related phenomena that may take on the same values for a common set 
of attributes, but can take on many sometimes far away values or even polar oppo-
site values for attributes outside a common set (Policastro, 1995; Dane & Pratt, 2007, 
2009; Glöckner & Witteman, 2010). Moreover, other related constructs such as affec-
tive stressors like time pressure in high-stake situations leads to an increased production 
in quick reactive types of intuition. On the other hand, the same affective stressors may 
completely shut off a type of intuition that is tied to new discoveries. It is important to 
make clear what phenomenon exist under the label of ‘intuition’ and how other psycho-
logical constructs act on the production state, the on and off switch, for different types 
of intuition (Fischbein, 1987; Dane & Pratt, 2007, 2009: Sinclair, 2010). 

To work towards an updated representation of mathematical intuition as a re-
search construct a series of guiding stages for assembling a conceptual structure of a 
class-concept were followed: establishing boundary properties, identifcation, group-
ing, classifcation, ordering, formation, and maintenance. The stages are predominantly 
based on Piaget’s (1968) text Structuralism and Skemp (1979). According to Piaget, 
elements that are part of or live in a structure are “bounded” by laws or properties and 
these properties that signify the whole (p. 14). Boundary properties are invariant at-
tributes among a collection. During the boundary stage for assembling a conceptual 
structure of mathematical intuition, general boundary properties for what intuition is 
and what it is not, as well as, boundary properties for mathematical intuition are col-
lected from the literature. After invariant attributes are collected up, the identifcation 
stage can begin with respect to a boundary. Identifcation is the stage of identifying 
whether or not something satisfes already existing properties that roughly bound a class 
of objects or if it resembles a prototypical member of a class. If an object possesses 
boundary properties or if it resembles a prototypical member then they are mapped into 
the corresponding existing structure. If properties are not already established then the 
grouping stage is entered. 

Grouping is the stage where aggregates are formed through detection of variable 
attribute values that are shared by certain elements yet distinct from other elements of 
the structure. It is in this stage that one is looking for patterns among the elements. In 
the construction of class-concepts Skemp (1979) explained: 

from concepts of particular objects which are alike in some way we may 

25 



2.3. METHOD OF SYNTHESIS 

derive a class concept; e.g., from seeing a number of different chairs, we 
abstract certain regular features from which we form the concept chair (as 
against this or that particular chair). In the same way we form other class 
concepts such as bookcase, desk, bed. Continuing the process, by abstract-
ing certain features common to chair, bookcase, desk, bed,..., we can form 
a new concept, furniture; and from concepts such as furniture, cameras, 
gardening equipment, motor vehicles we can derive another concept: con-
sumer durables. And so on (Skemp, 1979, p. 120). 

This process is referred to as “successive abstraction” (p. 119-120). Successive abstrac-
tion involves refecting on the aggregates and abstracting attributes that the aggregates 
have in common to form new boundaries of the whole or to form new intermediate 
nested classes. 

Taking the collection IM of mathematical intuition and specifying a relation 
in terms of variable attributes one can obtain a classifcation. A necessary condition 
for defning a relation for mathematical intuition is that varying attributes among the 
collection of intuitions must exist and the researcher must be able to fnd and state what 
these attributes are. For example, to defne a relation to classify a set of blocks you 
must know that variable attributes such as color exist among the collection. This allows 
one to defne a relation that two blocks are in the same class if they have the same 
color. The more variable attributes that exist the more ways there are to classify or 
shuffe around the blocks. Ultimately, “The major challenge facing intuition research 
is to classify intuitive phenomena in ways that can lead to more precise and useful 
questions” (Hogarth, 2010, p. 339). 

The classifcation stage begins when varying attributes are specifed that are 
common for some descriptions of intuition but not all. Classifcation techniques at have 
been used in the past to tackle the intuition construct. For example, Beth and Piaget 
(1966) and Fischbein (1987) both made attempts to classify types of intuition. Fis-
chbein (1987) departed from Beth and Piaget’s (1966) classifcation and stated that, 
“It is diffcult to follow Piaget’s classifcation because of the generality he confers on 
the term intuition” (p. 58). Fischbein (1987) went on to establish 4 broad classes of 
intuition: affrmatory, conjectural, anticipatory, and conclusive. He also distinguished 
between three sub-classes within the class of affrmatory intuitions. These classifca-
tions were made according to the role of the intuition and its relationship to the solution. 
He also makes a second classifcation, primary and secondary intuitions, according to a 
combination of the origin of an intuition and Beth and Piaget’s (1966) stages of cogni-
tive development: pre-operational, concrete operational, and formal operational. 
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The ordering stage is reached when one can organize existing disparate sub-
classes by ordering or mapping them into less restrictive classifcations. Formation is 
memory consolidation of structures constructed in the previous stages and these consoli-
dated structures form one’s mental representation of a concept. During its development, 
a conceptual structure may be problematic in at least two ways. It may be superfcial in 
that it does not contain much intermediate structure or nesting within the boundary of 
the whole. In other words, the properties of the outer frame of the whole is there but the 
substance within the frame is missing; it is as if the conceptual structure is just a shell 
without the yolk. In addition, a conceptual structure may be dissonant meaning logical 
inconsistencies arise and the conceptual structure is fawed with conficting boundaries, 
identifcations, classifcation, or orderings. 

To resolve problematic structures one continually undergoes maintenance through 
“assimilation” and “accommodation” as one cycles back through former stages (Piaget, 
1968, p. 63). When new structures are simply added with existing structure preserved 
this is assimilation and it resolves a superfcial structure. Accommodation occurs when 
already existing formations are incorrect and then corrected to resolve dissonance be-
tween the representation of the concept and new incoming information. Through ac-
commodation the conceptual structure is restructured and this resolves dissonance. In 
order for accommodation to occur one must at least be able to detect the dissonance and 
be open to change in order to correct the errors or re-organize their conceptual structure. 

Along with cycling through the above guiding stages, the current assembly in-
volved memoing and multiple rounds of thematic coding to: identify the current bound-
ary and develop the yolk of the conceptual structure. NVivo 12 was used as a selective 
and open coding aid. Selective codes used in this integrative literature review were 
informed by the initial exploratory literature reviews. These selective codes included: 
boundary properties for intuition and mathematical intuition, existing classifcations, 
collections of attributes assigned to these classifcations, and additional attributes. 

2.4 Synthesis results 

2.4.1 The general boundary of intuition 

Within the feld of cognitive psychology, intuition is a matter of information activation 
and retrieval or generation. Non-conscious processing activates internal knowledge 
structures based on stimuli in the surrounding situation and either information that has 
been consolidated and re-consolidated over and over (familiar knowledge) is retrieved 
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from memory or newly generated knowledge is constructed by non-conscious processes 
and delivered to the conscious mind. While the formation of intuitions are dependent 
on prior work across many learning experiences, the actual conscious experience of an 
intuition comes to the intuiter quickly and without much mental strain in the moment of 
its arrival, like a fruit of labor (Fischbein, 1987; Betsch & Glöckner, 2010). Kahneman 
described intuition as “something that happens to you”, similiar to “perceptions” in that 
“when we see the world we don’t decide to see it”, and “it comes from somewhere and 
we are not the author of it” (Google Talks, 2011). 

General boundary properties that separate what intuition is from what it is not 
have been given by Bastick (1982), Dane and Pratt (2007, 2009), and Epstein (2010) 
to name a few. Collectively, dual-process theories are the major source of these bound-
ary properties. While there are many variations of dual-process theories, the “generic 
version” separates intuitive Type 1 processes “thinking fast” from analytic Type 2 pro-
cesses “thinking slow” (Evans, 2019, p. 21; Stanovich, West, Toplak, 2014; Kahneman, 
2011). Type 1 processes are automatically engaged, involuntary, fast, responses to stim-
uli in the environment. Type 1 processes select or confgure a best ft option based on a 
vault of associations aquired through past experiences. They operate at a non-conscious 
level, not within the bounds of mental awareness. This type of process is unconstrained 
meaning it can handle massive amounts of data both internal stores in memory and ex-
ternal stimuli in the environment. Type 1 processes are thought to suck up little mental 
energy compared to Type 2 process. This leaves the intuiter with more energy to explore 
higher levels of complexity (Betsch & Glöckner, 2010). 

While type 1 processes work without you being aware of it at no cost to the 
working memory, they are not as reliable as type 2 processes. Type 2 processes are in-
tentionally engaged and consciously controlled, refective, evaluative, slower, effortful, 
serial, and capacity limited. They deplete attentional resources and puts severe demands 
on working memory that lead to mental fatigue (Stanovich, West, Toplak, 2014; Kah-
neman, 2011). Aside from the more general consensus in the two types of processing, 
there is an ongoing debate of whether or not the interactive nature between Type 1 and 
2 processing is strictly sequential, parallel or both (Evans, 2006; Epstein, 2010). 

Dual-process theorists in favor of the sequential interaction view are default-
interventionists (Kahneman & Frederick, 2002; Evans, 2006). Default-interventionists 
take the stance that making a decision begins with an automatic default mental rep-
resentation in the form of an intuitive judgement, hypothesis, or mental model that is 
activated implicitly with only surface-level analytic processing of the task. This default 
intuitive response is infuenced by cues in the decision making environment and prior 
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experiences in which similar cues were present, current goals, background knowledge, 
and task features. The default intuitive response may be infuenced by how a task or 
problem is framed, this is called the framing effect. 

Evidence of the framing effect was reported by Tversky and Kahneman’s (1981) 
experiment. In this experiment participants were give a prompt that told them that 600 
people in the United States are expected to die of a disease. Two conditions were set 
up a positive framing condition and negative framing condition. In the positive framing 
condition participants were told to quickly choose, without performing any explicit 
calculations, between two options to mitigate the disease outbreak: if the frst option 
is taken then 200 people will be saved, if the second option is taken then there is a 
1/3 probability that 600 people will be saved and a 2/3 probability that no one will be 
saved. In the negative framing condition, participants were told to choose between two 
options: if the frst option is taken then 400 people will die, and if the second option is 
taken 1/3 probability that no one will die and 2/3 probability that 600 people will die. 
Despite the fact that the two framings are logically equivalent for the frst and second 
options, participants when presented with the positive framing chose the frst options, 
risk aversion, and switched to the second option, risk taking, in the negative framing 
condition. This provide evidence that was is considered logically equivalent may not 
be equivalent according to type 1 intuitive processes, especially when emotion, risk and 
uncertainty are involved (Tversky & Kahneman, 1981). 

Kahneman and Frederick (2002) reported on the complacency of the mind to 
accept intuitive judgements from type 1 processes without further evaluation using type 
2 processes. For example, participants were given the following prompt: “A bat and a 
ball cost $1.10 in total. The bat costs $1 more than the ball. How much does the ball 
cost?” (p. 7). Many participants errored by impulsively stating that the ball cost 10 
cents without checking. Poor judgements, like those found in the previous experiments, 
are due to the failure of both types of processing systems. Type 1 for producing an 
errored or nonsensical response and type 2 for accepting the intuitive response as sat-
isfactory and not intervening to evaluate and correct the errored response (Kahneman 
& Frederick, 2002). Based on the “satisfcing principle” of hypothetical thinking and 
decision theory, analytic processes have a proclivity to accept an intuitive response gen-
erated by type 1 processes as satisfactory and follows its lead with minimal oversight. 
The analytic processes will not modify or completely reject an intuitive response, un-
less it is presented with substaintial reason to do so (Evans, 2006, p. 380). And even 
when counter information is available, the analytic system may still accept an errored 
or nonsensical type 1 response (Kahneman & Frederick, 2002). A decision-maker’s 
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analytic process is more likely to kick in if they have higher connectivity among units 
of knowledge, if they have received instruction that trains abstract or logical reasoning, 
and if there is more time available (Evans, 2006; Cowan, Chen & Rouder, 2004). 

The default-interventionist perspective has been supported by numerous studies 
from the heuristics and biases program (Kahneman, Slovic, & Tversky, 1982; Kahne-
man, 2011) and neuroscience (Lieberman, 2000: Lieberman et al., 2004; Lieberman, 
2007). But some theorists still hold the view that the two systems may also interact in 
parallel or run at the same time. Epstein (2010) is one such theorist who argued that the 
interactive nature is both sequential and parallel. His argument is framed using a par-
ticular dual-systems theory, the Cognitive-Experiential Self-Theory (CEST). According 
to CEST the experiential-intuitive system prefers images, metaphors, scenarios, narra-
tives, and concrete information. The rational analytic system encodes abstract symbols, 
words and numbers. 

In addition to the dual-process and systems distinction, psychologists have com-
piled various defnitions of intuition and analyze similarities and dissimilarities among 
them (Dane & Pratt, 2007, 2009; Gore & Sadler-Smith, 2011). They found that these 
defnitions designated intuition as a “process” or “outcome” or a combination of both. 
For example, Dane and Pratt (2007) presented Raidl and Lubart’s (2000, 2001) defni-
tion of intuition as “A perceptual process, constructed through a mainly subconscious 
act of linking disparate elements of information” (p. 35). Outcome descriptions refer 
to intuition as “expectations”, “hunches”, “bodily awareness”, “viscerally(gut feelings) 
and less specifc feeling states”, and “mental images (visual, auditory)” that emerge into 
conscious awareness (Dane & Pratt, 2007, 2009; Sadler-Smith, 2016, p. 1081). Given 
that the intuiting process is non-conscious, it is not possible for an intuiter to introspect 
directly on their own non-conscious processes and the associations this process has built 
up over time (Kahneman, 2003). Simon (1986) explained that vague or matter of fact 
descriptions of how one arrived at a decision is a hallmark of intuition: 

...if we present a physician with a set of symptoms and the physician im-
mediately (e.g., within two seconds) makes the diagnosis “measels” and if, 
when we ask him or her her how the decision was reached, we receive only 
answers like, “I used my intuition”, “I don’t know”, “It’s a simple matter 
of medical judgement”, ”...then we may say that the judgement has been 
reached intuitively. We will be particularly inclined to say it was intuitive 
if the subject cannot provide a veridical account of the steps of the problem 
solving, question answering, or recognition process that were used to arrive 
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at the response (p. 242). 

Sinclair (2010) also found a process-outcome distinction when she examined 
theories with ties to intuition. Dual-process theories were viewed as more process ori-
ented and theories such as the Cognitive Continuum Theory proposed by Hammond 
(1996) were viewed as more outcome oriented. She concluded that: 

The distinction between process and outcome theories in conceptualizing 
intuition is therefore critical, the notion of which extends to the way we 
attempt to measure the construct. In practical terms, it is imperative to dif-
ferentiate between intuiting as non-conscious information processing and 
intuition as its consciously registered outcome (p. 379). 

Overall, it has been repeated in the psychology literature that further work is 
needed to uncover the adaptive purpose intuition serves, determine the interactive prin-
ciples between intuition and analytic processing, and determine process and outcome 
attributes. There is also consensus that the boundary properties for the class of intuitions 
are still too “loose” (Epstein, 2010, p. 297). Loose, in this context, means that the com-
plement of all analytic processes, which includes dreams, irrational fears, and motor 
refexes, goes beyond the bounds of what psychologists consider intuition to be. It also 
means that many kinds of cognitions satisfy the current list of type 1 process attributes 
with a consciously registered outcome, however not all such cognitions should be con-
sidered an intuition (Dane & Pratt, 2007, 2009; Glöckner & Witteman, 2010; Epstein, 
2010; Sinclair, 2010; Hogarth, 2010). The next section, seeks a tighter domain-specifc 
boundary by collecting additional boundary properties associated with mathematical 
intuition within the sample of 781 journal papers pulled from JRME, ESM, JMB, and 
ZDM and exploratory sample. 

2.4.2 The boundary for mathematical intuition 

Within the mathematics education literature, boundary properties or descriptions have 
been given by Bruner (1960), Poincaré (1969), Fischbein (1987), Malaspina and Font 
(2010), Davis, Hersh, and Marchisotto (2012), Thurston (1994), Otte (1990), Chiu 
(1996), Burton (1999), and more cryptically by Duval (2000, 2017). Bruner (1960) 
referred to the Webster Dictionary defnition of intuition: “immediate apprehension or 
cognition” as a starting point towards a working defnition in the feld (p. 60). He went 
on to give a mathematical description: 
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Intuition implies the act of grasping the meaning, signifcance, or structure 
of a problem or situation without explicit reliance on the analytic apparatus 
of one’s craft. The rightness or wrongness of an intuition is fnally decided 
not by intuition itself but by the usual methods of proof. It is the intuitive 
mode, however, that yields hypothesis quickly, that hits on combinations of 
ideas before their worth is known (p. 60). 

Poincaré (1969) described intuition as foresight. Fischbein (1987) covered math-
ematical intuition as “immediate knowledge” and proposed the following list of bound-
ary properties: self-evidence, immediacy, intrinsic certainty, perseverance, coercive-
ness, theory status, extrapolativeness, globality and implicitness (Fischbein, 1987, p.6). 
Intuitions are “self-evident” meaning that the intuiter strongly feels that initially their 
intuition is true or probably true before they have a proof (Fischbein, 1987, p. 196). 
Building from a discussion of several examples he stated that, “one may learn that there 
are, in mathematics (and in science in general), statements which appear to be accept-
able directly, self-evident, while for other statements, a proof is necessary in order to 
accept them as true” (Fischbein, 1999, p. 18). This leads to the hypothesis that there 
are: pre-proof “cognitions which appear directly acceptable as self-evident. These are 
intuitive cognitions” and “A category of cognitions which are accepted indirectly on the 
basis of a certain explicit, logical proof. These are logical, or logically-based cogni-
tions” (Fischbein, 1999, p. 18). Fischbein (1987) referred to self-evidence as the “main 
attribute” of intuition which begins to separate intuition from what it is not (p. 21). Out 
of the sample of all 781 journal papers, 82 papers (10.50%) referenced the boundary 
property self-evidence or self-evident. Out of the sample of 44 journal papers with in-
tuition in the abstract, 17 papers (38.64%) referenced self-evidence or self-evident. And 
out of the 15 journal papers that contained intuition in the title, 14 (93.33%) referenced 
self-evidence or self-evident. Stout (1934) summarized the nuances of self-evident cog-
nitions and wrote: 

What is self-evident need not be obvious; and what seems self-evident need 
not be true. It need not be obvious because in order to be able to perceive it 
we must suffciently understand the proposition with which we are dealing; 
and this may require long previous preparation. What seems self-evident 
need not be true, because we are liable to errors of inadvertence and con-
fusion, through which we fail to distinguish between what really is self-
evident and something else which is not so (p. 393). 

Stout preferred the phrase “indeterminately self-evident” (p.393). While feel-
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ings of self-evidence can cause illusion in the case of an errored intuition that leads 
to a conjecture that is later falsifed; it may also provide emotional support to keep 
pushing forward (Hadamard, 1954; Fischbein, 1987). Mathematicians and learners 
must believe that their intuitions contain at least some truth or be plausible in order to 
stay motivated and keep working on a problem (Noddings & Shore, 1984; Fischbein, 
1987). A common pattern of mathematical progress has been recorded in history in 
cases where self-evident intuitions are mathematically false. In the latter case, the clash 
between self-evidence and the realization of false intuition leads to a surge of attention 
and effort to reconcile dissonance between collective intuition and mathematical reality 
(Wilder, 1967). 

Historically, the term self-evidence can be traced back to the axiomatic foun-
dations of mathematics and early cultural practices. Frege stipulated two criteria that 
must be met to establish an axiom: an axiom must be self-evident einleuchten and it 
must not be reducible from nor equivalent to other axioms or propositions. Frege also 
used the term selbstverstandilich meaning that primitive truths such as axioms are the 
blocks that are not provable from which non-primitive truths are built upon (Jeshion, 
2001; Davis, Hersh, & Marchisotto, 2012). Fischbein (1999) concluded that “...the for-
mal world of mathematics-as they are accepted by the scientifc community - contradict 
in many respects, our natural, self-evident interpretations, our intuitions” (Fischbein, 
1999, p. 13). Paradoxes that arise in mathematics exemplify the clash that can occur 
between formal primitive systems, formal non-primitive systems and intuition. For ex-
ample, take the Banach Tarski’ paradox, it can be proved that a sphere can be broken 
into a fnite number of pieces, non-measurable sets, and reconfgured using the axiom 
of choice into two spheres both with the same size as the original sphere. 

The following additional boundary properties were proposed by Fischbein (1987, 
1999). Intrinsic certainty is a certainty derived from the self with little interference from 
external factors such as a person of authority. Perseverance refers to intuitions to be 
mental representations that are not easily changed in the mind of their possessor even 
when faced with evidence that counters it and suggests that it is errored. People tend 
to want to hold onto their intuitions. Coerciveness means that “intuitively accepted” 
statements cannot be easily reconciled as being false even if the learner is aware of 
counterexamples or statements that contradict their belief. Intuition is “theory-like” 
and represents an individual’s personal theory to a mathematical problem (Fischbein, 
1990, p. 41). Griffths (2013) defned intuition as “...the development of a personal 
theory which is not the result of explicit tuition but may arise either spontaneously or 
via some activity that is related only indirectly to the theory in question” (p. 81-82). 
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Unlike formal theory, intuition is more like a hypothesis that has not undergone 
the necessary transformations to produce a formal proof that can be either verifed or 
rejected by the mathematical community. The extrapolitiveness property of intuition 
states that intuition calls on information that is outside the realm of being directly per-
ceptible. The property of globality is that intuitions are representations that encompass 
the problem-solving situation as a whole. It is not a controlled act of breaking down 
a problem into fner parts which is termed analytic thinking (Bruner, 1960). Bruner 
(1960) described analytic thinking as step-by-step and “intuitive thinking rests on fa-
miliarity with the domain of knowledge involved and with its structure, which makes it 
possible for the thinker to leap about, skipping steps and employing short cuts in a man-
ner that requires a later rechecking...” (p. 58). The fnal property of implicitness means 
that an intuition as an outcome is generated by non-conscious processes. Fischbein 
(1987) stated that: 

Although apparently self-evident, intuitions are in fact based on complex 
mechanisms of selection, globalisation and inference. But this activity is 
generally unconscious and the individual is aware only of the fnal product, 
the apparently self-evident, intrinsically consistent cognitions. The tacit 
character of intuitive elaborations explains the diffculty of controlling and 
infuencing them (p. 201). 

Building from Fischbein (1987) boundary properties and intuitions that lead to axioms 
or primitive truths, Malaspina and Font (2010) characterized intuition as a process con-
sisting of idealization, generalization, and argumentation. 

Davis, Hersh, and Marchisotto (2012) also gave boundary properties which they 
admitted to be “vague” characterizations of intuition. They stated that intuition is “the 
opposite of rigorous”, “visual”, “plausible, or convincing in the absence of proof...”, 
“incomplete...”, “based on a physical model or on some special examples...”, “holistic 
or integrative as opposed to detailed or analytic...” (p. 433-434). The meaning of 
“rigorous is never given precisely...”, but an attempt was made to shed some light on 
the difference between a rigorous and intuitive argument (p. 433). Davis, Hersh, and 
Marchisotto (2012) stated: 

To be rigorous, we must justify our conclusion deductively, by a chain of 
reasoning where each step can be defended from criticism, ad where the 
frst step is considered known, and the last step is the desired result. If the 
chain of reasoning is extremely long and complicated, the rigorous proof 
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may leave the reader still subject to serious doubt and misgiving; in a gen-
uine sense, it may be less convincing than an intuitive argument, which 
can be grasped as a whole, and which uses implicitly the assumption that 
mathematics as a whole is coherent and reasonable (p. 434). 

To try to clarify the property the intuitive means visual and is not rigorous they juxta-
posed “intuitive” and “rigorous” topology or geometry: 

...the intuitive version has a meaning, a referent in the domain of visualized 
curves and surfaces, which is excluded from the rigorous (i.e, formal or 
abstract) version. In this respect, the intuitive is superior; it has a quality 
that the rigorous version lacks. On the other hand, the visualization may 
lead us to regard as obvious or self-evident statements which are dubious 
or even false (p. 433). 

Thurston (1994) described intuition as “...sensing something without knowing where it 
comes from...words, logic, and detailed pictures rattling around can inhibit intuitions 
and associations” (p.5). 

Researchers have also provided additional attempts to articulate differences be-
tween formalism and intuition. For example, Otte (1990) described intuition and the 
process of combining, refning, and translating intuitions as something that could not 
be replicated or fully recovered after they pass. He described a formal proof as a prod-
uct that could be replicated in full by machine and followed. Chiu (1996) pulled the 
notion of a formal concept and intuition apart along six dimensions: “origin”, “soci-
etal support”, “internal structure”, “explication”, “systematicity”, and “justifcation” (p. 
480). For the frst dimension, the origin of formal concepts are experts and the origin 
for intuition is the self. For the second dimension, formal concepts are supported by 
a teacher but learners’ intuitions have little to no support from others. For the third 
dimension, formal concept have an analytic structure meaning the concept is decom-
posable into fner parts which can be strung together in a step by step or algorithmic 
fashion. Intuition is holistic. For the fourth dimension a formal concept is explicated 
precisely where as intuition is often not well articulated. For the ffth dimension, a 
formal concept is considered “densely connected” where as intuition is “sparsely con-
nected” (p. 480). For the sixth dimension, formal concepts are justifed by authority and 
estabilished systems, but justifcation for intuition is derived from personal experience. 

Shortly after Chiu’s (1996) work, Duval (2000) proposed a cognitive dual sys-
tems framework called the Cognitive Architecture for Mathematical Thinking that par-
alleled early dual-process theories in psychology. This model distinguished between 
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the automatic non-conscious system and the intentional system used to fex between 
various representations of mathematical objects. While Duval goes on to carve out the 
intentional system into subsystems termed registers, which paved the foundations for 
the Theory of Registers of Semiotic Representations (Duval, 2000; 2017), he leaves 
the details of the automatic system behind. He characterized the automatic system ob-
scurely as a system that provides “direct and immediate access to objects (for which 
we often use the general and plurivocal word intuition)...” (2017, p. 1). Since Duval’s 
earlier work, psychologists have articulated different types of non-conscious processes 
within the automatic system to classify different forms of intuition (Glöckner & Witte-
man, 2010). The carving out of different types of non-conscious processes within the 
automatic system will be returned to later during the classifcation stage of this assem-
bly. 

2.4.3 Intuiting methods 

Despite some parallels between mathematics education and psychology theories, there 
is a major component of mathematical intuition that is not covered by the process-
outcome distinction. Recall that within the psychology culture intuition is a process-
outcome object in which the intuiting process component involves a non-conscious pro-
cessing of inputs and knowledge structures followed by a consciously realized outcome 
(Betsch & Glöckner, 2010). But in mathematics culture the intuiting process that comes 
before a consciously realized outcome is not always strictly non-conscious. Mathe-
maticians often attach the label ‘intuitive thinking or activity’ during learners proof 
constructions to be: drawing sketches, using visualizations to examine an extract infor-
mation, constructing visual models, informal rephrasing of formal objects and testing 
examples (Wittmann, 1981; Fischbein, 1987; Gray, Pinto, Pitta, & Tall, 1999; Raman, 
2002; Dawkins, 2015). This kind of activity is said to be useful for stimulating intuition. 

One reason for this major difference that is not emphasized by psychologists 
may boil down to a difference in decision-making environments being investigated. 
When psychologists investigate intuition such as that of chess players, frefghters, air-
fghter pilots, and nurses they are studying subjects that are already and naturally sur-
rounded by a rich external scene of cues for the intuiting process to operate. The chess 
players in de Groot’s (1946) studies can see the entire board, the arrangement of pieces, 
and possible moves. The frefghters in studies covered by Klein (1993) are attuned to 
sensorial cues such as wind shifts and particular smell which allows them to predict 
that roof is going to collapse just moments before it collapses. The air-fghter pilot can 
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quickly intuit the best possible maneuver for survival based on cues in the dynamic 
(changing environment) in the aerial combat zone. The value of expert intuition in 
these studies is its speed and accuracy under time pressured situations. In a study by 
Crandall and Getchell-Reiter (1993) expert neonatal intensive care unit (NICU) nurse’s 
were able to intuit patient diagnoses and outcomes. These expert nurses’ were attuned 
to perceptual cues that could not be found in medical texts or the training literature such 
as poor muscle tone and the appearance of the eyes. 

In all of these mentioned studies, the external cues are physical sensorial cues 
that are already present in the environment and the intuiting process can immediately 
act on these readily available cues to activate associated internal knowledge structures 
to generate the intuition outcome. But mathematics learners must paint their own scene, 
often times it is not externally in front of them. Initially, there are not very many cues to 
feed the intuiting process. When proving something there are little to no initial physical 
cues. Initial physical cues may only include the statement of what needs to be proved. In 
some cases the statement of what needs to be proved may not exist yet. Thus, learners, 
at times, must generate their own cues and stimuli to provide inputs that support the 
intuiting process. The more registers they have access to, the greater the variety of 
cues. 

So what does the intuiting process prefer to eat? According to the Epstein (1994) 
the intuiting process is governed by the Experiential System which implies that it en-
codes concrete images, metaphors and narratives. And this is what intuitive mathemat-
ical activity supplies. Intentional and consciously controlled strategies that are used 
to generate cues and support the intuiting process have been called ‘intuitive methods’ 
(Noddings & Shore, 1984). Intuiting methods are “attempts to provide a holistic pic-
ture, visual displays and hands-on experiences”, but noted that these “methods” are not 
suffcient for the “faculty of intuition” to be able to operate to generate an intuition 
outcome. When approaching a proof one may not have any clear ideas of what to do. 
Noddings and Shore (1984) described: 

a stage that may precede the frst clear intuition [outcome]. During this 
stage the intuition [as a process] is looking, but as though in a darkened 
room or at a great distance. The feeling that accompanies this stage is dis-
comfort...We are impatient, uncertain that anything will be accomplished, 
afraid that interruptions will occur, edgy, doubting our own capacities...this 
is the stage of mental torture, in which no subjective certainty sustains us 
(p. 88). 
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One must relax and drop into an “intuitive mode”, a state of mind in which the goal is 
to obtain understanding through exploration and following curiosities that come from 
within rather than producing a refned formalized product (Noddings & Shore, 1984, p. 
69, 81). 

To add substance to the methods component of mathematical intuition, a the-
matic analysis of the literature with open coding was conducted to collect strategies 
that are used to generate pertinent cues and facilitate intuiting processes. A text search 
query was used with the search terms ‘gain intuition’, ‘develop intuition’, ‘build intu-
ition’, ‘stimulate intuition’ or ‘facilitate intuition’ with exact matches, stemmed words 
and synonyms. 27 out of the 781 journal papers met this search criteria. The themes: 
leveraging interactive visual software environment and computation tools, tactile model 
constructions, representational shifting, informal paraphrasing, use of metaphors, ex-
perimenting with examples, and switching mathematical scenes were extracted from 
the 27 papers. Analogic reasoning was a theme informed by Fischbein’s work. In a fol-
low up search within the systematic journal intuition in abstract sample of 44 papers, 5 
(11.36%) papers contained ‘analogic reasoning’ or ‘analogy’, 165 (21.13%) contained 
‘analogic reasoning’ or ‘analogy’ within the entire journal paper sample. 

Leveraging visual software environment and computation tools 

Computer tools that offer a visual environment to explore patterns and develop intuition 
in school mathematics, teacher training, and in mathematics research done by mathe-
maticians (Leung, 2008; Watson & Callingham, 2013; Martı́nez, Gu´nez, Zamora, Bus-ı˜ 
tos, Rodrı́guez, 2020; Kortenkamp, Monaghan, & Trouche, 2016). In school geometry 
the visual environment provided by SmartBoard helps to “...develop students geometri-
cal intuition for identifying quadrilaterals and the interrelationship among them...” and 
“strengthen[s] their intuitions by varying progressively the dimensions of the fgures 
with onscreen live illustration of dynamic images accompanied by the narrative expla-
nation of the teacher” (Leung, 2008, p. 1009). Leung (2008) used animations and static 
images in and interactive SmartBoard (SB) environment to give a compact view of a 
parallelogram, rectangle, rhombus, square, kite, and trapezoid. Students, age 9, then 
explored these shapes and color coded assigned properties to each of them on the visual 
SB environment. At a glance of all the shapes and their properties can be viewed. The 
stimuli organized in the SB environment naturally caused students to look at different 
groupings of shapes rather than looking at them in isolation. Using hoola hoops to 
make Venn diagrams and physical cut outs of the shapes, as artefacts, these students 
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were able to grasp the notion of relaxing and adding properties. They also were able to 
draw set-theoretic classifcation lattices. This stimulated conjectures such as a rectangle 
is a parallelogram and a rhombus is a parallelogram. The tactile stimuli also provided 
clues on how to proceed with a deductive argument (Leung, 2008). 

For mathematicians, software such as Maple Interface in a Dynamic Geometry 
Environment (DGE) is a laboratory where experimentation takes place, data is pro-
duced, patterns become readily apparent, and conjectures are formulated. However, 
the proof is not always so revealing in a DGE (Kortenkamp et al., 2016). In a case 
study by Mariotti and Pedemonte (2019), a DGE Cabri-Geometry helped students to 
formulate conjectures based on “perceptive facts - what is perceived as true, but not 
felt as necessarily true”. They also found, for one student, that “Dynamic intuition”, 
intuition induced by a DGE, was “an obstacle to the construction of a proof” (p. 762). 
In this case, the student was able to produce an initial conjecture. This student’s explo-
rations in the DGE led to the recognition of seemingly unrelated perceptive facts and 
conjectures. This student seemed to be confned to perceptual features in the DGE and 
never developed a “structurant argumentation, that justifes a conjecture reached as an 
intuition” and is produced after the conjecture is formulated. This prevented further 
progress towards a formal proof product (Mariotti & Pedemonte, 2019, p. 761). 

Model constructions and embodied cognition 

Models may be consciously and deliberately produced to gain access to additional sen-
sorial information that the intuiting process can work with or models maybe remain 
tacit, outside of awareness, but still infuence behavior (Fischbein, 1987). In the con-
text of geometry Kaisari and Patronis (2010) defned a model to be “a particular set 
of geometric entities in 3D space (representing points, lines, or planes), which satisfy 
the axioms of a theory” (p. 254). They investigated university students’ use of mod-
els to modify Hilbert’s axioms of Euclidean geometry to arrive at a new set of axioms 
for elliptic geometry, identifying antipodal points, and double elliptic geometry, not 
identifying antipodal points, on a spherical surface. 

In some cases abstract mathematical concepts are materialized into this world as 
tactile physical models. In other cases one takes the reverse direction in which physical 
bodily representations, interactions with the physical world, and gestural models are 
used to arrive at abstractions. In the area of embodied cognition, researchers focus on 
the later direction. Everyday gestures are often so frequent that they go unnoticed if 
not intentionally refected upon. Embodied cognition researchers explore how learners’ 
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gestures and corpus can be used to physically act out mathematical concepts in the 
classroom so that they can connect to the mathematics on a more intimate level (Núñez, 
Edwards, & Matos, 1999). It is theorized that the sensory-motor system which is often 
attributed to procedural or rote actions actually plays a role in conceptual understanding 
and abstraction (Gallese & Lakoff, 2005). 

Representational shifting, informal paraphrasing and metaphors 

Several papers included representational shifting, informal paraphrasing, or 
metaphor use as general methods that are used to gain or facilitate intuition (Cangelosi 
et al., 2013; Keene, Hall & Duca, 2014; Dawkins, 2015; Hegg et al., 2018; Pinto, 
2019). During the total move towards a formal proof product, several localized de-
mechanizations may occur from a formal representation to an informal or intuitive rep-
resentation. Dawkins (2015) termed an “intuitive paraphrase” as informal paraphrasing 
of formal defnitions, axioms, and theorem statements to be proved in the Representa-

tional System of Mathematical Proof to a representation that is less formal and more 
diagrammatic or imagistic. 

Pinto (2019) investigated variations between the informal content covered in 
class by different instructors teaching a proof-based Real-Analysis course. One of the 
instructors, Amit who frequently drew pictures of defnitions stood out. “Before getting 
into examples, I would like us to gain some intuition. We are going to unpack this 
defnition and make a drawing of it, to see what it really means” (p. 8). At one point 
Amit even discussed that from the drawings this was “clear” that one property was 
stronger than the other. “After repeating his last explanation at a request of a student, 
Amit asserted that the geometric interpretation they just learned can be used to gain 
intuition as to ‘why differentiability is in fact stronger than continuity’...”(p. 8). These 
geometric drawings and loose verbal explanations of them motivated how one may go 
about constructing a formal proof for differentiability implies continuity. Amit then 
modeled how to construct the formal proof by leveraging the geometric interpretation. 

While it is important for instructors to demonstrate informal paraphrasing ma-
neuvers and shifts into geometric registers during lecture, it is not suffcient to ensure 
that students are able to use or make such maneuvers to make progress towards a proof 
product (Pinto, 2019; Dawkins, 2015). In a curriculum design experiment for a course 
in neutral axiomatic geometry, Dawkins (2015) found that students never gave or used 
an intuitive paraphrase of the formal textbook defnition of ‘betweeness of points’ even 
though the professor provided intuitive paraphrases of the defnition by illustrating his 
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spatial reasoning and drawing a euclidean line diagram during lecture. 
The extent to which intuitive paraphrases of defnitions and axioms are built into 

a curriculum is under debate in school geometry. The Common Core State Standards 
in Mathematics approach stressed that the defnition of congruence should be phrased 
more intuitively as “two fgures in the plane are said to be congruent if there is a se-
quence of rigid motions that takes one fgure onto the other” rather than axiomatically 
(Common Core Standards Writing Team, 2016, p. 15; cited in Hegg, Papadopoulos, 
Katz, & Fukawa-Connelly, 2018, p. 56). However, it also may be the case that mov-
ing to such an intuitive paraphrase that lends itself to “tactile investigations” may make 
increase the distance needed to travel in the other direction towards a formal proof, 
making it much more diffcult for students to access a formal proof compared to the 
axiomatic approach (p. 57). Hegg et al. (2018) investigated students preference to use 
Triangle Congruence Criteria (TCC, i.e., SAS, ASA, SSS, and AAS rules) versus the 
transformation defnition of congruence to construct proofs. They found that 5 out of 
6 students could successfully construct proofs using either TCC or transformations and 
they thought it was easier to use TCC and so they liked this approach more. However, 
what is easier or cognitively less demanding may not always be what is better for the 
student’s long term intuition development. 

Experimenting with examples and building example spaces 

In a study by Alcock and Inglis (2008) of two doctoral students’ example use was 
investigated as they proved number theoretic statements about prime, abundant, perfect, 
and defcient numbers. Data indicated that one of the student’s Chris formulated an 
initial default hunch that a given conjecture, supplied by the study, was presumably true 
and gave a very informal argument of why the conjecture was probably true, but later 
expressed that he was not sure if the conjecture was true because he had not investigated 
examples yet. Alcock and Inglis (2008) concluded that “even though Chris initially 
thought the conjecture was probably true, he did not immediately attempt to construct a 
general proof, but rather returned to his earlier strategy of trying to develop his intuition 
by exploring the relevant example spaces” (p. 125). 

Watson and Mason (2005) stated that “...examples learners produce arise from 
a small pool of ideas that simply appear in response to particular tasks in particular 
situations. We call these pools example spaces” (p. ix). They offered several metaphors 
to illustrate the use and accessibility of examples in the example space. Watson and 
Mason (2005) gave a “pasture” metaphor (p. 60-61): 
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...the spatial sense of example space suggests a landscape, with some very 
familiar examples acting like easily accessible pastures in the valley, whereas 
less familiar or more complex examples are like pastures higher up on the 
slopes or hidden behind hedges and hence more diffcult to see and reach. 

Individuals example spaces have an internal mental organization in which exam-
ples are related, grouped, and “can be explored or extended by searching for situation-
ally peculiar examples as doorways to new classes, by being given further constraints to 
focus on particular characteristics of examples...” (Watson & Mason, 2005, p. 50-51). 
The literature signaled that several example types within the example space are used 
to set-up, gain, or strengthen intuition. These types are: start-up examples (Michener, 
1978; Mills, 2014), examples used for pattern exploration to generalization (Fischbein, 
1987; Bills & Rowland, 1999), generic examples and non-generic examples (Rowland, 
2002), side by side comparisons of examples and non-examples, boundary examples 
(Mason & Watson, 2001) and example chains (Antonini, 2011). 

Start-up examples are used to illustrate a theory that is being learned for the 
frst time and should be accessible to the frst time learner and accompanied with an 
uncomplicated picture that is easily interpreted. If possible start-up examples should be 
contextualized and concrete, something that students can associate with some aspect of 
everyday reality (Michener, 1978). “These start-up examples help one get started in a 
new subject by motivating basic defnitions and results, and setting up useful intuitions” 
(Michener, 1978, p. 366). Unlike start-up examples that are used to induce intuitions, 
counter-examples are said to “add focus and limits to one’s intuitions” and are used 
as an initial check to see if an intuition that has already been produced can be refned 
(Michener, 1978, p. 369). 

Generic examples are used for “seeing the general through the particulars” and 
are a “carrier of the general” (Mason & Pimm, 1984, p. 287). Balacheff (1998a) de-
scribed generic examples as an example that stands for an entire class of objects. A 
generic example can also be described as an example with an argument that can hold in 
general for an entire class of objects and can be turned into a proof with slight modif-
cations to notation, replacement of the example with a general object, and the incorpo-
ration of lemmas, such proofs are called “generic proofs” (Leron & Zaslavsky, 2013, p. 
24). Leron and Zaslavsky (2013) provide several generic proofs for results in Abstract 
Algebra. Research on students use of generic examples to aid in proving activity is 
scant and warrants further attention (Aricha-Metzer & Zaslavsky, 2017). 

In one study relevant to generic, non-generic example use and intuition, Aricha-
Metzer and Zaslavsky (2019) investigated how a group of middle school, high school, 
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and undergraduates used generic and non-generic examples and whether the use of these 
examples led to a productive or non-productive reasoning towards the construction of a 
proof or pieces of a proof. Summarizing the results of this study they stated that “While 
empirical, non-generic, example-use could be helpful for making sense of a conjecture 
and gaining an intuition regarding its validity (as in Case 8), interestingly, our analysis 
didn’t reveal any cases in which a non-generic use of examples was productive for 
proving” (p. 320). In Case 8, a 9th grade student generated and examined the examples 
16 and 25 and non-examples 18 and 30 when asked to prove that a perfect square has 
an odd number of distinct factors. This student was able to for a correct conjecture 
that the perfect squares 16 and 25 had an odd number of factors by listing the factors 
and counting them. However, he could not use these examples to see why and make 
advancing steps towards a proof for the conjecture. It seems that the novice learner 
was able to produce valuable empirical cues by listing the factors 1, 2, 4, 8, 16 and 1, 
5, 25, but this learner’s intuiting process was not attuned to the more specifc pattern 
among these cues of their being a bijection between a divisor d and 16/d on either side √ 
of the 16 in the factor list and similarly for 25. Just because key empirical cues in 
the environment have been generated and are focused on does not guarantee that the 
intuiting process will pick up on patterns suggested by the cue set. 

Aricha-Metzer and Zaslavsky (2019) concluded that case 8 may have not been 
able to pick up on the more specifc structural pattern because the representation of 
factors in a list was not as revealing as the representation of pairs of factors. While a 
change in representation from a list of factors to pairs may have offered a more revealing 
cue set such a representational shift may still not have been enough for Case 8 to proceed 
towards a proof. One possible alternative interpretation of Case 8, is that the failure to 
advance further towards a proof was not due to a lack of engagement in proper intuiting 
methods (i.e. the use of examples and representational shifting), rather it was a failure 
of the intuiting process for not being attuned to or able to pick up on the more specifc 
structural patterns in the cue sets for a number of reasons. Some reasons include that 
the learner’s internal knowledge stores in memory do not contain enough experiences 
working with bijective functions and so the intuiting process can not match a cue set to 
something it does not have memory of. It could also be the case that memory stores do 
contain experiences with bijective functions, but other forms of interference prevent or 
block the matching. 

Boundary examples are examples that show why the assumptions in a claim are 
necessary. It is similiar to the notion of modifying assumptions in a theorem, but rather 
than reasoning with just the abstract assumption a concrete example that fts the mold 
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of the modifed assumptions is inserted to see what happens to the claim. Mason and 
Watson (2001) described the use of boundary examples and stated: 

You start with maximum freedom (generality) and then you impose con-
straints. Another form of it is weakening a constraint to reveal a class of 
solutions, which sometimes enables a solution to be found to weaker con-
straints while the tighter constrain remains unsolved. When students are 
offered examples to illustrate theorems, and even where these are boundary 
examples because they show why constraints are required (p. 126). 

Goldenberg and Mason (2008) noted that, “Learners who are aware of looking 
for what is the same and what is different as a learning an problem solving strategy 
develop rich and extended example spaces, while those who try to master the examples 
they are given as templates are condemned to a restricted and potentially misleading 
example space” (p. 192). Some ways to extend example spaces that are also intuiting 
methods that generate cues to the intuiting process are: building chains of examples 
from a few initial examples by tweaking a previous example in the chain slightly and 
involves performing cognitive transformations on “semiotic sets” (Arzarello, 2006, p. 
281; Antonini, 2011). A semiotic set consists of: a set of semiotic representations, rules 
the interpreter uses to produce sign-interpretation pairs, and performing cognitive trans-
formations, and “a set of relationships among these signs and their meanings embodied 
in an underlying meaning structure” (Arzarello, 2006, p. 281; Peirce, 1991). 

Overall, examples are used to produce data flled with perceptual patterns, reg-
ularities and invariants. Such patterns, regularities, and invariants have the potential to 
be detected by the intuiting process and generalized to produce an conjecture, but goes 
beyond the observable data within a fnite set of examples (Fischbein, 1987). Studies 
have shown that the choice of certain examples matters. Some examples can lead to 
appropriate generalizations while others lead to inappropriate generalizations (Zazkis, 
Liljedahl, & Chernoff, 2008). Example use after generating a conjecture or being pre-
sented with a conjecture has been regarded as a means to ‘strengthen’ one’s intuition 
about the validity of a conjecture before making an attempt to construct a formal proof 
(Fischbein, 1987; Alcock & Inglis, 2008; Aricha-Metzer & Zaslavsky, 2019). 

Switching mathematical scenes 

Intuiting methods at a more advanced graduate level and beyond also include the use 
of functors to switch from one’s current mathematical scene in a particular area of 
mathematics to another scene in another area of mathematics in order to activate a fresh 
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set of cues or access to additional tools to work with or to reduce noise. A paper from 
CERME 10, in the exploratory sample, offered data through a case study. This case 
study found that 

mathematicians often translate a problem from one area of mathematics 
(e.g., Topology) to another (e.g., Algebra)...When a statement of a problem 
is translated from one language to another, some of the details may get 
lost in the translation. Perhaps this loss of information has an unexpected 
beneft; the simpler formulation of the problem in a new language might 
allow for new insights or intuitions to be gained, and perhaps even for a 
solution...(Stewart, Thompson, & Brady, 2017, p. 2264) 

Creating analogies 

Fischbein (1987) described an analogy between two entities as a “similarity of structure, 
a stock of common structured properties” (p. 127). He stated “Two objects, two systems 
are said to be analogical if, on the basis of a certain partial similarity, one feels entitled 
to assume that the respective entities are similiar in other respects as well” (p. 127). 
Creating analogies is thought to lead the mind to formulate an intuition as a “mini-
theory” (Fischbein, 1987, p. 129). Experts analogies between different mathematical 
domains or systems may be diffcult for students to comprehend or fnd useful. Clement 
(2008) has found that both experts and undergraduates produced a variety of analogies 
in physics and engineering tasks. He also found that analogies are not arrived at with 
ease, it takes a considerable amount of time and persistent effort to create them. 

2.4.4 Classifying types of intuition 

In previous sections, intuition was characterized as a method-process-outcome object 
along with boundary attributes of what intuition is versus what it is not from the dual 
perspective in psychology and the perspective mathematics education researchers. The 
assembly of a conceptual structure for mathematical intuition as a research construct 
is continued in this section and the classifcation stage is entered to explicate different 
types of intuition. A central issue brought up by psychologists is the common label 
of intuition is used in research, but researchers are not studying the same phenomenon 
under this label. Rather they investigate non-conscious processes with very different 
sometimes opposing attributes such as: divergent and convergent processing; process-
ing that occurs within an incubation period and processing that occurs with no incuba-
tion period; and processing that produces an outcome with a high-intensity emotional 
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response or low-intensity to no emotional response (Policastro, 1995; Dane & Pratt, 
2007, 2009; Glöckner & Witteman, 2010; Gore & Sadler-Smith, 2011). Likewise, sim-
ilar issues in mathematics education have also been raised. Bubp (2014) affrmed in the 
limitations of her thesis that “The limited research on intuition in mathematics indicates 
that there may be a variety of types of intuition that need to be distinguished along with 
differentiating intuition from analysis” (p. 243). Table 2.5 is a confrmed record of 
scattered types of mathematical intuition termed from 1911 to 2017 and the theoretical 
frames they are situated in. 

Current trends that are present among researchers that investigate mathematical 
intuition includes: the label of ‘intuition’ is used but the meaning attached to this label 
is left ambiguous, intuition is equated with informal reasoning (Bubp, 2014), a new 
type of intuition is defned with some comparison among other types, or a new type is 
defned in isolation without a review of or comparison among other existing theoretical 
types. Additional types defned have provided an additional window into what math-
ematics educators mean by intuition. Looking through this window one sees that the 
label of intuition spans many qualitatively different cognitions: from self-evident ax-
ioms and “common-sense” judgements such as “every natural number has a successor” 
(Fischbein, 1982, p. 9) to “instantiations” as prototypical representations of a math-
ematical concept that come to mind quickly in response to a mathematical situation. 
“For example, an instantiation of a convergent sequence might consist of a graph of 
a ‘prototypical’ convergent sequence” that is experienced regularly in a mathematical 
environment (Weber & Alcock, 2004, p. 211); to a “correlation-hypothesis” which is 
intuition in the form of a mental boom across distinct felds and is a frst glimpse into 
never before seen mathematics. It may take years and in some recorded cases decades 
for intuitions of this form to be coherently expressed, verifed through proof and ac-
cepted by the mathematics community (Grosholz, 1978). Grosholz (1978) described 
this phenomenon: 

When two felds are put in correlation, it may happen that a new feld or 
felds are generated at their interface. The correlation-hypothesis...makes 
possible the solution of problems which neither feld on its own could have 
solved...ways of sharing information between the two felds are established, 
a new feld, with hybrid items and problems, may crystallize around the 
correlation-hypothesis, explaining, extending, and warranting it (p. 56). 

Different types of intuition are also being classifed according to various mathematical 
subjects or topic areas. For example, geometric intuition in geometry (Fujita, Jones 
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& Yamamoto, 2004), intuition of infnity (Fischbein, Tirosh, & Hess, 1979), optimiz-
ing intuition for area and algorithm optimization problems (Malaspina & Font, 2010), 
probabilitic and combinatorial intuition (Fischbein & Grossman, 1997). In this section, 
classifcation is done with respect to method, process, and outcome attributes rather 
than classifcation that is done with respect to the mathematical subject or topic area 
that an intuition is experienced in. 
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Table 2.5: Types of mathematical intuition 

Type Paper Theoretical Frame 

Dynamic Intuition Mariotti & Pedemonte Cognitive Unity 
(2019) [Garuti et al., 1998]; 

Toulmin’s Model 
[Toulmin, 2003] 

Covariation intuition Wilkie (2019) Covariational reason-
and correspondence ing [Carlson et al., 
intuition between sets 2002] 

Embodied intuition Stewart, Thompson, & Three Worlds [Tall, 
Brady (2017) 2013] 

Intuitive paraphrase of Dawkins (2015) RSP [Weber & Al-
axiom, defnition, or cock, 2009] 
theorem 

“Naive”-errored Thomas (2015) Concept im-
age/defnition (Tall 
& Vinner, 1981) 

Empirical and abstract Zagorianakos & Husserl (1970a) 
intuition Shvarts (2015) 

Proof image Kidron & Dreyfus AiC+RBC 
(2014) 

(Kidron & Dreyfus, 
2010) 

Memory, property, 
similiarity, under-

Bubp (2014) Dual-process Theory 
(Kahneman, 2011) 

standing
visualization-based, Semantic/Syntactic 

Proof 
example-based, and (Weber & Alcock, 
unjustifed 2009) 

Four-dimensional Davis, Hersh, & N/A 
intuition Marchisotto (2012) 

Optimizing intuition Malaspina & Font Onto Semiotic Ap-
(2010) proach (Font & Contr-

eras, 2008); Cognitive 
science of mathe-
matics (Lakoff and 
Núñez, 2000) 

Deep intuition Semadeni (2008) Concept image and 
defnition (Tall & 
Vinner, 1981) 

Technical-algebraic, Selden & Selden Informed from Em-
visual-spatial intuition (2007) pirical Observation 
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Table 1.1 (Continued)
Type 
Geometrical intuition 

Paper 
Fujita, Jones & Ya-

Theoretical Frame 
Concept im-

mamoto (2004) age/defnition (Tall 

Davis, Hersh, & 
& Vinner, 1981) 

Marchisotto (2012) 

Spatial intuition of Raftopoulos (2002) Object fles (Kahne-
number and number man, Treisman, & 
line Gibbs, 1992) 

Combinatorial intu- Fischbein & Gross- Schemata (Inhelder & 
ition man (1997) Piaget, 1958) 

Primary, secondary, Fischbein (1987) Intuition in Science 
affrmatory, conjec- and Mathematics Ed-
tural, anticipatory, ucation [Fischbein, 
conclusive 1987] 

Affrmatory-semantic, Fischbein (1987) Intuition in Science 
Affrmatory- and Mathematics Ed-
relational, ucation (Fischbein, 
Affrmatory-
inferential 

1987) 

Ground (common), Fischbein (1987) Intuition in Science 
individual (unique) and Mathematics Ed-

ucation (Fischbein, 
1987) 

Lay, expert Fischbein (1987) Intuition in Science 
and Mathematics Ed-
ucation (Fischbein, 
1987) 

Generalization by Fischbein (1987) Scientifc Method 
induction 

Probabilistic intuition Fischbein (1975) Stimulus Sampling 
Theory (Estes, 
Burke, Atkinson, & 
Frankmann, 1957) 

Collective intuition Wilder (1967) Historical Cases 

Axiomatic intuition Young et al., 1911 N/A 

In the feld of Psychology, what has been included under the intuition construct 
has really been stretched. It has been suggested that non-conscious autonomic processes 
can range from simple retrieval of already acquired action scripts and automated actions 
to the complex generation of new mental representations (Glöckner & Witteman, 2010; 
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Policastro, 1995). The following subsections summarize four classes of non-conscious 
processes initially put forth by psychologists Glöckner and Witteman (2010): simple as-
sociative, matching, accumulative, and constructive and their corresponding outcomes. 
This section continues to synthesize the psychology and mathematics education litera-
ture by collecting relevant constructs and types from the mathematics education litera-
ture and mapping them into these four classes. 

2.4.4.1 Simple associative 

Simple associative forms of intuition include affective-bodily arousal, guiding feelings, 
and behavioral reactions (Glöckner & Witteman, 2010). Behavioral schemas, a con-
struct studied in the mathematics education literature, was mapped into this section as it 
is most relevant to simple forms of intuition (Selden, McKee, & Selden, 2010). Simple 
forms are acquired and reinforced through more primitive modes of association learning 
such as implicit learning, signal learning, classical conditioning and operant condition-
ing. This section begins with somatic markers which are included under simple forms 
of intuition as affective-bodily arousal (Glöckner & Witteman, 2010). 

Somatic markers play an important role in narrowing the option search space 
before you have any conscious awareness of decision guiding bodily-feelings or even 
that a decision needs to be made. Neuroscientist Damasio’s (1996) theory of the somatic 
marker hypotheses was focused on innate neurobiological mechanisms that aid humans 
in decision-making. He was particular interested in a group of patients that were unable 
to make adaptive decisions leading to successful outcomes. He found that the inability 
to make productive decisions was not due to 

defects in (a) pertinent knowledge; (b) intellectual ability; (c) language; (d) 
basic working memory; or (e) basic attention (Damasio, 1996, p. 1414). 

But rather the inability to make productive decisions was caused by damage to the 
ventro-medial prefrontal cortex of these patients. This led to evidence that the auto-
nomic, automatic non-conscious, neural processes of the ventro-medial prefrontal cor-
tex are vital to adaptive decision-making and that emotion plays a major role. Somatic 
markers are physiological bodily-emotion states linked to past learning experiences 
(Damasio, 1996). 

The hypothesis thus suggests that somatic markers normally help constrain 
the decision-making space by making that space manageable for logic-
based, cost-beneft analyses...In the absence of a somatic marker, options 
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and outcomes become virtually equalized and the process of choosing will 
depend entirely on logic operations over many option-outcome pairs. The 
strategy is necessarily slower and may fail to take into account previous 
experience (Damasio, 1996, p. 1415). 

That is, before awareness that a decision needs to be made autonomic processes 
sort through these markers discarding ones linked to negative behavioral outcomes such 
as punishment and is likely to select those linked with positive outcomes such as re-
wards and ultimately guides behavior in an advantageous direction (Demasio, 1996). 
Without the activation of somatic markers due to neurological damage patients often 
become so overwhelmed with too many options to choose from that they could not 
make any decision at all. They would switch conscious attention erratically from op-
tion to option analyzing every aspect of each option without settling on any decision. 
This places enormous demands on attention and working memory capacity. Alterna-
tively some patients would avoid the cognitive strain of analysis and make non-sensical 
random impulsive decisions. If every option is equalized then any random choice will 
do (Damasio, 1996). 

The somatic marker hypothesis has gained interest in mathematics education 
research (Brown & Reid, 2006). Brown and Reid (2006) summarized this hypothesis 
stating: 

As we go through life some of our behaviours afford events that we experi-
ence as pleasurable. That experience changes our bodily structures in ways 
that mean that the behaviour becomes marked, so that in similar circum-
stances we are likely to behave in similar ways. Other events we experience 
as unpleasant, and then our bodily structure changes in ways that mean the 
behaviours we associate with those events are less likely to occur in the 
future (p. 180). 

Demasio (1996) emphasized that somatic markers guide behavior in an advan-
tageous direction (Demasio, 1996). However, Brown and Reid’s (2006) work found 
that mathematics learners’ somatic markers sometimes guide them in disadvantageous 
directions. For example, a learner named Frank, when given a mathematical task, had a 
tendency to grab for his calculator before even thinking consciously about the problem. 
When interviewed he stated that he does that when he gets panicked and even though 
he knows that he shouldn’t frst grab his calculator he does it anyway. Panic can be an 
indication of over activation of the amygdala specifcally the anterior cingulate cortex. 
When the anterior cingulate cortex is overly activated our ability to identify dissonance 
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between what the mind is prompting you to do (i.e. don’t grab the calculator) and what 
the body (feelings) is prompting you to do (i.e., grab the calculator) shuts down and neg-
ative bodily-emotion over-rides the intuiting process and produces the disadvantageous 
outcome (Demasio, 1996). 

Guiding bodily-emotions can either drive behavior without conscious aware-
ness of feelings or feelings may be consciously registered. If guiding feelings are con-
sciously registered then one has a sense of liking or disliking, familiarity or unfamiliar-
ity, rightness or wrongness about a situation without the explicit mental representation 
of the factual knowledge experienced in the past (Damasio, 1996; Brown & Reid, 2006) 
and such feelings are low in intensity. That is, we may have a sense that something feels 
right or wrong but what we can’t pin point exactly why it feels right or wrong. It has 
been recorded that undergraduate mathematics learners are sometimes aware of their 
own guiding feelings but more often they do not have guiding feelings. Mathematicians 
and more advanced learners seem to be more in-tune with these feelings than novices 
meaning they are more aware of their guiding feelings and they are more likely to inves-
tigate why they have occurred (Selden, Selden, & McKee, 2008). According to Reber 
(1989): 

To have an intuitive sense of what is right and proper, to have a vague 
feeling of the goal of an extended process of thought, to “get the point” 
without really being able to verbalize what it is that one has gotten, is to 
have gone through an implicit learning experience and have built up the 
requisite representative knowledge base to allow for such judgement (p. 
233). 

Reber (1989) summarizes the fndings of several experiments that illustrated 
implicit learning, also called tacit knowledge acquisition. In these experiments implicit 
learning is viewed as a form of pattern and rule abstraction from a complex artifcial lan-
guage systems without awareness. Participants in these experiments based on responses 
show that they had learned rules of the language systems without explicit exposure to 
what the rules were or that rules even existed and without conscious refection on the 
symbol strings they were exposed to. The underlying rules of the system remained out-
side the participants realm of awareness yet their action responses and predictions were 
not random in this system. After feeding participant symbol strings from the system, 
participants made responses and predictions consistent with the underlying rules of the 
system. 

Another simple form of intuition which may or may not be mixed with guiding 
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feelings are behavioral schemas. Behavioral schemas are “<situation,action>” pairs or 
situations which prompt an automated behavior. The automated behavior is completely 
refexive and bypasses conscious awareness of an internally held mental representation. 
This means that internally held mental representation containing pieces of ones concept 
images or other knowledge structures are not expressed consciously. Furthermore, the 
automated behavior is often implemented without any conscious evaluation of other 
behavioral alternatives. These are called “habits of the mind” and are retrieved from 
procedural memory and diffcult to change (Klein, 1993; Kahneman & Klein, 2009; 
Glöckner & Witteman, 2010; Selden, Mckee, & Selden, 2008, 2010; Lim & Selden, 
2010, p. 1). 

For example, if you are driving and see a green light you refexively push the 
gas pedal without even thinking about it. A situation is made up of cues (i.e. stimuli 
in the environment) and we react to them. In the previous example the most important 
cue for prompting you to take your foot off the break and push down on your pedal 
was the green light. Other cues in the environment were not perceived as important 
for example trees that can be viewed out of the window. The intuiting process in a 
situation receives the cues and is attuned to what it perceives to be the most important 
and asks if these perceptual cues then what is the best action response. This is a matter 
of implicit propositional logic, ‘If these cues then implement this automated action’. 
The non-conscious probabilistic calculations of the best action response is dependent on 
the frequencies of actions paired with the cues perceived to be important and reinforced 
in the past (Klein, 1993; Kahneman & Klein, 2009). 

It is possible for a learner to develop an appropriate behavioral schema that had 
been reinforced over and over on past occasion for a particular type of task. But when 
the task slightly changes to a new task the same reinforced behavioral schema may be 
applied due to an overlap in perceptual or other sensorial cues across past tasks and 
the new task without detection of dissimilar cues. This phenomenon is termed stimulus 
generalization. On the other hand if there was a detection of dissimilar cues this is 
termed stimulus discrimination and the action associated with the cue sets in past tasks 
would not be taken (Pearce, 1994; McLaren, Forrest, & McLaren, 2012). 

According to Selden and Selden (2013): 

behavioral schemas are always available-they do not have to be searched 
for or recalled. Behavioral schemas operate outside of consciousness. One 
is not aware of doing anything immediately prior to the resulting action. 
One becomes aware of the resulting action of a behavioral schemas as it 
occurs or immediately afterwards (p. 3). 
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Behavioral schemas allow us to act quickly in a way that bypasses conscious awareness 
and uses little to no attentional and working memory resources (Simon & Chase, 1973; 
Prietula & Simon, 1989; Selden, Selden, & McKee, 2008, 2010). According to Skemp 
(1979): 

once a particular process has been mastered, it is a great advantage if it can 
be repeated on subsequent occasions without having to devote our fully 
conscious attention to it...the more diffcult the task, the more do we need 
the help which comes from routinizing that which can be routinized, so that 
as much as possible of our consciousness is free to concentrate on the new 
and problematic aspects of the situation (p. 159). 

In other words, cognitive resources are reserved for more novel aspects of a 
problem-solving situation. It is crucial that the learner be able to bring the conceptual 
meaning attached to the automated action if a situation arises in which one must correct 
or adapt his or her automated actions (Skemp, 1979). Correcting an inappropriate be-
havioral schema is very diffcult because behavioral schemas are “habits of the mind” 
that are resistant to change (Lim & Selden, 2010, p. 1). Instructional applications 
should aim to increase the value and adaptiveness of behavioral schemas by: 1) rein-
forcing relational links between automated procedure and concepts 2) increasing the 
overlap between the cue set a student is attending to with the cues of a particular task 
that are most pertinent and 3) encouraging learners to be more aware of the presence or 
absence of their own guiding feelings and how it impacts their actions (Selden, Selden, 
& Mckee 2008; Selden & Selden, 2013). After studying literature related to simple 
associative intuition aggregates inside the class simple associative forms emerged. 

A feature of simple associative forms that seems to distinguish it from other 
forms and bounds it as a class is that the outcome is not accompanied with aware-
ness of internally held mental representations or images. In other words, the mental-
representation is not brought to mind, it bypasses conscious awareness straight to a 
behavioral reaction. While psychology recognizes behavioral schemas as a form of in-
tuition. It is not clear whether or not the mathematical community would include or 
exclude such forms from the class-concept of mathematical intuitions. 

2.4.4.2 Matching associative 

This type of intuition involves matching stimuli in a current situation to “exemplars, 
prototypes, images, and schemas” in order to make categorical judgements. For exam-
ple, seeing a problem and categorizing it as this or that type of problem or situation; or 
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Table 2.6: Simple associative forms of intuition with respect to the process and outcome 
components. 

Simple 
Associative Process-Outcome Description 

Forms 

Intuiting Process: autonomic activation of somatic Aggregate A 
markers 
Intuition Outcome: physiological bodily-feeling 
states that guides behavior; may remain below the 
threshold of conscious awareness; or manifested 
as guiding feelings of rightness or wrongness are 
experienced ; or manifested as feelings of likeness 
or dislike 
Intuiting Process: processing of situational cuesAggregate B 
and activation of best ft behavioral schema 
Intuition Outcome: experienced as an immediate 
and automated behavioral reaction; may or may 
not be mixed with awareness of guiding feelings 
of rightness or wrongness and feelings of likeness 
or dislike 

the current situation caused some previously learned exemplars or prototype to come 
to mind. This form of intuition involves matching stimuli in a current situation, of-
ten called a probe, to already acquired exemplars and prototypes held in multiple-trace 
memory (Glöckner & Witteman, 2010, p. 8; Sinclair, 2010). In the Minerva 2 simula-
tion model for multiple-trace memory, memory is separated into primary memory (PM) 
and secondary memory (SM). Primary memory holds the current representation being 
attended to, this representation is a stimulus probe. Secondary memory holds partial 
recordings of previous experiences called “traces” and “...each experience with an ob-
ject is separately stored in memory as a single trace. Intuition, in the sense of a feeling 
towards an option, is an “echo” that results from automatically comparing the current 
object or situation to all similar experiences stored in memory” (Glöckner & Witteman, 
2010, p. 9). Traces stored in SM are activated if they share features of the probe in PM. 
Hintzman (1986) defned the similarity between a stored memory trace denoted T (i, j) 

with fxed index i running across all j = 1, ·n features and a current probe P (j) runningP 
across all j features as S(i) = (1/Nr) 

n
j=1 P (j)T (i, j) and the intensity and content 

of an echo are functions that are dependent on the similarity S(i) across all traces (p. 
413-414). The echo is a consciously registered mental representation abstracted from
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multiple traces (Hintzman, 1986). 
In the mathematics education literature, “Intuition in mathematical reasoning 

certainly includes the capacity to directly grasp patterns: different geometrical fgures 
belonging to the same category; different problems related to the same mathematical 
structure and leading to analogous solutions” (Fischbein, 1990, p. 42). Seeing a prob-
lem and categorizing it as this or that type of problem requires familiarity and recogni-
tion of the currently presented problem in terms of certain information bits accumulated 
in the past. Carlson and Bloom (2005) found that this type of recognition is common 
during the “orientation stage” of mathematical problem solving, which is embedded in 
proving (Carlson & Bloom, 2005, p. 68). During the orientation stage, experts “sponta-
neously accessed their concepts, facts, and algorithms as needed to represent the prob-
lem situation. Their constructions were also aided by heuristics such as categorizing the 
problem as an X kind of problem and working backwards” (Carlson & Bloom, 2005, p. 
68). 

Selden and Selden (2013) observed that “An individual who has refected on a 
number of problems is likely to have seen (perhaps tacitly) similarities between some 
of them. He or she might recognize (not necessarily explicitly or consciously) several 
overlapping problem situations, each arising from problems with similiar features” (p. 
306). These features may or may not have labels or names that a learner has assigned to 
them, but they do evoke “tentative solution starts”, certain examples, previously learned 
theorems, and an appraisal of how easy or diffcult the problem is from a type of knowl-
edge structure termed “a problem situation image” (Selden & Selden, 2013, p. 307). 

Certain cues in a problem situation may also bring to mind “instantiations” as 
prototypical representations of a mathematical concept that come to mind quickly in re-
sponse to a mathematical stimulus. Weber and Alcock (2004) defned an instantiation as 
a, “systematically repeatable way that an individual thinks about a mathematical object, 
which is internally meaningful to that individual” (p. 210). They found that algebraists 
approached problems frst by intuitively feeling them out and classifed their intuitive 
thoughts as instantiations. For example, when a problem involves an arbitrary conver-
gent sequence a representative instantiation of a particular convergent sequence may 
come to mind. And two groups having the same multiplication tables after some order-
ing of the columns is an instantiation for group isomorphisms (Weber & Alcock, 2004). 
Instantiations are said to be part of one’s concept image, which includes all acquired 
informal representatives of a mathematical concept and is contrasted with the concept 
defnition which is formal defnition of the concept (Weber & Alcock, 2004; Tall & 
Vinner, 1981). The concept image develops through various experiences and includes 
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all, “mental pictures and associated properties and proesses” and “can be considered as 
part of intuition”. It is “evoked in our mind in an intuitive way. They are the immediate 
reaction of our mind to the concept name that we hear or see” (Vinner, 1997, p. 63-78). 
Weber & Alcock (2004) stated that “Effective intuitive understanding of a concept” is 
reached whenever the intuiter displays many accurate and related instantiations or in-
tuitive representations of a mathematical concept, can translate these instantiations into 
formal language rapidly, and use them to support formal analytic reasoning (p. 229). 

Table 2.7: Matching associative forms of intuition with respect to the process and out-
come components. 

Matching Forms Process-Outcome Description 

Aggregate C Intuiting Process: matching of an abstract math-
ematical concept in a problem situation to pro-
totypes, exemplars, or intantiations from one’s 
concept image 
Intuition Outcome: prototypical representatives 
and examples of a mathematical concept 

Aggregate D-G Intuiting Process: feature matching between cur-
rent problem and memory traces of problems 
experienced in the past; retrieval of traces from 
situation image/multiple trace memory. 

Aggregate D Intuition Outcome: bringing to mind facts such 
as theorems or previously learned results that feel 
relevant 

Aggregate E Intuition Outcome: categorization of a problem as 
X type of problem 

Aggregate F Intuition Outcome: a tentative solution start; an 
automatic default approach to the problem at 
hand; the intuiter’s go-to response derived from 
their already acquired bag of tricks 

Aggregate G Intuition Outcome: an appraisal of the diffculty 
level of the problem at hand 

2.4.4.3 Accumulative and constructive 

Additional types of intuiting processes are accumulative and constructive processes. 
Accumulative processes add up evidence and cues to orient and guide which direc-
tion to take or when to make a turn. Constructive processes borrow from the infor-
mation gathered by accumulative processes. Constructive processes are more gradual 
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than simple associative or matching associative processes and samples from and inte-
grates a wider range of memory stores, accumulated evidence over time, and newly 
formed links between knowledge structures (Hogarth, 2010; Glöckner & Witteman, 
2010). Moreover, constructive processes are not merely a retrieval of already acquired 
knowledge that draws from the past and present. It allows for simulations of future 
scenarios and predictions of what may be possible, but is not yet known to be possible. 
As constructive processes continue “relevant pieces of information are ftted into the 
‘solution picture’ in a seemingly haphazard way, similar to assembling a jigsaw puzzle. 
When the assembled pieces start making sense, the big picture suddenly appears, fre-
quently accompanied by a feeling of certitude or relief” (Sinclair & Ashkanasy, 2005, 
p. 357). In mathematics education terminology, constructive intuiting process translates 
to a gradual sampling of matching-associative forms of intuition such as recognition of 
relevant already acquired situation images and concept images that are integrated with 
accumulated evidence and newly constructed knowledge. 

A prediction of what may be possible is akin to a guess or conjectural intu-
ition and occur prior to the proof image. After many episodes of conscious work and 
non-conscious work during breaks a the “proof image” is formed in the mind. It is 
accompanied with feelings of enlightenment;“When learners have a proof image, they 
are fully confdent that they can produce the detailed steps of the proof according to 
the image they have” (Kidron & Dreyfus, 2014, p. 304). The proof image comes into 
conscious awareness slowly initially as a faint mental representation and later as fully 
coherent image of the proof as a solution held in the mind. The proof image precedes 
the externalization and transformation of the total intuitive representation into a written 
formal deductive proof product. “Intuition might have been gained from examples but 
the entity characteristic of a proof image implies a complete image of the proof rather 
than specifc instantiations of the mathematical object being explored...”(p. 304). 

In other words, many intuitions, of different types, are gradually integrated into a 
summative “intuitive representation” to form a proof image. In case studies with mathe-
maticians, Kidron and Dreyfus (2014) used the Nested Epistemic Model for Abstraction 

in Context (Hershkoqitz, Schwarz, & Dreyfus, 2001) to frame three epistemic actions 
recognition, building with and constructing to organize each mathematician’s multiple 
construction episodes during their research towards a proof image. They found that, 
recognition of old constructs drives a motivation or need to construct something new. 
Emergence occurs when the learner experiences some degree of awareness of a new 
construct which is not fully coherent and, “is often fragile and context dependent” (p. 
4). There is a shift towards increased coherency when a new construct is applied as a 

58 



2.4. SYNTHESIS RESULTS 

Figure 2.4: A mathematicians’ construction episodes and proof image (Kidron & Drey-
fus, 2014, p. 313). 

“building block” in other situations for which it is relevant (p. 11). After repeated use of 
the new construct to “build-with” the construct may become consolidated in memory. 
Signs that a new construct has been consolidated include: immediacy, self-evidence, 
confdence, fexibility, and awareness (Dreyfus and Tsamir, 2004). “Constructing (C) 
consists of assembling and integrating previous constructs in a specifc context in such 
a way that a new (to the intuiter) construct emerges” (Kidron & Dreyfus, 2014, p. 308). 
Figure 2.4 represents a mathematician’s constructions through 16 episodes of work on 
a proof (p. 59). 

For constructions labeled C1, C2, C3 and C4 were linked in a non-linear fashion. 
For example, in episode 10 a new construction emerged C4 and the mathematician 
recovered C1 and estabilished a new link. At this point the mathematician reported 
feelings of “enlightenment” and a sense of “completeness” even though only a portion 
of the image had been formed (Kidron & Dreyfus, 2014, p. 314). Another way of 
phrasing this is in terms of a psychological embedding. In mathematics, an object X is 
embedded in another object Y if there is some structure preserving map f : X ,→ Y . 
The object C1 − C4 and C2 was embedded in another object C1 − C4 − C2 in which the 
initial structure was preserved and some some structure, a link, was added. 

After a formal proof product is completed and the prover may experience after-
shocks called “conclusive intuitions” (Fischbein, 1987, p. 117). Conclusive intuitions 
offer a compact summary of the key ideas of a solution mixed with new interpretations 
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of the behavior of certain mathematical objects, additional underyling forces that are 
driving the previously proved result, or how it may relate to other mathematical phe-
nomenon (Fischbein, 1987). Conclusive intuitions are like hindsight after the proving 
event has occurred. This hindsight brings to light something that was missed, leads to 
a deepened appreciation, and perhaps new ideas to pursue. It seems that a certain level 
of intrinsic motivation and interest are needed to experience such aftershocks. To date, 
no studies in the Endnote library of 852 references have explicitly investigated ‘conclu-
sive intuitions’ in undergraduate learners or what factors may contribute to presence or 
absence of this type of intuition. 

2.4.4.4 Non-creative versus creative forms of intuition 

The previously covered forms of intuition: simple associative, matching, accumulative, 
and constructive can be roughly collapsed to defne two more general classes of in-
tuition that differ in the non-conscious processing, incubation periods, and emotional 
responses that co-occur with an intuition outcome (Dane & Pratt, 2007, 2009; Gore & 
Sadler-Smith, 2011; Glöckner & Witteman, 2010). These two classes are non-creative 
and creative intuition which represents the coarsest theoretical classifcation of intuition 
found in this integrative review from the exploratory Psychology literature sample. 

Non-Creative Intuition: this form of intuition can be acquired through repeated 
practice and “involves a process whereby current situations are viewed in terms of their 
similarity or differences with past experiences” and includes simple-associative and 
matching-associative forms of intuition (Dane & Pratt, 2007, 2009, p. 6). Based on 
Dane and Pratt (2007, 2009) work, psychologists Gore and Sadler-Smith (2011) de-
scribed problem solving (non-creative) intuition as: 

...a response to a tightly structured problem based on non-conscious pro-
cessing information, activated automatically, eliciting matching of complex 
patterns of multiple cues against previously acquired prototypes and scripts 
held in long-term memory (p. 308, 2011). 

A defning feature of non-creative intuition is that the intuiting process is, “reproductive 
rather than productive; it uses currently available cues to retrieve representations stored 
on past occasions when similar cues were present (Smith & DeCoster, 1999, p. 328).” 
Non-creative intuition encompasses early characterizations of intuition made by Simon 
(1992): 

The situation has provided a cue: This cue has given the expert access to 
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information stored in memory, and the information provides the answer. 
Intuition is nothing more and nothing less than recognition (p. 155). 

Another description that coincided with more non-creative forms was given by Kahne-
man (2003): 

Thoughts and preferences that come to mind quickly without much refec-
tion (p. 697). 

Kahneman and Klein (2009) posed three conditions that are necessary for this form of 
intuition to be “skilled” : 1) “the environment must provide adequately valid cues to the 
nature of the situation”, 2) the learner must have the opportunity to notice and achieve 
awareness of what the salient cues are, and 3) there has to be an appropriate level of 
regularity or consistency between experiences so that the mind can identify patterns in 
the environment (p. 520). Identifying cues that prompts experts intuition outcomes are 
of considerable interest to psychologists who want to unveil the hidden source of experts 
intuition. If the cues that experts intuiting processes are attuned to can be identifed then 
they may be able to take steps towards instruction that allows others to become attuned 
to these pertinent cues. 

Creative Intuition: Psychologist Policastro (1995) contrasted non-creative and 
creative intuition. She stated that: 

Implicit learning and certain forms of intuition seem to operate as tacit 
pattern recognition, among experiences that have a similar structure. On 
the other hand, creative intuition seems to operate as a form of tacit pattern 
generation, entailing the organization of novel structure (p. 110). 

Creative intuition involves combining information in novel ways to create new forma-
tions (Dane & Pratt, 2007, 2009; Eubanks, Murphy, & Mumford, 2010). A similar 
interpretation is given by Poincaré: 

If I may be permitted a crude comparison, let us represent future elements 
of our combinations as something resembling Epicurus’s hooked atoms. 
When the mind is in complete repose these atoms are immovable; they are, 
so to speak, attached to the wall.... On the other hand, during a period 
of unconscious work, some of them are detached from the wall and set 
in motion. They plough through space in all directions, like a swarm of 
gnats, for instance, or, if we prefer a more learned comparison, like the 
gaseous molecules in the kinetic theory of gases. Their mutual impacts 
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may then produce new combinations. What is the part to be played by the 
preliminary conscious work? Clearly it is to liberate some of these atoms, 
to detach them from the wall and set them in motion. We think we have 
accomplished nothing, when we have stirred up the elements in a thousand 
different ways to try to arrange them...(Poincaré, 1914, p. 61). 

2.4.4.5 A set of attributes that separates non-creative and creative forms of intu-
ition 

The non-creative and creative intuition distinction was estabilished by psychologists 
Dane and Pratt (2007, 2009) with early work by Policastro (1995) that signaled the need 
for this distinction. Policastro (1995) drew from autobiographies, history, psychometric 
assessments and experimental studies to argue that creative intuition should be regarded 
as a viable research construct. Dane and Pratt pointed out that a defning feature of non-
creative forms is that the intuition outcome experienced by the intuiter occurs rapidly 
after exposure to associated cues with little to no incubation period. Moreover, if the 
outcome is mixed with a local affective emotional response, the level of intensity of 
this emotional response is low. On the other hand, creative intuition is delayed intuition 
that comes after a lengthy amounts of deliberation and incubation. It is important to 
note that creative and non-creative classes are general classes meaning they are not spe-
cifc to a particular feld or domain. General psychological frameworks do not include 
more domain-specifc aspects of these two classes. Domain-specifc aspects need to be 
clarifed (Dane & Pratt, 2007, 2009; Sadler & Smith, 2011). 

Although many characterizations of intuition and fndings in the mathematics 
education literature align with the creative and non-creative distinction, this distinc-
tion has not been explicated in the mathematics education literature. Out of the entire 
mathematics education sample, 781 journal papers plus the exploratory collection, only 
one paper (0.128%), Krummheuer (2007), mentioned ‘creative intuition’. It was men-
tioned a single time without a description or citation for the term and was the only time 
intuition was mentioned in the entire paper. A slightly more frequent occurrence of 
incubation was found. 10 journal papers (1.28 %) discussed incubation, all within the 
context of creativity research (Savic, 2015; Sriraman, Haavold, & Lee, 2013). 

The mathematics education literature will now be mapped into the general non-
creative and creative classifcation frame. While integrating the psychology and math-
ematics education literature 7 attributes that separate non-creative and creative forms 
of intuition emerged: personal novelty, incubation level, emotional valence and inten-

62 



2.4. SYNTHESIS RESULTS 

sity, ease of externalization, use of sanctioned or non-sanctioned semiotic representa-
tions to produce cues prior to an intuition outcome, the presence of sanctioned or non-
sanctioned semiotic representations contained in the externalized intuition outcome, 
and network thinking. To the best of my knowledge, this is the frst time that these 7 
attributes have been combined in order to characterize non-creative and creative forms 
of intuition for use in mathematics education research. 

Personal novelty. Personal novelty refers to the degree to which an intuiter 
feels like their intuition is something that they have or have not experienced or thought 
about before. Non-creative forms of intuition are associated with simple-associative 
and matching associative intuiting processes. These type of processes match stimuli in 
the environment to already acquired action scripts, prototypes and exemplars stored in 
long-term memory resulting in an intuition outcome that feels familiar due to recovery 
of old information. And this is contrasted with creative forms of intuition in which 
the outcome feels novel to the intuiter like something they have not experienced before 
and along with strong shifts in conceptions (Policastro, 1995; Glöckner & Witteman, 
2010). Creative intuition is “...synthesis in which disparate elements are fused together 
in novel combinations” (Dane & Pratt, 2009, p. 9). Aside from intuition, the mathe-
matics education literature associates mathematical creativity with novelty (Sriraman, 
2009). 

Incubation period. The roles of incubation in the creative process of discovery, 
invention, and decision-making has been described by various theories in psychology 
and summarized in the existing literature. Some of these key psychological theories that 
describe the roles of incubation include “unconscious and conscious work theory”, “re-
mote association”, “fatigue recovery”, and “opportunistic” assimilation (Hélie & Sun, 
2010, p. 996-997; Gilhooly, 2016). According to remote association theory often when 
a decision making task or problem is frst presented, the intuiter matches features of 
the presented problem to a repository in long-term memory that contain problems with 
similiar features that the intuiter has found solutions to in the past. This is a matter of 
simple and matching associative processes. However, these initial associative processes 
ignore features in the current problem situation that may be different and thus require 
a new approach to obtain a solution. The incubation period reduces the activation of 
similarity-based associations and allows for new approaches that steer ‘off the beaten 
path’ to formulate in the non-conscious mind and eventually reach conscious awareness. 

A defning feature of creative intuition is that the outcome occurs after long 
periods of conscious work on a problem and an incubation period, a period whenever 
conscious work directed on the problem at hand is put on pause (Dane & Pratt, 2009; 
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H´ Thus far, incubation periods have been measured in terms ofelie & Sun, 2010). 
length of time or occurrence characterization in the psychology literature to separate 
non-creative and creative forms of intuition: little to no incubation period for problem 
non-creative and moderate to lengthy for creative intuition (Dane & Pratt, 2007, 2009). 

Accounts of incubation in mathematics research have been documented by 
Hadamard (1954) and investigated further by Savic (2015) through case studies. In the 
mathematics education creativity literature and in the context of mathematical proving, 
Savic (2015) defned incubation to be “a period of time, following an attempt to con-
struct a least part of a proof, during which similiar activity (e.g., work on that same 
proof) does not occur” (p. 9). Results from his study indicated that 6 out of 9 mathe-
maticians were cognizant of when to enter a period of incubation and get over episodes 
of being stuck. Savic argued that the length of the incubation period is not a suffcient 
condition for creativity, and viewed that an intentional act of taking a break to let one’s 
ideas simmer was more of a marker of creativity than incubation period length. He 
stated: 

What matters is not the exact length of time, or the discovery of an error, 
but the prover’s awareness that the argument has not been progressing and 
requires a new direction or new ideas that are not forthcoming (p. 8). 

Emotional valence and intensity. Another attribute of a creative intuition, is 
that the outcome is mixed with high emotional intensity and is positively valenced 
(Dane & Pratt, 2007, 2009). This is consistent with Hadamard’s (1954) case studies 
of mathematicians’ process of discovery. These emotionally charged mental represen-
tations occurred during a stage of creative work termed “Illumination”, defned as “the 
appearance of the ‘happy idea’ together with the psychological events which immedi-
ately preceded and accompanied that appearance” of an idea or solution (Wallas, 1926, 
p. 80). Similarly, Kidron and Dreyfus (2014) found that a mathematician experienced 
feeling of satisfaction and enlightenment after linking two disjoint proof construction 
episodes and arriving at a proof image. Unlike Creative forms, Non-creative forms tend 
to be associated with matter-of-fact non-emotional reactions (Dane & Pratt, 2009; Gore 
& Sadler-Smith, 2011). 

Ease of externalization. Non-creative forms of intuition are also quicker to 
externalize and mechanize into common formal language, as in the case of matching 
associative forms in which the intuition outcome contains a prototypical representation 
that the intuiter has already acquired the language to express it. In contrast, creative 
intuition is often murky and additional indicators of creative form are that they are 
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diffcult to coherently externalize (Policastro, 1995). It is stated that ”metaphors, theo-
retical hunches, and syncretic sketches might represent attempts at articulating creative 
intuitions into plausible descriptions. These primitive representations...prefgure the 
beginnings of a complex problem-solving stage, because they require exhaustive elab-
orations (over long periods of time) in order to become fully articulated into valuable 
fnal products” (Policastro, 1995, p. 102). Evidence of the diffculty to articulate math-
ematical intuition was found in mathematics education studies. Kidron and Dreyfus 
(2014) found that, 

People may have a proof image in their mind but be unable to write it down 
or explain it in words to somebody else or even to themselves; a proof 
image may be defnite but transitory and disappear again, and the person 
may be worried about that possibility (p. 314-315). 

Presence of sanctioned or non-sanctioned semiotic representations contained 
in intuition outcome. When an intuitive representation or intuition experienced by the 
prover has never been experienced before it is like a foreign entity and fguring out how 
to express it through any form of language can be extremely diffcult and slow (Kidron 
& Dreyfus, 2014). It is inferred that when creative intuitions are externalized that these 
externalization would predominantly contain non-sanctioned semiotic representations 
in the form of metaphors or drawings where as non-creative forms may predominantly 
contain sanctioned representations. The non-sanctioned and sanctioned distinction was 
given by diSessa (2004). 

Use of sanctioned or non-sanctioned semiotic representations to produce cues. 
When reasoning with mathematical objects, the intuiter may draw their intuition from 
socially sanctioned representations that are commonly taught as part of a curriculum 
within a particular culture (i.e., matrices, graphs, objects of symmetry, etc.). The in-
tuiter may also independently re-invent sanctioned representations that have not been 
taught to them by others or invent non-sanctioned representations that have yet to be 
adopted by a particular mathematical community as a culturally agreed upon way to 
think about an object. For example, Cayley tables were frst publicly introduced by 
Arthur Cayley (1854). Cayley is considered to be an inventor of cayley tables which he 
used to think about groups as a collection of permutation functions under composition. 
For cayley this would have been considered a non-sanctioned representation at the time. 
For mathematics learners today that have had exposure to cayley tables, their adopted 
use of a cayley table would be considered sanctioned representation use. Young dia-
grams also come to mind, as a representation that has become sanctioned and the use of 
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them is considered a part of common practices within certain mathematical cultures or 
areas of research. 

Attempts to stimulate the intuiting process prior to awareness of an intuition out-
come may involve more non-sanctioned representation use or independent re-invention 
of sanction representations without prior exposure in the case of more creative forms. 
diSessa et al. (1991) viewed student’s reinvention of conventional sanctioned represen-
tations as “genuine and creative work” (p. 117). On the other hand, cue production 
through sanctioned representations, that the intuiter has already been taught how to use, 
is more indicative of non-creative forms. 

According to the Creativity-in-Progress Rubric (CPR), a general creativity as-
sessment in undergraduate mathematics, creative gains are marked by the learner be-
ing able to reason with multiple representations and relating multiple representations 
(Savic, Karakok, Tang, El Turkey, & Naccarato, 2017). The use of multiple represen-
tations and relating these representation prior to an intuition outcome may also be a 
marker of more creative forms of intuition. At this time, the CPR does not incorporate 
the non-sanctioned or sanctioned distinction nor specify any conditions for creativity 
with respect to representation type in terms of representations that are either directly 
acquired through enculturation, invented, or re-invented. 

Network thinking. In a comparison review of psychologist E. Toulouse’s ex-
tensive case study of Henri Poincaré, Gestalt psychologist Max Wertheimer’s exami-
nation of the development of Einstein’s theory of relativity, Miller (1992) noted that 
Poincaré and Einstein engaged in a process termed “network thinking” (p. 386). “In net-
work thinking, concepts from apparently disparate disciplines are combined by proper 
choice of a mental image or metaphor...This nonlinear thought process can occur un-
consciously and is not necessarily in real time” (Miller, 1992, p. 386). Furthermore, 
a creative intuition outcome may prompt divergent thinking that leads one to generate 
multiple routes that may lead to a solution rather than convergent thinking that is fxed 
towards a single route (Policastro, 1995; Dane & Pratt, 2009). 

2.4.4.6 Additional attributes 

Aside from the previously covered major classes of intuition and the variable attributes 
associated with them, researchers may also isolate a single attribute or subset of at-
tributes of interest. This section covers additional attributes that were collected and 
isolated: unique versus common, errored versus non-errored, error type, the level of 
confdence in truth value, and obviousness. At this time, we consider these attributes 
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to be independent of the attributes that separate the non-creative and creative classes of 
intuition. Unique versus common can be viewed as binary attribute with two values that 
an intuition can take on. The researcher must determine a cut-off for what frequency 
of a particular intuition within a specifed population is to be considered common or 
unique. The researcher may also place a collection of intuitions on a spectrum from 
unique to common. Errored, non-errored, or unknown is frst viewed as a ternary at-
tribute, however one may go further inside of the class of errored intuition and assign 
additional values for error types which partitions the class or errored intuitions further. 

Unique versus common. Intuitions that are common among members of a math-
ematical culture refect shared experiences. On the other hand, intuitions that are unique 
within a culture refect an individual’s personal experiences that are deviations from the 
cultural norm (Wilder, 1967; Witteman, 1981; Fischbein, 1987; Thurston, 1994). For 
example, Weber and Alcock (2004) asked mathematicians, “Describe for me in your 
own words what it means intuitively for two groups to be isomorphic?” Responses to 
the second question were consistent among algebraists who said, “same structure”, “al-
gebraically the same”, and the same up to re-labeling (p. 217). This is a shared form 
of intuition common among algebraists today. Several historical examples of common 
collective and unique intuitions were contrasted by Wilder (1967). In one such exam-
ple he recalls a time when a majority of the mathematical community believed that a 
real continuous function that was no where differentiable could not exist, a case of a 
common errored intuition. Wilder (1967) stated, “...probably almost every mathemati-
cian felt intuitively that such a function could not exist; this intuition had become a 
cultural attitude, a common belief” (p. 606). However, Weierstrass did not accept this 
common delusion and gave an example of a function that was real continuous and no 
where differentiable. Wilder (1967) concluded that, “...there can be expected to exist a 
kind of intuition that is common to most members of the mathematical community. But 
as soon as one goes beyond these concepts to mathematical specialities-particularly to 
their frontiers-then the intuition becomes a quite individual affair; and it is this intuition 
that is of immediate importance in creative work” (p. 606). Based on this statement, it 
may be inferred that the attribute of unique within certain cultures is highly correlated 
with attributes in the creative intuition cluster, however this has not been statistically 
verifed or refuted. 

Errored versus non-errored and error types. An errored intuition can be further 
typifed according to the type of process error. Types of process errors termed “System-
atic intuitive errors”, intuitive errors that are pervasive across populations, have been 
organized in the feld of psychology. Big umbrella error types are: attribute substi-
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tution and relevance errors (Kahneman & Frederick, 2002). An attribute substitution 
error is said to occur when a attribute of a current problem or object is substituted with 
an attribute that is more accessible to the mind. A relevance error occurs when relevant 
cues within a problem solving environment are ignored or when irrelevant features are 
of major focus (Kahneman & Frederick, 2002). Bubp (2014) adapted this typifcation 
of systematic intuitive errors, from the angle of dual-process theory, to analyze the type 
of errors mathematics students make on prove or disprove tasks. One such task was the 
“Monotonicity Task”. This task asked participants to: 

Prove or disprove: If f : R −→ R and g : R −→ R are decreasing on the 
interval I , then the composite function f ◦ g is increasing on I (p. 77). 

Within a participant sample size of 12 undergraduates, that included mathemat-
ics, mathematics education, and economics majors, Bubp (2014) found that: 8 students 
made relevance errors on the monotonicity task and 3 students were able to detect and 
recover from relevance errors. In particular, they were not attuned to the interval re-
striction as being an important piece and ignored it as if it was irrelevant. The interval 
restriction is needed to recognize and cook up a counterexample in order to correctly as-
sert that the statement is false. Some students also committed the attribute substitution 
error that “two negatives make a positive” applies to functions so that any two decreas-
ing functions make an increasing function. The attribute that “two negatives make a 
positive” for numbers was substituted as an attribute of functions in the monotonicity 
task by 7 students. 4 of the 3 students were able to overcome this error. Overall, many 
students’ analytic Type 2 processes accepted their initial and errored intuitive Type 1 
response without any further evaluation, signaling of an error, or correction from Type 
2 processes. Instead, students analytic Type 2 processes accepted the intuition as true 
and were used to form deductive arguments that backed up the errored intuition (Bubp, 
2014). 

Leron and Hazzan (2009) also applied dual-process theory to study mathematics 
students’ intuitive errors. They gave 113 university level computer science majors the 
prompt: “ A student wrote in an exam, Z3 is a subgroup of Z6. In your opinion, is 
the statement true, partially true, or false? Please explain your answer” (p. 268). A 
desirable logical deductive response to this answer would be: 

The ‘converse’ of Lagrange’s theorem stated as, if d is a divisor of the 
order of a group G then there exists a subgroup H of order d in G. This 
converse holds for special cases like cyclic groups. Since 3 is a divisor of 
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Z6 then there exists a subgroup of order 3 in Z6, namely {0, 2, 4} and Z3 is 
isomorphic to the subgroup {0, 2, 4} in Z6. 

However, 73 gave an incorrect answer and 27% of these students gave the quick re-
sponse that the statement in the prompt is true, 3 divides 6. Such an intuitive error 
without logical deduction is reminiscent of the baseball and bat example studied by 
Kahneman & Fredrick (2002). Leron and Hazzan’s (2009) fndings were re-examined 
by Melhuish’s (2018) replication study with several different framings of the original 
prompt. 

Overall, it is important that researchers continue to try to understand why an 
errored intuition has occurred, typify Type 1 process errors further, and be able to diag-
nose which process error was involved in order to identify and more effciently address 
students’ needs (Bubp, 2014). Investigations of students’ intuitive errors are also tied 
to an area of research that is primarily concerned with the development of students’ 
“inhibitory control mechanisms” which are refective or analytic strategies that encour-
age students to be skeptics of and their intuitions. How instructors approach students’ 
intuitive errors or “misconceptions” through classroom instruction is still open for de-
bate (Adiredja, 2018, p. 60; Thomas, 2015, p. 873; Attridge & Inglis, 2015). Thomas 
(2015) stated that “It seems that intuitive thinking is common place in mathematics and 
while often invaluable, it can sometimes lead to erroneous ideas, and hence the need for 
inhibition” (p. 867). Adiredja (2018) made the case that there is a tendency for cog-
nitive researchers to negatively frame student’s intuitive thinking using terms such as 
‘naive’, ‘inability’, and ‘unsatisfactory understanding’ rather than seeing such instances 
as an opportunity for growth (p. 60). Formal mathematical knowledge is often viewed 
as “power” while students’ preformal ideas and intuitions are viewed as weak by some 
researchers. Adiredja (2018) refered to materializations of this view in the literature as 
“defcit narratives” (p. 60). 

Confdence in truth value and obviousness. Fischbein, Tirosh, and Melamed 
(1981) conducted an empirical study that combined the degree of confdence C and the 
degree of obviousness O to give a measure of intuitive acceptance I as a geometric mean 

√ 
I = C × O. In this study they ask students in grades 8 and 9 to solve 8 problems, 
7 of these 8 problems were directly tied to the concept of infnity. First participants 
were told to solve the problem and explain their solutions. For each of the solutions, 
the students answered 3 yes or no questions for the confdence. one such question was 
“Have you doubts with the correctness of your answer” and 3 questions for obviousness, 
one such question was “Did you need some effort in order to completely agree with your 
answer”? A Guttman scale was used since these questions had a hierarchical structure in 
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which the questions were increasingly more specifc meaning the questions determined 
how extreme their confdence and obviousness with respect to their solutions. The 
scale had a 0 to 6 score range for the variable confdence and a 0 to 6 score range for 
obviousness. For each problem, the responses were grouped together if they were the 
same. Next, the mean confdence and mean obviousness score was calculated for each 
type of response across participants. Finally, the intuitive acceptance of each of the 
solutions was computed by the research by taking the geometric mean of the average 
confdence and obviousness scores. The results indicated that there were 3 kinds of 
problems in the 8 problem sample: (1) problems that had high correct solutions and 
high intuitive acceptance, (2) problems that had intuitive acceptance close to 3 and 
with almost equal correct and incorrect solutions, and (3) problems that had a high 
frequency of incorrect solutions with high intuitive acceptance of a solution (Fischbein, 
et al., 1981). 

2.5 Instructional environments that may enhance the 
development of mathematical intuition 

This section covers instructional environments that may enhance the development of 
students’ mathematical intuition at the university level compared to traditional lecture 
based environments based on theoretical assumptions. There are many, not exactly 
well-defned, ways to think about what it means to enhance the overall development 
of mathematical intuition. To enhance could mean: to increase the frequency of cre-
ative intuitions, to increases the occurrences in which an intuition with fxed content in 
the outcome passes from a creative to non-creative state, reduce the frequency of non-
creative forms of intuitions that are errored and accepted by the intuiter as true without 
self-correction, to improve representational fuency (i.e., increased size in fuency di-
graphs and reduction in the number of pseudo-conversions, subsection 4.2.3), and the 
use of counterexamples to build and refne intuition, to increase network thinking across 
mathematical systems, to improve affective factors such as intrinsic motivation or en-
joyment, and to reduce negative affective impacts such as anxiety, fear of being wrong, 
and learning to manage strong feelings of certainty that dissuade work towards a proof. 
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2.5.1 Realistic mathematics education (RME) and guided reinvention 

Realistic mathematics education (RME) is an instructional design theory. One key prin-
cipal of RME is “...to allow learners to come to regard the knowledge they acquire as 
their own private knowledge, knowledge for which they themselves are responsible” 
(Gravemeijer & Doorman, 1999). A second principle is to frame mathematics in real 
life contexts so that the student can see how it might be useful to them. RME supports 
guided reinvention and opposes “anti-didactical inversion”, a routine behavior of the 
instructor to start their lessons with a refned end result such as axioms, formal defni-
tions, and theorems that took many mathematicians many years to reach (Gravemeijer 
& Doorman, 1999, p. 116). Guided reinvention is an instruction format where activities 
are designed to guide students to reinvent important mathematical defnitions, concepts, 
and results via personal explorations and interactions with peers. RME and guided rein-
vention principles are implemented in: Lakatos’ style of instruction, the project method 
of teaching, and inquiry-oriented instruction. 

2.5.2 Lakatosian style of instruction 

Lakatos’ (1976) text Proofs and Refutations advocated for mathematics learning envi-
ronments to be set up in a way that gave students the opportunity to experiment with 
mathematical objects, to follow their curiosities, make guesses and use their intuition to 
arrive at conjectures peaked by their own interests (Lakatos, 1963; 1976). His pedagog-
ical approach to proof, is not what is meant by proof in the formal product sense, but 
rather it is viewed as a process in which counterexample generation serves a major role. 
Lakatos (1963) viewed proof as: “a rough thought experiment or a quasi-experiment 
which suggests a decomposition of the original conjecture into sub conjectures or lem-
mas, thus embedding it in a quite distant body of knowledge” (p. 10). 

To illustrate how the above defnition of proof might play out in the classroom, 
Lakatos (1976) provided a fction of interactions between a teacher and students. These 
interactions followed a historical trajectory of mathematical problems like the classif-
cation of polyhedra problem posed by Euler (1758a) and the evolution of this problem 
in papers such as Abel (1809), Cayley (1861), Lhuilier (1890b), and Jonquieres (1890a, 
1890b), to name a few. In this interaction the teacher poses the problem of whether or 
not their is a relationship between the number of vertices, edges, and faces of a reg-
ular polyhedra. By experimenting with several examples students come to a starting 
conjecture that V − E + F = 2. Next, students try to refute this conjecture with coun-
terexamples but it seems that the conjecture still holds true. Students are given space 
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to try to prove the conjecture, but the following day in class no one gives a proof. So 
the teacher presents a visual proof for a special case, namely the tetrahedron and in-
serts “rubber-sheet geometry” which inserts hidden assumptions that certain properties 
of spaces are not affected by continuous deformations (Lakatos, 1976, p. 7). While one 
student is quick to accept the visual proof for the example case as a general proof of 
the conjecture, several students are cautious and questioned the validity for some of the 
steps in the proof for all cases. This led to the formulation of two additional conjectures 
that would need to be proved as lemmas to go from a proof of a special case to the 
general case. 

Lakatos (1976) categorized counterexamples according to whether they actually 
falsify a conjecture or are “pathological” counter-examples that signal an ill-defned un-
derlying defnition that is lurking around. “Pathological” counter-examples are called 
“monsters” (p. 14). Students in Lakatos’ fction were not told the formal and refned 
classifcations of polyhedra that is known today. This was an intentional pedagogical 
decision made by the teacher which aligns with an opposition to anti-didactical inver-
sion, a principle of RME defned earlier. The intentional masking of a clear or refned 
defnition of polyhedra gave students space to wrestle with the ambiguity (Lakatos, 
1976, p. 14, 41). Larsen and Zandieh (2008) connected guided reinvention from RME 
and Lakatos pedagogical approach to proof. They extracted methods of proof from 
Lakatos’ text and gave a condensed and tractable frame that mathematics education re-
searchers could use to examine student thinking during proof construction activities. 
These methods included “monster-barring” and “exception-barring” (Lakatos, 1976, p. 
14, 41). 

Monster-barring is the process of getting rid of monsters to the main conjecture 
by modifying defnitions. In Lakatos’ fction students erupted in a turbulent cycle of 
generating a monster, polyhedra that did not have Euler characteristic 2, and getting 
rid of the monster by making a perturbation to their defnition of polyhedra, generating 
another monster and making another perturbation, and so on until they move closer to 
the modern day notion of convex polyhedra as polyhedra that can be ‘pumped into a 
ball’, more formally polyhedra that are homeomorphic to a ball. 

Exception-barring is an additional tactic of coming up with a collection of coun-
terexamples to a conjecture and making restrictions to the assumption clause of a con-
jecture. Restrictions are made so that this list of examples are not counterexamples 
to the newly adjusted conjecture (Lakatos, 1976). Larsen and Zandieh (2008) defned 
exception-barring to include, “any response that results in a modifcation of the con-
jecture to exclude a counterexample without reference to the proof...from simply listing 
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counterexamples as exceptions, to reformulating the conjecture by restricting its domain 
to exclude the counterexample” (p. 208). The difference between monster-barring and 
exception-barring is that the focus of modifcation on monster-barring is a defnition and 
the other is concerned with adding qualifers in the assumption clause of the conjecture 
(Larsen & Zandieh, 2008). 

2.5.3 Project method of teaching 

Kaisari and Patronis illustrated the “project method” at the university level in which 
students “work on the same theme continuously during the semester and discuss their 
work as a team, under the teacher-researcher’s guide” (p. 254). It allows for students to 
experience immersion and getting wrapped up in a big problem for an extended period 
much like Lakatos (1967) approach. The project method begins with an introduction to 
a starting “theme” to set the scene for a “main theme” (p. 258). The starting theme was 
geometry of the earth’s surface. Students were given texts such as La Bela by Denis 
Guedj, that mixes relatable stories of navigation with mathematics problems of histor-
ical importance. The main theme was to draw analogies between euclidean geometry 
and elliptic and double elliptic geometry. Students transformed defnitions of points, 
lines, and planes from euclidean geometry to spherical geometry. Next, they trans-
formed Hilbert’s axioms for euclidean geometry into axioms for elliptic and double 
elliptic geometry for the surface of a sphere. 

Kaisari and Patronis (2010) stated criteria for the main theme. One criteria is 
that the theme needs to relate or dissociate familiar elementary mathematics, such as en-
try calculus or euclidean geometry, to more advanced mathematical systems. This may 
help to highlight habitual thinking from school geometry that leads to rigid thinking and 
errors in more advanced abstract settings. Another criteria for a chosen theme is that it 
should give rise to multiple ideas about what might be going or what the meaning of an 
object is in different systems. For example, the meaning of a line in planar geometry 
versus the meaning of a line on the surface of a sphere, or interpretations of axioms in 
one system that either translate or don’t translate to another system, and theorems that 
are known in one system but fail to hold in another system. 

2.5.4 Inquiry-oriented instruction 

Inquiry-Oriented Instruction (IOI) has been developed for: Introductory Abstract Al-
gebra (IOAA), Linear Algebra (IOLA), and Differential Equations (IODE) (Wawro et 
al., 2012; Larsen, Johnson, & Bartlo, 2013; Rasmussen et al., 2006; Keene, Hall, & 
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Duca, 2014). The design of IOI is based on the principles realistic mathematics edu-
cation (RME) and implements guided reinvention activities. The following is a brief 
description of this curriculum from members of the IOAA group: 

Each unit begins with a reinvention phase in which students develop con-
cepts based on their intuitions, informal strategies, and prior knowledge. 
The end product of the reinvention phase is a formal defnition (or defni-
tions) constructed by students and a collection of conjectures... (Lockwood, 
Johnson, & Larsen, 2013, p. 777). 

The development of guided reinvention instructional activities towards a cur-
riculum is labor intensive. It is not practical for an individual instructor to develop 
them from scratch, test them, and work with mathematicians to refne how the actually 
implementation of them works. Research teams, for example under IOAA, have gone 
through several stages over an 11 year-period, from 2002 to 2013, to develop curriculum 
materials as well as guidelines they refer to as “instructor support materials” for using 
these activities in the classroom (p. 778). These “support materials”, based on research 
fndings, inform instructors of how student’s reason during these activities, the possible 
routes they take, along with points to watch out for that students struggled with. 

Based on a culmination of the IOI research team, Kuster, Johnson, Rupnow, and 
Wilhelm (2019) published the Inquiry Oriented Instructional Measure (IOIM), a quan-
titative measure of how much a classroom learning environment resembles inquiry-
oriented instruction. The IOIM is an observational rubric that is used to evaluate audio 
video recorded classroom episodes. It is used to score how much teachers and students’ 
actions satisfy seven IOI practices. The IOI team advocated that taking a route towards 
quantitative measures has improved coherency and communication of what an IOI en-
vironment looks like. The IOI team described the inquiry in IOI as two-way, the student 
investigates an instructor’s questions or statements and the instructor investigates their 
students’ thoughts. The job of the instructor to refect on student responses and build 
instructional plans from students’ ideas is a major tenant. Kuster et al. (2019) described 
the work of an inquiry-oriented instructor: 

Starting with research-based tasks designed to promote rich mathemati-
cal thinking and reasoning, IO-instructors elicit student generated contri-
butions, and through inquiry interpret them, decide which are useful, and 
then determine how to use them to move the classroom toward developing 
the lesson’s intended mathematical idea...IOI teachers listen to students’ 
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contributions (e.g., reasoning, methods, and justifcations) and, when ap-
propriate, use these contributions as a springboard for follow up questions 
and further exploration by students (p. 185, 188). 

The pairing of the IOIM with other mixed methods instruments associated with math-
ematical intuition could help to illuminate what instructional environments, relative to 
IOIM scores, are more or less supportive when it comes to students’ intuition develop-
ment. However, ways to quantitatively characterize a mathematics student’s intuition 
at a point in time and intuition development across time are either extremely scarce or 
non-existent. 

2.6 Summary 

This chapter has synthesized a sizable sample of university level mathematics educa-
tion and psychology literature to give a combined view of the construct mathematical 
intuition. This chapter has illustrated that intuition is an enormous class of cognitions 
with many attributes running around. Several boundary properties and distinct classif-
cations of intuition were brought together in this chapter. The coarsest classifcation of 
non-creative and creative forms of intuition seemed to be a signifcant fnding from the 
psychology literature that has been a blind spot in the mathematics education literature 
and has the potential to increase coherency and open new areas of research. In addition 
several tactics that are thought to enhance mathematical intuition such as represen-
tational shifting, experimentation with examples, embodiment and creating analogies 
were found in the literature. Instructional environments that are thought to enhance 
the development of leaners’ intuition were also discussed. However, it remains unclear 
and ambiguous as to whether these environment are truly developing learners’ intuition. 
Despite the importance of intuition in learning, there are still no estabilished education 
research programs on mathematical intuition. 
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Chapter 3 

Literature Background: Instructional 
Design Research in Abstract Algebra, 
Evaluative Investigations, and Effcacy 

3.1 Introduction 

Introductory Abstract algebra is an advanced undergraduate typically taken at the junior 
or senior level and is a primer for abstract algebra at the graduate level. This chapter 
gives background on three facets of education research for abstract algebra: (a) instruc-
tional design research, (b) investigations of student thinking that inform instructional 
design research, and (c) studies the evaluate the effcacy of experimental instruction. 
This chapter covers abstract algebra topics that were incorporated into tasks used to 
investigate learner’s representational fuency and example-based intuitions and concen-
trated on in this thesis. These topics are: homomorphisms, quotient groups, isomor-
phisms, and group actions with emphasis on Cayley’s theorem, Lagrange’s theorem, 
and the orbit-stabilizer theorem. 

3.2 Instructional design research 

Early instructional design research was based on APOS theory and the activities, class 
discussions, and exercises (ACE) cycle. Asiala et al. (1997) developed the APOS 
theory and ACE approach and designed an experimental abstract algebra course to 
improve learning outcomes for equivalence relations, cosets, normality, and quotient 
groups. The course incorporated programming activities during computer lab periods 
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that learners worked on in teams, lecture and class discussion to refect on the mathe-
matical concepts and standard textbook exercises, and exams with unlimited time. The 
computer lab activity for cosets, guided learners to program a function that defnes a 
binary operation on a group and returns four scenarios: (1) an element binary oper-
ation an element, (2) an element binary operation a subgroup, (3) a subgroup binary 
operation an element, and (4) all possible combinations of an element binary operation 
an element from two subgroups. Once learners are able to program this function they 
have an action or procedural view of a coset. After achieving an action view, learners 
are guided to input various groups and subgroups into their program. They look for 
patterns and explore why the patterns they fnd exist. A process view of cosets occurs 
when the learner can describe a coset as a list of elements. A leaner achieves an ob-
ject view of cosets when they can identify patterns like cosets all have equal sizes and 
are disjoint and what causes such patterns to exist. A more evolved object view occurs 
when leaners are able to use these fndings to prove statements like Lagrange’s theorem. 

More recent and ongoing instructional design research is being conducted un-
der the Teaching Abstract Algebra for Understanding program (TAAFU). The materi-
als created for the TAAFU research program are based on an accumulation of “local 
instructional theories” (LIT) that follow the principles of guided reinvention, Realistic 
Mathematics Education (RME), constructivism, and elements of a Lakatosian style of 
proof instruction (Larsen, Johnson, & Bartlo, 2013). LITs are products of a three stage 
process: (1) creating an initial design for a sequence of in class instructional activities, 
(2) carrying out teaching experiments to gather information on how learners interact 
with eachother, their instructor, and the mathematics when the design is implemented, 
and (3) retrospective analysis by a team of researchers and instructors (Gravemeijer, 
2004). The frst stage is prospective, the designers anticipates how learners might think 
about concepts and what they might struggle with, alternative ways that a concept could 
be introduced in the classroom to address learners’ needs, and hypothetical interactions 
between the learners and instructor. The designers make informed assumptions based 
on prior research for how learners approach the concept of interest or they may con-
duct an initial set of interviews to see how students are thinking. The second stage is 
focused on documenting how things actually unfold when the design is implemented 
with a small group of students and, after further preparation, how things unfold in the 
full classroom setting. After the frst experiment, the design is improved and subse-
quent experiments are conducted for modifed designs. The third stage is focused on 
analyzing data collected during the teaching experiments, determining what aspects of 
the implementation worked, and presenting an LIT for a particular concept that other 
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educators can incorporate into their teaching (Larsen & Lockwood, 2013; Gravemeijer, 
2004). 

Currently, there are published LITs for the group, homomorphism, isomor-
phism, and quotient group concept (Larsen, Johnson, & Bartlo, 2013; Larsen & Lock-
wood, 2013), in addition to work on guided reinvention materials for rings, integral 
domains, and felds (Cook, 2012, 2018) and symmetry groups for molecules in chem-
istry (Bergman, 2020). Larsen and Lockwood’s (2013) LIT instructional activities for 
the quotient group concept incorporated Cayley tables of the dihedral group. Learn-
ers were guided to notice similarities between how the odd and even integers behaved 
and how the refections and rotations of the dihedral group behaved. Next, they found 
subsets of elements of the dihedral group that could be used to build a new group with 
set multiplication as the binary operation. Through questions and in class activities, the 
instructor guided learners to make important observations like one of the subsets must 
act like an identity and be a subgroup. A classroom activity that was part of this LIT 
shown in Figure 3.1, was designed along the way from a learners’ insights in the class, 
a key feature of Inquiry Oriented Instruction. 

During the session learners investigated examples of various collections of sub-
sets with set multiplication to make conjectures about what subsets acted like an identity 
and stronger necessary properties that the identity subgroup needed to have in order for 
the set of subsets to be a group. They also recognized that once the identity subgroup 
is chosen that the rest of the partition can be formed without additional information. 
Towards the end learners made observations and counter arguments that moved them 
towards the condition of normality. There was evidence that learners noticed that the 
right cosets and left cosets of the identity subgroup must be equal. In addition to Larsen 
and Lockwood’s (2013) guided reinvention sequence for the quotient group, learners 
may also beneft from Mena-Lorca and Parraguez (2016) recommendation to reinforce 
the fundamental homomorphism theorem of sets and design classroom activities that 
encourage them to draw comparisons between this theorem for sets and groups. To 
supplement instructional sequences, the IOAA team has conducted additional research 
that investigated mathematicians’ input on the implementation of the TAAFU curricu-
lum. They also developed resources for instructors that gives foresight into how students 
respond to the activities (Johnson, Caughman, Fredericks & Gibson, 2013; Lockwood, 
Johnson, & Larsen, 2013). 

There are currently no Local Instructional Theories for direct or semi-direct 
products, however Bergman (2019, 2020) has made some initial progress related to this. 
She has designed and piloted activities that guide learners to fnd all of the symmetries 
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Figure 3.1: Activity built from student’s idea in the LIT sequence for the quotient group 
concept (Larsen & Lockwood, 2013, p. 738). 

of basic molecules like water, ammonia and ethane and derive a generalized procedure 
for fnding all symmetries of basic introductory molecules. On a few occasions during 
these activities, graduate level participants arrived at distinctions between direct product 
and semi-direct products. 

3.3 Investigations of student thinking 

Homomorphisms, Quotient groups, and Isomorphisms 

Dubinsky et al. (1994) assessed 24 high school teachers responses to a questionnaire 
that covered topics in a frst introduction to group theory course. Topics included: bi-
nary operations, group properties, subgroup properties, cosets, normal subgroups, and 
quotient groups. They found that groups are often viewed as a set, subgroups as a sub-
set, and focus on the size of the set rather than the binary operation. For subgroups a 
subset of elements is chosen that are similiar in type, for example all the fips in a di-
hedral group, but have diffculty checking that necessary properties of a group such as 
closure hold. In some cases, necessary properties are not considered. These diffculties 
persisted past the ffth week of the course for some. Performance on the quotient group 
question, that involved the dihedral group of order six, was lower than for other topics 
assessed in the questionnaire. Half of the teachers that were interviewed had not con-
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solidated what a normal subgroup is or its signifcance and one successfully constructed 
a quotient group with minimal guidance (Dubinsky et al., 1994). 

In a small sample study Weber (2001) found that four undergraduate learn-
ers’ were able to successfully prove homomorphism statements that were basic con-
sequences of the formal defnition of a homomorphism. However, for more challenging 
proofs that involved formal facts, like the frst isomorphism theorem and Lagrange’s 
theorem, either these learners knew the formal facts that were needed but did not re-
cover them during the proving process or they had not aquired such facts yet. “Strategic 
Knowledge”, knowing what facts to apply and arriving at effcient proofs quickly while 
avoiding overly complicated wrong turns, was a major source of diffculty (p. 111-114). 
Weber (2001) also found that proofs that involved a quotient group to be constructed 
were of considerable struggle for 3 out of 4 undergraduates in a study. Two of the 
undergraduates did not have knowledge of quotient groups, but did have knowledge 
but did not bring it to mind during this proof even when cues like “It is known that 
K is a normal subgroup of S4 where present in the to be proved statement. Weber 
(2001) called for additional larger sample studies to determine the generalizability of 
his fndings and the most prominent sources of diffculties for undergraduate abstract 
algebra learners. While comparing undergraduate and doctoral learners’ solutions, We-
ber (2001) noted that doctoral learners effciency and sound strategic knowledge for 
homomorphism proof was developed over time and going down the wrong ineffcient 
path was likely part of the process. He suggested that 

Identifying activities that are useful for constructing effective strategic knowl-
edge, as well as activities that lead students to acquire faulty strategic 
knowledge, would be valuable research that could help shape future in-
struction (p. 115). 

Since Weber’s (2001) study, others have tried to pin down the source of under-
graduates diffculties with the homomorphism and quotient group concept. During a 
TAAFU quotient group unit Lockwood, Johnson & Larsen (2013) found that during 
a task where students were asked to form various partitions of the dihedral group of 
order eight and come up with necessary conditions for the partition to form a group, 
students would see that this would occur when the subsets were inverses of themselves 
using set multiplication. One diffculty was that students would attribute this fnding as 
a general necessary condition to form a group in all cases. They found that the octagon 
counter-example was a useful way to counteract this. 
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Melhuish et al. (2020) probed their understanding of more fundamental underly-
ing concepts such as functions and equivalence relations as a collapsing. The “collaps-
ing metaphor” for a homomorphism, refers to the identifcation of elements in a group 
into cosets of equal size, these cosets form a partition of the group’s elements (p.6). The 
task in the study displayed a set of domain to range function mapping diagrams from 
an arbitrary group G of order 3 or 6 to an arbitrary group H of order 6 to investigate 
students’ profciency with some necessary conditions of a homomorphism through the 
collapsing process such as: the underlying equivalence relation that partitions G into 
cosets, of equal size, along with function requirements like well-defnedness. Within a 
sample of six undergraduate participants that had completed an abstract algebra course, 
they found that some had correctly viewed function properties as being necessary con-
ditions for a homomorphism, but had not integrated the collapsing metaphor into their 
conception of a homomorphism and others continued to display more fundamental dif-
fculties in dealing with functions. The necessary condition S be a normal subgroup or 
a coset of a normal subgroup of G was irrelevant in this task which they referred to as 
the “puddle diagram task” (p.6). This suggests that a diffculty seeing that every homo-
morphism can be thought of as running through a quotient map may be exacerbated by 
a lack of mastery for the more fundamental set-theoretic and function concepts. 

Other studies have shown that when profciency for fundamental concepts is 
reached, undergraduates do not pay attention to or have trouble handling additional lay-
ers of complexity when going from thinking about sets to thinking about groups. The 
transition from the fundamental question of ‘how does one partition a set?’ to ‘how 
does one partition a set into subsets so that it is guaranteed that the subsets are of equal 
size?’ and arriving at ‘how does one partition a group into subsets so that the subsets 
viewed as elements with some binary operation form a group?’, has been a documented 
challenge for many undergraduates (Dubinsky, et al., 1994; Mena-Lorca and Parraguez, 
2016). Mena-Lorca and Parraguez (2016) investigated undergraduates comparisons be-
tween the set isomorphism theorem and group isomorphism theorem. They found that 
the learners who made progress going beyond the set isomorphism theorem to construct 
the group isomorphism theorem were exceptions. The few who were able to arrive at 
aspects of the group isomorphism theorem showed more of a mastery of the isomor-
phism theorem for sets. Mena-Lorca and Parraguez referred back to previous work 
which illustrated that many theorems related to homomorphisms have corresponding 
set-theoretic theorems and that a categorical perspective to teaching group theory is 
a direction for education researchers that is worth investigating further. Undergraduate 
learners have fundamental diffculties with quotient maps, specifcally viewing elements 
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as sets of elements. This has been a recurring impasse to the frst isomorphism theorem 
that continues to be documented (Nardi, 2000; Melhuish, et al., 2020). 

Rupnow (2021) investigated two instructors use of metaphors related to homo-
morphisms and isomorphisms in the classroom and during semi-structured interviews. 
The collapsing metaphor was used frequently by one instructor towards the later part 
of the homomorphism unit and throughout the interview. Compared to the instructors 
use of other metaphors under “sameness”, “mapping”, and “formal defntion” catego-
rizations, the instructors use of the collapsing metaphor was most prevalent (p. 9). 
The other instructor used the metaphor while covering the fundamental homomorphism 
theorem, but focused more on formal defnition references such as non-bijective isomor-
phism in an interview setting. Rupnow found that learners in the frst instructors class 
transitioned from more formal defnition language when describing a homomorphism 
to the incorporation of informal metaphors for an equivalence relations such as collaps-
ing vocabulary, but still had diffculty with the structure preserving metaphor. Rupnow 
(2021) concluded that questions remain regarding how students adopt and interpret the 
language that their instructors use in reference to homomorphisms and isomorphisms. 

Cayley’s theorem, Lagrange’s theorem, the orbit-stabilizer theorem and 
group actions 

The key idea of Cayley’s theorem is viewing elements of a group as permutation func-
tions and viewing the binary operation of the group as being synonymous with function 
composition. In a guided reinvention task for the group concept students investigate the 
symmetries of a triangle and use algebraic notation R and F or cycle notation to ex-
press the symmetries (Larsen, 2013). Once they transform symmetries as elements into 
algebraic notation they come up with a binary operation to combine elements. They 
organize the outcome of taking an element and hitting it with a binary operation in a 
Cayley table. Next, students try to generate a list of observed properties from the ta-
ble. Larsen (2013) found the students are good at noticing properties like each row and 
column contain every element exactly once called the “Sudoku property” (p. 720). 

Learner’s have diffculty noticing that every element has its own inverse. Asso-
ciativity is the most diffcult to notice. He noted that 

issues related to the associative property can be explained by the fact that 
the operation of combining symmetries can be thought of as a string of ac-
tions rather than as a binary operation...a pedagogical challenge is to make 
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sure that students explicitly attend to their use of regrouping so that it is 
included in their emerging list of rules (p. 719). 

Once learners arrive an observed property they try to formalize it by providing a proof. 
The Sudoku property is a key observation to the idea behind Cayley’s theorem. This 
in turn motivates the need to defne a set of necessary axioms that allow a proof of the 
Sudoku property, this is where the need for the inverse axiom comes in. 

Zazkis, Dubinsky, and Dautermann (1996) investigated 32 frst year abstract al-
gebra students’ reasoning about dihedral group of order eight. Students received the 
experimental APOS theory and ACE experimental course. Two registers of thinking 
were visualizing symmetries of a square and multiplying permutations that were writ-
ten in cycle notation. They referred to frst of these two approaches as“visual” and 
the second “analytic”. Analytic thinking referred to cases where “symbols are taken 
to be markers for mental objects and manipulated entirely in terms of their meaning or 
according to syntax rules” and if “the nature of the symbols themselves or their con-
fgurations is used then we would consider it to be an act of visualization” (p. 442). 
They found that students would take at least one of the approaches, but had diffculty 
in using both approaches and realizing that the two approaches were two ways of doing 
the same thing. They suggested that the visualization and analytic approaches should 
be gradually integrated. 

There are several researchers who have documented students’ understanding of 
Lagrange’s theorem. Asiala et al. (1997) investigated how students connected the un-
derlying objects of cosets to Lagrange’s theorem. During clinical interviews they found 
that some students knew the word coset and the notation aS, but could not take it things 
any further. In another case learners could make a word association that Lagrange’s 
theorem may have involved cosets, but that they couldn’t remember. In a third type 
of case a learner was able to remember a process for partitioning a group into subsets 
using a normal subgroup of equal sizes and that this process was related to Lagrange’s 
theorem, but they couldn’t quite reconstruct the formal proof. The average score on an 
exam question to discuss key details of the proof was a 76%. 

In another study, Hazzan and Leron (1996) investigated how students used La-
grange’s theorem to solve application problems. They found that 73 out of 113 under-
graduates answered the true or false, with explanation, prompt “Z3 is a subgroup of 
Z6 ” with error. 20 of the students incorrectly used the converse of Lagrange’s theorem, 
which is not true in general, to justify the statement. However, technically a special 
case of the converse of Lagrange’s known as Cauchy’s theorem states: If G is a fnite 
group and p is a prime number such that p||G| then G has an element of order p which 
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implies G has a subgroup of order p. There is only one group of order 3 up to iso-
morphism and by Cauchy’s theorem Z3 is isomorphic to a subgroup of Z6. Hazzan 
(1999) did not mention if Cauchy’s theorem was relevant to students responses or not 
for this prompt. However, they also documented that 25 out of 108 students misapplied 
Lagrange’s theorem for the prompt “S4 is a subgroup of S5 ” giving answers like “S4 is 
a subgroup of S5 because 24 divides 120” (p. 6). Students’ applications of the converse 
of Lagrange’s theorem could lead to productive discussion of special cases in which 
the converse holds. Melhuish (2018) replicated Hazzan and Leron’s (1996) study with 
some modifcation to the question format and found that 7.4% of students (N = 349) 
proved the answer yes with valid reasoning to the “Z3 is a subgroup of Z6 ” open-ended 
prompt, 58.5% said yes with invalid reasoning, and 26.1% provided no valid reason-
ing. Melhuish also incorporated a closed-ended prompt to try to identify the source of 
invalid reasoning. She concluded that learners may not be distinguishing the mod 3 
binary operation of Z3 with the mod 6 binary operation. Technically, Z3 is not literally 
a subgroup of Z6, but Z3 is isomorphic to a subgroup in Z6. 

Several of the Teaching for Abstract Algebra Understanding activities, devel-
oped by IOAA researchers, incorporate groups actions on objects of symmetry (Lock-
wood, Johnson, & Larsen, 2013; Larsen, 2013). Learners are exposed to some aspects 
of group actions through activities in a frst introductory undergraduate course, the term 
group action and formal defnition is not made explicit. Little is known regarding how 
undergraduates that advance on to take abstract algebra courses, beyond a frst year 
undergraduate course, develop a deeper understanding of and link Cayley’s theorem, 
Lagrange’s theorem, and the orbit-stabilizer theorem within the setting of group ac-
tions. 

3.4 Effcacy studies 

The effcacy of abstract algebra instruction on student learning has become an inter-
national concern (Fukawa-Connelly, Johnson, & Keller, 2016; Agustyaningrum et al., 
2021). Agustyaningrum et al. (2021) used a questionnaire to collect data on internal 
and external learning diffculties of 30 students in a mathematics education department 
in Indonesia. Internal diffculties related to affective constructs such as attitude towards 
the subject and motivation as well as cognitive constructs such as prior knowledge. Ex-
ternal diffculties related to Lecturer’s knowledge of the material, teaching style, and 
instructional materials. They found the most concerning student responses for atti-
tude towards the subject, prior knowledge, and teaching materials. Half of the students 
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strongly agreed or agreed that “abstract algebra courses are diffcult to understand” (p. 
854). A student reported that the all of the new terminology in abstract algebra was 
overwhelming and he had diffculty with “memorizing” and remembering what the new 
terms mean (p. 858). There was also evidence that some were attributing the fast pace 
of lectures to internal defciencies like being a “slow in understanding abstract algebra 
material” (p. 858). Students responses about the teaching method were more split with 
over half that disagreed that the method, in this case a combination of lecture and group 
work, supported their learning of the material. One drawback to group work that was 
mentioned by a student was that members of the group don’t prepare prior to lecture or 
participate to the best of their abilities. 

Ioannou and Nardi (2009) examined the effects of lecture based instruction on 
emotional states, visualisation, and engagement. The participants were 78 undergrad-
uates in a second year Abstract Algebra course that was characteristic of lecture-based 
instruction with little interaction between the instructor and students. They found the 
theme that learners engagement waned in the course, despite eagerness and excitement 
at the start of the course. Another theme was that learners expressed a need to for vi-
sualisations, but rarely used the visualisations show in class. They lacked confdence in 
visualisations. 

Despite evidence of student diffculties, over a decade of abstract algebra educa-
tion research, and non-lecture instructional materials being produced under the TAAFU 
program, these materials are not being used (Fukawa-Connelly, T., Johnson, W., & 
Keller, R., 2016). To fnd out why, Fukawa-Connelly, Johnson, and Keller (2016) sur-
veyed 131 undergraduate abstract algebras instructors, with a large majority coming 
from universities that offer Master’s and PhD programs. The survey showed that 85% 

teach use a lecture format, 44% were open to incorporate instructional formats besides 
lecture and the rest were not. Instructors responded to the question “I will never switch 
from lecture because...”: “It’s not appropriate for my students” (17), “I think it would 
go poorly” (26), and “I need to cover a certain amount of content” (32) (p. 278). In a 
follow-up, they stated for those open to other instructional formats besides lecturing: 

...1 fnds PRIMUS or the MAA Notes series very infuential, only 1 fnds 
mathematics education research literature very infuential; only 6 fnd talks, 
workshops or conferences about teaching very infuential; and only 4 fnd 
participating in communities like Project NExT very infuential. It is our 
belief that this is not because the materials themselves are not useful, but 
rather those who need them most are not utilizing them (p. 280). 
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Currently, there are few large scale studies that compare IOAA to non-IOAA 
groups or groups that receive instruction from environments with high and low IOIM 
scores in relation to students’ learning outcomes. In fact such studies are only now be-
coming accessible to researchers due to the recent development of quantitative instru-
ments such as the GTCA and IOIM (Melhuish, 2015; 2019). Melhuish (2015) designed 
a Group Theory Content Assessment (GTCA) for binary operations, group properties, 
isomorphism, homomorphism, Lagrange’s theorem, and quotient groups among other 
introductory topics. The seventeen open question pilot GTCA was turned into a closed-
ended multiple-choice assessment that used common student responses from the pilot 
as answer choices. During the pilot the quotient group question was problematic for 
several reasons, one being that it took to long and learners we need to search for normal 
subgroups. It was replaced with a computational question regarding the size of coset 
2 + H in Z12 that also evaluated whether or not students viewed sets as elements. This 
was the only quotient question in the GTCA. 

With these new tools researchers have started to evaluate the effcacy of IOAA 
compared to other forms of abstract algebra instruction (Johnson, Andrews-Larson, 
Keene, et al., 2020). Johnson et al. (2020) conducted a study that compared a group 
of abstract algebra learner’s that had instructors who participated in the TIMES IOAA 
project and a group that had non-participating instructors. The TIMES IOAA project 
provided training on IOAA instruction. Both groups, a total of 522 students, took the 
GTCA. There was no statistically signifcant difference between the two groups GTCA 
scores. Gender differences were also examined. Males scored signifcantly better on the 
GTCA in the TIMES group than males in the non-TIMES group, there were no gen-
der differences between females across groups. Additional analysis controlled for other 
potential confounds, but found no signifcant differences between groups on GTCA 
scores. They concluded that equity issues in an inquiry environment needs further re-
search attention. 

3.5 Refections on the literature 

From a theoretical point of view it seems that instructional materials designed under 
the TAAFU program are doing the right things with respect to facilitating learners’ 
intuitions as discussed in the previous chapter. However, from a more empirical data 
driven end there is not enough evidence to pick a side IOAA under the TAAFU program 
or non-IOAA abstract algebra instruction. What is clear is that there are issues with 
the current system, the TAAFU program has offered alternatives, however there are 
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potential benefts and issues with these alternatives. 
While the GTCA serves a particular purpose, it is not a suffcient instrument 

alone nor was it intended to address the effectiveness of instruction on the facilitation 
of intuition associated constructs such as representational fuency or affective impacts. 
For every local instructional theory, I believe that there should be many local quasi-
experimental studies to evaluate the effcacy of a LIT sequence compared to the more 
standard treatment. What I mean by this is if there is a local instructional theory for the 
quotient concept then instruments need to be specifcally developed to address whether 
or not students who receive that quotient LIT outperform learners who receive other 
forms of instruction with respect to some dependent variable like fuency. Moreover, 
it is important that effcacy studies for instructional designs investigate dependent vari-
ables related to students and instructors as well. For example, instructional changes 
may impact instructors feelings of autonomy. Loss of autonomy could also have neg-
ative consequences and lead to heightened tensions. After many effcacy studies have 
been performed for various dependent variables, meta-analysis can be conducted to 
compile these studies and determine the costs and benefts. This is a standard line of re-
search practice in medicine and psychology, but occurs after the feld or area of research 
is fairly mature. 

However, there are dissenting opinions to mine. The need for effcacy studies 
that evaluate instructional sequences, born out of instructional design research, is quite 
controversial. For instance Prediger, Gravemeijer, and Confrey (2015) stated: 

We may counter, however, that design research is grounded in the asser-
tion that classrooms are complex ecologies where one cannot suffciently 
control all variables to draw causal conclusions. This calls for a different 
approach than the reductionist approach of natural science like psychol-
ogy in which phenomena are disassembled in individual variables whose 
interdependencies can be researched systematically - essentially by testing 
hypothesis (p. 883). 

To counter back, quasi-experimental studies used to compare different instruc-
tion types are meant to inform and improve instruction further. The process of work-
ing towards such studies, aiming for goals of hypothesis testing, and eventually meta-
analysis may still lead to important discussions regarding the variables in play. Exper-
imental design research represents genuine attempts to document and understand what 
is working and what is not. I believe that such pursuits have the potential to deepen 
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our understanding of these “complex ecologies”. I am not advocating for a strict quasi-
experimental or reductionist approach at the expense or devaluation of others. I am 
only advocating for its inclusion alongside the more dominant qualitative tradition of 
instructional design research. 

This thesis takes the philosophical stance that one must understand and artic-
ulate the individual units within a system in order to better understand the system as 
a whole and attempts to illustrate the potential value in what some may view as a re-
ductionist approach in education research. The next chapter decomposes intuition in 
intuition-associated factors with a focus on representational fuency and example-based 
intuition. Representational fuency is decomposed further into smaller units of analy-
sis such as modes of semiotic production, modes of semiotic aquisition, conversions 
and pseudo-semiotic representations. Example-based intuitions are decomposed fur-
ther into creative and non-creative forms using variables associated with these different 
forms. 
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Chapter 4 

Theoretical Framework 

4.1 Introduction 

This chapter presents an outer framework of four prominent intuition associated themes 
that emerged after an integrative literature review and interviews with three mathemati-
cians. These themes are: (a) representational fuency, (b) example-based intuitions, (c) 
counter-example stance, and (d) affective impacts. The frst inferred prominent theme 
related to intuition was representational fuency. The larger the learner’s representa-
tional repertoire for a mathematical object is, that is consistent with mathematical re-
ality, and the more fexible they are in shifting between various representations, the 
more informed their intuition may be (Cangelosi et al., 2013; Hegg et al., 2018; Pinto, 
2019). The development of learners’ intuition derived from examples was another cen-
tral theme. By focusing on a subset of examples, the learner uses their intuition to 
fnd patterns and develop conjectures. The next theme, counter-example stance, namely 
the stance to accept a counter-example as an intriguing case to explore or to reject a 
counter-example, came from Lakatosian infuences. The last abstracted theme was af-
fective impacts. Affective impacts refers to the various ways that affective constructs 
such confdence and anxiety can impact the intuiting system. The following sections 
provide progress on inner frames for each theme in Figure 4.1. A goal during the de-
velopment of this outer framework, and subsequent inner frameworks, was to arrive at 
units of analysis for empirical studies. 
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Figure 4.1: Intuition Framework 
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4.2 Representational fuency 

Representational fuency is “the ability to create, interpret, translate between, and con-
nect multiple representations” of mathematical objects (Fonger, 2019, p. 1). If one is 
able to represent the same object in multiple ways the content extracted from each of 
the representations are added up, “the process of amalgamation described by Arzarello 
is of a synthetic nature, and allows the different meanings to be aggregated with the 
help of analogies and metaphors, glued, condensed so to be more easily internalized 
and mobilized by intuition” (Tanguay & Venant, 2016, p. 889). Pulling from Duvalian 
semiotic theory, a mathematical object can be realized as an invariant of multiple semi-
otic representations (SR) (Duval, 2017). According to Peirce’s (1992) triadic model, 
a semiotic representation of a particular object o is made up of three constituents: a 
sign, an interpretation of the meaning of the sign by an interpreter, and the object being 
signifed. 

In an attempt to make progress towards a unit of analysis for students’ repre-
sentational fuency, the theoretical knowledge structure termed a fuency digraph was 
derived in Lajos and Stewart (2020). A fuency digraph contains the semiotic represen-
tations that an individual has accumulated over many learning experiences, a typifca-
tion of these SRs in terms of modes of production (i.e., the register used) and modes of 

acquisition, and paths, (i.e., conversions), the individual has made between various SRs 
for the same object. The Networking strategy “combining and coordinating” was taken 
to arrive at the fuency digraph. 

...combining and coordinating are typical for conceptual frameworks, which 
do not necessarily aim at a coherent complete theory but at the use of dif-
ferent analytical tools for the sake of a practical problem or the analysis of 
a concrete empirical phenomenon...We use the word coordinating when a 
conceptual framework is built by well ftting elements from different theo-
ries (Prediger, Bikner-Ahsbahs & Arazarello, 2008, p. 172-173). 

In particular three theoretical lenses were combined and coordinated: (1) the Theory of 
Registers of Semiotic Representation (TRSR) (Duval, 2000a, 2006, 2017), which in-
cludes “modes of production” (i.e., registers used to produce a semiotic representation) 
and “conversion fuency” (Duval, 2017, p. 110-111), (2) the uni-modal and multi-modal 
distinction (Arzarello, 2006b), and (3) metarepresentational competence and modes of 
acquisition (diSessa, 2004; Gravemeijer & Doorman, 1999). 
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4.2.1 Theory of Registers of Semiotic Representation 

A mathematical object is an invariant of multiple semiotic representations. That is, 
there are multiple ways to represent the same mathematical object. When working with 
a mathematical object, it is important to consider the “content” of the semiotic repre-
sentation (SR), the “system” and “register” the SR is produced in, and the “represented 
object” (Duval 2000a, 2006, 2017, p. 27). The content of the SR refers to the particular 
facets or qualities of an object that an SR that stand out. For example, let the object 
be a normal linear operator on a vector space B, where V is a fnite dimensional inner 
product space over the complex feld. Since the operator is normal, the operator can be 
expressed as a diagonal matrix with respect to some basis. A sign for the operator that is 
a diagonal matrix makes the eigenvalues, as content, clear-cut to see. A sign that takes 
on the form of a matrix and is not diagonal, nor lower or upper-triangular, hides the 
eigenvalues from view. In general, different signs may naturally highlight or suppress 
certain facets or qualities of a mathematical object. There are often inconsistencies and 
differences among individuals in how they interpret or assign meanings to the same 
sign (Duval, 2017). Based on Peirce’s view, “The sign, or representation, is something 
that stands for something to somebody in some respect or capacity” (Peirce; cited in 
Duval, 2017, p. 14). There is a great deal of variability in undergraduate, graduate 
learners’ and mathematicians’ interpretations of mathematical objects through various 
signs (Thurston, 1994; Duval, 2017). 

Systems and registers 

Cognitive systems involved in the generation of representations are: the automatic (non-
conscious) neural system and the intentional system (consciously controlled). The 
automatic system generates intuitions or recovers mental images from memory. The 
intentional system brings, “...into play the semiotic system (mentally or materially)” 
to produce a semiotic representation that “Denotes the represented object” through 
non-vocal verbalizations, externalized speech, writings, drawing, or computers (Du-
val, 2017, 2000a, p. 66). While one may pass into the intentional system to produce 
representations for communication one may also pass into the intentional system to 
produce representations that are used to feed stimuli to the intuiting process within the 
automatic system. The intentional system contains sub-systems called registers. 

Registers are like representation systems. Goldin (1998) defned “representa-
tional systems or representational modes” as a, “system of spoken symbols, written 
symbols, static fgural models or pictures, manipulative models, and real world situa-
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tions” (p. 143). Goldin (1998) also stressed that ambiguity arises when defning the 
functionality of a representational systems in terms of how the system interacts with 
other systems, how “higher-level structures” organize reasoning within and across rep-
resentation systems, and the syntax rules govern how letters or symbols called “char-
acters” are defned and put together as “permissible confgurations” (Goldin, 1998, p. 
143). Some general registers-systems of representation used by researchers that build 
from Duval’s work include: verbal, written, gestural, geometric, and algebraic (San-
doval & Possani, 2016; Fonger, 2019). Specialized mathematical object or mathemati-
cal domain-specifc registers can also be found in the literature (Ely, 2017). 

Semiotic representations have been theoretically classifed according to the reg-
isters used to produce them (Duval, 2000a, Duval, 2017). Duval defned four main 
registers: discursive, non-discursive, multifunctional and monofunctional. The discur-
sive register is used to represent mathematical objects using spoken words or written 
symbols. The non-discursive register is used to represent mathematical objects through 
a non-spoken language such as visual images, geometric shapes, graphs, and diagrams. 
A multifunctional register is used to produce SRs consisting of vernacular language, 
writings, and drawings that are free from the strict confnes of the formal mathematical 
language. A SR produced in this register by a learner is predominantly a refection of 
that learner’s intimate and unique view of a mathematical object. In contrast to the mul-
tifunctional register, a monofunctional register is used to produce SRs that are restricted 
to writings in formal mathematical language that such as logical quantifers, algebraic 
symbols, formal axioms, defnitions, and theorems. A SR produced in this register is 
predominantly a refection of standard mathematical practices (Duval, 2006, 2017). 

Treatments and conversions 

In order to survive in a mathematical environment, the learner must at least be able to 
perform cognitive processes termed cognitive transformations of semiotic representa-
tions (CTSRs) (Duval, 2017). A CTSR is a mental mapping from one semiotic rep-
resentation to another. “In any semiotic transformation, it is necessary to distinguish 
between the starting representation and new representation produced, i.e. the arrival 
representation” (Duval, 2017, p. 43). In some cases, the starting SR and target SR are 
produced using the same register. In other cases, the “starting” SR and “target” SR are 
produced through different registers (Duval, 2006, p. 112). To theoretically separate 
these two cases, Duval (2006) made the distinction between two types of CTSRs: treat-
ments and conversions. A treatment is a change in SR without a change in register. An 
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example of a treatment is solving algebraic equations while staying in a monofunctional 
× discursive register. The more involved and cognitively demanding mental process of 
keeping the object the same and switching from a starting to target SR through different 
registers is called a conversion (Duval, 2006). A conversion becomes increasingly diff-
cult for school and entry undergraduate learners because a change in register means that 
the semiotic representations are perceptually dissimilar, but represent the same mathe-
matical object (Duval, 2000a, 2006, 2017). 

A conversion from one SR produced in one register to a SR produced in a dif-
ferent register may be algorithmic and performed through step by step procedures. For 
example there are step by step procedures that can be used to go from a symbolic SR 
of a function to drawing a graph of a function. Procedures can be acquired through “in-
strumental” (memorization of an already formulated procedure) or “relational learning” 
(independent creation of the procedure) (Skemp, 1978, 1979, p. 285-286). In contrast 
with an algorithmic move, a non-algorithmic move from one register to another has no 
formulaic mapping (Duval, 2017). 

As learners progress from entry undergraduate to more advanced courses there 
is a rising expectation for them to (1) produce multiple representations that are sanc-
tioned and not sanctioned for a mathematical object and (2) perform CTSRs, especially 
conversions, on their own with and without the aid of an algebraic mediator. However, 
the conversions undergraduate learners are expected to do and what they do at a point 
in time do not always align. In a recent study, Sandoval and Possani (2016) found that 
a majority of undergraduate learners in an introductory to linear algebra course faced 
challenges performing geometric treatments adding vectors and conversions between 
verbal, algebraic, and geometric registers for vectors and planes in R3 . They observed 
that, “One important result shows that, once students choose a register to solve a task, 
they seldom make transformations between different registers, even thought this facili-
tates solving the task at hand” (p. 109). 

Conversion fuency 

At some stage, the learner must reach the learning milestones of “conversion fuency” 
for a variety of mathematical objects (Dreyfus, 1991; Duval, 2017, p. 110-111). Du-
val (2017) affrmed that, “without any explicit training of conversion fuency, there is 
no possible mathematics learning for most students...”(p. 110). The construct of con-
version fuency (CF) is a form of representational fuency (RF). RF is “the ability to 
create, interpret, translate between, and connect multiple representations” of a mathe-
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matical object (Fonger, 2019, p. 1). Conversion fuency of with respect to a particular 
mathematical object is achieved if the learner can: (a) recognize and generate multiple 
semiotic representations of a mathematical object in a variety of registers, (b) realizes 
that the semiotic representation is used to represent an object and is not the object itself, 
(c) can begin with an initial semiotic representation and arrive at target for a variety of 
initial and target choices, and (d) integrate the semantic bindings attached to multiple 
representations (Dreyfus, 1991; Duval, 2017). 

As a result of this process [integration], one has available what is best de-
scribed as multiple-linked representations, a state that allows one to use 
several of them simultaneously, and effciently switch between them at ap-
propriate moments as required by the problem or situation one thinks about 
(Dreyfus, 1991, p. 32) 

4.2.2 Metarepresentational competence and modes of acquisition 

From the Duvailian perspective, semiotic representations were classifed according to 
the mode of production or the register the representation was produced in. From a 
broader socio-cultural perspective, semiotic representations can be alternatively classi-
fed in terms of how they are acquired, either through social interactions or indepen-
dently. Sanctioned representations are representations commonly taught and adopted 
from a particular mathematical culture. Non-sanctioned representations are represen-
tations that are created independently by a person to reason with and understand the 
objects that they work with (Johansen & Misfeldt, 2018; diSessa, 2004). 

Johansen and Misfeldt (2018) emphasized a related social angle of represen-
tation acquisition through “enculturation”, a process where an individual interacts so-
cially with others that are part of a culture and adopts the cultures preferred practices, 
language, representations and ways of thinking. They also found that mathematicians 
often invented their own representations as a source of ideas and a sense-making tool, 
but were sometimes hesitant to publish them or use them to communicate publicly: 

If you use your own idiosyncratic representations, it will be diffcult for 
you to share ideas and collaboration with other mathematicians, not only 
because they might not understand the conventions of your representational 
language, but also because they might not understand you at a more funda-
mental cognitive level (p. 3737). 

Research has shown that representations arrived at independently that are not 
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standard within a culture are naturally suppressed by some mathematicians when com-
municating with others. However, the use of their own novel representations and ex-
ternalized inscriptions of them are amplifed when the mathematician is trying to fgure 
out something for themselves (Misfeldt, 2018). 

Without intervention, this publicly encountered norm, of suppressing one’s own 
non standard representations or unique ways of thinking, may permeate into instruction 
where standard representational language is emphasized to such an extent that students 
become less likely to create and value their own non-sanctioned representations. For-
tunately, researchers have developed modes of instruction that encourage students to 
invent their on personal representations and then transform them for public discourse 
(Enyedy, 2005; diSessa et al., 1991). diSessa (2004) affrmed that a goal of mathemat-
ics instruction is to foster metarepresentational competence (MRC), representational 
competence apart from profciency with standard sanctioned representation use taught 
by the curriculum. The learning milestone of metarepresentational competence (MRC) 
is reached when the learner can (diSessa, 2004, p. 93): Invent or design their own 
representations, choose effective representations and judging the quality of representa-
tions for a given task, understand the purpose and strengths of certain representations 
in various contexts, explain the information given by a representation, and learn new 
representations with little guidance from others. 

4.2.3 Combined and coordinated lens: technical construction of a 
fuency digraph 

Based on Duval’s (2000a; 2006; 2017) theoretical perspectives the frst classifcation 
will be termed class 1 transformations (C1Ts), which includes treatments and conver-
sions. We also consider a second classifcation (C2Ts), which goes beyond treatments 
and conversions. A C2T involves: varying a mathematical object by manipulating its 
structure or properties and necessarily varying the semiotic representation because the 
object being denoted has changed. In addition to having a change from an initial to a tar-
get semiotic representation(s) there is a change from an initial object(s) to a related tar-
get object(s). It follows that this second classifcation includes two sub-classes: adding 
structure and/or adding properties to obtain more specialized object (C2T+) which nec-
essarily includes going from a general object to example cases; and forgetting structure 
or ignoring properties to obtain a more general-looser object (C2T−) which necessar-
ily includes going from example cases to a general object. Some notions of C2T− are 
generalization as a many to one map from several initial example cases to a general 
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object that is a distills invariants in the collection of initial examples and the notion of 
preserving some but not all of properties or structure. A third classifcation would be 
leveraging an object in one register (or mathematical system) to gain information about 
another object in another register. 

Drawing from the three previously stated lenses, we now term a fuency di-
graph Fo of a specifed mathematical object o to be a type of knowledge structure that 
that a learner has built up, consolidated and re-consolidated over many experiences. It 
consists of many semiotic representations (SRs) (vertices) used to denote the specifed 
object o and class 1 cognitive transformations (C1Ts) (arrows) between the semiotic 
representations of the same object o. The fuency digraph can be viewed as a directed 
graph where the underlying graph may or may not be connected and: the vertex set is 
a collection of semiotic representations So, a relation R ⊆ So × So of (initial, target) 
semiotic representation pairs, and an arrow set A(Fo) ⊆ R. An element (sio, s

j
o) in 

the arrow set is viewed as an arrow pointing from sio to sjo and as a short-hand will be 
i jdenoted soso. 

Graduate learners and mathematicians are known to have fuency for numerous 
mathematical objects (Duval, 2017). The size of their fuency digraphs quantifed in 
terms of |V (Fo)| and |A(Fo)| may be quite large. However, during a mathematical 
task they do not explicitly use all semiotic representations and directed connections 
that they have consolidated in the past. To account for this, we term a sub-graph of 
an individual’s fuency digraph that is semiotically denoted and explicitly used during 

omathematical activity a ‘container’ c . 

Figure 4.2: Fluency Digraph, Container, C1Ts, and SRs. 

An example is the container that one may use for working with the object ‘a 
linear representation’ in the mathematical area of representation theory of fnite groups. 
Some denote ‘a linear representation’ semiotically as ρ : G −→ GL(V ), the amalga-

97 



4.2. REPRESENTATIONAL FLUENCY 

mation of three mathematical objects: a fnite group G, a group homomorphism ρ, and 
the group of linear invertible transformations GL(V ). Others prefer to denote a ‘linear 
representation’ as an FG-module. These semiotic views are defnitionally “equivalent” 
(Dummit & Foote, 2004, p. 843); there is a sense of sameness in the mathematical ob-
ject but variability in the semiotic representations. Sometimes one may switch back and 
forth between two such semiotic representations depending on the mathematical situa-
tion. But why do mathematicians prefer or choose one container, a subset of a fuency 
digraph of a mathematical object, over the other? 

Let’s look at an example of an intentional choice of a container versus a random 
choice at a graduate-level. Take the object with the following SR: ‘the Borel subgroup 
B of the group of invertible upper-triangular 2x2 matrices which consists of matrices of" # 

α β rthe form with β ∈ Fq 
× , α, γ ∈ Fq, q = p for p prime’. As a graduate student 

0 γ 
the size of my fuency digraph for this object increased to include two additional SRs 
among others from assigned prior homework exercises in an abstract algebra course. 
These two additional SRs were: " # 

(1) ‘B ∼= Z o P where Z is the subgroup of matrices of the form 
α 0 

’ and 
0 α" # 

α β 
P is the subgroup of matrices of the form ’. And 

0 1 
(2) ‘B ∼= U o D where U is the subgroup of unipotent matrices of the form " # " # 

1 β α 0
and D is the subgroup of diagonal matrices of the form ’. 

0 1 0 γ 
As a graduate student, I intentionally selected SRs of this Borel subgroup as 

these semi-direct products where the normal sub-groups Z and U were abelian to be 
part of my container at a moment in time because: (a) they were fresh on my mind from 
lecture notes that followed Piatetski-Shapiro (1983), (b) they were effcient choices for 
the task I was performing. To classify and construct all irreducible representations for 
B, and (c) I knew of a tool for constructing and classifying irreducible representations 
for a group using Serre’s (1977) 8.2 construction, which can be used when the group is 
expressed as a semi-direct product where the normal subgroup is abelian (p. 62). But 
the decision between which of the two semi-direct product SRs to use, was a random 
choice. I switched from using one to using the other only because I got stuck with the 
proof. 

When analyzing conversion fuency in empirical data it is important, for logical 
soundness, that a researcher chooses a theoretical demarcation of registers (Sandoval 
& Possani, 2016); and states whether or not the chosen demarcation are the general 
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duvalian registers or if they are specialized object specifc registers either sitting inside 
general register or viewed apart from general registers. Assign each register in a chosen 
demarcation a number r1, r2, r3, . . . rn. Duval (2017) gives a general theoretical demar-
cation. Different demarcations of more general or specialized subject-specifc registers 
for mathematics can also be found in the literature (Ely, 2017). Production of semiotic 
representations can be typifed in terms of the register used (Duval, 2017). Recall that 
production may also be typifed as “multi-modal”- multiple registers are used simulta-
neously or “uni-modal”- a single predominant register is used (Arzarello, 2006). 

To integrate the multi-modal (multiple registers used in tandem) and uni-modal 
(a single predominant register is used with serial processing) case, take the power set 
Σ of all letters (i.e., all possible combinations of registers). Take Σ+ to be the set of all 
words generated by elements of Σ = {r1, . . . rn, {r1, r2}, . . . {r1, r2, . . . rn}}. A word 
from Σ+ is used to move from an initial to target semiotic representation. In which 
the frst letter stands for the register combination used to denote the frst SR and the 
last letter stands for the target SR. We visualize the registers a planes sitting inside a 
fuency digraph. In some cases, a register plane is not needed to successfully complete 
a specifc task, but the leaner still has access to it. It may be the case that a learner, in 
general, prefers certain registers over others and this may be indicated by the size of 
a particular register plane. Moreover, certain registers such a geometric register may 
be more heavily weighted when it comes to the development of intuition in terms of 
representational fuency within certain mathematical contexts. In some cases register 
planes may be empty for an object o meaning |V (Fo)| restricted to some register plane 
p is zero. 

To integrate the mode of aquisition lens, the cross-product between the two-
tuple <sanctioned and non-sanctioned> and the power set of registers was taken. Now 
we can think about typifying representation according to their “mode of production” 
(i.e., duvalian registers or specialized object-specifc registers) and the mode of acqui-
sition simultaneously. A fuency digraph, depicted in Figure 4.4, is a product of three 
merged theoretical lenses, was intended to provide a fner frame to analyze individual’s 
representational fuency for a single object or a collection of objects. 

Within this integrated frame a semiotic representation can be typifed beyond 
the Duvalian favor of registers and in terms of more specialized object specifc regis-
ters used to produce the representation. In terms of other compatible theories, mode of 
aquisition was also viewed in this thesis as the three-tuple ¡directly told by instruction or 
authority, reinvention, and invention¿. In addition the fuency digraph frame may help 
to formulate some partial numerical measure of the stimuli that an intuiter could gener-
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ate to feed their intuiting process. These measures could be defned in terms of the total 
size of the vertex set |V | of a fuency digraph Fo summed over many objects o, the size 
of the vertex set restricted to various register planes p, modes of aquisition a, or quad-
rants q with different weights, and the size of the edge sets that across register planes 
and the non-sanctioned sanctioned axis. For example a numerical characterization of 
representational fuency (RF) could be defned as in (4.1) and (4.2) below. 

XX 
RF|V |p∩q = wpi∩qk |V (Fo)|pi∩qk (4.1) 

o pi,k XX 
RFC1T (|E|p) = wpi→pj |E(Fo)|pi→pj (4.2) 

o pi,pj 

Figure 4.3: Combined Theoretical Lenses. 

These measures could be taken at some initial point in time and repeated at 
distant points in time to obtain a difference measure of fuency growth with respect a 
specifed mathematical object or collection of objects. One could also consider class 2 
transformations (C2T), a mental path of how to travel from one fuency digraph Foi to 
another Foj . These paths may involve adding, collapsing or ignoring structure if oi and 
oj are in fact different objects. It may also be the case that oi and oj are perceived as 
different objects in the learners mind, but are mathematically the same object. When 
this sameness is realized Foi starts to merge with Foj through class 1 transformations 
(C1Ts). 
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Figure 4.4: Fluency digraph construction. 

4.2.4 Introductory object-specifc registers for fnite groups 

To begin application of the fuency digraph construct to evaluate undergraduate and frst 
year graduate students’ representational fuency for introductory fnite groups, the gen-
eral fuency digraph frame was specialized further according to inserted registers where 
the SR’s sign constituent is fxed, but the interpretation constituent varies: multiplica-
tion table, cayley graph, Schreier coset graph, object of symmetry, cycle graphs, and the 
group presentation. A group may also be represented as a direct product or semi-direct 
product by the student. The visual data offered by the sign constituent in an SR may 
be dependent on an initial choice of generators (e.g., Cayley color graphs and Schreier 
coset graphs) or it may exist independent from an initial choice of generators (e.g., 
Cayley tables and cycle graphs). Semiotic representations for groups that have been 
incorporated in empirical educational studies and the TAAFU curriculum are: Cayley 
tables, symmetry objects, and group presentations (Larsen, Johnson, & Bartlo, 2013). 

Arthur Cayley (1854) paper On the theory of groups as depending on the sym-

bolic equation θn = 1 is considered the frst published formulation of a Cayley table 
in Figure 4.5. In this paper, Cayley views the binary operation of a group as a function 
that reshuffes the elements of a group. He goes on to defne a group as 

A set of symbols, 

1, α, β... 

all of them different, and such that the product of any two of them (no mat-
ter in what order), or the product of any one of them into itself belongs to 
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the set, is said to be a group ∗ . It follows that if the entire group is multiplied 
by any one of the symbols, either as further or nearer factor, the effect is 
simply to reproduce the group; or what is the same thing, that if the symbols 
of the group are multiplied together as to form a table, thus:-

Figure 4.5: Arthur Cayley’s defnition of a group. 

that as well each line as each column of the square will contain all the 
symbols 1, α, β... It also follows that the product of any number of the 
symbols, with or without repetitions, and in any order whatever, is a symbol 
of the group (p. 41). 

In this defnition there is a mention of identity, associativity, and closure proper-
ties, but the mention of inverses is missing. Figure 4.6 illustrates the view that elements 
of the group can be represented as bijective functions. Going back to the absent inverse 
property of groups in Cayley’s defnition, the question then becomes does the inverse 
of these bijective functions also live in the Cayley table? The visual patterns offered by 
Cayley tables provided hints to what would later be proved as Cayley’s theorem: every 

group is isomorphic to a subgroup of a symmetric group. 

· 
τa 

τb 

τc 

τd 

a b c d inputs 
a·a a·b a·c a·d outputs of τa 

b·a b·b b·c b·d outputs of τb 

c·a c·b c·c c·d outputs of τc 

d·a d·b d·c d·d outputs to τd 

Figure 4.6: Viewing elements of a group as permutation functions. 

A group can also be viewed as symmetries of a geometric object such as crys-
tals, molecules, polygons and platonic solids. Polygons have been used by education 
researchers to set up exploration activities in which students identify symmetries and 
using these symmetries to construct a compressed list of algebraic rules that represents 
a minimal coding of the structure of dihedral groups. This minimal coding is called 
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a group presentation, and is a list of generators for a group and relations among the 
generators. After working with several examples of polygons students then abstract and 
construct the defnition of a group without prior exposure to the textbook defnition. 
Through ongoing experimentation and observation, the learner discovers uniqueness of 
inverses and the cancellation law (Larsen, 2013). 

Another type of sign used to represent groups are cayley color graphs. The ver-
tex set of the Cayley color graph for a group G has size |G|, one vertex for each element 
in the group. For a choice of generators {si}ni=1, each generator is assigned a color. To 
construct a directed Cayley color graph each directed edge is of the form (g, sig) and 
is colored with the color assigned to si. Cayley’s (1878) paper The Theory of Groups: 

Graphical Representation provides the earliest and most well known documentation of 
representing groups as graphs. These graphs provide a visual way to detect and illus-
trate what it means for groups to be isomorphic. In fact, two groups are isomorphic 
if their Cayley graphs are identical for some choice of generators (Tao, 2010; Carter, 
2009). Cayley digraphs with the addition of a metric space later gave rise to geometric 
group theory (Tao, 2010). Another modifcation of Cayley digraphs are Schreier coset 
graphs. For Schreier coset graphs the vertex set are cosets of the group with respect to a 
specifed subgroup. The fnal introductory sign for groups that this study considers are 
Cycle graphs which display the cyclic subgroups of a group. 

Despite the utility of Cayley to Schreier coset digraphs as visual representations 
of forming quotient groups, there seems to be little education research that investigates 
students’ reasoning with them. This was corroborated through personal communication 
with an IOAA researcher. Moreover, none of the education papers gathered in the 
integrative review on intuition sample incorporated task-based activities with Cayley to 
Schreier digraphs. This was confrmed using NVivo 12 text search software and double 
checked using EndNote text search. Only one study, Weber and Alcock (2004), briefy 
mentioned digraphs. It came up as a piece of data from an interview question that asked 
a group of four algebraists about how they represented groups. One algebraist stated 
that they used a, “directed graph, symmetries of a geometrical object, and Venn-like 
diagram of a set partitioned by a sub-group and its cosets” (p. 218). Out of the four 
undergraduates that participated in Weber and Alcock’s (2004) case study, none of the 
undergraduates gave representations of groups or isomorphisms other than the formal 
textbook defnitions. Moreover, “The undergraduates were uniform in their responses. 
Each said that they would frst compare the order of the two groups. If the groups had 
the same order, they would look at bijective mappings between the two groups and see 
if they were isomorphisms. The undergraduates claimed that they would not use their 
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intuition to determine whether the two groups were isomorphic” (Weber & Alcock, 
2004, p. 220). 

4.3 Example-based intuitions towards conjectures 

Griffths (2013) defned intuition as “...the development of a personal theory which is 
not the result of explicit tuition but may arise either spontaneously or via some activity 
that is related only indirectly to the theory in question” (p. 81-82). The source is 
personal, the self, it is not something that is taken directly from instruction, a person of 
authority or text (Chiu, 1996). Intuitions are also characterized as cognitions that are 
“plausible or convincing in the absence of proof” (Davis, Hersh, & Marchisotto, 2012). 

Example-based intuitions, are intuitions that are based on students’ observations 
as they work with example cases of mathematical object. This form of intuition may in-
volve implicit matching between external visual stimuli in the decision making environ-
ment and internal knowledge structures that results in a consciously registered pattern 
(Bubp, 2014; Kahneman & Klein, 2009). Kahneman and Klein (2009) who stated three 
general and necessary conditions that must be present for the intuiting process to detect 
patterns: sensorial cues must be present in the environment, the intuiting process must 
select pertinent cues, and there has to be a suffcient level of regularity or predictability 
in the environment so that matching associative processes can run and patterns can be 
recognized. Forms of intuition that are both example-based and visualization-based are 
investigated in this thesis. 

This was done by providing students with various examples of groups along 
with various semiotic representations for each example object. Fischbein (1987) stated: 

After one has found that a certain number of elements (objects, substances, 
individuals, mathematical entities etc.) have certain properties in common 
one tends intuitively to generalize and to affrm that the whole category 
of elements possesses that property...According to Poincaré “generaliza-
tion by induction, copied, so to speak from the procedures of experimental 
sciences” is one of the basic categories of intuitions (p. 59). 

Conjectural intuitions were termed by Fischbein (1987) as, “an assumption 
about future events, about the course of a certain phenomenon etc. Such a conjecture is 
an intuition only if it is associated with a feeling of confdence” (p. 60). However, an 
intuiter is not always confdent that there conjectural intuitions are true. In an interview, 
I pressed Dr. M about whether or not he felt confdent that his conjectural intuitions 
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in the context of his research contained truth or were at least plausible. He responded 
with, 

Dr. M: I’m pretty cautious in terms of my conjectures even to myself so if I’m going to 
conjecture something to myself I probably have some kind of strong feeling about 
it like I’ve seen enough evidence or it to nice not to be true kind of feeling. Then 
most of the time when I have these ideas like that, there’s no way I could ever 
answer it one way or the other. It’s like just too broad. The best I’d be able to do 
is to be able to tackle one specifc case in a particular nice situation and maybe 
say something about that. 

He went on to explain why he was cautious. 

Dr. M: Often times my conjectures are wrong because I’m making a broad generaliza-
tion and then I have to go reconcile what I thought was a general picture with a 
specifc thing that contradicts in a paper or a talk that I hear. 

Based on interview data collected, self-report of confdence that a conjectural 
intuition is true will be characterized in this study as an attribute of varying degree, not 
a property of all conjectural intuitions. Given a pool of intuitions one can also apply 
the Non-creative versus creative forms attributes in 2.4.4.4 along with attributes outside 
this attribute set. Focusing on a subset of attributes may be a fruitful way to navigate 
the labyrinth of mathematical intuition. 

4.4 Counter-example stance 

Recall that Exception-barring and monster-barring are both subsumed under barring, 
which more generally, is the use of a counter-example or a “pathological case” to make 
modifcations that turns a counter-example or pathological case into something that is 
neither a counter-example nor an example (Lakatos, 1976, p. 15; subsection 2.5.2). 
Monster-barring is the activity of refning a loose defnition to make the pathological 
case, which Lakatos (1976) called a “monster”, into a non-example of the main defni-
tion (p. 15). In exception-barring some collection of counter-examples are used to make 
modifcations to the conjecture in a way that restricts the assumption clause. Larsen and 
Zandieh (2008) produced the framework for monster-barring and exception-barring in 
Table 4.1. 
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Table 4.1: Lakatosian methods of mathematical discovery framed by Larsen and 
Zandieh (2008, p. 209). 

Type of activity Focus of activity Outcome of ac-
tivity 

Monster-barring Counter-example 
& underlying 
defnition 

Modifcation or 
clarifcation of 
an underlying 
defnition 

Exception-
barring 
Proof-analysis 

Counter-example 
& conjecture 
The proof, the 
counter-example, 
& the conjecture 

Modifcation of 
the conjecture 
Modifcation of 
the conjecture & 
sometimes a def-
inition for a new 
proof-generated 
concept 

Based on Lakatos (1976) two categorizations of counter-example use with mod-
ifcation to the main conjecture emerged: barring or accepting which were not cov-
ered by Larsen and Zandieh (2008). The following steps show why exception-barring 
turns the counter-examples into something that is neither a counter-example nor exam-
ple. First, for each counter-example in a collection, create a list of properties that the 
counter-example does not posses (i.e., anti-properties of counter-example). Next, take 
the smallest subset of properties that contains the intersection of the property lists and 
at least one property from each list. Once these properties are added as qualifers to the 
assumption clause of the main conjecture the initial collection of counter-examples are 
no longer counter-examples and do not turn into examples. 

In contrast to behavior of barring, accepting refers to viewing the counter-example 
as an interesting case that should be kept around and making modifcations that turn 
this counter-example into an example that exemplifes a conjecture. Unlike “monster-
barrers who contracted concepts” namely considering polyhedra only implicitly in the 
sense of convex polyhedra, “it is refutationists who expanded them” or “stretch them” 
to accept polyhedra beyond the notion of convex (p. 83-84). The refutationists refute 
the main conjecture when faced with legitimate counter-examples and take sides with 
the counter-examples. Refutationists look to make a new conjecture that is not a mere 
modifcation to an underlying defnition or assumption clause of the main conjecture. 

For example, rather than monster-barring to tighten the defnition of polyhedra 
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to convex polyhedra to save the conclusion clause of the main conjecture : “ if P is a 
polyhedra then, χ = V − E + F = 2”, from the counter-example of non-convex Kepler 
polyhedra. Cayley accepted the non-convex Kepler-Poinsot counter as an interesting 
case and stretched the concept of Euler’s characteristic formula to a similar formula 
that held for convex and non-convex Kepler-Poinsot polyhedra. This is an instance 
where “Counter-examples are turned into new examples-new felds of inquiry open up” 
(Lakatos, 1976, p. 127). It is inferred that those who take multiple stances, both barring 
and acceptance, towards counter-examples may develop a stronger intuition than those 
who just take a barring stance. In the end the main conjecture and its proof are never 
totally scrapped it is just massaged and modifed, either restricted or extended, and 
whatever is left at then end will be a proof of some truth (Lakatos, 1976). The distinction 
being barring and acceptance of counter-example behavior is framed in Table 4.2. 
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Table 4.2: Teasing out barring and acceptance stances towards counter-examples and a 
main conjecture illustrated by Lakatos (1976) 

Types of counter-examples Signals a need to 
Counter-examples to conjectures Modify the main conjecture, a local 

conjecture or both 

Pathological counter-examples Modify an underlying defnition or 
making hidden implicit assumptions 
explicit 

Stance to- Use of counter Type of modi- Counter-
wards counter examples fcation examples after 
examples to modifcation 
conjecture 
Barring - ex-
clude counter-
example and 
salvage main 
conjecture 

Acceptance 
- reject main 
conjecture and 
accept counter 
example 

Anti-
properties 
of counter-
examples are 
incorporated 
to modify 
conjecture 
or underlying 
defnition 

Counter ex-
amples are 
accepted as 
interesting 
cases and their 
properties are 
incorporated 

Restrictive 
modifca-
tion to the 
assumption 
clause of a 
conjecture by 
adding more 
qualifers or 
clarifying an 
underlying 
defnition or 
hidden as-
sumption 

Modifcations 
to the assump-
tion clause 
and conclu-
sion clause 
are made to 
formulate and 
pursue a new 
conjecture 

No longer 
a counter-
example to 
the pursued 
conjecture nor 
an example 

Turns into 
an example 
of the newly 
pursued con-
jecture 
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4.5 Affective impacts 

There is a need for researchers to expand on the felds knowledge of intuition in relation 
to the affective domain (Fischbein, 1987). Goldin (2002) affrmed that “when individu-
als are doing mathematics, the affective system is not merely auxillary to cognition-it is 
central” (p. 60). In the specifc case of intuition, affect can not be disregarded; it is im-
possible to understand one without the other because they co-occur (Sinclair, 2010). In 
the mathematics education literature the affective domain spans many constructs includ-
ing beliefs, values, attitudes, self-effcacy, emotions, identity, motivation, engagement, 
etc (Grootenboer & Marshman, 2016). Although the entire affective domain is likely 
involved in the facilitation or interference of intuition it is beyond the scope of this re-
search. This section briefy outlines some aspects of global and local affect that interact 
with the components of intuition: method, process, and outcome. 

Global affect encompasses a person’s stable beliefs, values, and attitudes re-
lated to a mathematics subject. Global affect may or may not be directed at the self. 
For example, one may have a consistent attitude that abstract algebra is fun. Such an 
attitude is directed outwards toward mathematics as a subject. On the other hand one 
may consistently lack confdence in their own mathematical abilities, this is stable and 
directed inwards toward the self. Local affect is defned as the shifting emotional states 
that occur as a reactive response to a particular experience, for example, excitement, 
comfort, fear, and anxiety (Goldin, 1998; Grootenboer & Marshman, 2016). Affect can 
impact intuition before the outcome is formed or it can be mixed with the outcome or 
in the case of guiding feelings it is the outcome (Sinclair, 2010). Using the language 
of intuition as a method-process-outcome triple in the integrative literature review may 
provide a basis for organizing different types interactions between affective factors and 
intuition. 

The frst of these interactions is that global and local affect can impact the in-
tuiting methods or process component. Fischbein (1987) asserted that the affective 
combination of the “need for structure”, “the fear of invalidity” and “preference for 
desirable conclusions” negatively impacts the intuiting process prior to the conscious 
intuition outcome (Fischbein, 2002, p. 196). This affective combination cuts the intuit-
ing process short; a phenomenon termed “premature closure” (Fischbein, 2002, p. 195). 
“Closure” is adopted in this context from Gestalt Psychology. Whenever one perceives 
a physical object fgures, basic lines and shapes, are encoded and the rest is flled in by 
an implicit matching process to relevant schemas (if they exist) to create a whole. Sim-
ilarly, when presented with a mathematics problem, “we tend automatically to fll in, 
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intuitively, the gap, to close the fgure and reduce the uncertainties” (Fischbein, p. 195). 
The second interaction is that the intuition outcome may be accompanied or mixed with 
a local affect responses. For example, a conjectural intuition may be accompanied with 
strong positive emotions or non-emotional responses. The intensity the accompanied 
emotion is theorized to be a marker that separates creative and non-creative forms of 
intuition (Dane & Pratt, 2009). This was covered in 2.4.4.4. The third interaction is that 
local affect response linked to the intuition outcome can impact a learner’s transition 
from an intuition outcome into a formal analog. Weber and Alcock (2009) used the 
framework representational system of mathematical proof (RSP) and non-RSP system 
to look at how learners were transitioning from formal and informal proof products. 
They found that undergraduate learner’s who felt extremely satisfed with an informal 
argument formed in the non-RSP (informal system) had strong feelings of contentment 
and did not see the point in moving to the RSP system to formalize it. 

Along these lines with a specifc focus on intuition Fischbein (1987) stated that 
intuitions are self-evident cognitions meaning they are mental representations that are 
“directly acceptable” by their possessor prior to , “extrinsic justifcation-a formal proof 
or empirical support” and the prover’s strong feelings of acceptance that accompany the 
experienced intuition may cause the prover to feel so confdent that their intuition is true 
that they do not seek formal justifcation (p. 200). In contrast the previous examples, 
studies have also shown that emotion-based factors can support the move from intuition 
to a formal proof product (Kidron & Dreyfus, 2014; Fischbein, 1987). In other words, 
emotion-based factors can open or constrict the passage way the enables the prover to 
go from an informal representation or intuition(s) to a formal proof. 

4.6 Summary 

Several areas of mathematics education research were brought together in this chapter 
to create a framework to manage intuition research. This framework was comprised of 
an outer frame of intuition associated themes, inner frames for these themes, and units 
of analysis. Out of the four stated themes, the most progress was made on inner frames 
for representational fuency and example-based intuitions. The inner frame for repre-
sentational fuency was the fuency digraph. It was a blend of Duval’s (2017) modes of 
production, modes of aquisition which were emphasized by diSessa (2004), and modal-
ity which came from work by Arzarello (2006b). Modes of production refered to the 
registers that learners use to represent mathematical objects. Modes of aquisition was 
concerned with how learners acquire the representations and mathematical language 
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that they use. And modality refered to two processing modes that learners may use, the 
use of one register at a time or multiple registers simultaneously. This inner frame led 
to an organization of several relevant units of analysis. Some of these units of analysis 
involved: the number of registers that learners use, the number of ways they can rep-
resent a particular mathematical object, if they acquire these representations from the 
instructor directly or through their own explorations, if they can see multiple instances 
of the same object in various contexts, and if they can add or collapse structure of a 
given object to access a new object. 

In addition to the fuency frame, the inner frame for example-based intuitions 
offered a theoretical view of leaners’ intuitions as singleton objects that take on vari-
ous attribute values. This view of intuition was a product of several classifcation sys-
tems for the intuition construct that were developed by psychologists (Dane & Pratt, 
2009; Glöckner & Witteman, 2010) and characterizations of mathematical intuition 
(Fischbein, 1987; Bubp, 2014; Kidron & Dreyfus, 2014). The next chapter puts these 
inner frames and units of analysis to practical use by aligning them with a methodology 
to investigate abstract algebra learners’ fuency for several objects encountered in a frst 
year group theory course and the make-up of their conjectural example-based intuitions 
related to group actions. 
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Chapter 5 

Methodology 

5.1 Introduction 

A major goal of this thesis was to develop a methodology that could be used to investi-
gate learners’ representational fuency for quotient maps and example-based intuitions 
for group actions. This chapter begins with a review of different types of mixed methods 
research designs and case study research. Next, the mixed case study design that was 
chosen for the multi-part study in this thesis is presented. Data collection and analysis 
procedures are described for each part separately. 

5.2 Review of mixed methods research designs 

Tashakkori and Creswell (2007) defned mixed methods designs as “research in which 
the investigator collects and analyzes data, integrates the fndings, and draws inferences 
using both qualitative and quantitative approaches or methods in a single study or pro-
gram of inquiry” (p. 4). Narrative, phenomenology, grounded theory, ethnography, and 
case studies are categorized as qualitative methods (Creswell & Poth, 2018). Quantita-
tive methods include experimental designs, longitudinal designs, and non experimental 
designs that incorporate instruments in which the data is numerically quantifed. Re-
searchers that choose qualitive methods, “support a way of looking at research that 
honors and inductive style, a focus on individual meaning, and the importance of re-
porting the complexity of a situation” (Creswell & Creswell, 2018, p. 4). Researchers 
that apply quantitative methods are focused on statistically measuring and evaluating re-
lationships between pre-defned variables, their goal is often to replicate and generalize 
results (Creswell & Creswell, 2018). 
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In a mixed methods design, data collection is done systematically through quan-
titative means, such as surveys, and qualitative means, such as journaling, interviews, 
or observation notes. During analysis the researcher pays attention to both types of 
data to develop a more robust and informed interpretation of the data as a whole. The 
researcher utilizes qualitative analysis techniques such as inductive thematic analysis 
of verbal transcriptions and text. In addition, quantitative analysis such as descriptive 
statistics, t-tests, analysis of variance and covariance, factor analysis, or multidimen-
sional scaling are carried out (Ross & Onwuegbuzie, 2014; Creswell & Plano Clark, 
2018). Mixed methods designs have a long history in education research. 

Creswell and Plano Clark (2018) layed out the historical development of mixed 
methods design in education beginning with the formative period from the 1950s to 
1980s through the refection and refnement period from 2003 to the present day. The 
formative period was illustrated by a transition from the frst use of several quantitative 
measures to evaluate the same set of traits to the frst studies that combined qualitative 
and quantitative methods. It ended with the advocation of the mixed qualitative and 
quantitative approach. A refection and refnement period ensued and consisted of the 
organization of mixed methods studies through systematic reviews, clarifcation of dif-
ferent types of mixed methods designs, benefts and drawbacks of these designs, how 
to teach mixed methods to a new generation of researchers, characteristics of novice 
versus expert mixed methods researcher, and the skills needed to become more expert 
(Guetterman, 2017; Plano Clark, 2019). 

General methodological trends in mathematics education research at the univer-
sity level as well as specifc methodological trends in the area of intuition research were 
examined in subsection 2.2.2 and subsection 2.2.3. This examination indicated that a 
majority of empirical studies rooted in theory on mathematical intuition applied solely 
qualitative data collection and analysis techniques. If quantitative analysis was done, 
it was limited to descriptive or univariate statistics. Despite the general emphasis and 
push for mixed methods studies in education research, there were only a few mixed 
studies, on university level participants, that placed an intentional focus on the intuition 
construct. A mixed design was pursued in this thesis to address this shortage. The re-
mainder of this section covers different types of mixed designs in order to describe the 
multi-part study in this thesis. 

Mixed methods designs are broadly typifed as fxed or emergent. In a fxed 
design the decision of which qualitative and quantitative techniques to use is made prior 
to the start of the data collection process with participants (Creswell & Plano Clark, 
2018). The variables that the researcher pays attention to and the administration of 
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instruments such as surveys, semi-structured interviews, or manipulation of variables, 
in the case of experimental design, is planned prior to data collection. In an emergent 
design, the study begins as either a qualitative study or solely quantitative study. It is 
not until after the interpretation of results process begins, that the researcher decides to 
utilize the other to enhance their study. For example, a researcher may use qualitative 
techniques to collect data and use qualitative techniques like thematic analysis and later 
decide to turn themes into numerical data (Creswell & Plano Clark, 2018). 

Along with the fxed and emergent characterizations, their are several taxonomies 
of mixed designs. These taxonomies were formed by methodologists to address ques-
tions such as: Is there a predominant qualitative or quantitative focus?, Where has the 
mixing occured, during data collection or analysis?, Are the qualitative and quantitative 
aspects carried out sequentially or in parallel?, How are the two types of data linked 
or how does one infuence the existence of the other? (Creswell & Plano Clark, 2018; 
Leech & Onwuegbuzie, 2009). Leech and Onwuegbuzie (2009) provided a taxonomy 
of designs, in which the designs were characterized with respect to three facets: amount 
of mixing, timing of the quantitative and qualitative “concurrent versus sequential”, and 
the amount of weight given to the qualitative or quantitative part (p. 268). Creswell and 
Plano Clark (2018) identifed a taxonomy of three “core” mixed designs: convergent, 
explanatory sequential, and exploratory sequential (p. 65-67). 

The convergent design consists of both quantitative and qualitative data collec-
tion instruments and analysis procedures. The two forms of data collection are done si-
multaneously within the same session. Either separate qualitative and quantitative data 
collection instruments are used or qualitative data is turned into numerical data. The 
analysis of the qualitative and quantitative data sets are done apart using techniques that 
are exclusive to each of the two traditions. The results compare, contrast, or join the 
two sets of analysis together. 

An explanatory sequential design is employed when the variables of interest are 
known and quantitative instruments to measure these variables are already available. In 
an explanatory sequential design, the researcher starts with selection of already built 
quanitiative instruments and proceeds with quantitative data collection and analysis. 
Once the quantitative portion is completed the researcher follows up with qualitative 
data collection which seeks to add substance to interesting quantitative fndings or to 
fll in gaps the quantitative portion could not fully capture. “The primary intent of this 
design is to use a qualitative strand to explain initial quantitative results” (Creswell & 
Plano Clark, 2018, p. 77). 

In contrast to the explanatory sequential design, the exploratory sequential de-

114 



5.3. REVIEW OF CASE STUDY RESEARCH DESIGNS 

sign is pursued in situations where there is no accompanied theory or quantitative in-
struments that can suffciently assist the researcher with tackling their research ques-
tions. The researcher must begin with preliminary qualitative work to obtain a frame 
and fgure out what the relevant variables might be. The exploratory sequential design 
starts with a qualitative design, Creswell and Plano Clark (2018) suggested grounded 
theory, to obtain a guiding frame and determine variables of interest. This frame is 
used to inform the construction of quantitative instruments. After quantitative instru-
ments are constructed the quantitative data collection and analysis period begins. In an 
exploratory sequential design “Integration involves using the qualitative results (e.g., 
themes and signifcant statements) to build a new quantitative feature that is grounded 
in the culture and perspectives of participants. This new feature is then quantitatively 
tested” on a second, more sizable, sample of participants (Creswell & Plano Clark, 
2018, p. 87). 

The three basic core designs: convergent, explanatory or exploratory, can be 
layed into a more dominant qualitative or quantitative design. Such embedded designs 
are called higher-order or complex mixed methods designs. For example, a mixed meth-
ods case design lays core design in to the case study paradigm. One option would be to 
choose a convergent core design. When a core convergent is layed into a case design, 
the qualitative and quantitative data is collected and analyzed separately then brought 
together during the write up of the results to describe a case or compare multiple cases. 

a good joint display of the integration results would be the statistics by 
theme approach. Alternatively, cases might be placed on a quantitative 
scale along with quotes that suggest differences in the cases (Creswell & 
Plano Clark, 2018, p. 244) 

Given the lack of mixed studies in the area of intuition, a need to understand, and the 
pilot like stage of this research, a mixed design was layed into a case study design. 

5.3 Review of case study research designs 

Case study research provides a concentrated and detailed view of an organization or 
group with common interests and goals, an instructional program, or individuals. Creswell 
and Poth (2018) defned case study research as, 

a qualitative approach in which the investigator explores a real-life, con-
temporary bounded system (a case) or multiple bounded systems (cases) 
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over time, through detailed, in-depth data collection involving multiple 
sources of information (e.g., observations, interviews, audiovisual mate-
rial, and documents and reports), and reports a case description and case 
themes (p. 97). 

Case studies are characterized further according to the number of cases and type of anal-
ysis. The number of cases refers to how many individuals or cases are being studied by 
the researcher, one or several. Type of analysis refers ways in which the researcher ex-
amines or cross-examines cases and how fndings in these cases are presented. Creswell 
and Poth (2018) summarized three types: an instrumental case study, collective com-
parative case study, and intrinsic case study. An instrumental case study is one in which 
the researcher choosing one case to highlight a particular phenomenon of interest. In 
a collective comparative case study several case studies are conducted and presented 
to portray phenomenon of interest. In an intrinsic case study several cases are exam-
ined and a spotlight is put an outlier case that exhibits a “unique” presentation of the 
phenomenon of interest (p. 74). 

While discussing strengths of case study research, Merriam and Tisdell (2015) 
stated: 

It offers insights and illuminates meanings that expand its readers’ experi-
ences. These insights can be construed as tentative hypotheses that help to 
structure future research; hence, case study plays an important role in ad-
vancing a feld’s knowledge base (p. 51)...it can bring about the discovery 
of new meaning, extend the reader’s experience, or confrm what is known 
(p. 44). 

The written products of case study research, often stimulates deep conversations by 
drawing the readers in to interpret the presentation of a case or the phenomenon that 
the case brings into view, and to share their own experiences that are reactivated by 
reading about the case, things that they relate to, and points they either agree or disagree 
with. These conversations lead to possible generalizations, not in the experimental 
sense of generalizable results, but in the exploratory sense of abstracting commonalities 
from a few cases to formulate guesses about what might be the cause of certain local 
trends and eventually arrive at a hypothesis to investigate such trends within a larger 
participant population. In the setting of education published case studies are not just 
for the education researchers, they can reach many audiences and be used as training 
materials that inform educators of how learners at certain levels might be thinking about 
a concept and acts as a stimulus in a relaxed space for educators to brainstorm about how 
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they might introduce a concept or improve a learner’s experience (Merriam & Tisdell, 
2015). 

5.4 Design background for this three-part study 

This three-part study used a mixed methods case study design to explore ways in which 
the two intuition associated factors: representational fuency and example-based intu-
itions could be evaluated. A single case in this context refered to an individual learner. 
Out of the approaches to analysis of cases, a comparative analysis was the main ap-
proach. Instances of unique presentations were also highlighted. The intent of this de-
sign was to: address the shortage of mixed studies that placed an intentional focus on the 
intuition construct at the university level, obtain rich qualitative data that tells a detailed 
story of individuals’ representational fuency as well as their example-based intuitions 
with a restricted context, and start to develop and integrate quantitative techniques. The 
complex mixed design for this study was crafted by laying various spin-offs of the core 
convergent mixed design type into a more dominant case study design. Spin-offs of the 
core convergent design used were: data-transformative and parallel-convergent. Part I 
and II of this three part study was predominantly focused on the representational fu-
ency factor of mathematical intuition. Part III focused on the example-based intuition 
factor described in chapter 4. 

The plan for Part I was to incorporate a data-transformation mixed case design 
to draw out Abstract Algebra students’ representational repertoire for small order fnite 
groups. A card sorting task was used in this study as a data collection instrument. A 
design is transformative if qualitative data is transformed into numerical data. Creswell 
and Plano Clark (2018) described a data-transformation design: 

...the researcher uses procedures to quantify the qualitative fndings (e.g., 
creating a new variable based on qualitative themes). The transformation 
allows the results from the qualitative data set to be combined with quanti-
tative data” (p. 73). 

Several types of quantitative analysis for card sort data are available. Card sort data 
can be paired with similarity measures, multidimensional scaling and factor analysis, to 
name a few (Capra, 2005; Whaley & Longoria, 2009). 

Part II used solely qualitative data collection and analysis techniques to inves-
tigate students’ profciency with collapsing and adding mathematical structure across 
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various registers. Specifc tasks were designed with semi-structured interviews to col-
lect data. In these tasks collapsing mathematical structure involved defning an equiv-
alence relation and quotient maps. Adding mathematical structure involved combining 
two groups operations to obtain a more complex group, possibly by forming a direct 
product or semi-direct product. Data analysis involved several rounds of thematic cod-
ing according to different theoretical lenses or perspectives. According to the Net-

working Theories Group a researcher may start of with a plan and a particular lense 
chosen prior to data collection. As data is collected the researcher may start to auto-
matically associate pieces of data with other theoretical lenses that they have studied. 
These additional lenses may be tacked on to provide a more thorough analysis and get 
more mileage out of the data (Maracci, 2008; Bikener-Ahsbahs & Prediger, 2014). The 
initial round of thematic coding for Part II was focused on learners’ representational 
fuency and was done according to a new four-level representational fuency coding 
framework. A second round of coding used the well estabilished Nested Epistemic Ac-

tions Model for Abstraction in Context (AiC) framework by Dreyfus, Hershkowitz and 
Schwarz (2015). The fnal rounds of data analysis for Part II were brief and brought in 
the default-interventionist and affective perspectives on intuition. 

Part III used a parallel-databases convergent mixed case design to examine stu-
dents’ example-based intuitions as they worked with several examples of group actions 
and explored relationships between orbits and stabilizers of these actions. Creswell and 
Plano Clark (2018) described this design as 

a common approach in which two parallel strands of data collected and 
analyzed independently and are only brought together during the interpre-
tation. The researcher uses the two types of data to examine facets of the 
same phenomenon, and the two sets of independent results are then synthe-
sized or compared during the discussion” (p. 73). 

Rather than accessing the quantitative data by turning qualitative themes into numeri-
cal descriptive statistics as in the transformative design type, the quantitative numerical 
data in a parallel database design type is now obtained by an instrument that was devel-
oped before data collection begins. In otherwords, the existence of the numerical data 
is separate from and not dependent on a qualitative thematic analysis of participant data 
carried out by the researcher (Creswell & Plano Clark, 2018). For part III, A new pro-
totype survey instrument, The Non Creative versus Creative Forms of Intuition Survey 

(NCCFIS), was developed from prior theoretical work and piloted for the frst time to 
obtain numerical quantitative data that characterized each intuition the student recorded 
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along several graded attributes. 
It had become increasingly important in part III to fgure out how to make intu-

ition quantitatively tangible in order to: provide a clearer characterization of intuition in 
a pure math setting, improve the viability of it as a research construct, and explore the 
utility of quantitative analysis techniques. For this study, the NCCFIS survey data was 
paired with Fuzzy C-Means Clustering. This quantitative analysis method was used to 
classify a collection of students’ recorded intuitions according to attribute similarity. 
Journals were used to collect qualitative data for each of the recorded intuitions. In oth-
erwords, both quantitative and qualitative data attached to an intuition was collected, 
concurrently, for every intuition recorded by the student. Results from the separate 
qualitative and quantitative data collection and analysis were merged to gain a richer 
view of the (partial) make-up of students’ example-based intuitions. 

5.5 Participants and settings 

Introductory Abstract algebra is an advanced undergraduate course typically taken at 
the junior or senior level and is a primer for abstract algebra at the graduate level. 
Participants were recruited via purposive sampling using the condition that they had 
exposure to a frst-semester undergraduate or graduate level abstract algebra course. 
Three students, Max, Jenni, and Alex, agreed to participate. They represented cases at 
three consecutive levels in the mathematics program at the same central US R1 level 
research university. This sampling could also be characterized as “maximum variation” 
sampling which “documents diverse variations of individuals” and “increases the like-
lihood that the fndings will refect differences or different perspectives” (Creswell & 
Poth, 2018, p. 159). Max was a fourth year undergraduate mathematics major who had 
completed a course in Abstract Linear Algebra. He was currently taking a frst under-
graduate abstract algebra course that began in late August. Data collection with Max 
occured during mid to late October. Jenni was a frst year graduate student in the math-
ematics department working towards a Masters in Science (MS). She had completed a 
frst and second semester sequence of the undergraduate abstract algebra course her ju-
nior year as an undergraduate. She did not have exposure to the graduate level abstract 
algebra course yet. The fnal participant, Alex, was a second year graduate student in 
the mathematics department who had passed the abstract algebra qualifying examina-
tion. He was working towards a doctorate degree. Participants at three consecutive 
mathematical levels illustrated a developmental progression in thinking for the same 
abstract algebra tasks. 
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They all received lecture-based instruction. The abstract algebra lectures at their 
university occurred either twice or three times weekly for a total of 2.5 hours plus an 
additional offce hour. The undergraduate level courses used the open source text Ab-

stract Algebra Theory and Applications by Judson (2018) and the graduate level text 
by Dummit and Foote (2004). The two-semester undergraduate course covered equiva-
lence relations, the division algorithm, several classes of groups (e.g., abelian, solvable, 
cyclic, permutation, and matrix groups), cosets and Lagrange’s theorem, isomorphisms, 
factor groups, direct-products, homomorphisms, group actions, rings, felds, and Galois 
theory. Applications to cryptography were introduced during the frst semester. The 
graduate level course covered the same material with increased diffculty in homework 
exercises and additional topics such as Sylow theorems, modules, and semi-direct prod-
ucts. Jenni and Alex both received in-person instruction the previous years where as 
Max was introduced to abstract algebra online during the Covid-19 pandemic. A larger 
sample of participants was not available for this study. All three participants partici-
pated in part I and II. 

5.6 Part I: Fluency digraphs for small order groups 

Sandoval and Possanni (2016) articulated that the Theory of Registers of Representa-
tions, “can be used in research in two different ways. One use is to design teaching ac-
tivities to promote the comprehension of mathematical objects through a fexible use of 
their different representations (as Pavlopoulou (1993) and Tanguay (2002) have done). 
A second way is to design activities to evaluate students’ comprehension after they have 
fnished a series of lectures, to help identify the diffculties students encountered when 
working with different representations” (p. 113). In order to explore methodological 
tools for intuition research in a pure math setting, part I of this study implemented a 
card sorting activity (CSA) instrument that was designed to evaluate students’ repre-
sentational fuency and determine what registers or modes of production students pre-
dominantly use for fnite groups after exposure to introductory group theory instruction. 

In a standard card sort activity, participants are given a starting set of inter-
related items. Items may be domain-specifc representations, concepts, physical ob-
jects, or word statements. A participant is then asked to sort the items into card piles. 
“In a card sort experiment, a sort is a partition of all cards in the stimulus set into non-
overlapping subsets” or piles (Fossum & Haller, 2005, p. 140). This technique is rooted 
in Constructivist theory and, more specifcally, George Kelly’s Personal Construct The-
ory (PCT). From the perspective of PCT, a construct is a mental organization of how 
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objects in the environment are alike or not and it is personal in that it is formed by 
an individual based on the way they see and interpret relatedness and non-relatedness 
(Kelly, 2020). It has been an effective tool for drawing out participants tacit knowl-
edge - knowledge stored in memory that infuences decisions, with absence of local 
awareness of the particular knowledge inputs that led to the decision output, and is 
not usually verbalized unless intentionally probed (Chervinskaya & Wasserman, 2000; 
Rugg & McGeorge, 2005). 

In mathematics education research, card sorting has been used to extract ob-
servable aspects of learners’ schema. Schema has been described as: an organization 
of knowledge, a hierarchical classifcation of concepts and connections between con-
cepts, a network of connected components in which the components have varying levels 
of connectivity, a network where the vertices represent states and the edges represent 
a path from a present to goal state, and a collection of actions processes and objects 
(Skemp, 1979; Dubinsky & Mcdonald, 2001). For example, Eli, Mohr-Schroeder, and 
Lee (2011) used the repeated single-criterion card sorting technique outlined by Rugg 
and McGeorge (2005) to probe for aspects of pre-service teachers schemas, in par-
ticular, the types of mathematical connections these teachers make across geometry 
concepts. Card sorts have also been used to design teaching activities that encourage 
students’ to make connections between graphical, algebraic, numerical, and contex-
tual representations for functions (Hillen & Malik, 2013). The CSA Instrument in this 
study was designed specifcally to systematically extract the vertex set, the set of sign-
interpretation pairs, of each students’ fuency digraphs for fnite groups and associations 
between sign-interpretation pairs. 

5.6.1 Instrumentation and data collection 

Card sort activity (CSA) instrument 

The CSA instrument was created in Desmos through the custom card sort activity 
builder, which allows educators to create their own card sort activities by importing 
images and writing text. The images for cayley graphs, objects of symmetry, multi-
plication tables, cycle graphs, and defnitions for groups in terms of generators and 
relations were imported from Group Explorer. In addition to images imported from 
Group Explorer Visualization Software, signs of groups that consisted of generators as 
permutation functions in cycle notation were also included as cards. Participants were 
sent a url link through ZOOM chat to access the card sort activity for fnite groups of 
order 6. The participant was asked to share their screen that displays their view of the 
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cards and to use blank paper for scratch work. All activities were audio-video recorded. 
The cards for the card sort activity were assigned a number and randomly scat-

tered on the screen as shown in Figure 5.1. The images were given generic alphabetical 
labels for the elements in the group. This was done to prevent participants from making 
decisions based on surface level features such as seeing ‘r, f ’ notation in a multipli-
cation table and concluding that the table represents ‘D8 ’ without paying attention to 
relationships among the elements. 

Figure 5.1: Cards for groups with order 6. 

Card sorting formats may be open, closed, or both. An open card sorting format 
in which the participant freely makes sorts as they see ft without constraints regarding 
the size or number of groupings, or the “criterion” they use to make piles. “A criterion 
is the attribute used as the basis for a sort when using sorting techniques” (Rugg & 
McGeorge, 2005, p. 95). The collection of sorts that are formed partially mirrors the 
participant’s mental organization, the patterns they are attuned to, and how they interpret 
these patterns. In a repeated single-criterion open format the participant chooses a pile 
of 2 or more cards out of a larger set that they think are similiar and assigns a single 
similarity or dissimilarity criterion that cards in the subset possess. This is repeated on 
the same set until the participant can’t make any further subsets with distinct criterion 
(Rugg & McGeorge, 2005; Eli, Mohr-Schroeder, & Lee, 2011). 

In a closed format the researcher places restrictions such as fxing criterion and 
then instructing the participant to form piles based on the fxed criterion. Alternatively, 
the researcher may fx piles and instruct the participant to provide similarity or dis-
similarity relationships between the fxed piles. Aside from open, closed, or combined 
formats, there are many variations of card sorting techniques. The technique that re-
searchers choose to use depends on the psychological structures or processes that they 
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are attempting to target and the theories that these structures or processes are embedded 
in (Rugg & McGeorge, 2005; Fossum & Haller, 2005). 

A closed “‘All in one’ sort” technique outlined by Rugg and McGeorge (2005) 
was used to collect data in the frst activity session with more specialized theory-driven 
and goal-directed modifcations to these techniques that align with the fuency digraph 
construct (p. 95). In a typical application of a closed ‘All in one’ sorts, the respondent 
sorts cards one at a time into piles based on criterion fxed by the researcher (Rugg & 
McGeorge, 2005). In this study participants were asked to sort cards into piles that 
represent the same group. The participant was also instructed to make each card pile 
maximal. A maximal card pile for a Group G was defned to be a set of cards M where 
each card in M represents G and is there is no larger set of such cards M 0 that the 
participant can come up with where M is contained in M 0 . The sorting criterion that 
was fxed by the researcher was ‘piles must represent the same group’ and ‘piles must 
be maximal to the participant’. Participants were also instructed to think aloud as they 
formed piles. 

During this session the researcher deviated from a typical closed format by im-
plementing an embedded open criterion format in which participants came up with their 
own reasoning criterion for why cards were added or not added to a pile as they worked 
towards their maximal piles. Some possible reasoning criterion for open sorts may in-
corporate: the number of generators, relations between generators, presence of cyclic 
subgroups, presence of normal subgroups, orders of subgroups, orders of elements, 
abelian or not, etc. The student kept a record of their piles indicating each card by its 
assigned number and their reasoning criterion as they worked towards their maximal 
piles. The data collection procedure was carried out for each participant separately. 

Semi-structured interviews during CSA 

The looped prompt below was used by the researcher to encourage participants to add 
their own sign cards and any additional interpretations. The looped prompt was used to 
extract as many sign-interpretation pairs as possible. 

1. Researcher: Are there any additional ways you like to represent or think about 
a group of order (insert order) that is not given by a card on the board? (If the 
participant answers yes, then allow the participant to make their own card and 
add it to the card set or to make an additional interpretation to an already existing 
card.) 

2. Researcher: Are there any other cards you want to add or remove from this pile? 
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Is this your maximal card pile? (If the participant affrms that their pile is max-
imal, then move on to the next activity. If the participant states that their pile is 
not maximal or is hesitant, move onto the next prompt.) 

3. Researcher: I see that you are unsure. Take some more time to think about your 
piles, decide whether or not you want to make any modifcations to your piles. 
(Once the participant is fnished taking time to think more and possibly make 
modifcation repeat question 1. Continue this loop until the participant affrms 
that their pile is maximal or are unable to make any further modifcations). 

Mode of acquisition survey 

After the participant confrmed that their piles were maximal data was collected on the 
mode of acquisition. The survey consisted of four statements from non-sanctioned to 
sanctioned semiotic representation aquisition. During this pilot the researcher displayed 
each sign card one at a time and asked the participant to chose the statement that best 
described how they acquired their thinking attached to the sign. However, this survey 
procedure focused on the collection of interpretations attached to the sign rather than 
each individual sign-interpretation pair (SR). Next time, the researcher could state a 
recorded sign-interpretation pair produced by the participant and ask the participant 
to chose the statement that best described how they aquired it. The participant may 
have multiple interpretations for a fxed sign. This modifed survey procedure could be 
repeated for each stated SR individually until all observable SRs are typifed according 
to mode in which they were aquired. In future studies, the cards could be swapped out 
for different cards, depending on the mathematical object of interest, registers for that 
mathematical object, and level of the learner. In addition, the data collection procedure 
on participant’s fuency digraphs could be automated and made more effcient by using 
a computer. 

5.7 Part II: Representational fuency during collapsing 
and adding structure tasks 

For part II, data was collected on the registers student’s naturally use to support their rea-
soning for collapsing structure (i.e., quotients) and adding structure (i.e., direct product 
or semi-direct product) tasks. These tasks were designed to investigate students’ fexi-
bility in converting their initial natural response in one register to an alternate register. 
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A methodological tactic when Duvalian semiotic theory is used is to design treatment 
tasks that are contained within some predominant register chosen apriori or to design 
conversion tasks in which the researcher fxes the order of the initial and target registers 
are beforehand. For example, McGee and Moore-Russo (2015) phrased a task in a way 
that directed the participant to go from a numerical to geometric register and created 
additional tasks that were phrased to direct participants to go from other apriori initial 
and target choices. Part II of this study experimented with a different tactic. Rather 
than creating several different tasks with a apriori fxed initial and target, the researcher 
showed stimuli for various registers and let the participant set their inital register(s) 
and complete their response before introducing switch prompts that directed them to 
alternate target registers. 

5.7.1 Instrumentation and data collection 

Collapsing and adding structure task set up with semi-structured interviews 

The collapsing structure task in total consisted of four major sub-tasks: determining if 
the dihedral group and quaternion group of order 8 were isomorphic or not, constructing 
a homomorphism or quotient from the dihedral group to an image group, repeating the 
previous sub-task for the quaternion group, and showing an isomorphism between the 
image groups. The researcher asked the question“Is the quaternion group of order 8 
and the dihedral group of order 8 isomorphic?” followed by “Is there some way that 
you can modify both D8 and Q8 by losing information or collapsing some structure so 
that the resultant modifcation made to D8 is a group that is isomorphic to the resultant 
modifcation to Q8?” Participants were also given another version of the task prompt 
depicted in Figure 5.2 with question marks that indicated what they needed to fnd. The 
homomorphism metaphor of losing information could invoke the loss of information of 
the orders in the pre-image and collapsing could invoke combining elements to form 
a partition. The researcher set up the collapsing structure task by arranging cards into 

D8 Q8 

? ? 

∼ 
?G1

= ?G2 

Figure 5.2: Collapsing Task Prompt. 
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piles as displayed in Figure 5.3 and the adding structure task by arranging cards into 
piles as shown below in Figure 5.4. The participant was asked to build a larger group 
of order 16 by combining the groups D8 and Z2. 

Figure 5.3: Collapsing structure activity set up. 

Figure 5.4: Adding structure activity set up 

After the register cards were put in front of the participant, the researcher left it 
open to the participant to choose an initial register and noted the participant’s frst nat-
ural response. If the participant’s natural frst response consisted predominantly visual 
intuitive response in the collapsing activity, such as performing quotienting processes in 
a digraph register, the researcher followed up with the frst question below to see if they 
could fex to a more rigorous formal response or registers. If the participant provided a 
predominantly formal response that involved writing down cosets or explicitly stating a 
formal-symbolic map from a domain group to a quotient group the researcher asked the 
second question below to see if they could fex to a more visual intuitive response. The 
following two questions were used to investigate whether or not students could fexibly 
go from one register or mode of representation to another: 

Question 1: Can you translate what it means to lose information or collapse struc-
ture like you did in the case of the dihedral group of order eight and Q8 using more 
formal language? Can you explicitly write down what the homomorphism maps 
are? 
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Question 2: Can you translate what it means to lose information or collapse struc-
ture like you did in the case of the dihedral group of order eight and Q8 using the 
digraphs? 

Similar to the collapsing activity, the adding structure activity also evaluated 
how students fexed from a visual intuitive responses, such as using Cayley digraphs or 
symmetries of geometric objects, to formal responses or vice versa. If the participant 
provided a predominantly formal natural response, such as using the group presentation, 
performing calculations, and taking the formal defnition of a cross product or semi-
direct products then the researcher followed up by asking students if they could use 
language that described visually how to combine the groups using Cayley digraphs. 

Follow-up interviews were scheduled with students during study parts II and 
III for several reason. One reason was to obtain additional detailed aspects of the data 
that were relevant to the research questions. A second reason was that it was unclear 
what the participant was thinking or meant during an inital semi-structured interview. 
Follow-up interviews were needed to interpret the data more carefully. A third reason, 
which came up during part II, was that negative affective interference caused one of the 
participants to shut down. 

5.7.2 Qualitative parallel data analysis 

It is estabilished practice for mathematics education researchers to conduct side by side 
“parallel analysis” which is a frst round of analysis from the perspective of one theory 
and a second round of analysis on the same data set from the perspective of another 
theory. These analysis are conducted separately from one another (Maracci, 2008, p. 
274, Prediger, Bikner-Ahsbahs, & Arzarello, 2008). For example, Maracci (2008) an-
alyzed data of undergraduate and graduate students reasoning of vector space theory 
twice, frst from the perspective of tacit intuitive models and then from the perspec-
tive of process-object duality. Moreover, it is common during parallel analysis to use 
theories with different “grain sizes” (Halverscheid, 2008, p. 228). Theories, are often 
called lenses, as they dictate what is seen in the data. Grain size refers to the magnifca-
tion of these lenses as either “macroscopic” or “microscopic” (Halverscheid, 2008, p. 
228). Applying multiple lenses to the same set of data allows these networking theories 
researchers to view the data from various angles of emphasis. 

For part II of this study, data collected during the collapsing structure activity 
was analyzed from the perspective of a four level coding framework for representa-
tional fuency developed. After becoming more comfortable with this frst analytic 
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framework, a decision was made to conduct a parallel-analysis of data collected during 
the adding structure activity from the perspective of two lenses: 1) the four level coding 
framework for representational fuency developed in this thesis and the 2) Nested Epis-

temic Actions Model for Abstraction in Context estabilished by Dreyfus, Hershkowitz 
and Schwarz (2015). The second lense was added after reviewing the data several times 
and repeatedly coming across important aspects of the data related to the conceptual-
ization of intuition in chapter 2 that the representational fuency lens could not bring 
out. In particular, these aspects resembled matching associative forms of intuition, such 
as recognition based on perceptual cues, and intuitive representations characterized as 
gradually constructed mental representations that began with vague sporadic ideas, im-
plicit assumptions, and loose sketches towards more integrated and communicable con-
structions. 

Analytic lens 1: Four-level coding framework for representational fuency 

To begin data analysis for the part II collapsing structure task, all audio fles were tran-
scribed into text. A case folder for part II was created for each participant. Each folder 
contained audio, video, and whiteboard screenshot fles from Zoom interviews, scans 
of written scratch work on paper or a personal tablet. Each type of data was reviewed 
several times and evolved from unstructured to structured note taking. These notes in-
cluded cues that students noticed or did not notice in certain registers, in what order 
did they visit registers, in what way did they use registers, for example a source to 
stimulate ideas or as a check, and conversions from natural registers that they started 
in to a prompted register. These notes were used to construct a chronological summary 
narrative for how each participant’s approach to the task evolved. These narratives 
highlighted the participant’s interpretations, strategies, and register use. 

During the process of writing up, comparing, and contrasting the chronological 
narratives, I noticed that the three participants invoked many interpretations of what 
losing information, collapsing and adding structure meant to them within the context of 
the tasks. The set of interpretations the participants carried with them was sometimes 
different for different strategies that they explored. Several strategies were identifed in 
the interview transcripts such as obtaining Z4, obtaining Z2 ×Z2, and obtaining Z2. The 
impossible strategy occured when the global interpretation, for collapsing structure or 
losing information, constructing a homomorphism was carried to the strategy to obtain 
Z4. Participants also used multiple registers, in different ways, within the same strategy 
and exhibited multiple sign-interpretation pairs for the same sign. This preparatory 
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process helped me to see and sketch the analytic coding framework in Figure 5.5. In 
this framework, Level 1 consists of global collapsing or adding structure interpretation 
themes. Level 2 lists the strategies that the learner enters. Level 3 contains the registers 
that the learner uses the researcher made notes of registers that were naturally entered 
versus registers that were entered after a switch prompt was applied. Level 4 is the 
most detailed level and consisted of collecting an analyzing learners’ sign-interpretation 
pairs within registers and conversions between registers. Registers in which learner’s 
could perform quotient map or homomoprhism processes that were of particular interest 
included: formal-symbolic mapping, digraph, and Cayley table registers. 

Figure 5.5: Four level analytic framework for representational fuency task. 

To prepare for coding, the audio video fles were imported into the Qualitative 
Data Analysis Software NVivo 12. The transcribed text fles were then appended to the 
corresponding audio video fles along with descriptions of their scratch work. A code 
book that mirrored the four level analytic coding framework in Figure 5.5 was set up in 
NVivo 12 manually as shown in Figure 5.6. The parent nodes: interpretation of ignoring 
or collapsing structure, strategy, register, and sign-interpretation pairs and conversions 
were selected prior to coding. Additional codes were created as sub nodes under these 
parent nodes through selective and open coding. Selective coding means that codes are 
selected prior to coding, for example the register codes Cayley tables, Cayley digraphs, 
group presentations, etc., were selected prior to coding. Open coding is the process of 
abstracting and labeling regularities or perhaps unique instances that are found in the 
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Figure 5.6: Data analysis coding framework in NVivo 12. 

data. Open or combined codes are not realized until the researcher immerses themselves 
in the data (Creswell & Poth, 2018). The NVivo 12 coding display helped to analyze 
overlapping codes. After coding, a summary list of codes across all participants was 
transferred into table Table 5.1,Table 5.2, Table 5.3, and Table 5.4. From this coding 
table one can read off aspects of learners’ paths in Figure 5.5. For instance, Max carried 
the collapsing structure or losing information interpretations with codes 1.1, 1.2, 1.2, 
and 1.4 to the impossible Z4 strategy. He performed homomorphism constructions 
within this strategy in several registers. A specifc sign-interpretation pair that Max 
produced in the digraph register for the impossible strategy was given by code 4.11. 
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Table 5.1: Code list summary for collapsing or losing structure interpretation themes. 

1. Collapsing Structure or Losing Information Interpretation Themes Cases 
1.1 Restricting focus to a particular elements, subsets, subgroup and not 
worrying about the rest of the group as a whole 
1.2 Losing subgroups or space in the subgroups 
1.3 Get rid of what is making the two groups different and keeping what 
they have in common 
1.4 Homomorphism (without mentioning quotient map) 
1.5 Quotient out by subgroup (without awareness that the subgroup needs 
to be normal to form a factor group) 
1.6 Crossing out the generator f, getting rid of relations with an f, and 
getting rid of words with an f 
1.7 My initial thought was just getting rid of elements is the way to go to 
leave me with a subgroup and then maybe the quotient groups will help 
me do that and then thinking well if I quotient by a subgroup that is not 
just leaving me with a subgroup 
1.8 Combining or identifying elements into sets of elements 
1.9 Fixing generators, adding word relations to group presentations and 
reducing redundancies to get a smaller group 
1.10 Some relations collapse some stay the same 
1.11 Mod out by an equivalence relation, partitioning 
1.12 Quotient out by normal subgroup to get group of order less than eight 
1.13 Identifying elements by introducing a relation 
1.14 Free group mod out normal subgroup 
1.15 Free group mod out equivalence relation 
1.16 Fixing generators and removing relations in group presentations to 
get larger group 

M, J 

M 
M, J, A 

M 
J 

J 

J 

J, A 
A 

A 
A, J 
A 
M, A 
A 
A 
A 

Table 5.2: Code list summary for strategies entered. 

→ 2. Strategy (non-trivial) Cases 

M-1.1,1.3,1.13 

M-1.1,1.2,1.3,1.4 

J-1.1, 1.3, 1.5, 1.6, 1.8, 
1.11 
J-1.5, 1.7, 1.8, 1.11 
A-1.8,1.10,1.11,1.12 
A-1.8,1.9,1.11,1.12 

2.1 Make the dihedral group look the same 
as the quaternion group/collapsing the dihedral 
group to the quaternion group 
2.2 Obtain Z4 (the impossible strategy if paired 
with hom. interpretation) 
2.2 Obtain Z4 (the impossible strategy if paired 
with hom. interpretation) 
2.3 Obtain Z2 

2.3 Obtain Z2 

2.4 Obtain Z2 × Z2 

M 

M, J 

J, A 

A 
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A-1.3,1.10,1.14,1.15, 
1.16 

2.5 Adding relations that D8 and Q8 have 
in common to obtain infnite group: F =< 

4x, y|x = 1, xy = −yx > 

A 

Table 5.3: Code list summary for registers use. 

3. Registers Cases 

3.1 Cayley table 
3.2 Formal-symbolic function maps 
3.3 Cycle graph (asked to switch) 
3.4 Cayley digraph (brief, not asked to switch) 
3.5 Cayley digraph (asked to switch) 
3.6 Schreier coset digraph (natural or after 3.5) 
3.7 Group presentations,listing elements in the group using group presen-
tation, without thinking about the free group 
3.8 Subgroup lattices (generated on own not asked) 
3.9 Group presentation with thinking about the free group 

M, J 
M, J, A 
A 
M 
M, J, A 
J, A 
M, J 

A 
A 

Table 5.4: Code list summary for sign-interpretation pairs. 

4. Verbalized interpretations attached to signs Cases Register Strategy 

4.1 The dihedral group and quaternion group only 
differ in their products of the last four elements 
with each other 

M 3.1 2.1 

4.2 jj is i2 and i2j is itself M 3.1 2.1 
4.3 take the four cycle in Q4 that doesn’t match 
with the 2 cycle in D4 and somehow make that a 
2 cycle [looking at lower right quadrant] 

M 3.1 2.1 

4.4 last four elements are all there own inverses [in 
D4] 

M 3.1 2.1 

4.5 the diagonal with the e’s[identity] on D4 and 
3then the r on one side of that element and the r 

on the other side of the diagonal those are like the 
same elements as the i3 and in the other cayley table 

M 3.1 2.1 

4.6 make r, i, and j its own inverse M, A M-3.1, M-2.1, A-
A-3.7 Z2 × Z2 
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4.7 D4 and Q8 both have three subgroups of order 4 M 3.4+sglst 2.1 
and D4 has a bunch of these subgroups of order 2. I 
don’t know what a function would be the collapses 
those subgroups, but if there was some way to get 
those out then it would be Q8 
4.8 elements in the old group will go into what we M 3.2+3.7 Z4 

wanted the group properties to be in the new group 
so r4 and f 4 collapse to the identity 
4.9 r [a D4 generator] and i [a Q8 generator] have M 3.2+3.7 Z4 

order 4 so I can take the second generators f and j 
and collapse them to the identity and then map r to 
generator in cyclic subgroup of order 4 and map i 
to the generator in cyclic subgroup of order 4 
4.10 If you only had the two generators, you really M 3.2+3.7 Z4 

only need to describe what it does to the two gen-
erators. Right? 
4.11 So take the inner green cycle of order 4 pull it M 3.5 Z4 

out and let it hangout by itself and this is the new 
group. And you don’t need to worry about the rela-
tionship between these guys and these guys because 
those guys don’t exist anymore [Dihed. group] 
4.12 I’m seeing four four cycles and can’t fnd the M 3.5 Z4 

two cycle [Q8] 
4.13 The cycles in between the inner and outer M 3.5 Z4 

green squares are just like more complicated. And 
so I selected one of the, either the top or the bottom 
of that and took it off by itself then I don’t have to 
worry about what they do with the other things on 
the bottom, because I ’m just looking at the top 
4.14 They both have subgroups of size four. So J 3.7 Z4 

if you have D8 and you remove all the fips and 
just have their rotations, and then you take Q8 and 
reduce it to just the generator i then you’ll have i, 
-i, 1, -1 
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4.15 The fips are a generator so if I get rid of it 
then I will get rid of all the elements with a fip in it 
as well so you would just be left with the rotations 
[Wrote out elements using group presentation and 
removed any elements with an f in it] 
4.16 Removing the fip generator and removing any 
relations with an f in it gives the group presentation 
of Z4 

4.17 < r > and < i > are isomorphic 
4.18 If I physically had the [Cayley table] cards, I 
would cover them up and compare them 
4.19 I know the group generate by r is going to by 
isomorphic to the cyclic group generated by i, but 
I can’t think of how to formalize that collapse. . . so 
its like Q8 quotient it out by the cyclic subgroup 
generated by i, that would be a proper group right? 
Because its the quotient of a group and it’s a sub-
group of it 
4.20 The quotient groups only have two elements. 
They would be isomorphic to Z2 

4.21 The quotient groups are cyclic and therefore 
abelian 
4.22 I’m trying to think of a property for the quo-
tient map to be well-defned 
4.23 In D8 it’s like removing the red lines because 
that would be the fip 
4.24 If you get rid of the f then you collapse these 
points to a point and you end up with a square. Get-
ting rid of the generator f could collapse these lines 
and you would end up with Z4 

4.25 I guess the top squares [referring to Q8] that 
are connected by the green lines would collapse 
into one and then the bottom elements that are con-
nected by the green would collapse into one. And 
then all of the red lines would just collapse into one 
red line. So again, we’d have Z2 

J 

J 

J 
J 

J 

J 

J 

J 

J 

J 

J 

3.7 

3.7 

3.1 
3.1 

3.2+3.7 

3.2+3.7 

3.7 

3.1+3.2+3.7Z2 

Z4 

Z4 

Z4 

Z4 

Z4 

Z2 

Z2 

3.6 

3.6 

3.5→3.6 

Z4 

Z4 

Z2 
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4.26 Take out f 2 = 1 and i2 = j2 then, the gener- A 
ators i and r play the same role and f and j play the 
same role 
4.27 Since it isn’t specifed y is infnite order so A 
< y > is the group Z 

4.28 Taking out the relations i2 = j2 just means that A 
I would still go around in a circle, but the j doesn’t 
necessarily go around the same circle anymore, it 
does not have the cycle going -1, -j, 1, and back to 
j 
4.29 Both groups [dihedral group and quaternion A 
group] started as the free group over two elements 
and then you mod out by relations to get the groups 
4.30 Putting more relations in is going to make A 
more words be the same word so you’re identify-
ing more and more elements by putting in more 
and more relations so you are going to get fewer 
distinct elements. More relations means fewer ele-
ments and fewer relations means more elements 
4.31 The normal subgroups dictate what the rela- A 
tions are because they will say whatever’s in the 
normal subgroup is going to be effectively the iden-
tity 
4.32 There is still this cyclic group of order four and A 
there is this anti-commutativity where xy = −yx 

4.33 In Q8 you have this element k but if you think A 
about it in group presentation form it is ij and if 
you get rid of i2 = j2 the element that was k acts 
like a completely different element now so Q8 does 
not sit inside of F and similarly the dihedral group 
does not sit inside of F, but they are quotients of it 
in some way 
4.34 If you add f 2 = r2 to the dihedral group and A 
i2 = 1 to the quaternion group I think you just the 
the Klein-4 group. So it just shrunk down to this 
really pretty little group 
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4.35 So since we are modding out by the subgroup A 3.5→3.6 Z2 

generated by i, the vertices i, 1, -i, and -1 would 
become one element...So if i, -i, -1, and 1 are a 
coset and those go together, then the other elements 
would be the other coset 
If we collapsed one negative, one i and negative i A 3.5→3.6 Z2 

into one element, then those four go to one. And 
then outside of that one, there would be four others 
leftover. So with just that one collapsing, there’s 
still fve elements. So then the other four elements 
that are not that new crunched one would also col-
lapse into one element 
4.36 And on here, I guess the, the red arrows be- A 3.5→3.6 Z2 

tween one eye negative one and negative, i, those 
arrows would collapse because all those elements 
would become one element. And then the other el-
ements, the j negative jk and negative k would col-
lapse to be the other coset. And so the relation, like 
you’d ended up having, um, just one relation be-
tween those two that goes from the i coset to the j 
Coset and then back to the i Coset 
4.37 So some of these relations wouldn’t collapse, A 3.5→3.6 Z2 

they’d just become the exact same arrow, like for 
example, this green arrow between negative J and 
one that doesn’t collapse, but it’s going to be the 
exact same relation. Yeah. All those green arrows 
down on the bottom that go from one to J to nega-
tive one to negative J and back to one, those would 
turn into those don’t collapse. They just become 
the same relation. And then same as the green ones 
up at the top. Those wouldn’t collapse, they just 
become the same relation. 
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4.38 I guess those are oriented. They wouldn’t nec- A 3.5→3.6 Z2 

essarily all be the exact same relation, but it make 
it a two way relation. So you’d have this, all the 
eye that got crunched down and then all the JK that 
got crunched down and there’d be a two-way arrow 
between those. 
4.39 I think for this one [dihedral group], the inner A 3.5→3.6 Z2 

circle, those are going to all collapse into one ele-
ment and then the outer circle would collapse into 
one element [dihedral group] 
4.40 This time the green arrows are going to be the A 3.5→3.6 Z2 

ones where you collapse into an element and col-
lapse into an element. Um, so that would leave the 
two-way red arrows, but then they would end up 
becoming just the same two way, one relation [di-
hedral group] 

Conficts between collapsing or loosing structure interpretations, strategy, and 
sign-interpretation pairs and mathematical reality were kept track of through note tak-
ing. At this point the concept image and concept defnition distinction initially proposed 
by Tall and Vinner (1981) felt relevant, but they did not come at things from the pre-
dominant angle of semiotics or Duvalian theory with sign. The vertical collapsing or 
ignoring structure interpretation, strategy, register and sign-interpretation pairs strands 
may include particulars from many concept images. Therefore, we say that a strand is 
in confict with mathematical reality if it contains descriptions that are not consistent 
with formal defnitions, theorems, or what an associated mathematical object actually 
does. 

For example, an interpretation of collapsing or ignoring structure as a homomor-
phism, taken to the strategy to obtain the Klein-4 group, in the Schreir graph register, 
with the particular sign-interpretation pair that a homomorphism is like running through 
a quotient map and so it is like identifying vertices and collapsing them to a coset ver-
tex is consistent with mathematical reality. Taking a the interpretation of collapsing 
or ignoring structure as a homomorphism, to the strategy to obtain Z4, in the Cayley 
graph register, with the particular sign-interpretation pair that involves erasing vertices 
and edges is not consistent with what a homomorphism actually does. These inconsis-
tent strands were often accompanied with pseudo-semiotic representations in which the 
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signifed object that was assigned to the sign-interpretation pair by the learner does not 
exist mathematically or is not accurately portrayed. The pseudo-semiotic phenomenon 
was frst found in the data, it was not defned prior to data collection. The literature was 
revisited to try and fnd existing constructs that resembled the observed phenomenon 
and were already estabilished by other researchers that also incorporated a semiotic 
lens. 

One partially relevant link that was found was Tsamir and Ovodenko (2013). 
They combined Duval’s articulation of conversions and reverse conversions, Fischbein’s 
(1993) distinction between intuitive and formal algorithmic processes, and the concept 
image and concept distinction made by Tall and Vinner (1981) to conduct an error anal-
ysis of learners reasoning with infection points. From the Duvalian semiotic perspec-
tive, they focused their analysis to students diffculty with recognizing the same math-
ematical object across algebraic-symbolic, geometric, and verbal registers and cases in 
which a learner was successful in making a conversion from an initial to target register, 
but could not perform the reverse conversion from the previous target to initial regis-
ter. There was an overlap between theories they used to frame analysis and the theories 
presented for this study, however they did not note the pseudo-semiotic phenomenon. 
Next, the search was turned to broader encompassing constructs. 

A pseudo-semiotic representation could be thought of as a specialized instance 
that fell under the more general umbrella of pseudo-conceptual behaviors proposed 
by Vinner (1997), hence the added qualifer “pseudo” to the semiotic representation 
construct. Vinner (1997) termed “pseudo-conceptual behavior to describe a behavior 
which might look like conceptual behavior, but which in fact is produced by mental 
processes which do not characterize conceptual behavior” (p.100). Vinner admitted 
that this defnition was not satisfactory and provided more explanation and examples of 
what he meant by pseudo-conceptual behavior. He explained that pseudo-conceptual 
behaviors or processes are “simpler, easier, and shorter than true conceptual processes” 
(p. 101). The more novice learner may gravitate towards pseudo-conceptual processes 
because they are “simpler, easier, and shorter” (p. 101). He noticed that: 

When presented with a task, they start looking for ways that will enable 
them to perform the task. These ways are not necessarily the way thought 
by the designers of the task when they decided to present it to the students. 
The task designers probably intended conceptual thought processes; the 
students came up with pseudo-conceptual thought processes...formed in a 
spontaneous way...and not necessarily taught to them by teachers or other 
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agents. Sometimes they are the natural cognitive reactions to certain cog-
nitive stimuli. The students use them without going through any refective 
procedure, control procedure or analysis of any kind (p. 101). 

Pseudo-conceptual behaviors that have been described within a semiotic frame includes 
gesture and speech mismatch. Those with a greater number of gesture-speech mis-
matches are said to be in a “discordant state” and those with very little gesture-speech 
mismatches are in a “concordant state” (Alibali & Goldin-Meadow, p. 468, 470, 485). 
Gesture and speech mismatch generalizes to the notion of conficts in concept expres-
sion between specifed registers. 

At this point in the analysis of the present study, the data was combed through 
a fnal time to try to systematically identify and collect any pseudo-semiotic represen-
tations that were made by the participants for quotients or homomorphisms. While a 
quotient is essentially the same as a homomorphism, the distinction was made during 
coding to refect the language that the learner was using. An spreadsheet was created 
for each participant with the columns: sign, interpretation, signifed object, and register. 
Rows where the signifed object was the same, but the registers changed indicated possi-
ble points were a conversion or pseudo-conversions, improper signifcation of underly-
ing object tracked across multiple registers, might have occurred. Tapes were reviewed 
at those point to make a fnal assessment. Coding pseudo-semiotic representation was 
fairly straightforward, but coding became too diffcult when trying to systematically 
track pseudo-conversions in the open format task moreover it felt like double counting 
pseudo-semiotic representations. Figure 5.7 gives a theoretical illustration of a pseudo-
semiotic representation as a unit of analysis. 

Figure 5.7: Pseudo-semiotic representation as a unit of analysis. 
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Going back to the defnition of representational fuency, in terms of fuency 
digraphs covered in subsection 4.2.3, it would be important to also take pseudo-semiotic 
representations into account that reside within the learner’s fuency digraphs. Hence, the 
representation fuency summation needs to be adjusted if researchers attempt to quantify 
learners’ representational fuency within a task-based situation restricted to an object 
set in terms of observable semiotic representations, conversions, and pseudo-semiotic 
representations. 

The analysis procedure using this analytic framework for representational fu-
ency was repeated on Jenni’s data from the adding structure task. Jenni was an inter-
esting case because she started is the visual digraph register and object of symmetry 
register rather than the standard formal defnition construction of a direct product. She 
ended her work by making a conjecture that she might be constructing a direct product, 
but would need to check it. The other learners’ carried out their construction process 
in the reverse direction. They stated the specifc groups they were constructing frst in 
a formal defnition register before building the group in a digraph register. Lens 2 was 
also applied to analyze how Jenni’s construction evolved during the adding structure 
task. 

Analytic lens 2: Nested Epistemic Actions for Abstraction in Context 

The Nested Epistemic Actions Model for Abstraction in Context (AiC) is a theoretical 
and methodological constructivist model that was inspired by Freudenthal (1973) and 
Davydov’s (1990) characterizations of abstraction (Dreyfus, Hershkowitz & Schwarz, 
2015). Freudenthal described abstraction as a gradual process of taking previous knowl-
edge, reorganizing it, and arriving at a new construction. Davydov described abstraction 
as the process of going from a vague mental image that is partial and fragmentary to 
a more complete, integrated and communicable whole. Dreyfus et al. (2015) con-
trasted Davydov’s view with abstraction in the sense of going from concrete examples 
to an abstracted generalization. They emphasized that “It does not proceed from con-
crete to abstract but from an undeveloped to a developed form” and increasing levels 
of awareness of a new construction (p. 187). AiC is only partially observable, the 
AiC model provides a way to analyze abstraction through observable mental activities 
termed “epistemic actions” (p. 188-189). 

These three epistemic actions are: “recognition” (R), “building-with” (B), and 
“constructing” (C). Recognition is for recognizing and bringing in to play pieces learned 
in the past that may be pertinent. This overlaps with the notion of matching associa-
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tive forms of intuition covered in subsubsection 2.4.4.2. After recognizing such pieces 
students build on them, by making elaborations. After building with and extending 
previous knowledge the learner arrives at a new construction. The recognition of old 
constructs as relevant pieces can stimulate motivation to construct something new that 
will support goals in a particular situation. Emergence occurs when the learner experi-
ences some partial degree of awareness of a new construct which is not fully formulated 
and, ”is often fragile and context dependent” (Dreyfus, Hershkowitz & Schwarz, 2015, 
p. 188). 

Abstraction in context is described as nested meaning that the C epistemic ac-
tion is dependent on the B epistemic action and the B epistemic action is dependent 
on the R action. Moreover, two constructions may be put together to form a third con-
struction, so that epistemic action that led to the two constructions are embedded in 
the third construction. Consolidation is reached when the learner is fully aware of the 
generated construct and can recognize its use across multiple contexts, not just the con-
text in which it was aquired, and build from it. Some attributes of intuition such as 
self-evidence, fexibility in manipulating the construct, and immediacy of the construct 
coming to mind in other contexts, are theorized to be signs of consolidation (Dreyfus, 
Hershkowitz, & Schwarz, 2015). 

The AiC data analysis process developed by Dreyfus, Hershkowitz, and Schwarz 
(2015) was used in this study to analyze students constructing processes of direct or 
semi-direct products to build a larger group from two smaller groups. The AiC data 
analysis consists of a presumptive analysis of how students could approach the task 
and what they might construct followed by RBC analysis of student data. To begin the 
RBC analysis, data was spliced into “construction episodes” based on Dreyfus et al. 
(2015) and Chi’s (1997) recommendations (p. 193-194). Next, the data was coded for 
each construction episode in line with Dreyfus et al. (2015) coding scheme (Table 8.1, 
p. 197). To set up the coding sheet a column is given for the transcript line number, 
the participant, the transcribed data segment, and each construction labeled Cn where 
n is the construction number. Within each constructing column the epistemic actions 
recognition and building with codes are inputted that led to the specifed construction. 
A subsequent construction may have recognition and building with codes that occurred 
in previous constructions. 
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5.8 Part III: Example-based intuitions for group actions 

The two graduate students, Jenni and Alex, participated in part III of this study. To 
begin part III data collection a baseline questionnaire was administered. A baseline 
questionnaire, self-report journals, intuition excel logs, the NCCFIS with additional 
survey items, and a fnal follow-up interview were used to collect the data. The self-
report journals, intuition excel logs, and NCCFIS with additional survey items were 
used concurrently to collect data on participant’s example-based intuitions. 

5.8.1 Instrumentation and data collection 

Baseline questionnaire 

The questionnaire consisted of 5 questions and was administered through Zoom to get a 
baseline of how comfortable the participant was with multiple ways of describing group 
actions and their knowledge of some examples. The beginning of the questionnaire 
introduced a typical textbook defnition of a group action: 

A group action is a function · : G × X −→ X that maps (g, x) to g · x such 
that e · x = x and g · (h · x) = gh · x for all g ∈ G and x ∈ X . 

The frst question asked to translate this defnition of a group action in terms of homo-
morphism language. The second question asked students to provide three examples of 
group actions. The third question gave a typical textbook defnition of a group orbit, 
Orb(x) = {g · x ∈ X : g ∈ G}, and asked the participant to describe a group orbit 
in their own words. The fourth question asked whether or not the defnition of a group 
orbit felt familiar and if it reminded the participant of an object that they were more 
comfortable with or have worked with before. The ffth question gave a typical text-
book defnition of a stabilizer, stab(x) = {g ∈ G : g · x = x, and asked the participant 
to describe what a stabilizer is in their own words. The participant wrote down their 
answers on a piece of paper, tablet or whiteboard and also verbalized their responses. 
This was audio and video recorded. Afterwards, participants’ responses were reviewed 
and a second session was set up with a participant if they made errors or if responses 
were missing. During this session, the researcher worked with participant until they 
were able to provide a valid interpretation of the defnition of a group action using ho-
momomorphism language and could generate some examples of group actions before 
moving on. 
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Experimentation with examples activity 

An experimentation activity with examples of group actions was set up. First, each 
participant was asked to generate a list of classes of examples for group actions. After 
the participant generated their list, the researcher made sure to provide every partici-
pant with the following list of example classes: 1) G acting on itself, 2) G acting on a 
subgroup H, 3) The subgroup H acting on G, 3) A group G acting on the set of cosets, 
4) A group G acting on a set X where the set X is not as structurally rich as a group, 5) 
A group G acting on something that is structurally richer than a group, namely a vec-
tor space V. The researcher also asked each participant to give an example within each 
class. If the participant could not provide an example of the class, then the researcher 
worked with the participant until they had access to an example. 

Next, the researcher instructed the participant to explore patterns and relation-
ships among the orbits and stabilizers within different example classes of group actions 
and across example classes. At this point, each participant went off and worked indi-
vidually, and they were not confned to a particular location or time in which the work 
had to take place. They were given fexibility to take breaks and set their own schedule. 
This was done to try to reduce possible interference from negative affective factors in-
duced by time pressure or pressure to perform in front of an audience. Each participant 
kept a journal of their experimentation with examples and the intuitions they arrived at. 
In addition, they kept a log of their intuitions in the excel spreadsheet that was format-
ted as shown below with an embedded survey instrument to capture qualities of their 
intuitions with respect to the Non-creative and Creative (NCC) attribute cluster and the 
additional attribute confdence in truth value. 

Journals 

Participants were asked to journal about their thoughts with a date and time of the jour-
nal entry. It was up to the participant to determine what work they felt was important 
and what they felt were the highlights of their experimentation with examples. They 
were also instructed to include elaborations of their example-based intuitions, what 
they were, how they arrived at them, and any associated sketches. The researcher pro-
vided each participant with the following combined characterization of example-based 
intuitions informed by defnitions in the literature: ‘any patterns that you notice and 
guesses, hypothesis, or conjectures that come to mind, as a result of working with ex-
amples. They may seem plausible at the time you experience them and they precede the 
proof’. Aside from this generic characterization, students were encouraged to freely 
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determine whether or not something that came to their mind was an example-based 
intuition. 

Researchers have coded students verbal transcripts or written material as in-
tuition or analytic thinking (Chiu, 1996; Bubp, 2014). For example Chiu’s (1996) de-
scribed her method to examine middle school students reasoning about lengths of paths: 
“I categorized students’ utterances as indicating intuitions if they were (a) conceptual, 
(b) self-evident, (c) holistic, and (d) robust. In contrast, measuring each path with a 
ruler and comparing the numerical lengths would be coded as an analytic procedure, 
not an intuition” (p. 484). This type of coding only tells the story of the researchers’ 
interpretation of student’s statements as either intuition or not rather than the students 
interpretation or refections about what constitutes intuition. While Chiu (1996) reports 
high inter-rater reliability, others have found that inter-rater reliability can be diffcult 
to achieve and the sole use of researcher interpretations in studies on intuition has been 
considered a limitation (Bubp, 2014). 

Intuition excel logs 

Participants also kept track of their journaled intuitions in the excel spreadsheet in Fig-
ure 5.8. For each intuition that they logged in the spreadsheet, they flled out a survey 
that captured the qualities of their intuition in terms of: non-creative and creative at-
tributes, and confdence in truth value. Participant’s were told to log all intuitions that 
occurred regardless of whether or not they felt they were true or not and regardless of 
whether or not they were easy or diffcult to express. In fact during a meeting to go over 
recording instructions participants asked whether or not the were supposed to record 
their intuitions even if they were not so sure that they were true or intuitions that would 
later turn out to be false. This may have indicated that the when one is unsure of some-
thing they may tend to keep it private or withhold it from others. It was important to try 
and capture as close to what was going on in the students mind as possible. I reiterated 
to the participants that it was important to log all of their intuitions even if they were 
unsure or not confdent in them and to make note of when they felt unsure about some-
thing. If the intuitions were diffcult to express the participant was instructed to do their 
best and make a note of it. Moreover, survey items were built in to capture these details 
and account for the variations in the intuiters confdence and perceived truth value of 
each of their intuitions. 
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Figure 5.8: Intuition excel logs 

Development of a new quantitative data collection instrument: the Non-creative 
Versus Creative Forms of Intuition Survey (NCCFIS) 

The development of the NCCFIS began with an integrative literature review that in-
volved a thematic analysis to identify and defne variable attributes of mathematical 
intuition and an examination of existing measures for intuition. A main objective of 
the integrative literature review was to determine a way to represent intuition as a tan-
gible construct for mathematics education research. Initially, a quantitative instrument 
was not pursued and did not seem reachable due to a lack of organization in this area. 
However, a key fnding from the integrative literature review that made mathematical 
intuition a more manageable construct was the view that intuition should be represented 
as a class-concept and the objects, individual intuitions, may get shuffed around into 
different classes depending on what attributes the researcher chooses to focus on. 

The coarsest classifcation, namely the distinction between non-creative and cre-
ative forms, was found in the psychology literature. This distinction was a reasonable 
place to start and opened a door towards a survey instrument that provided access to 
numerical data that could be analyzed using quantitative techniques. The explicit dis-
tinction between non-creative and creative forms of intuition was not found in the math-
ematics education literature. In fact, out of the entire literature sample only one math-
ematics education researcher mentioned creative intuition, a single time, without any 
references or description for the term. However, several scattered variable attributes 
were foating around the mathematics education literature that aligned with this coarse 
classifcation. For example Bruner (1960) described two different types of mathemati-
cal intuition, 

intuition is used with two rather different meanings. On the one hand, an 
individual is said to think intuitively when having worked for a long time on 
a problem, he rather suddenly achieves the solution, one for which he has 
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yet to provide a formal proof. On the other hand, an individual is said to be 
a good intuitive mathematician if, when others come to him with questions, 
he can make quickly very good guesses whether something is so, or which 
of several approaches to a problem will prove fruitful (p. 156). 

Bruner’s second description “On the other hand...” could be linked to psychologists 
Larkin et al.’s (1980) description of a quick recognition type of intuition, “Although a 
sizable body of knowledge is prerequisite to expert skill, the knowledge must be in-
dexed by large numbers of patterns that, on recognition, guide the expert in a fraction 
of a second to relevant parts of knowledge store” (p. 1336). Aspects of the previous 
descriptions were later linked to psychologists Policastro’s (1995) description that con-
trasted intuition as “...recognition, among experiences that have similiar structure” and 
creative intuition that leads to “...the organization of novel structure”, something new 
to the intuiter. While comparing and contrasting many descriptions of intuition and 
creating links between them, variable attributes such as time of conscious work prior 
to awareness of the intuition and novelty versus familiarity were noted. Constructs 
within the areas of creativity, semiotics, and affect started to blend as a set of attributes 
that separated non-creative and creative forms of intuition emerged: personal novelty, 
emotional intensity, ease of externalization, use of sanctioned or non-sanctioned rep-
resentations to produce cues, presence of sanctioned or non-sanctioned representations 
contained in the intuition outcome, incubation period, and network thinking. A more 
thorough account for how these variables were identifed and a description of them can 
be found in chapter 2. Next, existing self-report quantitative measures for intuition were 
examined. 

Several general quantitative self-report survey instruments have been developed 
and validated for intuition within the feld of Psychology. The Rational-Experiential In-
ventory and Multimodal Inventory (REI, REI-40; Pacini & Epstein, 1999, REIm; Norris 
& Epstein, 2011) is based in Cognitive Experiential Self Theory (CEST), a dual-process 
theory and personality theory. According to CEST there are two distinct processing sys-
tems: the rational and experiential system. The “rational system operates primarily at 
the conscious level and is intentional, analytic, primarily verbal, and relatively affect 
free” and the intuitive “experiential system is assumed to be automatic, preconscious, 
holistic, associationistic, primarily nonverbal, and intimately associated with affect” 
(Epstein, Pacini, Denes-Raj, & Heier, 1996, p. 391). As a personality theory CEST 
posed that people differ when it comes to how much they use the two systems when 
making every day decisions and whether or not they have a tendency to use one system 
over the other or if they balance both. A person who uses the experiential system more 

146 



5.8. PART III: EXAMPLE-BASED INTUITIONS FOR GROUP ACTIONS 

is said to have an intuitive thinking style and a person who uses the rational system 
more is said to have a rational thinking style. 

The REI was the frst self-report survey instrument developed to measure the 
two thinking styles among various populations. The REI began with two scales the 
Need for Cognition Scale and the Faith in Intuition Scale (Epstein, Pacini, Denes-Raj, 
and Heier, 1996). A revision, the REIm, included an rational-analytic thinking factor 
and three subscales within the experiential-intuitive thinking factor: intuition, emotion-
ality, and imagination. Items included global statements of general preferences, beliefs, 
and attitudes such as “Using logic usually works well for me in fguring out problems 
in my life”, “I tend to describe things by using images or metaphors, or creative com-
parisons”, “I often trust my initial feelings about people”, “I try to avoid situation that 
require thinking in depth about something”, “I am not very good in solving problems 
that require careful logical analysis”, “I have a logical mind”, and “I enjoy imagining 
things” (Norris & Epstein, 2011, p. 1051-1052). 

Another scale of similiar favor to the REI is the Preference for Intuition and 
Deliberation Scale (PID). The PID measures the degree to which an individual prefers 
to make decisions using intuition defned as spontaneous affective states that drive deci-
sions, “My feelings play an important role in my decisions”, or to make decisions using 
deliberation, analytic calculations, pros and cons lists, and planning (PID; Betsch, 2008, 
p. 536). Betsch and Kunz (2008) used the PID to identify individuals that preferred one 
decision-making mode over the other, that is individuals that scored inversely on the in-
tuition scale and deliberation scale as an initial step in a study that assessed how much 
value people assign to material objects when instructed to use decision-making modes 
that were either consistent or inconsistent with the prefered mode. 

A more recent scale is the Types of Intuition Scale (TIntS; Pretz et al., 2014). 
It measures holistic, inferential, and affective types of intuition. Holistic type was split 
into two subtypes, big picture thinking and abstract thinking. Inferential type is ex-
perience or familiarity based. Affective type covers emotion based decisions. Several 
items from the TIntS, for example “I am a big picture person” and “It is better to break 
a problem into parts than to focus on the big picture”, are not distinct from boundary 
properties of intuition found in the literature. According to both the psychology and 
mathematics education literature a boundary property of intuition is that it is a holis-
tic global big picture interpretation (Fischbein, 1987; Chiu, 1996; Dane & Pratt, 2007; 
2009). It seems problematic to mix boundary properties of a construct to distinguish 
between different types of intuition. Pretz et al. (2014) recommended that TInts could 
be used to confrm or reject whether or not “holistic intuition is more likely to be ac-
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curate for novices and inferential intuition for experts” (p. 465). They argued that it 
is important to distinguish between different types of intuitions, and showed that the 
relationship between occupational therapy students’ diagnostic/treatment performance 
scores and intuition was different for different types of intuition. In particular, diagnos-
tic and treatment performance scores were negatively correlated with affective intuition 
items, but positively correlated with holistic and inferential types. 

Quantitative intuition scales or self-report survey instruments specifc to the con-
struct of mathematical intuition for use in mathematics education research are short in 
supply. Fischbein, Tirosh, and Melamed’s (1981) intuitive acceptance questionnaire re-
mains to be the only such instrument. The intuitive acceptance questionnaire is used to 
assess how intuitively acceptable a student perceives a provided statement or solution 
to be. Intuitive acceptance is defned as a combination of how obvious the statement or 
solution feels and how confdent the student is that it is true. 

Description of the NCCFIS 

The Non-creative versus Creative Forms of Intuition Survey (NCCFIS) seems to be a 
frst of its kind in the area of intuition research and extracts the (partial) local make-up of 
a particular cognitive object, namely an intuition. The previously discussed self-report 
instruments and the NCCFIS differ in: how they are administered and what they target. 
The administration of self-report intuition surveys from psychology take little time to 
complete, are flled out a single time by the participant, attempt to capture more stable 
thinking styles, and are detached from mathematical experimentation situations. 

For example, many self-report instruments associated with intuition in psychol-
ogy like the PID [Betsch, 2008] are used to target global estimations of individuals’ 
general tendencies, thinking styles, or stable personality traits. Viewing intuitive ver-
sus analytic thinking styles as a stable personality traits within the mathematics culture 
seems problematic. Poincaré (1969) distinction between analytic and intuitive “minds” 
in mathematics has been sensationalized. He stated that, “it is impossible to study the 
works of the great mathematicians, or even those of the lesser, without noticing and 
distinguishing two opposite tendencies, or rather two entirely different kinds of minds”, 
the analysts were stereotyped as “logicians” and the geometers were the “intuitionalists” 
(p. 205-206). There was disagreement over which type of mind was better. “Doubtless 
Professor Klein well knows he has given here only a sketch, he has not hesitated to 
publish it...A logician would have rejected with horror such an conception, or rather he 
would not have had to reject it, because in his mind it would never have originated” 
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(Poincaré, 1969, p. 206). However, this is a chicken and egg statement because without 
intuition there would be no catalyst for a conjecture and subsequently a proof. So if 
such an intuition conception never originated in the analysts mind, would he be able to 
give a proof? And without previously proven results, formalized systems, and objects 
to tinker with where would we build our intuitions from? The claim that there are two 
distinct types of minds or tendencies in mathematics has been countered (Wilder, 1967). 

Moreover, global instruments that attempt to capture stable thinking styles seems 
problematic and contrary to the view that intuition is fractionated, meaning that its at-
tributes are at least dependent on the context. It is important to keep in mind that 
intuition is “fractionated” meaning that an individual may have strong intuition in some 
areas or contexts, but not in others (Kahneman & Klein, 2009, p. 522; Wilder, 1967). 
For example, Fields medalist Enrico Bombieri during an interview by Lipton and Regan 
(2013) stated, “My intuition in geometry, especially in high dimensions, is very poor...I 
am not sure why.... but it is very different from the study of prime numbers” (Lipton & 
Regan, 2013, p. 67). Bombieri wrote several conjectures related to solvable groups and 
one of these conjectures was quickly disproved by group theorist Colin Reid. Bombieri 
concluded that his “My intuition about fnite groups is even worse than my geometric 
intuition” (p. 67). 

In contrast to existing psychological measures, the NCCFIS was designed to 
capture local information about the make-up of each intuition reported by an individual 
restricted to a particular mathematical task. Even though the existing TInts instrument 
measures types as a global or collective valuation, without respect to a particular intu-
ition and out of context. The TInts does not isolate and measure each intuition as a local 
object at the moment it occurs. Responses to the new NCCFIS survey items were de-
pendent on a particular intuition held in the conscious mind, meaning that if the intuition 
held in the mind was swapped then responses to survey items would change to refect 
characteristics of a currently held intuition. The journal entries provided a qualitative 
description of one’s intuition, it tells the researcher what the content of the intuition 
was and the surrounding scene of experimentation with examples. The intuition excel 
log isolated each intuition within the journal elaborations into a succinct description. 
The NCCFIS provided an additional set of data on the qualities of each intuition in 
terms of non-creative versus creative attributes that the student recorded. The NCCFIS 
was repeatedly flled out by the student for every single intuition that they experienced 
awareness for and logged during a specifed mathematical task. Rather than being a 
quantitative survey instrument that washed out details, it was an attached extension of 
the qualitative intuition journal data that provided an additional layer of information. 
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Figure 5.9: Sample of items on the Non-Creative versus Creative Forms of Intuition 
Survey. 

The NCCFIS consists of 12 items, two items for each NCC attribute variable. 
The NCC attributes, rather than being binary, were treated as graded attributes on a 
6 point likert scale and explored whether or not intuitions could be placed on some 
spectrum between two extreme poles, a non-creative and creative pole. As an analogy 
with mathematical objects, groups can be viewed as a class-concept and a coarse clas-
sifcation is the distinction between abelian and non-abelian groups. But as one gets 
more familiar with these objects one may begin to ask how close to being abelian or 
non-abelian are certain groups. The extreme poles would be abelian groups and groups 
where the centralizer is just the identity. Groups can be mapped onto some between the 
two extreme poles according to the size of their centralizer or alternatively according to 
how large their commutator subgroup is. Similarly, we could zoom into classifcation 
that distinguishes creative versus non-creative intuitions as cognitive objects, explore 
how creative or non-creative they are, and ask how close is an intuition to extreme 
poles. 

The NCCFIS was kept short in length to avoid imposing too much distraction 
or cognitive load on the student. Two survey items were created for for each NCC 
attribute. The phrasing of the frst item was oriented towards the creative pole and the 
second oriented towards the non-creative pole. A sample of the items in the NCCFIS is 
provided in Figure 5.9 below. For items without asterisk a 6 was theoretically defned to 
be indicative of a highly creative intuition and 1 highly non-creative. This was reversed 
for items with an asterisk. 
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Conversations with experts 

In addition to the integrative literature review, conversations with experts also guided 
the construction of the NCCFIS prior to the three-part study on abstract algebra stu-
dents’ representational fuency and example-based intuitions. Interviews with three 
mathematicians regarding their intuitions in research and teaching practice were con-
ducted. Attributes or qualities of these mathematicians’ intuitions surfaced during the 
interviews. These interviews infuenced my construction of this survey instrument. A 
discussion with a Geometer about some of the survey items is provided in Table 5.5. 
Next, an education researcher with specialization in mathematical creativity and ge-
ometer were consulted about the NCCFIS items directly. Items of the NCCFIS were 
revised for incubation period based on recommendations from the creativity researcher. 
He emphasized that a marker of creativity was making a deliberate decision to take a 
break when stuck and let ideas simmer. 

In summary, the NCCFIS is in the early phases of prototype development. Dur-
ing prototype development of a new survey instrument, the main goal is item construc-
tion, to illustrate the usability of the instrument and practically how it would work. It is 
expected that future discussions with others in the feld and subsequent administration 
of the NCCFIS will raise points for revisions. Developing a survey instrument is an 
iterative ongoing process. At early stages, this process involves reviewing the litera-
ture, item construction and pilot testing. Item refnement, structural analysis, reliability 
testing, and concurrent validity testing occur at later stages (Clark & Watson, 1995). 
Concurrent validity for the NCCFIS may be challenging to obtain because other related 
instruments that have been validated are global general context measures of creativity, 
motivation, or intuition versus analytic thinking styles. 

In contrast, the NCCFIS takes local measurements of a particular intuition ob-
ject produced by an individual within a task-specifc context and item values can vary 
among a collection of objects produced by an individual. These local measures may or 
may not coincide with global measures. Standard reliability testing approaches such as 
test-retest replicability do not ft with the NCCFIS for at least two reasons. One, if the 
content of an intuition outcome occurs on subsequent occasion the attributes attached to 
that object may be different. The NCCFIS, if eventually used to collect time-series data, 
would be administered to try to detect changes across time. Two, it may not be possible 
for the intuiter to accurately recover the original self-reported (partial) make-up of the 
intuition object once it has passed. 
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Table 5.5: Conversations with experts about mathematical intuition. 

Researcher Geometer 
Kahneman and Klein’s work in So you’re looking for creativity in the slow 
Psychology, it looks they are in the realm thinking sense of the word. 
of non-creative forms of intuition. The 
kind that are quick, you don’t think too 
much like a probabilistic judgement. In 
the Psychology feld there are some papers 
that mentioned creative forms, but I don’t 
think that’s what Kahneman and Klein 
were looking at when that were looking at 
intuition with a focus on intuitive errors. 

Yeah and that’s different than [next I 
contrasted this with non-creative forms] 
My intuition says, oh, pull this theorem 
and pull this tool when I’m thinking about 
this case. So it’s a very quick response, 
your brain sort of immediately sees the 
pattern in the problem and gives you some 
sort of quick default. And so that would be 
like a non-creative type. 

Okay. But wait, yeah how do you say, oh, 
this response indicates creativity or is not 
creative. What are you looking for? 

So I use self-report survey items...It needs 
to come from their head of what they think 
that they’re seeing or feeling. For example 
an item is “I have never experienced this 
intuition before, if they strongly agree, 
that’s more indicative of a creative form. 
So its like this is something new it isn’t a 
common tool that I usually pull in these 
situations. This something that I have 
never experienced before. Another one is 
externalization. It says I found it diffcult 
to externalize the intuition held in my 
mind. And I felt like I didn’t have a 
coherent language to express it. So I think 
at the really extreme end of creative 
intuition it like the cases where you prove 
things that open up new felds, the 
intuition sits in your mind for awhile, but 
it takes a long time to actually externalize 
them coherently and put them on paper. 

Defnitely in geometric group theory. 
That’s, I mean, some of the really 
expressive people are exceptional writers 
when they can write. But, uh, that’s a hard 
thing. You can spend a long time 
developing an intuition and now you need 
to come up with a language. And a 
particularly if it’s very geometric, you 
need to come up with a language that’s got 
enough metaphors in it that gets people on 
your side, way of thinking, but it also has 
to be precise. You need to formally give 
you know rigorous defnitions and then 
prove things using them and so on. And 
that can take a lot of work and some 
people are terrible at it. And some people 
are very natural, very good at it. 
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Researcher Geometer 
So it seems like with a non-creative form, 
if it’s something you’ve seen before, there 
is already a prefabbed language set up for 
you to externalize it with. That’s more 
non-creative. If you actually have to create 
the language to externalize it with, then 
that would be on the extreme end of a 
creative form. 

Well often creativity can mean like the aha 
moment. It could also be that this new 
environment is actually, you know, a 
feature of something we already know 
very well before making a connection 
between something that’s very well 
known, or even making a weird connection 
between two very well known felds, but 
that are very far away from each other. 
That’s very much, I don’t know where that 
comes from, but that’s very much intuition 
and, and some of the big people like, you 
know, Thurston or Terrance Tao or people 
like that, that is what they do. They make 
these connections that most people would 
never see in their lives. 

Additional survey items: confdence in truth value 

Two additional items outside the NCCFIS items for confdence in truth value of an intu-
ition were attached to the survey for data collection purposes. This items are shown in 
fgure 5.10. Conjectural intuitions were termed by Fischbein (1987) as, “an assumption 
about future events, about the course of a certain phenomenon etc. Such a conjecture 
is an intuition only if it is associated with a feeling of confdence” (p. 60). However, 
an intuiter may not always be confdent that there conjectural intuitions are true. Based 
on interview data in Table 5.6, self-report of confdence level in the truth value and 
self-evidence, feelings that something is true in the an the absence of a proof, are hy-
pothesized in this study to be variable attribute of varying degree rather than invariant 
properties of all intuitions. 

Figure 5.10: Confdence in truth value survey items. 
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Table 5.6: Continued conversations. 

Researcher Riemannian Geometer 
What are some qualities or characteristics I guess one thing that often happens when 
of your intuitions? I try to draw on my intuition is that I like 

to say, oh, all objects of this type act in 
this way. Uh, I tend to make statements 
like that a lot in my head or in research 
meetings...and that leads me to conjectures 
as well and often times my conjectures are 
wrong because I’m making a broad 
generalization and then I have to go 
reconcile what I thought was a general 
picture with a specifc thing that 
contradicts in a paper or a talk that I hear. 

Okay. Do you usually start of with feeling I’m pretty cautious in terms of my 
that your correct or that the conjectures are conjectures even to myself so if I’m going 
possibly true? to conjecture something to myself I 

probably have some kind of strong feeling 
about it like I’ve seen enough evidence or 
it to nice not to be true kind of feeling. 
Then most of the time when I have these 
ideas like that, there’s no way I could ever 
answer it one way or the other. It’s like 
just too broad. The best I’d be able to do is 
to be able to tackle one specifc case in a 
particular nice situation and maybe say 
something about that. 

5.8.2 Qualitative data analysis: Within and across case analysis 

Baseline questionnaire and journal data was analyzed using a within-case and across-
case analysis (Creswell & Poth, 2018). To start the within-case analysis, I read the 
qualitative questionnaire and journal data for each participant several times and took 
notes about what they did well and what they could improve upon. Next I compared 
their data by looking for commonalities and differences in their responses. The jour-
naled content of the intuitions was open coded by the researcher for three additional 
intuition attributes: error to non-error type, unique versus common, and network think-
ing. Four themes emerged according to errored to non-errored type along with a few 
undetermined cases. The error to non-error type ranged from: 1-false intuition derived 
from perceived examples that were not legitimate examples, 2-false intuition with re-
spect to some examples within the example subset that the learner was focused on, 
3-true for examples in the example subset the learner was focused on but not true in 
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general, 4-true in general beyond the example subset. A second thematic coding ses-
sion grouped together intuitions with similiar content descriptions to determine whether 
or not the content of intuitions within the participant population were unique or com-
mon. A third coding session was done to mark whether or not the journaled content 
combined multiple undergraduate or graduate level courses such as linear algebra and 
topology. Combining multiple subject areas is an indicator of network thinking. 

5.8.3 Quantitative data analysis: Univariate tests and the Fuzzy C-
Means Algorithm 

The NCCFIS was an instrument used to extract attribute values attached to a reported 
cognitive object, namely each learner’s reported intuition. The analysis of the NCCFIS 
data was carried out in two stages. First, the Permuted Brunner-Munzel test, a non-
parametric versions of a t-test, was used to perform univariate analysis (Neubert & 
Brunner, 2007). Instead of a null hypothesis in terms of equal means or other measures 
for central tendency, this non-parametric test detects the probability that a randomly 
drawn object from X will have a larger or smaller value with respect to a particular 
attribute than a randomly drawn object from Y . Next, the Fuzzy C-means algorithm 
was used to classify learners’ intuition. 

The Fuzzy C-Means algorithm is a clustering algorithm that has been applied 
across many disciplines: higher education, engineering, artifcial intelligence, medicine, 
biology, and meteorology. Applications include: analysis of student academic perfor-
mance through exams, fnal grades, and attributes associated with drop out, species 
classifcation, genetic analysis, segmentation of brain MRI imaging, medical diagnoses, 
and weather forecasting (Nayak, Naik, & Behera, 2015; Govindasamy & Velmurugan, 
2018). 

Let X = {x1, x2, ..., xn}n ⊂ Rd be a collection of N objects characterized by i=1 

d attributes. A fuzzy set was defned by Zadeh (1965) as cj = {(xi, µj (xi)) : xi ∈ X}
where µj is a membership function that assigns the ith object to a membership value 
µij in [0, 1] for the jth fuzzy set or cluster. The closer the value is to 1 the greater the 
membership. A value of 0 means no membership and 1 is referred to as full member-
ship. Equality, unions, intersections, complements, algebraic operations, and convexity 
for fuzzy sets were also defned in Zadeh (1965). Rather than a point belonging to a 
single set, a point can be a member of multiple sets with varying degrees of member-
ship. Thus, the notion of a fuzzy set partition is different than that of a hard partition 
in classical set theory because fuzzy sets need not be disjoint (Zadeh, 1965; Bezdek, 
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Coray, Gunderson, & Watson, 1981). Bezdek et al. (1981) defned a fuzzy partition as 
an element U in the vector space of real n × c matrices Vnc with entries µij that satisfy 
three conditions: 

µij ∈ [0, 1] (5.1) 
cX 
uij = 1, ∀xi ∈ X (5.2) 

j=1 

nX 
0 < uij < n ∀ cj (5.3) 

i=1 

The rows of U correspond to the objects, the columns correspond to fuzzy 
set and the entries are the membership values µij . If for the frst condition, every 
µij ∈ {0, 1} then U is called a hard partition in which cluster membership is not partial. 
Bezdek (1981) et al. defnes the set of all possible fuzzy partitions as: 

Mfc = {U ∈ Vnc|5.1, 5.2, 5.3} (5.4) 

The third condition (5.3) excludes the case where all membership values in a column 
are 0 and thus it excludes the fuzzy partition where all entries in U are 0. The FCM 
algorithm determines a fuzzy partition that classifes data objects by assigning objects 
to clusters using a membership function uj (5.6). The membership value entries uj (xi) 
for an object xi can be interpreted as the probability that the object belongs to the cluster 
cj . The higher the membership values are for the fnal partition matrix the closer the 
object xi is to the center zj of cluster cj . The lower the membership values are the 
further the object is from the cluster center. 

The goal of the algorithm is to optimize the objective function Jm (5.5) for the 
membership matrix U = [uij ]N×c and c many clusters. To do this the algorithm looks 
for centers called prototypes that minimizes Jm. The membership values of a reported 
intuition that represents the object’s belongingness to various clusters and the attribute 
make-up of the prototypes, that were fnal outputs of the FCM algorithm, informed 
characterizations of learners’ intuitions as either more creative, more non-creative, or 
mixed. 

n cXX 
mJm(U, Z) = u ||xi − zj ||2 (5.5)ij 

i=1 j=1 
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1 
uj (xi) = uij = i (5.6)2hP c ||xi−zj || m−1 

k=1 ||xi−zk||P n mui=1 ij xi 
zj = PN (5.7)

mui=1 ij 

The steps of the FCM algorithm are: 

[1] Input data set X and choose number of clusters c, weight m in the recom-
mended interval [1.5, 3] that controls the “fuzziness” of the partitions, and conver-
gence criterion �. Randomly generate an initial center vector z0 = {z1, z2, ..., zc}. 
Compute membership values with z0 and (5.6) to obtain initial membership ma-
trix U0 . 

[2] Compute new centers using (5.7) and the membership values generated in the 
previous step. 

[3] Compute membership values using (5.6) to obtain an updated membership 
matrix for the next iteration. 

[4] Repeat [2-3] and stop when the difference in the objective function for two 
consecutive iterations is less than � for either U or Z. 

The Euclidean norm was used to defne the membership function (5.8) and cal-
culate distances between the ith point and the center zj of the jth cluster. Once the 
algorithm has been run for several choices of c < sqrt(N), c = 2, 3, 4 and m = 1.5, 2, 
the corresponding outputs U �, c� were evaluated using validity indices. Several types of 
validity indices have been proposed for fuzzy clustering. This study applied Bezdek’s 
(1974) fuzzy partition coeffcient Fc (5.8), Bezdek’s (1981) partition entropy (5.11), 
and Campbell and Hruschka’s (2006) fuzzy silhouette index (5.12). 

The fuzzy silhouette index is an adaptation of the silhouette index si for crisp 
partitions, crisp also sometimes called hard is a term used for classical set theoretic par-
titions with non-overlapping membership. For crisp partitions, ai in (5.11) represents 
the compactness of the cluster that contains object xi as the average of within cluster 
distances. And bi represents the separation between the cluster that contains object xi 
and the nearest neighboring cluster. Separation is defned as the average distance be-
tween xi and objects in the neighboring cluster. A desirable cluster is one that has a 
small value for ai and large value for bi. A value for si is in the interval [−1, 1]. A 

157 



5.8. PART III: EXAMPLE-BASED INTUITIONS FOR GROUP ACTIONS 

value closer to 1 means that object xi was placed in an appropriate cluster by the FCM 
algorithm. For a fuzzy partition membership is not all or none. To adjust for this a 
fuzzy partition matrix is turned into a crisp partition matrix by changing the maximum 
membership value for an object xi in the fuzzy partition matrix to a 1 and all other 
membership values to 0 then si is computed with the crisp partition matrix. Let cp de-
note the cluster for which the object xi has the largest membership value and cq indicate 
the neighboring cluster with the second largest membership value. To take into account 
the membership values in the fuzzy partition matrix, the fuzzy silhouette index (5.11) 
incorporates the membership values uip and uiq across all objects. A drawback of this 
silhouette index is that it disregards objects on the outskirts of overlapping clusters and 
may elevate the si artifcially by forcing a smaller value for ai. In summary, the opti-
mal number of clusters occurs when the fuzzy partition coeffcient and fuzzy silhouette 
index are maximum values across all clusterings and the entropy takes on the minimum 
value across all clusterings. The R package: ppclust was used for implementation. 

Fc(U) = 
1 
n 

n cX X 
(uij )

2 (5.8) 
i=1 j=1 

Hc(U) = 
1 
n 

n cX X 
uij ln(uij ) (5.9) 

i=1 j=1 P n (µip − µiq)si
F Sil = Pi=1 (5.10)n 

i=1(µip − µiq) 

bi − ai 
si = (5.11) 

max{ai, bi} 
The part III study of this thesis takes a novel approach by applying the FCM 

algorithm to try to better understand mathematics learners’ intuitions. The (partial) 
make-up of a learner’s intuition as a quantifable object was defned in this thesis as a 
point viewed in R17 , 12 Non-creative to Creative (NCC) variable values collected with 
the NCCFIS, 2 values for confdence in truth value, and 3 additional variable values 
coded by the researcher. The revised Fuzzy C-Means Clustering Algorithm (FCM) by 
Bezdek et al. (1981) was used to reveal the hidden underlying cluster structure of the 
(partial) make-up of learners’ reported intuitions based on NCC attribute similarity. A 
compressed value for the NCC attribute make-up of each cluster center was computed 

¯ ¯using a shifted and scaled arithmetic mean score Mzj . The closer the Mzj is to 1 the 
more creative the closer to 0 the more non-creative the cluster center. The FCM al-
gorithm was also used to reveal the underlying cluster structure of learners’ reported 
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intuitions according to a subset of attributes, separate from NCC attributes, for con-
fdence in truth value and error to non-error type. Other validity indices, such as the 
generalized fuzzy silhouette index (Rawashdeh & Ralescu, 2012), and modifcations to 
the FCM algorithm as well as several other fuzzy classifers have been proposed since 
Campbell and Hruschka (2006) and Bezdek (1981). An application and comparison of 
several indices and classifers could be explored in future studies. 
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Chapter 6 

Results 

6.1 Introduction 

Authors in a special ZDM issue on Networking Theories took the stance that there was 
a balance to strike between the use of a single theoretical lens to analyze the same set 
of data and the use of multiple theories. Papers in this ZDM issue applied two to four 
lenses on the same set of data at a time (Prediger, Bikner-Ahsbahs, & Arzarello, 2008). 
The use of multiple lenses has been recommended to increase understanding and objec-
tivity. Some lenses may give a different view than others. Comparing and contrasting 
results obtained from a use of different theoretical lenses has offered insights or flled 
in details that a single lens can not account for alone. Conficting interpretations of 
the same data, obtained from an analysis using different lenses, has occurred in several 
areas of mathematics education research (Kidron, Lenfant, Bikner-Ahsbahs, Artigue, 
& Dreyfus, 2008; Networking Theories Group, 2014). The application of multiple 
lenses in this study was done to gain a deeper understanding of learners’ mathematical 
intuition. The representational fuency lens was chosen prior to data collection. The 
remaining lenses were data driven meaning that they were chosen after data collection 
and initial analysis to bring out other facets in the data that were related to the intuition 
construct. 

First, this chapter presents results for the collapsing structure task, followed by 
the adding structure task, and ends with an analysis of learner’s example-based intu-
itions. The collapsing, quotient map, and adding structure, direct product and semi-
direct product, tasks were initially designed to investigate learners’ representational 
fuency across various registers: formal-symbolic function maps, formal group presen-
tation register, Cayley tables, digraphs, cycle graphs, and objects of symmetry. Rep-

160 



6.2. COLLAPSING STRUCTURE TASK: ISOMORPHISMS, 
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resentational fuency was associated with the intuition construct through a pervasive 
principle. The principle that the more registers one has access to and the more ways 
one is able to represent an object, the more informed their intuition is for that object. 

For the collapsing structure task, results in terms of three lenses: representa-
tional fuency, default-interventionist, and affective are presented. To put on a fuency 
lens the researcher thought in terms of Duvalian semiotic theory and additional theo-
ries for the representational fuency factor that were covered in subsection 4.2.1. After 
saturating one’s mind with semiotic theory the four level-analytic framework in sec-
tion 5.7.2 was developed to analyze and organize the results. A default-interventionist 
perspective on intuition was given in subsection 2.4.1 and an affective perspective in 
section 4.5. 

Next, two lenses: a theoretical Abstraction in Context lens with RBC analy-
sis (Dreyfus, Hershkowitz, & Schwarz, 2015) and a fuency lens with the four-level 
analysis were placed on Jenni’s data from the adding structure task. Abstraction in 

Context was aligned with accumulative and constructive forms of intuition in subsub-
section 2.4.4.3. The RBC and four-level representational fuency analysis procedures 
for the adding structure task were both covered in subsection 5.7.2. 

Finally, this chapter ends with results on two graduate students’ example-based 
intuitions related to relationships between orbits and stabilizers of group actions. Their 
example-based intuitions were analyzed in terms of attributes that separate non-creative 
versus creative forms of intuition along with additional attributes covered in subsubsec-
tion 2.4.4.4. 

6.2 Collapsing structure task: isomorphisms, homomor-
phisms, and quotients 

6.2.1 Determining if D8 and Q8 are isomorphic 

To prepare the stage for the collapsing structure task, participants frst needed to come 
to the conclusion that the two groups D8 and Q8 could not be isomorphic. Various 
cues exist across several registers for fnite groups that can be used to conclude that D8 

and Q8 are not isomorphic. What cues are learners attuned to across the registers that 
help them to arrive at this conclusion? What cues are they attuned to that cause them 
to error? Max, Jenni, and Alex all came to the conclusion that the two groups were 
not isomorphic, however there were some opportunities for improvement with respect 
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to Max and Jenni’s reasoning as to why the groups were not isomorphic. Max, the 
fourth year undergraduate, was focused on cues contained in the group presentations, 
Jenni used the group cycle graphs and cayley tables, and Alex used the cayley tables. 
Matching associative forms of intuition in which cues in the register environment were 
matched to already learned fact-based formal knowledge was also theoretically relevant 
to the interpretation of the data. Fact-based formal knowledge in this context refers to 
necessary conditions that must hold if two groups are isomorphic. 

Group presentation register 

Max was focused on the symbolic cues for the generators and compared the group 
presentation for the dihedral and quaternion group. He found the order of the two 
generators i and j in the dihedral group presentation were not the same as the order of 
the two generators r and f in the quaternion group. 

Max: Okay so i4 equals j4 and i2 equals j2 so that means j4 is also one. So I 
would say, no, they’re not isomorphic because for D4 one of its generators is of 
order 2 and Q8, both of the generators are of order four. 

While it is productive to examine the orders of the elements, it is not enough 
to look at the orders of the generators displayed in group presentations. Max’s jus-
tifcation that the two groups in this task are not isomorphic, because the orders of 
the generators for the two groups did not match, was not valid. It follows that a 
false implicit assumption that Max may have used was: If the order of the genera-
tors in a group presentation for G1 do not match with the order of the generators in 
the presentation for G2 then the groups are not isomorphic. In this case, symbolic 
cues were not matched to fact-based formal knowledge and this caused Max to error. 
A counterexample to his implicit assumption would be: Z6 =< a : a6 = 1 > and 
Z3 × Z2 =< (1, 0), (0, 1) : (1, 0)3 = 1, (0, 1)2 = 1, (1, 0)(0, 1) = (0, 1)(1, 0) >. 
The order of the generators in the two group presentations do not match and the sym-
bolic cues in the two group presentations look very different, but the the groups Z6 and 
Z3 × Z2 are isomorphic. Max did not consider other registers. He also did not dissoci-
ate his implicit assumption from the task by formulating it as a general conjecture to try 
and counter. Cognitive skills such as: maintaining awareness of implicit assumptions, 
dissociating the implicit assumption from particular examples to formulate a general 
conjecture, and countering, were not part of Max’s thinking and needed to be trained. 
For the frst and second year graduate level learners these skills were second nature. 
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Cycles register 

Jenni, the frst year graduate student, used the group cycles graph. It seem that the 
cycles representation caused confusion. Below is an excerpt from her interview. 

Jenni: I’m going to go with not isomorphic because the dihedral group has cyclic 
subgroups of size two and Q8 does not have cyclic subgroups of size two. 

Researcher: Did you use a particular representation card to arrive at your answer? 

Jenni: Yeah, I used the purple one [group cycles graph]. 

Jenni had a relevant piece of formal knowledge activated namely that: if two 
groups are isomorphic with the isomorphism map φ then for all x ∈ G the order of x 
must be equal to the order of φ(x). Her reasoning implies that the condition, x must 
be equal to the order of φ(x) for all x, was violated. Jenni’s activation of relevant fact-
based formal knowledge was accompanied with a misinterpretation of the cues in the 
cycle graph. The cycle graph of the quaternion group seemed to mask that i2 = −1 was 
an element of order two. 

Cayley table register 

Jenni also activated a second relevant piece of fact-based formal knowledge namely 
that: if two groups are isomorphic then either they are both abelian or they are both 
non-abelian. Following her fnal conclusion she went back and explained that she had 
initially went to the Cayley tables with this fact, but could not fnd a match between the 
fact and what she was seeing in the Cayley tables. 

Jenni: My frst thought was to look at the Cayley tables and see if one was abelian 
and the other is not abelian, but I don’t think either of them are abelian. 

Researcher: Right, neither of them are abelian. But, what about {1, −1} in Q8? 
Is that a cyclic subgroup of order 2? 

Jenni then switched back to her initial inclination of going to the Cayley tables to 
check and confrms that {1, −1} is a cyclic subgroup of order 2. She then explained that 
she can tell the number of order 2 elements of the groups by looking along the diagonal 
entries of the Cayley table. She followed with a valid conclusion that the dihedral group 
of order 8 and Q8 are not isomorphic because D8 has 5 elements of order 2 and Q8 has 
only one element of order 2. Similar to Jenni, Alex, the second year graduate student, 
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used the Cayley tables. He noticed that the Cayley tables were different, no relabeling 
could make them look the same, and so the two groups could not be isomorphic. Max, 
Jenni, and Alex’s responses to the collapsing structure task prompt are presented in the 
following section. 

6.2.2 Chronological narrative for Max 

Max began by looking at the Cayley tables of Q4 and D4 side by side [Max preferred to 
use the notation D4 for the dihedral group of order 8 and Q4 for the quaternion group 
of order 8]. He investigated how D4 and Q4 are different and how they are similiar. 
He narrowed his focus to the right lower quadrant of the Cayley tables, for D4 and Q4, 
outlined in Figure 6.1. 

Max: Okay. So based on the Cayley table [for Q4], it looks like all the elements 
are in four cycles. So just looking at this [Cayley tables for both groups side by 
side], I guess it’s just helpful to see, um, they [the Cayley tables] only differ in 
their products of the last four elements with each other [last four elements referred 
to for Q4: j, ij, i2, ji and for D4: f, rf, r2f, fr]. 

Figure 6.1: Max comparing and contrasting Cayley tables. 

Max: I guess, you can see that those last four elements [fips in D4] are all their 
own inverses. 

Max: And I mean, maybe this is just a trick based on the way they’re colored but 
the outside colors of the diagonal with e’s on D4, you have r3 on one side of the 
diagonal and r on the other side of that diagonal. Um, those are like the elements 
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i3 under the same line in the other Cayley table and the i above it is swapped 
around. And yeah, I think if you just made each element there, its own inverse 
[r = r3 and i = i3], then the rest would follow. 

I asked Max to elaborate on and explain his comment “the rest would follow”. 

Max: So you can see that in D4 f is its own inverse and so if you made j its own 
inverse, like you did that, then maybe this is just like a last line of thought. 

Max was generating ideas sparked by perceptual cues in the Cayley tables. His 
initial hunch to make r its own inverse in D4 and to make i and j its own inverse in Q4 

was consistent with the strategy of collapsing the dihedral group of order 8 and Q4 to 
the Klein 4 group, Z2 × Z2. Adding the relation to the group presentation r2 = e to the 
dihedral group of order 8 and reducing redundancies results in the group presentation 
< r, f : r2 = f 2 = e, rf = fr >. The same suggested modifcation, make r its own 
inverse in the dihedral group, can be carried out predominantly in a formal-symbolic 
mapping register using function notation to write down a quotient map and using rep-
resentative multiplication g1N ∗ g2N = g1g2N as the binary operation. Making r its 
own inverse is synonymous to identifying e and r2 so that they are in the same coset 
r{e, r2}. The image of the quotient map from D4 −→ D4�{e, r2} is isomorphic to the 
Klein 4 group. Modifying semiotic representations of Q4 with Max’s recommendation 
to make i and j in the quaternion group its own inverse also results in the Klein-4 group. 

Alternatively if the quotient map concept with standard representative multipli-
cation has not been aquired, one could focus on the subsets {e, r2}, {r, r3}, {f, r2f}, 
{r3f, rf} in the Cayley tables with the binary operation set multiplication as illus-
trated in Larsen and Lockwood’s (2013) guided reinvention activity to construct quo-
tient groups. Max did not indicate that he was thinking about subsets as elements along 
with a binary operation. He quickly noticed some extremely pertinent cues related to 
the Klein-4 strategy, but he did not have the Klein-4 group in mind. 

6.2.2.1 Impossible strategy to collapse the dihedral group to the quaternion group 

After exploring the Cayley tables he asked for the Cayley digraphs with the subgroups 
list to be displayed on the screen in Figure 6.2, and looked at them briefy. Next, he 
compared the subgroup lists. 

Max: So yeah, I don’t really know how to say it any other way, but D4 and 
Q4 both have three subgroups of order four and D4 has a bunch of these little 
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Figure 6.2: Max comparing and contrasting Cayley digraphs. 

subgroups of order two. And so I guess, I don’t know what a function would be 
that would collapse those subgroups, but if there was some way to get those out 
then it would be Q4. The groups are obviously the same size. 

Max’s statement, “if there was some way to get those [some subgroups of order 
two out of D4] then it would be Q4”, indicated that he was viewing D4 as a set of subsets 
rather than a group. It seem that Max’s intuiting process was naturally activating weaker 
necessary conditions for two groups to be isomorphic in order to narrow the search 
space of possibilities. Max was focused on the group as a set of subsets in which the 
number and size of the subsets matter. He noticed that if he could get rid of some of the 
order two subgroups then the subgroup lists would look the same in terms of the number 
of sets and the sizes of the sets. The order four subgroups in Q4 are all cyclic with one 
generator where as two of the order four subgroup in D4 are isomorphic to the Klein-
4 group. Max did not mention the binary operations of either group nor differences 
among the order 4 subgroups. 

Trying to get a clearer picture of what Max was thinking, I asked him to take 
some time to think about it more. I also restated the task to try to get him to articulate 
and formalize some of his thoughts. 

Researcher: So you have these two groups D4 and Q4 [I extend both arms above 
my head, I shake my left hand to indicate that it is D4 and shake my right hand 
to indicate that it is Q4]. And you have some sort of mapping that tells you how 
you are modifying these groups [I move my left hand down to the level of my 
shoulders and close my index fnger to my thumb to indicate an identifcation map 
from D4 to a group and the do the same with my right fst to indicate a second map 
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from Q4 to another group]. And then you need another map to show the groups 
you end up with are isomorphic [I move my fnger back and forth horizontally 
at the level of my shoulders]. Max wrote on the blackboard in Figure 6.3 and 
attempted to write down an isomorphism map. 

Max: So if we wanted them to be the same we want those group defnitions to 
match. So r to the fourth equals one still, but then we wanted to have some extra 
property that r squared equals f squared and then we have the transposition thingy 
there at the end where r f equals f r inverse like those are the same in both groups 
so that can stay. And then when you start getting these products phi of r equals r, 
hmm, and it needs to be an isomorphism. 

Researcher: So you have these two groups and some map to some sort of resulting 
groups, then you want to show that these two resulting groups are isomorphic. 

Max: Okay. But, I don’t know if it is possible, but is it possible to just modify one 
of them [referring to Q4 or D4 (quaternion group of order 8 and dihedral group 
of order 8)], is it okay to just do that? 

Researcher: So you can focus on just modifying one of them frst and then modify 
the other one. And then show the two modifcations are isomorphic to each other. 

Max: I don’t know what this is going to do, but this is what I have. The new group 
[referring to the group being mapped to] is the same as the old group [referring 
to the dihedral group of order 8], except you have these like new group properties 
[referring to the relations]. And I guess the only way that I could fgure out how to 
make the map was to just be very explicit and say those elements in the old group 
will go into like what we wanted the group properties to be in the new group. But 
I don’t know if that makes any sense. So like r4 and f 4 they’re going to collapse 
to the same element. 

Max kept trying to force signs of the dihedral group of order four to look like 
signs for the quaternion group of order four. First he tried to manipulate some symbols 
in the Cayley table sign of the dihedral group to make it look exactly like the Cayley 
table sign for the quaternion group. Next, he tried to modify the subgroup list of the 
dihedral group, focusing on the size of the subsets and frequency of sizes, so that it 
would match the subgroup list of the quaternion group with respect to the number of 
subsets and their sizes. Then, Max tried to manipulate the group presentation sign 
of the dihedral group to match the group presentation sign of the quaternion group. 
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Figure 6.3: Max entering an impossible strategy in a formal-symbolic mapping register. 

These modifcation and mapping behaviors that Max naturally engaged in were not 
fully consistent with homomorphisms or isomorphisms. 

Researcher: Does G have some sort of common name? 

Max: Well, I mean, this is literally just the statement of the quaternion and I 
thought, like I could skip having to do a modifcation on both groups and just do 
one straight from the other, but I guess if that’s not possible, then I should try to 
slow down. 

Researcher: Yeah slow down. Let me ask a more fundamental question before 
we move on. Whenever I say collapsing structure or ignoring information what 
comes to mind mathematically? 

Max: I’ve only heard someone use the phrase collapsing in terms of like dimen-
sionality with vector spaces. And so I guess it’s something akin to that where 
you’re just like losing a direction or just like losing some amount of freedom 
within the, like the new place that you’re going. But I don’t think I have better 
intuition than that at this point, I guess also, like I’ve done a little bit with homo-
morphisms so I guess how vector spaces have dimensions or whatever, um groups 
would have like subgroups. That’s how I think about it. And so I feel like you’re 
losing subgroups or losing space in the subgroups, but I don’t know how to like, 
concretely make that happen. 

At this point I shared my screen on Zoom during the interview and rephrased 
and tightened up the task using the term homomorphism since Max had some familiarity 
with it from class and could recall the formal defnition. I drew the diagram in Figure 6.4 
and stated: 
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Researcher: So now the task is to construct homomorphisms [pointing to ψ1 and 
ψ2] so that the these two things [pointing to the groups G1 and G2] are isomor-
phic. 

Figure 6.4: Researcher rephrasing task to construct homomorphisms. 

Max: So I guess now that I’ve seen that, um, I can kind of explain what I was 
thinking. So like in my brain, the homomorphism ψ2 was just going to be an 
isomorphism from Q4 to something that, I don’t know Q4 with different labels, 
because Q4, um, like it seemed to have less going on, I guess it had fewer sub-
groups. And so I guess I just thought that the exercise would really just be col-
lapsing D4 to Q4, but I don’t know if that’s true, but that’s kind of how I was 
thinking about it. 

Researcher: Well is it possible? Let’s see, if we take D4 and Q4 they’re both order 
eight right? So if I collapse something in the dihedral group using a homomor-
phism that won’t be isomorphic to Q4 because now the orders are off, they would 
have different orders. 

Max: Oh okay, so you actually do mean like losing elements, not just losing some 
kind of, um? 

Researcher: Not exactly. So there are many ways to think about it. Um, I think 
maybe the best way to think about for now is that to collapse is to construct a ho-
momorphism that is not injective, since you already mentioned homomorphism. 
Give yourself some serious time to think about it, just take your time. 

The normative metaphor of “collapsing structure” situated in the abstract alge-
bra was not something that Max felt comfortable with yet. The culturally normative 
term for the more advanced learner is just everyday language that gets thrown around 
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and it assumed that the other person you are having a conversation with knows what 
you mean by the metaphor, but for Max it seemed strange within the context of this task 
and this made effective communication diffcult. 

6.2.2.2 Impossible strategy to construct a homomorphism to Z4 

After the task was rephrased, Max attempted to write down two homomorphism maps 
on the blackboard in Figure 6.5. 

Max: So I just rewrote the group defnitions [referring to the group presentations]. 
I’m seeing is that they both have an element that, uh, to the fourth power is the 
identity, order four, and so I’m wondering if I can for both of them take the second 
generator which goes to a different place in each group [draw arrow to point to j] 
and just collapse it the identity. So you have, um, ψ1 D4 to G1 and want to defne 
it in such a way that uh ψ1(g) = g or if you have this second element here [the 
generator f], uh it goes to one [the identity], and then I think that would just like, 
you would lose the information that’s making them different. And so you end up 
with like G1 [writes down G]. And so yeah, I mean, I don’t know what else to 
call that other than the cyclic subgroup of the rotations in the dihedral group. 

Max: Okay so I’m just gonna like, keep thinking about it [but immediately moves 
on and says...] so like moving onto the second one, um, now the homomorphism 
for Q4, what we call the ψ2...[writes down his map ψ2 shown below going to 
G2 =< i : i4 = 1]. And then you can pretty clearly see that these guys are 
isomorphic, because they both have one generator of order four. And that’s it, is 
that all? 

Researcher: Let me pause to think. 

Max: I probably need to be a lot more rigorous with this, but that’s kind of all 
I can think of. I guess if I was going to write this, and if you only had the two 
generators, you really only need to describe what it does to the two generators. 
Right? 

Max, had assimilated the commonly used phrase “you only need to describe 
what it does to the two generators” into his vocabulary, but misapplied it. 

Researcher: So if you already have a homomorphism and you know where the 
generators are going then you know where the rest of the elements go using the 
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hom property. But if your trying to build one from scratch and you just send the 
generators to something uh then you might not actually get a homomorphism. 
That is something you would have to check to see if it works or not. 

Max: So it sounds kind of like a laborious thing to do, and if it is then that’s fne. 
But when you’re working with these specifc elements, how can we do that in a 
way that isn’t like super burdensome? I don’t know, like, what I’m hearing is just 
that I’m going to have to explicitly show every product. 

Figure 6.5: Max’s Pseudo-SR for a homomorphism to Z4 in formal mapping register. 

Within the Cayley digraph register it became clearer that Max was attempting 
to carry out the impossible strategy due to inconsistent interpretations of a homomor-
phism. Recall that the impossible strategy involves a homomorphism from the dihedral 
group of order 8 to the cyclic group of order 4. Max restricted his focus to the cyclic 
subgroup of order 4 in the dihedral group and lost sight of the other elements and rela-
tions, it was if they were just erased. 

Researcher: Is there some way you can describe what you are doing visually in 
terms of the Cayley digraphs? 

Max: I can defnitely try [as Max draws the picture below he explains...] uh, so at 
frst we had like these inner green guys. Then I guess if I was going to describe 
what I did, I guess, like this inner piece [circles the inner green cycle] and just 
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like pull it out and make it hang out by itself and this is a new group. And you 
don’t need to worry about the relationship between these guys [referring to the 
outer green cycle] or those guys [referring to everything else], because those guys 
don’t exist anymore. 

Max referred to his drawing Figure 6.6 as representing a homomorphism from 
D4 to Z4, but drew the arrows for the two green cycles in the digraph in the same 
direction, so technically his digraph for D4 was actually a digraph for Z4 × Z2. 
While there exists a homomorphism from Z4 × Z2 to Z4 through a process of 
identifying elements and collapsing the red arrows to obtain four cosets of equal 
size, Max’s process of erasing did not ft with the construction of a quotient group 
in a digraph register. 

Figure 6.6: Max’s Pseudo-SR for a homomorphism to Z4 in a digraph register. 

Researcher: And what about for Q4? Can you describe what you would do visu-
ally? 

Max: I’m seeing four four cycles. Is that wrong? Right? 

Researcher: You should see three four cycles 

Max: Okay. I guess I’m missing wherever, um the two cycle is. I can’t spot it. 

Researcher: The two cycle, is that what you’re looking for. 

Max found it diffcult to see distinct cycles in the digraph register, he did not 
map between registers such as the cayley table, cycle graph, subgroup list or group 
presentations to fnd or check the number cyclic subgroups. There may also have been 
a miscommunication regarding the meaning of the term cycle that caused confusion. 
Max’s claim that there were four four cycles was consistent with the graph theory def-
nition of a cycle detached from thinking about subgroups. The researcher used the term 
cycle to refer to distinct cyclic subgroups in the digraph context. Max referred to the 
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Figure 6.7: Max looking for cycles in the quaternion group. 

Cayley digraph of the quaternions oriented with a four cycle on the top in Figure 6.7. 
The green arrows represent the generator j and red arrows are the generator i. The 
quaternion group is acting on itself by right action. 

Max: Okay. Well, whatever. Um, like visually you still have those two, like outer 
conjoining, four cycle situation happening with the green arrows. And then like, 
it’s just the cycles in between like the inner and outer cube, or like squares, are 
just like more complicated. And so I guess again, I just like selected one of the, 
either top or bottom and took it off on its own. So like, if you straighten it out to 
where, like the green boxes is facing down. So on the top, the top square, there’s 
like one four cycle between those elements. And then I just selected those, took 
them off by themselves. Then I don’t have to worry about what they do with the 
other things on the bottom, because I’m just looking at the top. 

What Max claimed he was doing, constructing a homomorphism, was in confict 
with his thinking in the formal mapping and Cayley digraph registers. The digraph 
visuals were complicated and rather than connecting back to formal knowledge, binary 
products or homomorphisms, Max took the path of least visual resistance by making the 
digraph look visually simpler. He was not associating his quick visual maneuvers with 
a formal analog. One way to confront this confict would be to guide Max to think about 
his claim in the context of the frst isomorphism theorem and view a homomorphism as 
running through a quotient map. This view may also help to respond to Max’s question 
of how to check if something is a homomorphism that is not burdensome. I asked Max 
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if he had seen the mod out or quotient group notation: G/∼ or G/N yet. He asked “do 
you mean like the set without the set you would write underneath?” I asked him if he 
had exposure to quotient groups and quotient maps in his course work yet. He replied 
“No”. While Max had some exposure to homomorphisms and could recall the formal 
defnition, he needed more space and time working with equivalence relations, normal 
subgroups, quotient groups, and the frst isomorphism theorem in order to be equipped 
with tools to become aware of, confront, and resolve conficts across various registers. 

6.2.3 Chronological narrative for Jenni 

Jenni’s frst thought was to fnd subgroups within each of the groups that were isomor-
phic to each other. She found the cyclic subgroups < i > and < r > were isomorphic. 
Initially, she did not consider elements outside of these subgroups nor relations be-
tween elements in and outside of these subgroups. Her strategy was “just getting rid 
of elements”. She was looking at the group presentation and crossed out the generator 
f and crossed out any relations with an f in it. She also wrote down the elements in 
the group e, r, r2, r3, f, rf, r2f, r3f and crossed out the elements with an f in it. She 
constructed an isomorphism map between cyclic subgroups of order four in Figure 6.8 
and wrote down the Cayley tables in Figure 6.9 to double check that the subgroups were 
isomorphic. 

Jenni: Well they both have cyclic subgroups of size four [looking at the group 
presentations]. So if you take the dihedral group of order 8 and you remove all 
the fips and just have their rotations, and then you take Q8 and reduce it to just 
the generator i until you just have i, -i, 1, and -1. 

Figure 6.8: Jenni’s construction of an isomorphism for the Z4 strategy in a formal 
mapping register. 

Jenni: I’m going to write down the Cayley tables for that real quick because I 
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don’t know if that would be...[works on paper see below]...Ya so I’m pretty sure 
those the same. 

Figure 6.9: Jenni using Cayley tables to check that subgroups are isomorphic. 

When asked to formalize her thinking, Jenni immediately associated the loose 
language of collapsing or ignoring with taking quotient maps. 

Researcher: Can you detail your thinking using more rigorous language? So 
when I asked you to collapse structure or ignore information you were thinking 
about removing the fips until you just have the rotations. What does that mean 
to you formally? 

Jenni: Formally, I guess I would think about it as like you take, you take the 
whole group and then you quotient out by the uh [long pause and scratches head]. 
Can you quotient out like uh we have two generators for each of them no its 
cosets. So if you know its cosets...[broken thoughts externalized to herself, stops 
externalizing thoughts and writes on paper]. 

Jenni: okay I’m having trouble trying to formalize it because I think I got a little 
tripped up with am I, I am taking the whole group. So would I have to prove that 
the quotient group D8 quotiented out by, like what I’m collapsing and reducing it 
to is equivalent to the cyclic group generated by r? 

At this point, I summarized the task by drawing the diagram Figure 6.10 and 
inserted quotient map notation to ft with Jenni’s interpretation of collapsing. I asked 
Jenni if she could prove whether or not what she was doing would be invalid or valid. 
Maybe this would help her to detect what would go wrong and pin down why she was 
stuck as she entered the impossible strategy to obtain Z4 via quotient maps. 

6.2.3.1 Impossible strategy to construct a quotient map to Z4. 

Jenni went back to working on paper at her desk quietly [she was fnding it diffcult 
to verbalize her thoughts out loud]. I conducted a follow up interview later to try and 
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Figure 6.10: Researcher summarizing task to ft Jenni’s interpretation of collapsing as 
quotienting. 

clarify what she was wrestling with during this period of time and why she got stuck. 
She said she felt conficted because her initial strategy to get rid of elements did not 
ft with the process of quotienting out. During this time she attempted to carry out 
the impossible strategy thinking in terms of formal mappings, group presentations, and 
Cayley to Schreier digraphs. She explained that she took her initial strategy of trying 
modify D8 and Q8 to get to Z4 and started to write down what the cosets would be if 
she “quotiented out by something to get the cyclic subgroup generated by r”. 

Refecting back on her work and why she was stuck, she explained that: 

Jenni: My initial thought was just getting rid of elements was the way to go to 
leave me with a subgroup and then maybe the quotient groups will help me do that 
and then thinking well they don’t leave...If I like quotient by a subgroup its not 
just leaving me with a subgroup. And I think it took me a little bit to remember 
what quotient groups look like and how they relate to the non quotiented groups, 
to the groups [D8 and Q8] before they were quotiented. 

While she never pinned down exactly why the impossible strategy could not work by 
showing that a necessary condition for a quotient map failed, she came to the realization 
on her own that her initial process of “getting rid of elements” and what a quotient 
map does felt different. She stated that “quotienting was not getting rid of elements it 
was combining them” and “they were combining elements into sets of elements”. She 
showed fexibility and switched from the impossible strategy to a new strategy, namely 
quotienting out by order four subgroups to get Z2. 
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6.2.3.2 Valid strategy to construct a quotient map to Z2 

Jenni went on to correctly write down the elements of D8�< r > and Q8�< i > and 
calls the elements of these factor groups “cosets”. The underlying binary operation 
of the groups remained implicit, it was not written down or verbalized. She wrote 
down quotient maps, the natural projections, using symbolic notation and an explicit 
isomorphism map between D8�< r > and Q8�< i > as shown below. She noted that 
both quotient groups are of order 2 and must be isomorphic to Z2 in Figure 6.11. 

Figure 6.11: Jenni’s construction of quotients in a formal mapping register for the Z2 

strategy. 

Before ending the session I revisited Jenni’s statement that “Q8�< i > is a group 
because < i > is a subgroup of Q8 ” and the normality issue or equivalently the issue 
of well-defnedness of the standard factor group binary operation. Namely, that the 
operation g1H ∗ g2H = g1g2H for G�H where H is a subgroup of G is well-defned iff 
H is normal in G. 

Researcher: So, are there any underlying assumptions that you’re making the 
need to be formalized further? So your quotienting out by a subgroup to get 
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another group. Do you need to be careful about what kind of subgroup it is? 
Does it need to have some special property? 

Jenni: Um, I do know that the subgroups are cyclic and therefore abelian. Um I 
know that the order of the subgroup has to divide the order of the overall group, 
but I think that’s kind of inherent. 

Researcher: So in isolation we know that those groups that you’re quotienting 
out by, if we just look at them in isolation, we know they are cyclic in their own 
right we know their abelian in their own right. What kind of relationship do they 
need to have with the rest of the elements in the group? Does that make sense 
question-wise? 

Jenni: Maybe, I’m trying to think of a property for the quotient map to be well-
defned. Can I see the Cayley tables to check something? 

After long pause she said that she was not sure of the top of her head and it 
would take awhile for her to try and fgure it out. We discussed that in the task it 
was clear to see that D8�< r > and Q8�< i > were both groups with the usual factor 
group binary operation. Jenni quickly explained they both have an identity and then 
an element of order two is its own identity, and associativity holds. We discussed that 
for larger groups that checking each of the group properties is satisfed at the elemental 
level may not be effcient or reasonable. Due to limitations on time I did not pursue the 
necessary condition of normality further. 

Up to this point Jenni had used the cayley tables, group presentations and quo-
tient maps using symbolic notation during her fnal collapsing structure process. Next, 
I investigated what her fnal collapsing structure process would be in terms of Cayley 
to Schreier digraphs. Jenni momentarily and spontaneously reverted back to her initial 
strategy of obtaining Z4 by getting rid of the fips. She stated that: 

Jenni: I guess I would think about it as removing the red lines. Because those 
would be the fips. 

I reminded Jenni that what she did previously was quotient out by these subgroups, 
< r > and < i > of order 4, and ended up with Z2. 

Researcher: So hold on a second. So you were just quotienting out by the cyclic 
subgroup of order four. So when you quotient out by the cyclic subgroup of order 
four, how does that translate to something that you did to the Cayley digraph? 
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Jenni: It’s like collapsing the inner circle into one element and then collapsing 
the outer circle into one element. And then they are only connected by one line 
[generator]. 

Researcher: So remember a bar or solid line is just notation for two arrows going 
in opposite directions. So what you are left with, what group does that represent? 

Jenni: That represents the, uh, quotient group, which is isomorphic to Z2. 

Researcher: Okay. So going to Q8, can you translate what you did with Q8 by 
manipulating the Cayley digraph? 

Jenni: Yeah, I guess the top squares that are connected by the green lines would 
collapse into one and then the bottom elements that are connected by the green 
would collapse into one. And then all of the red lines would also just collapse 
into one red line. So again, we’d have Z2. 

Jenni transitioned from predominantly formal mappings to the digraph register 
seamlessly for the Z2 strategy. She invoked her quotienting process of combining ele-
ments to form two sets of cosets, the cyclic subgroup of order four played the role of 
the identity. She could see that this process left her with a group and checked off the 
properties of inverses, associativity, and identity. However, Jenni was still missing the 
normality condition. 

6.2.4 Chronological narrative for Alex 

Alex, the second year graduate student, experienced negative affective responses at the 
start of the interview. After a few minutes he stated: 

Alex: I think my anxiety is kicking in, I’m just like totally [inaudible] I can’t do 
this. 

Due to this negative affective interference, the in-person interview was rescheduled to 
the following week. During the rescheduled interview, Alex said he preferred to use the 
group presentations and drew subgroup lattices. He interpreted collapsing or ignoring 
structure within the context of this task in two contrasting ways. One way was to ob-
tain groups with smaller order by: adding relations to the group presentations followed 
by removing redundancies and taking quotient maps (quotienting out by normal sub-
groups). A second way was to obtain an infnite group. He went to the level of a free 
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group on two generators and collapsed structure in this free group by adding overlap-
ping relations of Q8 and D8 to it in order to obtain an infnite group. He also viewed 
this process as being analogous to taking out non-overlapping relations in the provided 
group presentation of Q8 and D8. 

6.2.4.1 Valid strategy to obtain an infnite group 

Alex explained that his solution for the later was to take the group presentation of D4 

and Q8 and remove the relation f 2 = 1 and i2 = j2 , that were making them different. 
He denoted the modifcation to D4 and Q8 as the free group on two generators with the 
remaining relations in Figure 6.12. 

��� 

Figure 6.12: Alex’s strategy to obtain an infnite group in the group presentation register. 

He also described his construction of F verbally: 

Alex: So what I ended up doing was looking at F just the free group, the both 
don’t sit in there [referring to Q8 and D4], but are related to quotients of F in 
some way. I just looked at the intersection of the quotients, so like you have the 
free group, and then you take some sort of normal subgroup of it and you mod 
it out and you get D4 and similarly take some sort of normal subgroup and mod 
it out [of the free group on two generators] to get Q8. Um, and those are two 
different normal subgroups that you moded out by. And so the normal subgroups 
dictate what the relations are. Cause that’ll say whatever is in, there [referring to 
the normal subgroups] is effectively zero [identity]. Um so, I took the intersection 
of those and then moded out the free group on two generators by the intersection 
of the normal subgroups. [As Alex was describing his process verbally, we drew 
it on the white board with more explicit notation to communicate. Notation: 

F<x, y > F<x, y > F<x, y > 
Ni Nj Ni ∩ Nj

Q8 = , D4 = , F = ]. 
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Researcher: Can you describe the resultant group F . 

Alex: So one of the things since Nj intersect Ni is a smaller group that your 
moding out by [smaller than Nk where k=i or j] you have fewer relations in the 
resulting quotient group [F ] so you’re going to have more elements now because 
you’re, because things in Ni intersect Nj are going to, you are saying all of these 
are zero [identity] now. 

Researcher: So you’re saying it’s bigger than [F<x, y > 

Alex: Yeah. So that would be bigger because we have a smaller section of stuff 
that is zero. There is still some cyclic group of order four. There is this anti 
commutativity property where xy equals negative yx. There’s probably more 
stuff to it, but that’s like the immediately obvious stuff. 

6.2.4.2 Valid strategy to obtain Z2 and Z2 × Z2 

After this I rephrased the task by asking him to obtain isomorphic fnite groups that had 
order less than 8. Alex immediately carried out a valid strategy to obtain Z2. He also 
associated the language “collapsing structure” to a quotient map. 

Alex: So my frst response is if I take the subgroup generated by i in the quater-
nion group, that’s going to be an order four group and it’s normal so we can mod 
it out. And then you’re just going to get Z2 and then D4 we can mod out the 
rotation subgroup. You get Z2 also. I have to double check, but that seems on the 
face of it, what I would think [writes down quotient maps]. 

Researcher: Is there some way that you can translate those quotient maps visually 
using the Cayley digraphs? 

Alex: Um, so since we are modding out by the group generated by i we’re going 
to want that whole subgroup to just be the same element. So like in here, the dots 
are the little vertices of i, negative i, one, and negative one would become one 
element [looking at the Cayley digraph of Q8]. 

Researcher: So when you identify these vertices to one thing, that new node, what 
is that? 

Alex: A coset. 

Researcher: Okay. So what else do you do? 

�� and F<x, y > 
Ni Nj 

], 
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Alex: So now I have fve elements and the four other ones are going to be the 
other coset. And the red arrows between the one, i, negative one, and negative 
i, those arrows would collapse because all those elements would become one 
element. And then the other elements, the j, negative j, k, and negative k, would 
collapse to be the other coset. And so the relation, like you’d end up having just 
one relation between those two that goes from the i coset to the j coset and then 
back to the i coset. And some of these relations wouldn’t collapse, they’d just 
become the exact same arrow. 

Researcher: And for the dihedral group what would you do? 

Alex: I think for this one, the inner circle, those are going to all collapse into one 
element and then the outer circle would collapse into one element. This time the 
green arrows are going to be the ones where you collapse into an element and 
collapse into an element. Um, so that would leave the two-way red arrows, but 
then they would end up becoming just the same two way, one relation. 

Alex also carried out another valid strategy to obtain the Klein-4 group. To do 
this he started with the group presentations, added relations, and then reduced redun-
dancies as shown in his work in Figure 6.13. He was also able to carry out this process 
in the Cayley digraph register. Alex never attempted to carry out the impossible strategy 
during the interview, moreover he never mentioned it. 

Figure 6.13: Alex’s strategy to obtain Z2 ×Z2 in formal mapping and group presentation 
registers. 
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6.2.5 Results in terms of the representational fuency lens 

There was a great deal of variability among Max, Jenni, and Alex with respect to their 
approach to the same task, what collapsing structure or ignoring information meant to 
them, their register use, and the sign-interpretation pairs they produced within each of 
the registers. 

Collapsing, losing, or ignoring structure interpretation themes 

Several of Alex’s and Jenni’s interpretations of collapsing structure aligned with the 
process of constructing quotients. This included: combining or identifying elements 
into sets of elements, modding out by an equivalence relation, and partitioning. Max 
associated collapsing structure with: losing subgroups or space in the subgroups and a 
homomorphism. All three participants thought of losing information as losing what is 
making the two groups, the dihedral and quaternion group of order eight, different and 
keeping what they have in common (1.3). They combined this with other interpretations 
in different ways. 

Alex, the second year graduate student, combined theme (1.3) with fxing gen-
erators and removing relations in group presentations to defne a larger group (1.5). At 
times, the phrase “losing information” and collapsing structure took on opposite mean-
ings for Alex as he used the Free group on two generators as a starting point. For 
example, he mentioned that keeping the two generators and adding relations could be 
thought of as collapsing the group into a smaller group and keeping the two generators 
and losing relations could be thought of as expanding the group. In other words, “losing 
or ignoring information” as getting rid of relations was expanding the initial group into 
a larger group because their would be fewer relations to collapse words. 

In contrast, Max and Jenni, at times, combined interpretation themes in ways 
that were in confict with the formal mathematical object of a homomorphism. They 
both mixed the interpretation (1.3) getting rid of what is making the two groups different 
and keeping a subgroup they have in common with a homomorphism. They carried 
this mix of interpretations with them to the Z4 strategy. This mixing of more general 
problem-solving strategies connected to the mathematical object of a homomorphism 
led to the implicit assumption that a subgroup would be the image of a homomorphism. 
This is in confict with the formal object of a homomorphism sometimes because the 
image of a homomorphism need not be a subgroup of the domain group. This thinking 
may have blocked them from entering into the Z2 × Z2 strategy since Z2 × Z2 is not 
isomorphic to a subgroup in the quaternion group of order eight. In the follow-up 
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interview Jenni showed an evolving awareness of this confict and stated: “if I quotient 
by a subgroup that is not just leaving me with a subgroup”. 

Alex did not assume that the image of a quotient map would be a subgroup of 
the domain group. He also noted that in the context of fxing generators, removing re-
lations would change how a generator interacts with other elements. Learners assign 
meaning to normative metaphors they encounter. This meaning seemed to depend on 
the strategy the participants were in and their mathematical backgrounds. For the under-
graduate learner the metaphorical phrases that they hear such as “losing” or “ignoring” 
information may have been associated with formal objects due to temporal association 
and interpreted in ways that deviate from the meaning intended by an instructor or text. 
The more seasoned learner in this study, Alex, used these metaphors more appropriately 
and avoided conficts between loose metaphorical thinking and the formal mathematical 
objects. 

An interpretation of losing information associated with a homomorphism that 
did not arise in Max, Jenni, and Alex’s observable responses was the idea that you 
loose detailed information about individual elements orders. For example, the homo-
morphism from the dihedral group of order eight to the cyclic group of order two, that 
maps the rotations to the identity, washes out all information about the orders of the 
rotations. In less extreme cases some but not all information about the orders is washed 
out. For example, the homomorphism from the dihedral group of order eight to the 
Klein-4 group, that sends the rotations to order two elements, still leaves information 
that the order of the rotations is a multiple of two but looses information regarding 
precisely what the orders are. 

Register use 

This section covers Max, Jenni, and Alex’s natural register use which refers to registers 
that were used without specifc prompts stated by the researcher to enter the particu-
lar registers. Max used registers as a source of ideas where as Jenni and Alex used 
the registers a source of ideas and to also check ideas. Max’s starting register was 
Cayley tables. Max predominantly used the Cayley tables, formal-symbolic function 
mappings, and group presentations during the task and only moved to Cayley digraphs 
briefy without being prompted. He rarely checked his ideas against the formal defni-
tion of a homomorphism and showed some resistance to formal verifcation during the 
interview. He become to Z4 as a default intuitive response that he recognized in the per-
ceptual environment and latched onto what he was familiar with. He didn’t let go of it. 
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Jenni predominantly used the group presentations, cayley tables, and formal-symbolic 
function maps. Jenni started with the group presentations to spark ideas about what the 
isomorphic resultant groups could be. Once she made a pick she would go to the Cayley 
tables to check that the resultant groups she had chosen would be isomorphic. Then she 
transitioned to the formal-symbolic function maps to try to construct homomorphisms 
from the initial domain groups to the resultant image groups. Alex predominantly used 
the group presentation with thinking about the free group, wrote down subgroup lattices 
looking for normal subgroups, and formal-symbolic quotient maps to verify and write 
a fnal answer. Alex was the only participant that referred to the free group when he 
used group presentations. He never used Cayley tables. Jenni briefy mentioned that 
she would move to the Cayley table register to investigate what property was needed 
to ensure that her quotient map she wrote in a formal-symbolic mapping register was 
well-defned. Due to time constrains, a single switch prompt to the digraph register was 
administered for this study. 

Conversions and pseudo-semiotic representations 

Quotient map conversions from registers started in to digraph register. Max 
did not enter a valid strategy to obtain homomorphisms with the images Z2 or Z2 × Z2. 
After giving valid quotient map responses in their natural starting registers, Jenni and 
Alex were prompted to switch to the Cayley digraph register. A formal defnition of a 
Cayley digraph was given with a brief explanation of what the arrows and vertices rep-
resented, no other information was provided regarding the Schreier coset register. Both 
Jenni and Alex converted their formal-symbolic quotient maps to digraph registers. Af-
ter the prompt to switch to a Cayley digraph register, Jenni and Alex both entered the 
Schreier digraph register on their own when thinking about quotient maps. Both ma-
nipulated the Cayley digraph in ways that were consistent with the formal analog of the 
equivalence relation: two elements are equivalent if they are in the same coset. They 
glued vertices together to represent elements in the domain group becoming disjoint 
sets of elements of equal size in the resultant quotient group for Z2. Phrases like “col-
lapse” and “crunched down” were used without invoking tearing or erasing behaviors. 
Alex made it explicit that the identity subgroup as the normal subgroup and produced 
the resultant quotient group for Z2 × Z2 in the Schreier digraph register, Jenni did not 
arrive at the normality condition during the interview in a digraph register. 

Pseudo-semiotic representations Both Jenni and Max produced pseudo-semiotic 
representations with respect to homomorphisms (Max) and quotient maps (Jenni). Max’s 
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Table 6.1: Registers that participants produced quotients in prior to switch prompt. 

Registers that participants naturally produced 
quotient in prior to switch prompt 

M J A 

Formal-symbolic quotient from start group ei-
ther D8 or Q8 (group presentation) to Z2 (group 
presentation) 
Formal-symbolic quotient (group presentation) 
start group to Z2 × Z2 (group presentation) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Cayley tables start group to Z2 

Cayley tables start group to Z2 × Z2 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Cayley→Schreir digraph start group to Z2 

Cayley→Schreir start group to Z2 × Z2 

. . . . . . . 

. . . . . . . 

XD8/∼ 

XQ8/∼ 

. . . . . . . 

. . . . . . . 

XD8/N 

XQ8/N 

XD8/N 

XQ8/N 

. . . . . . . 

. . . . . . . 

Table 6.2: Digraph register that participants converted quotient maps to after switch 
prompt to go to Cayley digraph. 

Register that participants converted valid quotients maps to 
after switch prompt 

J A 

Cayley→Schreir digraph start group to Z2 

Cayley→Schreir start group to Z2 × Z2 

XD8/∼ 

XQ8/∼ 

XD8/N 

XQ8/N 

XD8/N 

XQ8/N 

semiotic triangles for a homomorphism were inconsistent across multiple registers. His 
interpretation of collapsing and ignoring structure as a homomorphism (code 1.5) was 
in confict with his map psi1 that utilized the group presentations (maps generator r to 
order 4 element in Z4 and generator f to the identity in Z4 (code 2.2) and his focus to just 
the inner green cycle of rotations in the Cayley digraph (code 1.4). Following Max’s 
instructions for his mapping ψ1 and paying attention to just the elements we have: ψ1 : 

2 2 3 2 3e −→ e, r −→ r, r −→ r , r −→ r3, f −→ e, rf −→ r, r2f −→ r , r3f −→ r . 
However, if one assumes the homomorphism condition holds and pays attention to the 
relations one can see that this map is not well-defned, since r2 = r3frf can be mapped 
to ψ1(r

2) = r2 and ψ1(r
3frf) = ψ1(r

3f)ψ1(rf) = r3r = e which leads to a contra-
diction. Within the digraph register, Max produced the pseudo-SR where the sign was 
a digraph, his interpretation was “pulling out” a subgroup and erasing everything else, 
and he indicated that it signifed a homomorphism. Max’s sign-interpretation pair was 
in confict with the actual mathematical object of a homomorphism. 

Similarly, Jenni’s earlier interpretation of getting rid of elements by cancelling 
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out the fip generator f and elements with an f in the group presentation register was 
in confict with the signifed object of a quotient map. Unlike Max, Jenni detected this 
confict and realized that getting rid of elements with an f in it was not the same as 
the process of taking a quotient map which she reiterated “combines” elements. Even 
though Jenni affrmed that her earlier process of cancelling out elements with the fip 
generator in it, in the group presentation register with a list of elements, to get obtain 
Z4 as a quotient group “didn’t make sense”, she was still trying to understand during 
a follow-up interview whether or not it was still possible to get Z4 as a quotient group 
by another process in the digraph register. Her process in the digraph register was at 
least consistent with partitioning the elements of the dihedral group of order eight into 
cosets. 

Jenni: My initial instinct when looking at it was that like all of these connections 
[red lines] were like s’s [notation for fip generator] and so if you just get rid of 
the s’s you collapse these two points into a point and these two points into a point 
and so you end up with a square and that was along with my process to get to Z4. 
What I had been thinking about was that completely getting rid of the generators 
s would collapse these lines and leave you with Z4 [sketches Figure 6.14]. 

Jenni also referred to the this as being synonymous with combining the pairs of 
elements e and s, r and sr, r2 and sr2 , r3 and sr3 to a vertex {e, s}, {e, s}r, {e, s}r2 , 

and {e, s}r3 . While Jenni’s process forms a partition of D8 into cosets, it does not form 
a quotient group. Jenni did not refer to the standard factor group binary operation or 
set multiplication. She was not attuned to the visual cues indicating that the standard 
factor group binary operation was not well defned. The following computation shows 
that the well-defnedness property does not hold: {e, f}r ∗ {e, f}r = {e, f}r2 and 
{e, f}r ∗ {e, f}r = {r, fr} ∗ {e, f}r = {fr3f, r3f} ∗ {e, f}r = {e, f}r3f ∗ {e, f}r = 

{e, f}r3fr = {e, f}fr2 . With the operation as set multiplication, on Jenni’s partition, 
it can be observed, in the Cayley table register, that the closure property does not hold 
since {r, fr}∗{r, fr} = {r2, f, fr2, e} and that {e, f} does not behave like the identity, 
in fact none of the cosets behave like an identity with set multiplication. Jenni did not 
refer back this time to the Cayley tables to check whether or not her partition with the 
standard factor group binary operation or set multiplication formed a group. Pseudo-
SRs were not found in Alex’s data. 
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3 s sr = r s 

e r 

r 2 r 3 

−→ 

{e, s} {r, sr} 

{r2, sr2}{r3, sr3} 

3 2 2sr = rs sr = r s 

Figure 6.14: Pseudo-SR for the signifed object of a quotient map from D4 to Z4 in a 
digraph register. 

6.2.6 Results in terms of the default-interventionists’ intuition lens 

After applying the intended apriori semiotic lens to analyze data, the default-interventionist 
system 1 and system 2 distinction by Kahneman (2011) was used to provide additional 
layers. Through the new lens, it was observed that Max experienced rapid default-
intuitive judgements produced by system 1. His intuitive outcomes were more indica-
tive of matching-associative errored forms and were generated rapidly based on visual 
stimuli in the environment. His analytic system was not fully kicking in, eventhough 
he indicated that he should “probably be more rigorous”. Brute force, ineffcient busy 
work was something that Max had an aversion towards and this suppressed his ana-
lytic system 2 from carrying out binary product computations to check if his map he 
wrote down was a homomorphism. After the analytic system 2 was suppressed, Max’s 
refective system posed a beautiful question: 

Max: So it sounds like a laborious thing to do...how can we do that in a way that 
isn’t super burdensome? 

This question was relatable and a key input for Max’s intuitive system to crunch 
on that could be leveraged by an instructor in a classroom situation to motivate the 
need to work towards results like the frst isomorphism theorem. If one gains access to 
Lagrange’s theorem, the frst isomorphism theorem, and knows what the normal sub-
groups of the group are, this problem of burdensome local energy computational costs 
that Max is experiencing becomes an effcient cognitive energy saving strategy. This 
puts less stress on the analytic system in the long run. In the pure math setting of this 
study, signals from the analytic system 2 that one should check followed by the sub-
sequent suppression of the analytic system 2 is not necessarily a bad thing, but highly 
adaptive energy saving tactic. Aversion to labor intensive computations is one reason 
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that may drive a motivation to compress towards theorems. Unlike Max’s system 2, 
Jenni’s system 2 seemed to be on overdrive. Jenni produced pages of routine compu-
tations and she was having diffculty retrieving formal results she had learned. Alex, 
hardly wrote down any routine computations. His thoughts seemed to be driven more 
by theorems because he narrowed in on the correct strategies, Z2 and Z2 × Z2 ,quickly 
and without erring. It is not explicitly clear what theorems Alex was using because he 
did not verbalize them, his responses seemed rapid like he did not have to work very 
hard for them during the interview. 

6.2.7 Results in terms of an affective impacts lens 

Max fipped back and forth from projecting ease with a confdent response using phrases 
like “obviously” “clearly” “the rest follows” to projecting uncertainty and insecurity 
with words like “sorry” and “I don’t know if that makes sense, but that’s what I have”. 
Rather than using his awareness of uncertainty as a signal to take his time and com-
fortably investigate if his claims made sense, he would state his claim and just freeze. 
Despite being uncomfortable, he still wanted to try. His rapid responses with little to 
no time spent to check coupled with his willingness to try signaled that he could have 
been experiencing a need to perform, “fear of invalidity” and “premature closure” dur-
ing the the interview (Fiscbein, 1987, p. 195-196). “In order to preserve the already 
reached equilibrium (as an effect of closure) the individual tends to avoid the situation 
of facing different alternatives” or strategies (Fischbein, 1987, p. 196). Max began 
with generating key ideas as he explored patterns in the Cayley tables of the quaternion 
and dihedral group. Then, he began to exhibit symptoms of premature closure when 
he wanted to manipulate symbols so that the cayley tables would look the exact same. 
However, he became so fxated on the cyclic subgroup of order 4 that he did not take 
time to investigate how changes like making ‘r its own inverse’ would induce changes 
to the rest of the group. This fxation persisted throughout the interview in other regis-
ters as well. The only strategy Max entered besides trying to make the quaternion group 
and dihedral group look the same, was the impossible strategy to obtain Z4. Fischbein 
(1987) conjectured that “One tends not only to close the search for arguments, one tends 
to close the debate as early as possible...Very often the moment of closure takes place 
prematurely on the basis of incomplete information” (p. 196). 

Alex also experienced affective issues during the task. I asked if he would be 
comfortable with sharing the impact of anxiety on his intuition. He refected over this 
and shared his experiences. 
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Alex: So I have been thinking about it after last Monday [initial session that was 
ended due to anxiety]. I think the best analogy I could think of was, if you read 
writers talking about writing, a lot of times they talk about having a writer and 
having an editor inside their head and to sit down and write, they have to put the 
editor somewhere else. So they can just like, make all the mistakes and like spell 
words incorrectly and have terrible grammar and then once they’re done with that 
they can bring the editor in and like clean it up. And I think analogously anxiety 
kicks in and it’s like, the editor part is like the one in control and it’s the only 
thing that’s happening. And so like the part of me that wants to just explore and 
see how the thing works as soon as anxiety kicks in it’s just like, you don’t have 
time for that. You got to fgure this thing out right now. You have to just get to 
the answer and know exactly how to do it. Uh, which of course like cuts off all 
the conduit stuff, like actually learning how to do the thing that works and what 
the answer would be. 

Alex: It is sort of like you’re so focused on the solution and the end goal, it cuts 
off all the paths to get to the end goal it feels like. 

Researcher: Yeah. I relate to that a lot. 

Alex: It is the worst thing. 

6.3 Adding structure task: direct or semi-direct prod-
ucts 

6.3.1 Results in terms of RBC+AiC lens 

Preparation for RBC+AiC analysis: Jenni’s learning history 

As a preliminary step to conducting an RBC+AiC analysis, it is important that the 
researcher obtains background information regarding the learner’s personal history and 
prior exposure related to the mathematical concepts under investigation (Dreyfus et 
al., 2015). Following the collapsing structure task I asked Jenni to describe aspects of 
her learning background as an undergraduate and her approach to similar tasks as an 
undergraduate versus her current approach to these types of tasks as a graduate student. 

Jenni: I think it took me awhile to build up intuition. I feel like what I 
have left is intuition and I don’t have the formalization skills, that would 
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take me a little while to build back up, but I think when I was frst starting 
I wouldn’t have had the intuition for it and so I would have been probably 
trying to fnd different formalizations and look at proofs that other people 
had written about similiar subjects or similar questions, so I think I would 
have gone about it [the previous task] differently [as an undergraduate]. 

She described an initial period of working out problems mechanically and fol-
lowing proofs. Later on after more exposure to group theory she began to develop 
intuition. Jenni also had experienced a period of not thinking about group theory for a 
year and forgetting. Formal defnitions and proofs that she had previously learned were 
not quickly recoverable, these things were not fresh at her fngertip, and she had to rely 
on her intuition to guide her. Next, I asked her if she had been exposed to different ways 
of representing groups as undergraduate. 

Jenni: Yeah, I had the same professor for both the abstract algebra classes 
that I took and he showed a couple different ways of representing groups 
and then in other classes I would see other professors mention in it different 
ways, not usually these kinds of graphs, but different ways that they might 
write out the group presentations. Also reading through different textbooks 
and sources and stack exchange explanations and Wikipedia always has the 
Cayley graph on the side. I think the place I was exposed to Cayley graphs 
the most was Wikipedia. 

Throughout all of the interview sessions Jenni was open to exploring and was relaxed. 
She was just comfortable with following her thoughts. Next, I transitioned into the col-
lapsing structure task that would be analyzed through the RBC+AiC lens by presenting 
the following prompt. 

Researcher: Last time you were collapsing structure. This time you are going to 
be adding structure, well adding to one group or the other. So the task is, can you 
construct a larger group, of order 16, by combining the dihedral group of order 8 
and the cyclic group of order 2 in some way? 

Episode 1: adding a fip generator to the dihedral group in an object of symmetry 
register 

Jenni began her construction process towards the new group by focusing on the genera-
tors of both groups and thinking about what it might mean to add a third generator that 
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behaves like the generator for Z2 to the dihedral group. She recognized that the two 
generators in the dihedral group corresponded to a fip and rotation in the square as its 
object of symmetry. She built with the object of symmetry for the dihedral group by 
adding an additional axis of symmetry for the third generator in Figure 6.15. 

Jenni: In the dihedral group we have rotations which gives the cyclic of order 
four and a fip which is a generator with order two. Um, so I’m thinking of just 
adding another one, so like a square with a different axis of symmetry, and then 
thinking of Z2 as a different type of fip I guess. 

Jenni maintained the construction process of adding a fip generator, left the object of 
symmetry register and entered the digraph register. She continued to explore what it 
would look like to add a third generator, of order two, to the dihedral group. 

Episode 2: adding a fip generator to link two copies of the dihedral group in 
digraph register 

Jenni recognized what the generators are in the digraph context and drew the digraph 
for the dihedral group. She built from this and the need for a group of order sixteen 
and drew two copies of the dihedral group connected with a third type of line for the 
additional fip generator. 

Jenni: So the way I’m thinking about it is that each type of line represents a 
generator so these one’s are the rotation and these ones are the refection. So 
I guess I thought [long pause] my thought was that it would look like different 
circles. 

After a long pause of just sitting quietly and thinking and drawing on scratch 
paper. Jenni asked if she should draw her intuition even if she did not have way to 
formalize it. This question and reluctance to say something that was not formally sound 
yet indicated that some learners may withhold their intuitions from public view unless 
their is a norm that is okay to share their initial intuitions before they have time to check 
if they are right or wrong. Once it was estabilished that it was okay to share these early 
start-up intuitions, She stated: 

Jenni: So my idea was basically just that there is probably another fip involved. 
So yeah if this side is going this way, then the concentric rings arrows would 
go the other direction I think. So I will draw the new ones as this kind of line. 
My intuition is also that for this fip there should be another type of line [broken 
speech] connected between those nodes and then, 
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Building from her observation that the digraph should be connected, that you 
can get from and element to another by a word list of generators, Jenni drew eight 
new lines to connect the two copies of the dihedral group. These new lines, short-hand 
for two directed arrows in opposite directions, represented the new fip generator that 
behaved like the generator in Z2. She drew the digraph of the newly constructed group 
in Figure 6.15. In the middle of her sentence, following the cliff hanger “and then,...”, 

Figure 6.15: Jenni’s construction of the new group in a digraph register. 

a new thought interrupted her and she spontaneously switched back to the object of 
symmetry register. 

Jenni: Um the, the other graph should instead of a square be a cube. 

It was as if Jenni’s subconscious mind was listening and working on the construction of 
the new group in the object of symmetry register in the background while she had been 
explicitly building the new group in the digraph register. 

Episode 3: going from a square to a cube 

Jenni’s initial pieces in episode 1 were re-organized and elaborated on. She spoke in 
a stream of consciousness with free associations as she drew a cube before prompting 
herself with more coherently formulated guiding questions. 

Jenni: So I guess that is how I would think about changing it with this graph 
adding another group to combine it adds another dimension we for sure have to 
have 16 new elements and I think you could do the rotations the same rotations but 
now you also have the fips that might, like with the cube before you were either 
rotating it this way or fipping and rotating it would be similiar to like rotating it, 
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no it wouldn’t, but you could with the square you could either rotate it around the 
inner circle or fip it across an axis of symmetry and then rotate it [draws a cube]. 
Combining Z2 is going to act like another symmetry. 

Jenni: So I am starting with what I’m doing is I’m looking at, if we added another 
type of fip and called it, like, using Z2 as another type of fip, what would that 
look like? And so I am drawing out like a cube and then seeing the types of rota-
tions that we can do in one dimension, but then fips can happen in two different 
dimensions. And so that is what I’m looking at right now. 

The fip generator coming from the dihedral group were like planes running in a verti-
cal direction and the new generator would cut the cube in a different way. The rotation 
generator would rotate 90 degrees through the center vertical axis. Jenni thought about 
two different situations as either adding a slant axis of symmetry for the new fip gener-
ator or adding a horizontal axis of symmetry in Figure 6.16. She began to view the new 
group she was constructing as a subgroup that lived inside the symmetries of a cube. 
She knew that what she was constructing was not the entire symmetry group of the cube 
because she was only including rotations around one rotational axis . 

Figure 6.16: Jenni’s construction of the new group in an object of symmetry register. 

Episode 4: moving towards a formal construction 

As Jenni tried to formalize her thoughts and write down what the relations between the 
generators would be in each case she paused and went back to the group presentation 
of the dihedral group. 

Jenni: An now I’m getting caught up in confusion about how rotations and fips 
work together. Because I was trying to visualize just in the square one because 
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in D8 I was trying to think if r cubed f is the same thing as f r. Yeah. I think 
something that is tripping me up in the presentation of the dihedral group is that 
r f is equal to f r cubed. And so now I’m going to try to redo the Cayley table 
adding on the different types of interactions that adding another symmetry you 
would have. 

Towards the end of the session she wrote down a conjecture, with a question 
mark, that the group she was constructing would be isomorphic to the direct product 
of the dihedral group of order eight and cyclic group of order two, D4 × Z2. Jenni 
was still cautious about her conjecture because it would take more time to fgure out 
what the interactions between the generators would be whether or not the combinations 
of those generators matched up with Cayley table for the direct product. When asked 
what the most diffcult part of the task was, Jenni described diffculty with expressing 
thoughts and moving towards formalization as well as what attempts to formalize do to 
her intuition. 

Jenni: I think what’s diffcult for me is when I’m trying to express my thoughts 
I think inherently there needs to be a justifcation. So it’s hard for me to just 
express intuition without trying to justify it. And then that goes down the route 
of, oh, I should formalize it. And then if I can’t I feel like it kind of blocks the 
intuition a little bit because I’m like, well, if I can’t formalize it, then I might be 
wrong. And so then I want to stop and think about it again a little more so that 
I’m more sure of it. So I think that trying to express the thoughts sometimes does 
hinder my intuition. And so that makes it harder for me to talk about it and talk 
about the ideas as I go. 

Researcher: So what happens to your initial ideas and intuitions? 

Jenni: Um, they get fuzzier. I think for me I start questioning them and like I’m 
going through a formulation and think why did I start doing that? Why did I think 
that is going to work kind of thing. And so unless I can think of the formalization 
pretty quickly, then I start questioning my intuition a lot more. 

Even though Jenni ended the session as more of a skeptic of her intuitions, her drawings 
and intuitions in the digraph register were consistent with the construction of D4 × 

Z2. During the interview, Jenni expressed that she was still pretty far from having 
a solution. More work needed to be done to fgure out how the additional fip and 
generators from the dihedral group could be related in order to form a new group of 
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order 16. Her work with the cube with an added axis of symmetry was a key, it could 
lead in a direction towards the direct product or in the direction towards the semi-direct 
product with further guidance. 

Representational fuency 

Jenni’s overall interpretation of adding structure in this context was adding a new gener-
ator that interacted with the two generators of the dihedral group and adding a refection. 
The strategies that Jenni entered was to obtain the direct-product, she did not explicitly 
enter the strategy to obtain the semi-direct product and never mentioned the semi-direct 
product in any of the registers. Jenni naturally went to the digraph register rapidly fol-
lowed by the object of symmetry register on her own without any switch prompts from 
the researcher. This was in contrast to her natural tendency without prompt to work pre-
dominantly in group presentation, formal-symbolic mapping, and Cayley table registers 
during the collapsing structure task. 

While working in the digraph and object of symmetry register to construct the 
new group she was also using the group presentations in parallel. She made a partial 
conversion from the digraph register to the object of symmetry register by drawing the 
third generator from Z2 as an additional refection for the signifed object D4 × Z2. The 
conversion was considered partial because she never explicitly distinguished whether 
the added generator as a plane of refection should be slanted or horizontal. In order to 
be a valid semiotic representation for D4×Z2 the added generator must be the horizontal 
plane of refection. 

6.4 Performance on the baseline questionnaire: group 
action defnitions and examples 

6.4.1 Defnition of a group action using homomorphism language 

On the baseline defnition and generating example questionnaire, Jenni correctly and 
confdently recalled the defnition of a group homomorphism, but struggled to trans-
late the provided defnition of a group action in terms of homomorphism language. 
Jenni stated: “Homomorphism language might just mean notation”. She proceeded by 
mimicking the syntax of the defnition of a homomorphism and insert syntax from the 
provided defnition of a group action as indicated in the red outlined box in fgure 6.17. 
She incorrectly assumed that G × X was equipped with a group binary operation and 
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that X was equipped with a group binary operation. She also made a logical error and 
assumed that f was a homomorphism and at the same time maintained rigidity with the 
syntax G × X → X rather than noticing the appropriate map ψ : G → Sym(X) where 
each g ∈ G is assigned to a map τg : X → X that sends x to g · x. Moreover, she did 
not mention key pieces that are needed to make this conversion in one direction going 
from the defnition of a group action to a homomorphism from ψ : G → Sym(X). 

Figure 6.17: Jenni’s translation of a group action in terms of homomorphism language. 

During the earlier Part I of the study she seemed very comfortable with viewing 
elements of groups as permutation functions in the Cayley table register. She invoked 
Cayley’s theorem while working with Cayley tables and objects of symmetry. However, 
when she was looking at the provided defnition of a group action the perspective of 
viewing a group as an isomorphic copy of a subgroup of a Sym(X) was not activated. 
She did not associate the provided defnition of a group action with viewing elements 
in the group as a permutation functions during this questionnaire. 

Alex began by writting down φ : G × X → X and φ(g, x)φ( and stopped 
because he felt something wasn’t right. After emphasizing that X was just a set, he 
took a few more minutes to think. Next, he wrote φ : G → {mapsX → X}. 

Researcher: Can you elaborate more on why your maps from X to X form a 
group? 

Alex: So this is taking element of g and mapping them into maps that go from X 

to X ...So the maps from X to X , I’m thinking the group action is composition. 
So we’re going to take any map that goes X to X and then we can compose those 
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maps and it will still be a map that goes from X to X and the identity map would 
be the identity function. 

Researcher: So the binary operation is composition, the identity, what about 

Alex: Oh they would have to be bijective though to have inverses because if you 
don’t have something surjective uh [stops abruptly], I mean that wasn’t injective 
then your not going to have an inverse. So ya the inverses would just be the 
inverse map where you do something then undo it. 

He went back to the provided defnition of the group action and translated the identity 
action property using his framing of a group action as a homomorphism from the group 
G to the group of bijective functions from X to X and wrote down his response in 
Figure 6.18: 

Alex: So it has e acts on x by just giving you x so that would just send the identity 
in G to the identity map on X . 

Figure 6.18: Alex’s translation of a group action in terms of homomorphism language. 

6.4.2 Generating examples of group actions 

Jenni wrote down three example attempts for group actions in Figure 6.19. For her frst 
example, Jenni denoted G to be the group Z2 = ({z : z ∈ Z}, +mod2) and X as the 
group Z6. She defned the group action by assigning an explicit map that took elements 
from the direct product group Z2 × Z6 to elements in Z6. She mapped elements of the 
form (0̄, x) to x in order to satisfy the group action property eG · x = x for all x ∈ X . 
She repeated this same process for the equivalence class 1̄ by mapping (1̄, x) to x. The 
map (g, x) to x for any g ∈ G naturally satisfes the second property of a group action, 
g · (h · x) = (g + h) · x. Such a map, called the trivial action, works for any choice of G 

and X , but Jenni made a guess that such a map Za × Zb to elements in Zb is an action 
if the constraint a|b holds. For the trivial action this constraint is irrelevant. She later 
corrected this and stated: 
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Jenni: Check frst intuition that Za × Zb to elements in Zb is an action if the 
constraint a|b holds. Look at if a - b 

She made the following conclusion, 

Jenni: Seems like its fne if a - b because we are defning how it works. 

However the example she used to justify this conclusion, example attempt 3, was not 
a valid example of a group action. Her map (0̄, Z4) → 0̄ did not satisfy the necessary 
property that eG · x = x. She incorrectly mapped (0̄ G, x) to 0̄X for every x ∈ X 

and did not see the identity element in eG as being analogous to the identity function 
τeG : X −→ X in Sym(X) that sends each element in X to itself. 

For her second example, Jenni went back to her idea of leveraging the scalar 
operation of a vector space and viewing it as the action operation · : R × M2×2(R) → 

M2×2(R). This is a valid example of a group action and is very close to the idea of the 
multiplicative group R acting on itself. At this point her valid example was missing 
details and not made rigorous yet meaning that she has not provided justifcation that 
the properties of a group action hold. 

For her third example attempt, Jenni picked the group G to be Z3 with usual 
addition and X to be the group Z4 with usual addition. She wrote down an element to 
element map. At frst, she viewed the group action operation · as being synonymous 
with the usual integer multiplication mod 4. She mapped (2, 3) to 2 · 3 = 6 mod 4 = 2. 
This would ensure that action operation · : G × X → X would be closed. Her third 
example did not satisfy the other group action properties. Jenni questioned whether 
or not the two groups binary operations were related to action operation ·, the action 
operation. She questioned how a group’s binary operation and the action operation may 
or may not be related. The provided standard defnition of a group action was not very 
illuminating and hid the answers to Jenni’s questions. 
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Figure 6.19: Jenni generating examples of group actions. 

Alex was able to generate several examples of group actions. He started off with 
the most basic example of a group action where G acts on itself by left multiplication. 
Next, I asked him to give classes of examples according to different choices for the set 
X . 

Researcher: Can you give different classes of examples for group actions? 

Alex: What do you mean, can you explain it a little bit more. 

Researcher: Ya so one class of group actions you can think about is the group G 

acting on itself. So that would be a homomorphism G into the symmetric group 
of G. And if you think about examples in the class you might think about things 
like left action, right action, conjugation. Another class of examples would be G 

acting on H or H acting on G, H subgroup of G. 

Alex: So going along with this G acting on quotients of G [G�H]. 

Researcher: Okay so that is another class of examples. So what are some other 
ones your thinking about? 

Alex: Well I had though of modules but that is ring actions, so we could restrict 
to thinking about just the additive group action. 
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Researcher: So that would be another class of group actions, that is a good one. 
Another one to explore would be G acting on a vector space V [or equivalently 
an FG − module, i.e., FG acting on the vector space V ]. Are you familiar with 
groups acting on vector spaces? 

Alex: Um, groups acting on [pause]. No maybe lets go through this. [I used 
the white board and explained that you can think of a group acting on a vector 
space as a homomorphism from G into the general linear group GL(V ) of linear 
transformations from V to V . I illustrated constructive thinking to build from a 
group acting on itself to a group acting on a vector space]. 

Researcher: So we sort of have this basic thing, a set X has not structural prop-
erties there is nothing to it, and then we sort of increase the amount of structure 
to a group that has a richer structure, and then add more, richer, structure up until 
we get to a vector space that is super rich. 

Alex: Okay I see, it is similar to 4 [G acting on a module]. So your pushing G 
into linear maps [Alex went on to give the example of the dihedral group of order 
8 acting on R2 by mapping the generator r to the rotation matrix and the other 
generator s to the refection matrix without further guidance]. 

Unlike Jenni, who stayed predominantly in formal-symbolic mapping register, Alex 
went to a more geometric object of symmetry register to describe some of his exam-
ples. Alex could see instances of group actions across several subject areas beyond an 
introductory abstract algebra course. He wrote down a valid example of a group action 
as shown in Figure 6.20 from topology and a few more valid examples in Figure 6.21 
from linear algebra: 

Figure 6.20: Alex’s example of group action from topology. 
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Figure 6.21: Alex’s example of group action leveraging linear algebra. 

6.4.3 Describing group orbits and stabilizers 

Jenni made drawings in Figure 6.22 and began to think about elements of the group g as 
functions again that take an elements in X to elements in X. She said that these drawings 
helped her to think about orbits. Taking a semiotic perspective, these drawings served 
as an auxiliary semiotic representation for Jenni between the initial provided defnition 
orb(x) = {g · x ∈ X : g ∈ G} and the target defnition using the homomorphism 
frame and viewing elements of G as functions, and the entire group G as a subgroup of 
a symmetric group: 

Jenni: An element k ∈ X is in the orb(x) if ∃ a g ∈ G such that g · x = k. 

Figure 6.22: Jenni’s doodles that helped her think about an orbit. 

She also mentioned that an orbit reminded her of a coset. I asked Jenni to explain why 
an orbit had reminded her of a coset. She stated: 

Jenni: The word coset pops into my head. But to be honest the word coset pops 
into my head every time I think of anything algebraic. I think I just like the word 
coset. 
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Jenni’s simple-associative feelings of orbits feeling familiar to cosets was revisited at 
the end of this study to see if this association turned into something more robust. 

Jenni correctly situated the stabilizer as being contained in G and evolved into 
an analogy that related elements in the stab(x) and identity maps on x. 

Jenni: Stabilizer is a subset of G instead of a subset of X . 

Jenni: It is all the g values that act like identity on x? 

Following this, Jenni used invalid examples of group actions to make claims about stabi-
lizers. She made these claims after writing down each of the elements in the stabilizers, 
as shown in fgure 6.23, for each of the three examples she had previously constructed. 

Figure 6.23: Jenni’s description of stabilizers. 

Referring to her frst and third example in Figure 6.19, which were both invalid, 
Jenni made the statement: 

Jenni: Multiple elements in X can have the same stabilizer. 

At face value her statement is correct, but her reasons for making this statement were 
drawn from invalid examples of group actions. An effcient example that could be 
used to help Jenni properly justify her claim, in the objects of symmetry register, is the 
dihedral group acting on the square of four vertices. The vertices that lie on the same 
refection line have the same stabilizer. However, object of symmetry examples such as 
this that she was familiar with were not activated in her mind. She was not connecting 
the provided symbolic defnition of a group action to visual processes such as rotating 
or refecting objects of symmetries that she had engaged in during earlier tasks. 

Jenni also made a cautious generalization question to explore later on for stabi-
lizers that was based on patterns she noticed in her invalid examples. At this point it 
was not a claim she felt confdent about: 
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Jenni: Stabilizer of the 0 element [identity in G] will be all of G? 

The answer to Jenni’s question is no, not it in general. Firstly, X need not have an 
identity element if X is just a set. Secondly, if X = G has an identity element e then 
with G acting on G, where · is the same as the binary operation in G, stab(e) = {g ∈ G : 

g · e = e} which implies that stab(e) = {e}. One possible source of Jenni’s confusion 
could have stemmed from a focus on symbolic notation of the group action property 
e · x = x for all x ∈ X and swapping G and X in the map G × X → X . A second 
source of Jenni’s incorrect, but cautious generalization could also have stemmed from 
valid experimentation with the example where the multiplicative group of real numbers 
R× with the binary operation × and identity 1 acts on the vector space Mm×n over the 
feld R with the scalar action r · [x] := [r × x]. Due to the vector space structure we 
have r · [0]m×n = r · ([0]m×n + [0]m×n) =⇒ r · [0]m×n = [0]m×n for all r ∈ R× and 
this shows that stab{0} = {r ∈ R× : r · [0]m×n = [0]m×n} = R× . In this case, the 
stabilizer of the additive identity [0]m×n in the object being acted on is all of the group 
R× . 

Using the homomorphism from G to Sym(X) frame, Alex correctly described 
the orbit and stabilizer for a fxed x ∈ X: 

Alex: [referring to orbit] It’s going to be a subset in X , like the union of images of 
all the g’s. So if I take g and okay, then the orbit of x for some fxed x is going to 
be the union of all the different elements and this is going to be a subset of X. So 
if your thinking about the elements as bijective functions on X the orbits going 
to be all the elements in the image of all of those. So its just like the collective 
image of all the g’s. 

Alex:[referring to stabilizer] It’s going to be all the g that when they restrict to 
this given x is the identity map. [Alex expressed that it was diffcult to describe 
this in words. He used formal notation to write down what he was thinking on the 
whiteboard in Figure 6.24.] 
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Figure 6.24: Alex describing orbits and stabilizers. 

While Alex successfully translated the defnitions of orbits and stabilizers into the ho-
momorphism frame into a symmetric group, neither of the participants indicated that 
the equivalence relation involving orbits under the action partition the object X being 
acted upon. The collection of orbits as a partition of X , was not at the forefront of their 
minds yet. 

6.4.4 Intervening session with Jenni group actions in a homomor-
phism frame and examples of group actions 

Previously, during the baseline questionnaire, Jenni did not convert the provided def-
inition of a group action to the homomorphism ψ from G to Sym(X) frame, where 
Sym(X) is the group of bijections from the set X to X . She generated two valid ex-
ample out of three attempts. Before moving on to the experimentation with examples 
phase, I guided Jenni to view a group action within the homomorphism frame. First, 
we checked that given a group action · the collection {τg : x ∈ X → τg(x) := g · x ∈ 

X : g ∈ G} was a subset and then a subgroup of Sym(X). Next, we checked that ψ 

would be a homomorphism. She followed up, without further guidance, by correctly 
translating the initial provided defnitions of a stabilizer and orbit to the defnition of a 
stabilizer and orbit within the homomorphism frame as shown Figure 6.25. Pointing to 
Jenni’s work on the board, I informally summarized that picking an element x ∈ X we 
can track all the places that G takes x to. All the places that G takes x to is called the 
orb(x). And that the stab(x) was a subset of elements in G that fx x and leave it where 
it is. Since stab(x) is a subgroup of G, ψ restricted to stab(x) would be a trivial action. 
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Figure 6.25: Jenni’s description of orbits and stabilizers within the homomorphism 
frame for group actions. 

The IOI principle of building from a learners ideas and questions was used. 
Drawing on her knowledge of homomorphisms, we worked through a few examples 
and I highlighted that the binary operation in the group G would behave like function 
composition in the symmetric group and that we could think of each element g ∈ G as 
a bijection τg ∈ Sym(X). Next, her earlier questions regarding how a group’s binary 
operation and the action operation may or may not be related were revisited. Jenni’s 
questions and her switch to a homomorphism frame of mind led into a discussion about 
various examples of group actions in the table below. Examples were discriminated in 
Table 6.3 according to how the action operation and group operation may be related 
or not related. We discussed how Cayley’s theorem was a consequence of a group G 

acting on itself with the action operation being the same as the binary operation of G. 
It was emphasized that an interesting type of group action to think about and 

follow with was the subgroup H acting on G. Jenni connected back to her earlier ex-
ample of Z2 acting on Z6, as a case when a subgroup H acts on G. Columns for what 
the orbits, stabilizers, and related theorems were not discussed with Jenni and were left 
open to explore. Jenni had logged some of her intuitions prior to this session and flled 
out the NCCFIS for each intuition logged. That is the total sample of Jenni’s logged 
intuitions could be split into intuitions that were arrived at prior to translating the pro-
vided group action defnition into the homomorphism frame and post translation into 
a homomorphism frame. The difference in the pre and post-translation samples along 
NCC attributes, error-type, and confdence in truth value for Jenni will be discussed in 
the next section. 
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Table 6.3: Examples of group actions and their consequences. 

Action 
case 

Example Orbits Stablizers Related theo-
rem 

G y G left or right ac-
tion 

orb(x) = G 
for every x ∈ 
G ⇒ one dis-
tinct orbit 

stab(x) = {e}
for every x ∈ 
G 

Cayley’s Thm 

H y G, 
H < G 

left or right ac-
tion 

cosets that are 
all the same 
size |H| 

size of the in-
dex |G : H| 

Lagrange’s 
Thm 

G y G conjugation orbits are the 
conjugacy 
classes may or 
may not be the 
same size 

stab(x) are el-
ements in G 
that commute 
with x 

Class equation 

G y X , 
X is a 
set 

G permuting 
the set of 
vertices X of 
G0s object of 
symmetry 

orbits may or 
may not be the 
same size 

|stab(x)| = 
|G|

|orb(x)| 

Orbit-
stabilizer 
Thm 

6.5 The make-up of learners’ example-based intuitions: 
orbits and stabilizers of group actions 

6.5.1 Descriptive summary statistics and univariate tests 

Jenni reported a total of 11 example-based intuitions and Alex reported a total of 6. 
There was no variability within the collection of Alex’s reported intuitions with respect 
to emotional intensity, incubation period*, and non-sanctioned cue use. He had little to 
no emotional reactions in response to the arrival of an intuition. He did not experience 
strong positive emotional reactions, which are theorized to coincide with more creative 
forms of intuition following periods of incubation. He strongly agreed that all of his 
reported intuitions were arrived at while working on the task for less than 15 minutes. 
Another invariant among all of Alex’s reported intuitions was that he strongly disagreed 
with the statement below for non-sanctioned cue use: 

During this task I made sketches or drawing of the way I like to think about 
groups/related concepts that feels unique to me rather than something I 
picked up from others. 

On the other hand, Jenni had more frequent instances in which she had strong 

207 



6.5. THE MAKE-UP OF LEARNERS’ EXAMPLE-BASED INTUITIONS: ORBITS 
AND STABILIZERS OF GROUP ACTIONS 

positive emotional reactions when she experienced her reported intuitions and out of all 
the variable attributes, values for incubation had the highest standard deviation from the 
mean and maximal range. Overall, the make-up of Alex’s reported intuitions restricted 
to a single attribute at at time appeared more uniform than Jenni’s. 

An independent univariate Welch t-test was conducted to compare the means of 
Jenni and Alex’s reported intuition samples for each NCC attributes listed in Table 6.4 
and Table 6.5. There was a signifcant difference in the means for both emotional in-
tensity item scores; t3(10) = 4.28, p3 < 0.01 and t4(7.14) = −11, p4 < 0.001, for the 
non-sanctioned cue item score; t7(10) = 7.12, p7 < 0.001, and for both incubation item 
scores; t11(10.92) = 2.80, p11 < 0.01 and t12(10) = −2.76, p12 < 0.05. For each of 
these attributes, the means were on the creative end for Jenni’s sample and on the non-
creative end for Max. There was no signifcant difference between the two learners’ 
samples for the remaining attributes; p > 0.05. While the Welch t-test does not assume 
equal variance it does assume normal distributions for each sample, however the data 
in this study was not normally distributed. A Mann-Whitney U test is a substitute to the 
Welch t-test that does not assume normal distributions and does not require equal vari-
ance. However, the Mann-Whitney U was not appropriate because there were several 
tied scores which violated the requirement that the variables be continuous. 

As an alternative the permuted Brunner-Munzel test was conducted. This test 
is a better ft for sets of data with arbitrary distributions, unequal variances, small sam-
ple sizes, and discrete variables. Signifcance was found for both emotional intensity 
attributes and the non-sanctioned cue use attribute on one and two-sided tests. The null 
hypothesis that Jenni and Alex’s self-reported scores were stochastically equal, P (X > 

Y ) = P (X < Y ), for emotional intensity was rejected, p3 < 0.01, p̂3 = 0.0909. It is 
signifcantly more likely that an randomly sampled intuition object from Jenni is mixed 
with greater intensity positive emotional reactions than a randomly sampled intuition 
object from Alex’s sample. 

The make-up of intuition objects reported by Jenni and Alex were not stochas-
tically equal for non-sanctioned cue use, p7 < 0.001, p̂7 = 0.0454. A randomly sam-
pled object from Jenni tended to have a stronger agreement score for non-sanctioned 
cue use than a randomly sampled object from Alex. The p-value was not quite small 
enough to be signifcant for the incubation attribute to reject stochastic equality, p11 = 

0.075, p̂11 = 0.2727. A randomly sampled intuition from Jenni tends to have stronger 
agreement values for the incubation item getting stuck and intentionally taking breaks 
than an object from Alex. Alex did not have points of being stuck followed by inten-
tional breaks to let his ideas simmer. Despite Alex having more non-creative markers 
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for non-sanctioned cue use, incubation and emotional intensity, some of his intuitions 
had facets of Network thinking. For example, he recovered instances of group actions 
related to the frst fundamental group that he had been studying in algebraic topology. 
There were no statistically signifcant differences between Jenni’s pre-session objects 
and post-session objects based on the univariate permuted Brunner-Munzel test for each 
NCC attribute. In otherwords, there was not a signifcant tendency of higher or lower 
attribute values between pre and post object samples. 

Table 6.4: Descriptive statistics for Jenni’s 11 logged intuitions for each attribute in 
Total. 

Attribute n mean sd medin min max range skew krtss se 
Self-Report NCCFIS Items 1-6 scale 
Personal Novelty 
Personal Novelty* 
Emotional Intensity+ 
Emotional IntensityN* 
Ease of Externalization 
Ease of Externalization* 
Non-Sanct. Rep. Cues 
Sanct. Rep. Cues* 
Non-Sanct. Outcome 
Sanct. Outcome* 
Incubation 
Incubation* 
Self-Report Conf. in T Value 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 

2.09 
4.45 
4.45 
1.64 
2.45 
4.09 
4.73 
2.00 
3.09 
3.73 
3.36 
3.18 

1-6 scale 

1.04 
1.37 
1.13 
0.50 
1.92 
2.17 
1.74 
1.41 
1.51 
1.56 
2.54 
2.18 

2 
4 
4 
2 
1 
5 
5 
1 
3 
5 
2 
3 

1 
3 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 

4 
6 
6 
2 
6 
6 
6 
5 
6 
5 
6 
6 

3 
3 
4 
1 
5 
5 
5 
4 
5 
4 
5 
5 

0.32 
0.09 

-0.47 
-0.49 
0.64 

-0.37 
-1.08 
0.96 
0.49 

-0.46 
0.13 
0.26 

-1.40 
-1.94 
-0.30 
-1.91 
-1.39 
-1.81 
-0.39 
-0.64 
-1.08 
-1.61 
-2.12 
-1.83 

0.31 
0.41 
0.34 
0.15 
0.58 
0.65 
0.52 
0.43 
0.46 
0.47 
0.77 
0.66 

Confdent intuition is T 
Proof feels like busy work 
Coded by Researcher 

13 
14 

11 
11 

4.18 
2.82 

1-4 scale 

1.60 
1.72 

5 
3 

2 
1 

6 
5 

4 
4 

-0.13 
0.15 

-1.82 
-1.82 

0.48 
0.52 

Error→Non-Error Type 15 11 3.27 1.01 4 1 4 3 -1.02 -0.28 0.30 
Coded by Researcher 0-No 1-Yes 
Network Thinking 16 11 0.09 0 1 1 

Note- NCCFIS: For odd items 1 indicates non-creative extreme and 6 creative theoretical extreme with even items* scale 
reversed; Error Non-Error Type: 1-errored for worked examples, 2-errored for worked examples and self-corrected, 3-true 
for worked examples, but not in general, 4-true in general; see The Non-creative Versus Creative Forms of Intuition Survey 
with Confdence in Truth Items for item statements 
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Table 6.5: Descriptive statistics for Alex’s 6 logged intuitions for each attribute in Total. 

Attribute n mean sd medin min max range skew krtss se 
Self-Report NCCFIS Items 1-6 scale 
Personal Novelty 
Personal Novelty* 
Emotional Intensity 
Emotional Intensity* 
Ease of Externalization 
Ease of Externalization* 
Non-Sanct. Rep. Cues 
Sanct. Rep. Cues* 
Non-Sanct. Outcome 
Sanct. Outcome* 
Incubation 
Incubation* 
Self-Report Conf. in T Value 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
5 

1.83 
5.00 
3.00 
5.67 
2.50 
4.50 
1.00 
2.17 
3.17 
3.17 
1.17 
5.00 

1-6 scale 

1.60 
2.00 
0.00 
0.82 
0.84 
0.84 
0.00 
0.41 
1.60 
1.17 
0.41 
0.00 

1 
6 
3 
6 
3 
4 
1 
2 
3 
3 
1 
5 

1 
1 
3 
4 
1 
4 
1 
2 
1 
2 
1 
5 

5 
6 
3 
6 
3 
6 
1 
3 
5 
5 
2 
5 

4 
5 
0 
2 
2 
2 
0 
1 
4 
3 
1 
0 

1.19 
-1.25 

Na 
-1.36 
-0.85 
0.85 

Na 
1.36 
0.02 
0.37 
1.36 

Na 

-0.41 
-0.29 

Na 
-0.08 
-1.17 
-1.17 

Na 
-0.08 
-1.82 
-1.62 
-0.08 

Na 

0.65 
0.82 
0.00 
0.33 
0.34 
0.34 
0.00 
0.17 
0.65 
0.48 
0.17 
0.00 

Confdent intuition is T 
Proof feels like busy work 
Coded by Researcher 
Error→Non-Error Type 
Coded by Researcher 

13 
14 

15 

6 
6 

6 

5.33 
3.25 

1-4 scale 
3.83 

0-No 1-Yes 

0.52 
0.50 

5 
3 

4 

5 
3 

3 

6 
4 

4 

1 
1 

1 

0.54 
0.75 

-1.96 
-1.69 

0.21 
0.25 

Network Thinking 16 6 0.5 0 1 1 

Note- NCCFIS: For odd items 1 indicates non-creative extreme and 6 creative extreme with even items* scale reversed; Error 
Non-Error Type: 1-errored for worked examples, 2-errored for worked examples and self-corrected, 3-true for worked exam-
ples, but not in general, 4-true in general; see The Non-creative Versus Creative Forms of Intuition Survey with Confdence 
in Truth Items for item statements 

6.5.2 Trends looking across all cluster models 

Looking across all objects and all fuzzy partitions in Table 6.7 it was observed that fve 
of Alex’s reported intuitions had high membership values uij > 0.88 to the more non-
creative clusters for two, three, and four partition models. It could be inferred that Alex 
was predominantly in more non-creative intuiting states during the task. An intuiting 
state is a fuzzy set in a partition that is identifed by the FCM algorithm. Intuiting states 
are characterized by intuiting process and outcome attributes. Different intuiting states 
are well-separated states that are characterized by prototypes with different intuiting 
process and outcome attribute values. 

Intuition No. 15 was an outlier case among Alex’s intuitions with unclear mem-
bership. Upon inspection of the raw NCCFIS survey scores it was found that this re-
ported intuition was high in the frst personal novelty, a marked value of 5 on a 6-likert 
scale. It was an intuition that Alex had not experienced before. Alex journaled about 
the content for No. 15 as written below. 

Alex: An orbit feels the most intuitive when G is cyclic. As G moves 
through its cycle, x moves through its orbit and the circular motion of both 
is synchronic. 
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The novelty of No. 15 was in stark contrast to the (partial) make-up for the rest of Alex’s 
reported intuitions which all had low personal novelty and high familiarity attribute 
scores indicating that the content of these intuitions were already acquired consolidated 
bits in memory that were recovered. 

Along with personal novelty as a creative indicator, the notion of incubation 
with the specifed context of an administered task and incubation since exposure to a 
concept needed to be examined. While there was no incubation period associated with 
No. 15 within the time span of the administered task, to investigate orbits and stabi-
lizers, this may have been something that Alex’s non-conscious processes may have 
been working on since he had exposure to an abstract algebra course the prior year or 
his more evolved schematic network at the time of the task enabled a rapid association. 
His investigation of examples of cyclic groups and contrasting it with non-cyclic ex-
amples on this task provided enough of a stimulus to bring the highly novel, to Alex, 
No. 15 intuition to his awareness. Personal novelty and incubation period attributes 
within the span of an administered task need not move in the same direction. Moreover, 
the converse to the statement: if there was an incubation period within the span of an 
administered task then the intuition following the period will be novel need not be true. 
Likewise, the statement as written in the straight forward direction need not be true. A 
counter-example to it was found in Jenni’s data. For Jenni, it had been awhile since she 
had thought about abstract algebra and so it took her more time and breaks before she 
was able to recover already learned information. Historically, documentation of cases 
in which incubation periods are followed by highly novel intuitions occur when mathe-
maticians make ground breaking fndings, after many years working on a problem, and 
these would be considered more extreme cases of creative forms (Hadamard, 1954). 

Table 6.6: Cluster validity indices. 

Weight Exp. 
(m) 

1.5 2 0.82665 0.30035 0.50671 
1.5 3 0.81204 0.35754 0.53076 
1.5 4 0.78151 0.43756 0.50357 
2 2 0.62689 0.55550 0.50355 
2 3 0.60792 0.69768 0.56922 
2 4 0.56629 0.83246 0.68679 

No. of Clust. (c) Partition Coef. Partition Entropy F Silhouette 
(c) (Fc) (Hc) (FSil) 
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Table 6.7: Three NCC fuzzy partitions and cluster membership values for Jenni’s (No. 
1-11) and Alex’s (No. 12-17) example-based intuitions obtain from FCM Algorithm. 

Intui. 
Obj. No. 

2-Clust 1 2-Clust 2 
c=2 

3-Clust 1 3-Clust 2 3-Clust 3 
c=3 

4-Clust 1 4-Clust 2 4-Clust 3 4-Clust 4 
c=4 

1 0.8267 0.1732 0.1755 0.0915 0.7330 0.1178 0.6233 0.0710 0.1879 
2 0.0883 0.9117 0.0772 0.8804 0.04238 0.2526 0.0313 0.6519 0.0641 
3 0.8931 0.1069 0.0059 0.0028 0.9912 0.0013 0.9962 0.0006 0.0019 
4 0.8931 0.1069 0.0059 0.0028 0.9912 0.0013 0.9962 0.0006 0.0019 
5 0.8931 0.1069 0.0059 0.0028 0.9912 0.0013 0.9962 0.0006 0.0019 
6 0.0281 0.9718 0.0175 0.9415 0.0409 0.9407 0.0105 0.0437 0.0051 
7 0.3092 0.6908 0.2876 0.5531 0.1593 0.0542 0.0326 0.8525 0.0607 
8 0.0301 0.9699 0.0147 0.9553 0.0301 0.7626 0.0328 0.1866 0.0179 
9 0.6487 0.3513 0.0867 0.1206 0.7927 0.1983 0.6098 0.0941 0.0978 

10 0.1287 0.8713 0.0593 0.6878 0.2529 0.9447 0.0295 0.0176 0.0082 
11 0.0535 0.9465 0.0355 0.9317 0.0328 0.1347 0.0202 0.8220 0.0232 
12 0.9333 0.0667 0.9839 0.0058 0.0102 0.0040 0.0099 0.0113 0.9747 
13 0.9720 0.0280 0.9697 0.0068 0.0236 0.0042 0.0184 0.0071 0.9704 
14 0.9764 0.0236 0.9957 0.0011 0.0032 0.0006 0.0022 0.0012 0.9961 
15 0.8790 0.1210 0.7149 0.0765 0.2086 0.0673 0.1749 0.0877 0.6701 
16 0.9333 0.0667 0.9839 0.0058 0.0102 0.0040 0.0099 0.0113 0.9747 
17 0.9781 0.0219 0.8840 0.0220 0.0940 0.0164 0.0769 0.0230 0.8837 

Parameters m = 1.5 � = 0.00001 NCC attributes 1-12 

Table 6.8: Three NCC fuzzy partitions and cluster prototype arithmetic mean scores on 
a scale from 0 extremely non-creative to 1 extremely creative. 

Intui. 2-Clust1 2-Clust2 3-Clust1 3-Clust2 3-Clust3 4-Clust1 4-Clust2 4-Clust3 4-Clust4 
Obj. No. c=2 c=3 c=4 

M̄ 
%J 
%A 

0.22009 
45.45% 
100 % 

0.62829 
54.55 % 

0 % 

0.29840 
0% 

100% 

0.64638 
54.55% 

0% 

0.36352 
45.45% 

0% 

0.63344 
27.27% 

0% 

0.34446 
45.45% 

0% 

0.65037 
27.27% 

0% 

0.28634 
0% 

100% 
Parameters m = 1.5 � = 0.00001 %-max membership NCC attributes 1-12 

Figure 6.26: Prototypes (cluster centers) for partitions in Table 6.7. 
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Figure 6.27: Prototypes (cluster centers) for partitions in Table 6.7 with reverse items. 

6.5.3 Unique versus common intuition outcomes 

Overall, common intuition outcomes reported in the intuition logs and journals were 
rare and unique, non-overlapping, outcomes were more prevalent. This section will 
focus on the small intersection of intuition outcomes with some content from journals 
that overlapped. The intuitions with content overlap were related to the orbit-stabilizer 
theorem. Jenni logged that she was seeing the pattern |orb(x)||stab(x)| = |G| and that 
size of the orbits and stabilizers were like mirrors of each other, if one went up the other 
went down. Similarly Alex logged that “the cardinality of the group can put restraint on 
the orbit size”. While both arrived at intuition outcomes with some overlapping content, 
the examples they were exploring within the duration of the task and intuiting processes 
that led to this overlapping outcome were very different. 

Jenni investigated the orbits and stabilizers of the dihedral group of order eight 
acting on the vector space R2 . She wrote down the example in Figure 6.28 and made θ 
a 90 degree rotation. Since R2 was infnite she decided to act on the set {< a, a >,< 

−a, a >,< −a, −a >, and < a, −a > |a ∈ R>0}. 
Next, she drew several diagrams in Figure 6.29 and Figure 6.30 to get a feel 

for where the transformation matrices τg move vectors in R2 . Her process of gaining 
familiarity with the particular action example involved moving between multiple repre-
sentational registers. From these cues she noticed patterns which led to new questions 
that she posed to herself which opened up a new line of subsequent investigations with 
other examples. She also tried to fnd counter-examples to the patterns she was noticing 
to try to fgure out if she was in a special case. In her work leading up to the pattern 
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Figure 6.28: Jenni exploring examples of group actions. 

stated by the orbit-stabilizer theorem she noticed that, 

Jenni: the number of times each element in an orbit appears was equal to the size 
of the stabilizer. 

Figure 6.29: Jenni’s journal entries to gain familiarity with orbits and stabilizers spa-
tially. 

Alex’s examples the he experimented with had trivial stabilizers with only the 
identity element. Alex was aware that the the examples he chose may have not been the 
most interesting or informative. He followed this with the deck transformation example 
in Figure 6.20 which he felt was more interesting and was on his mind from his studies. 
He journaled about what he noticed about orbits in Figure 6.31. 

This particular example helped him to see that the “cardinality of the group can 
put some restraint on the orbit size”. He also preferred the deck transformation example 
because it “was suffciently general to not allow exact calculation”. He journaled that 
his reaction to the task to investigate relationships between orbits and stabilizers was 

Alex: “Oh, [expletive], now I have to actually calculate something”, which in 
my experience is often harder than understanding the underlying concepts. But 
in actual fact, I managed to pick some fairly well-behaved actions, so this part 
wasn’t as diffcult as I anticipated, especially since the hardest example, that of the 
deck transformations, was suffciently general to not allow an exact calculation. 
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Figure 6.30: Jenni’s journal entries to detect patterns among orbits and stabilizers. 

Figure 6.31: Alex’s journal entry about orbits from the examples he investigated. 

This was evidence of an aversion towards having to carry out calculations which 
Alex found was “often harder than understanding the underlying concepts”. He also 
wrote that “once familiar with group actions they seem to crop up everywhere so coming 
up with other examples felt like more of a restricting process than a proof of existence”. 

Following this statement that group actions was something he was already very 
familiar with, he associated the orbit-stabilizer with more abstract notions and moved 
away from thinking about orbits and stabilizers within concrete example cases and com-
putations, which he found to be too restrictive on his thinking. 

Alex: an orbit feels analogous to the image of a group homomorphism, since 
both in some way preserve the group operation of G. This analogy is further 
bolstered by the orbit-stabilizer theorem, which feels much like the frst isomor-
phism theorem-we can even say G/stab(x) ' orb(x) as G-sets (No. 16) and the 
stabilizer is analogous to the kernel of a homomorphism (No. 14). 

The statement that the “stabilizer is analogous to the the kernel” holds true with 
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the context of his investigated examples of faithful actions where the kernel is exactly 
the identity. However, in general one needs to be careful with this analogy the stabilizer 
may not be exactly the same as the kernel. The stabilizer need not be a normal subgroup 
or the coset of a normal subgroup and the kernel of the homomorphism from a group 
into the symmetric group may be smaller than the stab(x) for a fxed x ∈ X . In fact T 
in general, the kernel is {g ∈ G : g · x = x, ∀x ∈ X} = stab(x). Alex was x∈X 

careful to clarify that G/stab(x) and orb(x) were isomorphic as G-sets which involves 
additional terminology and defnitions beyond an introductory undergraduate course. 
Alex elaborated on a few more details of his rough analogy between the orbit-stabilizer 
theorem and frst isomorphism theorem in the intuition excel log. 

Alex: In a non mathematical precise way, these two feel reminiscent of one an-
other, in that they both enact a process of quotienting the group by a subgroup to 
get something that in some sense is equal to the image of the map (No. 16). 

Based on the FCM results in Table 6.7 and Table 6.9 the journaled intuition ob-
jects with overlapping content for the orbit-stabilizer theorem that were previously de-
scribed, namely intuition object No. 10 (Jenni) and No. 16-17 (Alex), were drastically 
different in terms of their NCC attributes. Jenni’s object had the highest membership 
to the more creative cluster 4-Clust1; u = 0.9447, M = 0.633. This cluster was char-
acterized by high levels of positive emotional intensity, non-sanctioned cue use, and 
incubation, but was low for personal novelty. Even though the orbit-stabilizer theorem 
was something Jenni had some familiarity with and some outcome attributes for this 
intuition were on the non-creative end, the outcome attribute of positive emotional in-
tensity and the process attributes were on the high creative end. It was like a creative 
recovery, leveraging a new example, of a pattern she had come across before. Her pos-
itive emotional reaction to recovered pattern was not a reaction associated with it being 
new to her. Instead, it was a reaction to fnding a different route to seeing the old pat-
tern. Alex’s No. 16 and No. 17 object had the highest membership value to non-creative 
clusters 3-Clust1 and 2-Clust1; u = 0.9839, M = 0.298 and u = 0.9781, M = 0.220. 
These clusters were characterized by low levels of personal novelty and extremely low 
levels of incubation. In addition, No.17 was extremely low for non-sanctioned cue use. 

6.5.4 A transition from a creative to non-creative intuiting state 

Fix a mathematical context, in this case orbit-stabilizer relationships for group actions. 
Given a collection of reported intuition objects at t1 and a collection at t2 for a fxed 
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context we can intuitively defne an intuiting state change as a change in density from 
one cluster type to another where the distances between the centers of clusters with high 
density for the partition Ut1 and partition Ut2 is suffciently large. While this potentially 
quantifable defnition is far from formalization, qualitative evidence of an intuiting 
state change was found in the journal data. Refecting on his survey responses, Alex 
made a note in his journal: 

Alex: Looking now at my responses to the survey questions, I realize that though 
I’ve written fairly coherent intuitions above, I know that there were many more 
nonverbal thought processes at work, because some of these ideas I don’t think 
of exactly as I was taught them-I had to come up with my own visualization in 
my head about how the work that I’ve used enough to allow them to come out 
immediately in verbal form. Getting back to the sub verbal or pre verbal thought 
processes is diffcult with something that is relatively familiar like group actions. 

Alex described that he had engaged in more creative type intuiting processes, 
marked by the attributes non-sanctioned cue generation and diffculty to verbally exter-
nalize, when he learned about group actions. Overtime what was indicative of creative 
intuiting processes, namely generating personal visualizations and pre-verbal thought 
processes, transitioned to non-creative processing, indicated by ease of externalization 
and familiarity, with respect to a fxed mathematical concept. Now the educator may 
ask what stimulus can I apply to encourage a learner that is in a non-creative state to 
cycle back into a creative intuiting state for a concept that they already feel very com-
fortable with? How does one create an environment that stimulates the learner to add a 
new layer or register? 

6.5.5 Additional attributes: confdence in truth and error to non-
error type 

The FCM algorithm exposed the four clusters for confdence in truth value and error to 
non-error type in Table 6.9. A problematic cluster that was not present was that char-
acterized by high confdence in the truth value and completely errored both within the 
context of worked examples and in general. Jenni’s evaluative error-detecting intuition, 
feelings of rightness or wrongness, was working properly. When a completely errored 
intuition occurred her confdence levels in the truth value of it dropped dramatically as 
illustrated in Figure 6.32 for cluster 4. On the other hand, Alex’s intuition objects had 
high membership values to Cluster 1 and 2 marked by moderate to high confdence in 
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truth value. Contrasting this with membership values for Cluster 3, it was concluded 
that Jenni was more conservative and cautious in trusting her intuitions even when her 
intuitions were on the right track. For example, when she began to relate cosets to the 
generalization of cosets, namely orbits, Jenni journaled that: 

Jenni: Going back to the idea of cosets, I think a coset is like if H ⊂ X then 
partition X into right cosets by H · x. This is different because G might not be a 
subset of X. But all G · x ∈ X so maybe it is the same? (No. 2) 

Table 6.9: Partitions for confdence in truth value and error to non-error type obtained 
from the Fuzzy C-Means Algorithm. 

Obj. No. Clust1 Clust2 Clust3 Clust4 
1 0.001162 0.000410 0.010959 0.987469 
2 0.000136 0.000023 0.999636 0.000206 
3 0.002812 0.997008 0.000106 0.000074 
4 0.001908 0.000401 0.981343 0.016347 
5 0.002812 0.997008 0.000106 0.000074 
6 0.000451 0.000202 0.003683 0.995664 
7 0.000136 0.000023 0.999636 0.000206 
8 0.918636 0.079325 0.001487 0.000552 
9 0.017654 0.981680 0.000436 0.000230 
10 0.999553 0.000342 0.000087 0.000019 
11 0.999553 0.000342 0.000087 0.000019 
12 0.999553 0.000342 0.000087 0.000019 
13 0.228857 0.768962 0.001554 0.000626 
14 0.046084 0.952602 0.000839 0.000475 
15 0.918636 0.079325 0.001487 0.000552 
16 0.999553 0.000342 0.000087 0.000019 
17 0.999553 0.000342 0.000087 0.000019 
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Figure 6.32: Prototypes (cluster centers) for fuzzy partitions in Table 6.9. 

6.5.6 Revisiting Jenni’s associative feelings that an orbit felt like a 
coset: associations between Lagrange’s theorem and the Orbit-
stabilizer theorem 

After completing part III of the study and playing with examples of group actions, 
I asked Jenni again about why she thought orbits felt like cosets. She gave both a 
temporal and conceptual association. 

Jenni: I might have just thought that because I was trying to think back to the 
class and I think I had those at the same time. So I don’t know if they reminded 
me of each other structurally or just because I was trying to think back to Abstract 
Algebra, that was in the same semester, the words are connected because I learned 
them around the same time. 

Jenni: I think it was more like when I was thinking about how quotient groups 
work is really when I was thinking about cosets, because it’s like just partitioning 
the set, and then thinking about orbits, is that just like a coset, are there going 
to be disjoint partitions as far as like are the orbits going to be like everything 
is one’s thing orbit but not in the other and then I pretty quickly fgured out that 
orbits and cosets are not similiar. 

Jenni felt they were not similiar because in the case of Lagrange’s theorem the subgroup 
H acting on G partitions G, but was confused because the case G acting on the set X 
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did not partition G. I explained that what was being partitioned was the set being acted 
upon and we revisited what the usual induced relation and equivalence classes for the 
actions, H acting G and G acting on the set X, would be. Following this, she identifed 
her point of confusion in making a connection between Lagrange’s theorem and the 
orbit-stabilizer theorem. 

Jenni: I think I did not, I was still thinking about, orbits not partitioning G was 
throwing me off. I don’t think that had completely clicked. 

While Alex had already consolidated several abstract associations between orbits, stabi-
lizers and the cardinality of a group, Jenni was still forming these types of associations. 
Working with specifc example cases helped her to see that orbits partition, what was 
being partitioned in the case of Lagrange’s theorem was clear, but shifting to the gener-
alization of orbits partitioning the set being acted upon was something that she was still 
in the process of getting straight in her mind. 
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Chapter 7 

Discussion 

This chapter highlights key fndings from two separate studies conducted in this thesis, 
addresses research questions, and provides a discussion that weaves in related literature. 
The frst study that will be discussed investigated three leaners’ approaches to the col-
lapsing structure task and representational fuency related to homomorphisms. Multiple 
registers (Cayley tables, group presentations with formal-symbolic mappings, digraphs, 
and objects of symmetry) were built into the task. This provided multiple insights into 
learners’ diffculties and strengths that isolated successes or failures in a single register 
might mask. A semiotic lens that incorporated a new four-level analytic framework 
for fuency was used to analyze the data. The analytic framework captured learners’ 
interpretations of what losing or collapsing structure meant to them, valid and invalid 
solution strategies, registers they entered, pseudo-semiotic triangles that they produced, 
and conversions across registers. Aside from the more dominant semiotic lens, two ad-
ditional intuition-associated lenses, affective impacts and default-interventionist, were 
used during analysis. 

This study addressed the following research questions: 

1. What are learners’ diffculties and strengths with quotients or homomorphisms, 
detected through a semiotic lens during the collapsing structure task? 

1a. What are learners’ interpretation of the losing or collapsing structure? 

1b. Do learners produce semiotic representations that are inconsistent with 
quotient maps or homomorphism across multiple registers? If yes, which regis-
ters? 

1c. Did learners make quotient map conversions from registers that they 
started in to a prompted register for valid Z2 or Z2 × Z2 strategies? 
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2. What are learners’ diffculties and strengths on the quotient task detected through 
the two additional intuition-associated lenses? 

The next study was the example-based intuition for group actions study. It con-
sisted of a baseline questionnaire that evaluated whether or not two graduate learn-
ers could generate multiple examples of group actions, and if they could translate the 
defnition of a group action in terms of homomorphism language. After the baseline 
questionnaire, an experimentation paradigm was set up for learners to explore orbit and 
stabilizer relationships for different group action examples. The non-creative versus 
creative forms of intuition attributes along with additional attributes were used to clas-
sify the (parital) make-up of their reported intuitions. Both quantitative and qualitative 
data attached to each reported intuition were obtained. 

The following research questions were addressed: 

3a. Is it possible to quantitatively characterize the (partial) make-up of learners’ 
example-based intuitions during a group actions task? 

3b. What is the (partial) quantitative make-up of learners’ reported intuitions 
related to orbit-stabilizer relationships induced by group actions? 

3c. Is it possible to measure intuitive feelings of rightness or wrongness? Are 
learners’ feelings of rightness and wrongness working properly? 

3d. What is the qualitative content of learners’ intuitions related to orbit-stabilizer 
relationships? 

7.1 Homomorphisms or quotients through a semiotic 
lens 

The transition to understanding quotients and the fundamental theorem of homomor-
phisms at least involves understanding: how to partition a set?’, how to partition a set 
into subsets so that it is guaranteed that the subsets are of equal size?’, and ‘how to 
partition a group into subsets so that the subsets viewed as elements with some binary 
operation form a new group?’ Many aspects of this transition have been a documented 
challenge for undergraduates (Dubinsky, et al., 1994; Mena-Lorca & Parraguez, 2016). 
The collapsing structure task shed additional light on these challenges which were per-
vasive across multiple registers for Max. The necessary normality condition to partition 
a group to obtain a new group was not fully recovered by Jenni, the frst year graduate 
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learner who had completed a year long undergraduate course, but did not have exposure 
to a graduate-level abstract algebra course yet. 

Max associated the collapsing or losing structure prompt with a homomorphism 
and could comfortably recall the formal defnition of a homomorphism. However, his 
constructions of a homomorphism using the group presentation with formal-symbolic 
mapping register and digraph register were invalid. The digraph register offered ad-
ditional insights into Max’s diffculty with the homomorphism concept. Rather than 
combining elements into sets of equal size and viewing these sets as elements, Max 
wanted to erase vertices and edges in the digraph. Max did not mention the terms 
cosets, partitions, or equivalence relations during the task. The link between these more 
fundamental underlying concepts and the homomorphism concept was missing. 

The incorporation of the digraph register helped to narrow in on the source of 
diffculties associated with the homomorphism concept. For example, the incorporation 
of the digraph register made it apparent that Jenni’s diffculties related to a homomor-
phism were not the same as Max’s. Jenni related the term collapsing structure with 
the quotienting process of modding out by an equivalence relation and viewed sets of 
elements as elements in the image. She showed a strong understanding of cosets. She 
consistently partitioned groups into equal size cosets in more formal-symbolic and di-
graph registers. She got hung up with how to make a partition of a group into a group 
and struggled with the necessary well-defnedness condition or equivalently the normal-
ity condition in both invalid, Z4 and valid strategies Z2. 

A common fnding for Max and Jenni was that neither of them entered the Z2 × 

Z2 strategy. A speculated reason for this was that general problem solving strategies 
such as keeping what the two starting groups had in common and getting rid of what 
they don’t applied to symbolic cues may have prevented them from seeing an alternative 
solution path by reinforcing a false generalization that the image of a homomorphism 
would be a subgroup of the domain group. While this type of thinking could lead to 
the Z2 solution it does not work for the Z2 × Z2 solution. More studies are needed to 
determine if a lack of seeing the Z2 × Z2 strategy is common among undergraduates or 
new graduate learners and what other reasons may be causing the learner to miss this 
strategy. 

The second year graduate student, Alex, produced valid semiotic representa-
tions within the formal-symbolic and digraph registers for a quotient. He used strong 
necessary conditions such as normality to quickly construct quotients. He was the only 
participant to produce multiple valid solutions, namely to construct quotient groups that 
are isomorphic to Z2 and Z2 × Z2, and no invalid solutions to the task. 
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What are learners’ interpretation of losing information or collapsing structure? 
Instructors use of conceptual metaphors showed up in the integrative literature review 
and interviews with experts as a method for transferring or facilitating intuition, and 
as a potential tactic for “fostering an understanding of isomorphism and homomor-
phism” (Rupnow, 2019, p. 299). Rupnow (2021) cataloged and compared the con-
ceptual metaphors that instructors used during classroom instruction and interviews. 
She emphasized the need for future research to investigate learners’ use the language 
their instructors use and intends “to compare students’ individual scores on achievement 
measures to their usage of metaphors” (Rupnow, 2019, p. 299). Based on results from 
the current study, I also think it is important that learners’ metaphor use is examined at 
the micro-level of semiotic and pseudo-semiotic triangles (i.e., sign, interpretation, and 
signifed object unit of analysis). 

For example, a semiotic analysis during the collapsing structure task designed 
in this study showed that for a new to abstract algebra learner, like Max, the meaning of 
metaphors and common informal phrases picked up from instruction may not be clear. 
On several occasions conceptual metaphors for a homomorphism and common cultural 
phrases were misinterpreted by Max. This was one possible cause of invalid homo-
morphism constructions. Max associated the words collapsing structure and homomor-
phism, but his homomorphism constructions did not refect the intended meaning of the 
“collapsing metaphor” as defned in (Melhuish, Lew, Hicks, & Kandasamy, 2020). He 
asked if collapsing meant “losing elements?” His sign-interpretation pairs for a homo-
morphism that involved erasing and tearing did not actually resemble a homomorphism 
or collapsing to cosets. Another concern was that the statement of the task prompt used 
the metaphorical language associated with a homomorphism “collapsing structure” and 
“losing information” at the same time. This may have exacerbated Max’s confusion. 
This suggests that the use of multiple metaphors too soon may be overwhelming to new 
learners and lead to confusion. It is important for educators to be extremely mindful 
of the metaphorical language they use in the classroom with undergraduates and not to 
assume that the more metaphors the better. 

There was also evidence that Max tried to use the “sameness metaphor”, as de-
fned in Rupnow (2021) for same properties. He implicitly used the notion of sameness 
for an isomorphism, but did not always use valid sameness properties. For instance, he 
correctly used the notion of sameness as a relabeling in the Cayley table register, but 
incorrectly assumed that two groups could not be isomorphic because the generators 
in the group presentations did not have the same orders. Not being able to match up 
the generators orders violated Max’s criteria for a isomorphism. The more advanced 
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graduate student, Jenni however was more comfortable with the phrase collapsing and 
sameness metaphors. She thought of collapsing as quotienting and combining elements 
to form cosets and sameness as re-labeling Cayley tables. It seems that the correct 
meanings for the collapsing, losing structure, and sameness metaphors develop after 
a sizable compression of introductory abstract algebra experiences and they should be 
introduced carefully. 

Do learners produce representations that are inconsistent with a quotient map or 
homomorphism across several registers? Which registers? 
An integration of Duvalian semiotic theory, Peirce’s semiotic triangle, and Vinner’s 
pseudo-conceptual behavior allowed the articulation pseudo-semiotic representations. 
Pseudo-semiotic representation were defned in this thesis as semiotic triangle produced 
by the learner that either did not exist in the mathematical system or was not consis-
tent with the actual mathematical object that they attempted to signify. According to 
Duvalian semiotics the more registers one can throw the same mathematical object in, 
the better understanding they have for that object (Duval, 2017). Likewise the more 
pseudo-semiotic representation produced for an object as instance of a concept, in this 
case the quotient concept, the less fuency and understanding. 

In this study pseudo-semiotic representations were produced by Jenni for a quo-
tient map and Max for a homomorphism. This pseudo phenomenon was observed most 
frequently in formal-symbolic mapping and digraph registers. Max came into the di-
graph register with a preconceived solution that the homomorphic image would be Z4 

and manipulated the digraph to ft his preconceived solution rather than manipulating 
in ways that were consistent with the actual object of a homomorphim. He was not co-
ordinating his quick visual manipulations, such as erasing and pulling out the subgroup 
Z4 in the digraph register with the formal analog of a homomorphism. Max’s pseudo 
productions in a digraph register were further from than actual mathematical object of a 
homomorphism than Jenni’s. Jenni’s pseudo-productions were not as far or concerning 
because they were at least consistent with a partition into cosets. Both Max and Jenni 
only attempted to construct homomorphism where the image was a subgroup of the do-
main group, this may have been one reason why they did not enter the Z2 × Z2 strategy. 
Trying to force the image of a map to be a subgroup or trying to get rid of elements or 
subgroups co-occurred with pseudo-semiotic representations and impossible strategies. 

Did learners make quotient map conversions from registers that they natural started 
in to a prompted register for valid strategies? 
Both graduate students went to the formal-symbolic mapping register to construct quo-
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tient maps. Neither of the graduate students entered the digraph register prior to a switch 
prompt for valid strategies. After a prompt that asked them to make a conversion from 
the formal-symbolic register to the digraph register, both were successful. Jenni was 
successful to the extent of modding out by an equivalence relation, but had diffculty 
with the normality condition. Alex was fully successful to the extent of modding out by 
a normal subgroup. There was no tearing or erasing in any of Jenni and Alex’s digraph 
responses. 

Overall, the results in section 6.2.5, suggested that Max had little to no fuency 
for homomorphism constructions across the registers. Max’s homomorphism construc-
tions were directed by perceptual stimuli in the signs, formal defnitions of a homo-
morphism. These constructions were not directed by more powerful formal results or 
the concept of equivalence relations. Max’s fuency diffculties across multiple regis-
ters were consistent with fndings for undergraduates fuency in other related subject 
areas such as linear algebra (Sandoval & Possani, 2016). It seems to be a developmen-
tal norm for learners to have low fuency in subject areas where they are just getting 
started. Jenni had moderate fuency, and Alex had strong fuency with respect to the 
registers they naturally entered and the probed digraph register. 

While the two graduate students were fuent in several registers, there was no 
natural indication that they or Max would use Cayley tables in ways that were con-
sistent with forming a quotient group with set multiplication, as illustrated in Larsen 
and Lockwood’s TAAFU sequence (2013). But just because learners do not naturally 
go to certain registers on their own to successfully construct a quotient map does not 
mean that they are are not able to. This was illustrated by the incorporation of a digraph 
switch prompt. A possible future modifcation to this study would be to incorporate an 
additional switch prompt to the Cayley table register if time allows. A few suggestions 
from an expert were to replace the cycle graph cards with the object of symmetry card 
on the collapsing structure task. The expert explained that in the object of symmetry 
register, normality can be seen as a symmetry within a symmetry. 

7.2 Homomorphisms or quotients through other intu-
ition lenses 

According to the default-interventionist perspective, system 1 generates automatic intu-
itive thoughts. These thoughts come to mind as reactions to cues in a problem solving 
environment. The analytic system 2 either approves the intuitive thought as reasonable 
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or signals the need to check or reject it (Kahneman, 2011). The stimuli in Group Ex-
plorer cards seemed to drive Max’s thoughts with little control from formal knowledge, 
such as defnitions and theorems. He would always start with pairs of cards in the same 
register, one for the dihedral group and one for the quaternion group, look for perceptual 
similarities to make the cards look the same, get an idea of what to do based on these 
perceptual cues, and give his response. At times he would maintain awareness that he 
wasn’t sure, but was lost when trying to use his analytic system to check or verify his 
response. One example of this occurred when he was comparing and contrasting sub-
group list for the dihedral and quaternion group. He verbalized the cues in the subgroup 
list that he was paying attention to and said: 

Max: I don’t know what a function would be that would collapse those 
subgroups [referring to subgroup list for dihedral group of order eight], but 
if there was some way to get those out then it would be Q8. 

A second example of this occurred in the group presentation register where sym-
bolic cues for the cyclic subgroup of order four stood out in both the group presentation 
for the dihedral group and quaternion group. A third example of this occurred in the 
digraph register when he produced a pseudo-semiotic representation for a homomor-
phism from the quaternion group to the cyclic group of order four. In this example Max 
took a path of least visual resistance. He found the cycles to be the least complicated 
stimuli and so he focused on the green cycle on the top in Figure 6.7. 

Max: ...the inner and outer cube, or like squares, are just like more com-
plicated...So on the top, the top square, there’s like one four cycle between 
those elements. And then I just selected those, took them off by themselves. 
Then I don’t have to worry about what they do with the other things on the 
bottom, because I’m just looking at the top. 

Once he saw two isomorphic subgroups, namely the cyclic group of order four, he felt 
he had found the solution to the task and assumed the corresponding homomorphisms 
that he needed would exist. 

Max: And then you can pretty clearly see that these guys are isomorphic, 
because they both have one generator of order four. And that’s it, is that 
all? 

Jenni also was initially consumed with cues for cyclic subgroups of order four. 
She cancelled out elements until she was left with just these subgroups, however later 
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on she recovered from these default reactions on her own. System two kicked in with 
key aspects of a quotient and she explained 

Jenni: My initial though was just getting rid of elements is the way to go 
to leave me with a subgroup and then maybe the quotient groups will help 
me do that and then thinking well if I quotient by a subgroup that is not 
just leaving me with a subgroup...quotients don’t get rid of elements they 
combine them. 

In contrast to Jenni, Max did not recover from default intuitive reactions on his own. 
However, Jenni had an advantage. She was able to recover because she had an accurate 
association to a quotient map, knowledge that Max had not learned yet. 

After giving default or reactive responses to stimuli in the cards Max would stop 
and make statements like “I probably need to be a lot more rigorous with this, but that’s 
kind of all I can think of”. He knew he needed to verify his responses through some 
kind of formal argument, but did not know how. He often looked to the researcher for 
confrmation to see if he was right or not. When he became aware of a way to check 
one of his proposed homomorphism maps by brute force binary product computations 
he loathed at the idea of performing these “burdensome” computations and suppressed 
the analytic system further. 

Max’s reason for not pursuing analytic thinking was more sophisticated and dis-
tinct from others fndings. For example, Weber and Alcock (2009) found some learners 
often felt extremely satisfed with a solution formed in an intuitive system, had strong 
contentment and feelings of self-evidence. Due to an overwhelming contentment they 
had the right answer, these learners did not have a need to use the analytic system and 
construct a proof. Max’s suppression of the analytic system was perhaps initially due to 
this often cited self-evidence principle, but not entirely. He eventually exhibited a need 
to use analytic system 2 thinking and was given one way to check, but still chose not to 
use analytic thinking at that moment because he was looking for a checking method that 
was more effcient. While Max’s aversion to computation could be viewed as a nega-
tive it could also be viewed as a positive that could motivate the use of computational 
software and work towards more powerful formal results like the frst isomorphism the-
orem. Max was not the only one who showed aversion to computation. The oldest 
graduate student also showed aversion to computation on the group actions task. 

An educational implication stated by Leron and Hazzan (2006) is to: 

...train people to be aware of the way S1 and S2 operate, and to include 
this awareness in their problem-solving toolbox...If analyzing typical S1/S2 
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pitfalls became an inherent part of students’ problem solving sessions, they 
might become more successful problem solvers and decision makers (p. 
123-124). 

In addition to system 1 errors and suppression of system 2, several affective 
factors that have been theorized to negatively impact intuition were also observed for 
Max and Alex. Max showed signs of constructs defned by Fischbein (1987) such as 
fear of invalidity and premature closure. 

...“need for closure” was defned in terms of a desire for “an answer on a 
given topic, any answer,...compared to confusion and ambiguity. Such need 
was referred to as “nonspecifc” and was contrasted with needs for “specifc 
closure”, that is, for particular (e.g., ego-protective or enhancing) answers 
to one’s questions...The need for closure may also be aroused when the 
judgmental task appears intrinsically dull and unattractive to the individual. 
Under such circumstances, closure may serve as a means of escaping an 
unpleasant (hence, a subjectively costly) activity (Webster & Krulanski, 
1994, p. 1049). 

In Max’s case, it was not clear if premature closure was nonspecifc or specifc and what 
the underlying reasons for closure were. 

The most seasoned learner Alex, the second year graduate student, had the high-
est level of quotient fuency, never entered an invalid strategy, and had the most severe 
affective reaction. He experienced anxiety that completely blocked his intuitions during 
the collapsing task and he recalled having similiar anxiety episodes during oral exami-
nations. Alex expressed that an overemphasis on getting the right solution: 

cuts of all the conduit stuff, the actually learning how to do the thing that 
works...it cuts of all paths to get to the goal. 

7.3 The make-up of learners’ example-based intuitions 

Is it possible to quantitatively characterize the (partial) make-up of learners’ example-
based intuitions during a group action task? 
Over a decade ago psychologists Dane and Pratt (2009) concluded that 

...there is little consensus regarding how intuitions are captured method-
ologically...we encourage researchers to continue to craft new measures 
and methods for capturing intuition (p. 33) 
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Today, this lack of consensus continues with no direction from mathematics educa-
tion researchers since Fischbein and his colleague’s contributions, which ended with 
his passing in 1998. Fischbein, Tirosh, and Melamed (1981) asked “Is it possible to 
measure the intuitive acceptance of a mathematical statement?” They defned intuitive 
acceptance as a combined geometric mean score of two attributes: level of confdence 
and degree of obviousness. They used yes or no questions with a hierarchical analysis, 
that revealed a Guttman scale, to measure confdence and obviousness. Motivated by 
Fischbein et al. (1981), I also worked on an ‘is it possible to measure some aspects of 
intuition’ question, but paid attention to a different set of attributes, specifcally those 
that separated non-creative versus creative form, confdence in truth, and error type. The 
distinction between non-creative and creative forms of intuition was framed by psychol-
ogists Policastro (2015) and Dane and Pratt (2007, 2009). Determining which attributes 
to focus on and theoretically framing them for use in mathematics education research 
was a signifcant challenge. In addition, I developed a new prototype instrument that 
aligned with some of these attributes to collect quantitative data. An analysis using the 
Fuzzy C-Means algorithm was different from Fischbein et al.’s yes or no questionnaire 
with hierarchical analysis. 

What is the quantitative make-up of learners’ reported intuitions related to orbit-
stabilizer relationships induced by group actions? 
A goal of the new approach, taken in this thesis, was to illustrate the possibility of 
quantitatively characterizing and classifying intuitions in a pure math setting. This ap-
proach uncovered the (partial) make-up of two graduate learners’ intuitions that were 
reported during a task to explore orbit-stabilizer relationships. Univariate tests revealed 
signifcant differences between Jenni and Alex’s intuitions at the level of single isolated 
attributes for: positive emotional intensity and non-sanctioned cue use, and near signif-
cance for incubation. Jenni was more likely to have strong positive emotional reactions 
that accompanied her reported intuitions, non-sanctioned cue use, and intentionally tak-
ing breaks to incubate. The FCM prototypes revealed variations for how non-creative 
or creative intuition objects were and that pairs of attributes associated with creativity 
need not move together from object to object. A Fuzzy C-Means analysis confrmed that 
54.55 % of Jenni’s reported intuitions belonged to more creative clusters, M > 0.628 , 
and 45.45% belonged to more non-creative clusters, M < 0.364, across all partitions. 
All of Alex’s intuitions belonged to the most non-creative clusters, M < 0.299, across 
all partitions. 

There could be many reasons why Alex’s intuitions were more non-creative. 
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First of all, a limitation is that network thinking was not incorporated into the FCM 
analysis. Alex showed several instances of network thinking. Another reason, is that 
Alex may have viewed the task as being too routine and went into a mode of recovering 
familiar knowledge he associated with the task. However, I purposefully chose this 
task because it could be made routine or non-routine depending on what examples the 
learner wanted to explore and what questions they wanted to ask. Affective factors 
such as lack of motivation, lack of enjoyment, lack of time, and other priorities could 
have also contributed to a higher frequency of non-creative forms of intuition. Based 
on personal experiences and interviews, one key that seems to unlock extreme creative 
forms of intuition is having passion in a particular subject area that drives curiousity. 
Tasks that are not related to a learner’s passions could also be cause for seeing a higher 
frequency of non-creative forms in a local setting. Taking the the same set of Alex and 
Jenni’s reported intuition objects a second set of attributes separate were focused on to 
investigate intuitive feelings of rightness or wrongness. 

Is it possible to measure intuitive feelings of rightness or wrongness? Are learners’ 
feelings of rightness or wrongness working properly? 
Intuitive feelings of rightness and wrongness have been characterized as “nonemotional 
cognitive feelings, such as feelings of knowing...they can infuence whether one con-
tinues a search or aborts it” and “they may be rather ‘vague’ and not easily noticed 
or focused upon, but can infuence one’s actions, including action that are part of the 
proving process” (Selden et al., 2010, p.202). Prior to proof, a reported intuition ob-
ject is evaluated by another class of intuitions, namely intuitive feelings of rightness or 
wrongness. Intuitive feelings of rightness or wrongness fall under the classifcation of 
simple associative forms. Many types of intuitions interact with one another (Glöckner 
& Witteman, 2010; Dane & Pratt, 2009). 

Intuitive feelings of rightness or wrongness were inferred, in this thesis, through 
two attributes confdence in truth value and error to non-error type. After recording an 
intuition learner’s reported how confdent they were that they were that their intuition 
was true on a likert scale and the researcher coded error to non-error type. A Fuzzy 
C-Means classifcation of Jenni and Alex’s intuitions in terms of these attributes can be 
found in subsection 6.5.5. Problematic clusters marked by bipolar attribute values for 
the frst confdence item and error type. The second item for confdence seemed to be 
more of indication of being cautious. 

Taking this notion of problematic clusters, an example of a problematic cluster 
would be one characterized by high confdence in truth value and low scores for er-
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ror to non-error type. This particular problematic cluster did not show up in the FCM 
analysis of Jenni and Alex’s intuitions. Moreover, completely errored intuitions, as de-
fned in subsection 5.8.2, were not a cause for concern because they were accompanied 
with low levels of confdence. In fact, completely errored intuitions coincided with ex-
tremely low confdence in truth values in cluster 4. This was seen as a positive sign that 
her evaluative feelings of wrongness were working properly. Cluster 3 indicated some 
potential issues in Jenni’s feelings of rightness where she had low confdence values, 
but high levels of correctness for 27% of her reported intuitions. All of Alex’s intuitions 
belonged to clusters with high confdence levels and high levels of correctness. Overall, 
the results suggested that Alex’s feelings of rightness were working properly. Jenni’s 
feelings of rightness were not running as smoothly, this could have also just been a 
natural co-occurrence with creative forms that are newer or less familiar to the learner. 
However, going back to the data she did report intuitions that had high membership to 
cluster 3 and high membership to more non-creative clusters. Overall, a measure for 
feelings of rightness or wrongness using confdence and error-type values would be a 
starting point, but the picture is more complicated than just looking at confdence levels 
and error type. It would also be important to consider how these attributes cross with 
non-creative and creative clusters. 

The quantitative portion in this study improved objectivity during analysis and 
made research on the intuition construct more manageable and coherent. While it is 
not possible fully capture the intuition phenomenon due to an enormous amount of 
attributes and actions running around, I argue that this mixed approach allowed for dis-
cussions that would not have been possible with qualitative means alone. Likewise, the 
qualitative portion attached to each object provided examples connected to the quanti-
tative data. The qualitative data for Jenni’s reported object No. 2 that belonged to the 
potentially concerning cluster will be discussed further under the next research ques-
tion. 

What is the qualitative content of learners’ intuitions related to orbit-stabilizer rela-
tionships? 
The journal results provided several examples of the qualitative content of learners’ in-
tuitions. The discussion will focus on Jenni’s objects because they provided the most 
insight into how learners might be linking Cayleys, Lagrange’s and the Orbit-stabilizer 
theorem within a group actions frame, following a frst year undergraduate course. Jenni 
drew her intuition from concrete examples of transitive an non-transitive group actions. 
Alex drew his intuitions from transitive group actions where the identity was trivial or 
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equivalently an action that admits a single orbit. He felt that specifc examples were too 
restrictive and he preferred to draw his intuition form the more abstract deck transforma-
tion example in algebraic topology. Jenni’s intuition journals and follow-up interviews 
also highlighted a gradual transition from viewing a group as a set of elements with a 
binary operation to a set of functions with composition, a fundamental idea underneath 
Cayley’s theorem. 

Next, she reported intuitions relevant to Lagrange’s and the orbit-stabilizer theo-
rem. An example of a key creative intuition related to her transition between Lagrange’s 
and the Orbit-stabilizer theorem was: 

Jenni: Going back to the idea of cosets, I think a coset is like if H ⊂ X then 
partition X into right cosets by H · x. This is different because G might not be a 
subset of X. But all G · x ∈ X so maybe it is the same? (No. 2) 

Jenni:...I was thinking about cosets, because it’s like just partitioning the set, and 
then thinking about orbits, is that just like a coset, are there going to be disjoint 
partitions as far as like are the orbits going to be like everything is one’s things 
orbit but not in the other... 

These linking intuitions from Cayley’s to Lagrange’s to the Orbit-stabilizer the-
orem were fragile. She showed low confdence in intuition No. 2 and concluded with 
the statement that “orbits and cosets are not similiar”. Her reason for why they weren’t 
similiar was that orbits don’t partition G and cosets do. This linking intuition No. 2 
with higher membership to more creative clusters was fragile and learners. It is linking 
intuitions like these that need to be tended to with guidance from the instructor, how-
ever such intuitions are likely not observable to instructors during a standard lecture. 
Moreover, fguring out how to incorporate, strengthen, and develop or re-direct these 
linking intuitions during instruction would be a challenge. 
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Chapter 8 

Concluding Remarks and Future 
Directions 

8.1 Concluding Remarks 

A goal of instruction is to improve learners’ fuency across representation registers and 
facilitate intuition (Duval, 2006; 2017; Fischbein, 1987, Burton, 1999), and the signif-
icant goal of evaluative research on student thinking is to inform instructional design 
(Gravemeijer, 2004; Sandoval & Possani, 2016). The evaluative type case studies, de-
signed in this thesis, provided ways to gather information on learners’ representational 
fuency and example-based intuitions for group theory topics in a systematic way. A 
combination of several existing theoretical lenses, a new analytic framework for fu-
ency, and new instruments were useful in bringing out different facets of the data. In 
this chapter, the contributions are listed, followed by limitations, and plans for future 
directions. These Future plans specify starting points for how to extend qualitative case 
studies under the intuition umbrella to larger scale mixed-method studies. Overall, this 
thesis represents an attempt to maintain a grip on the multi-faceted intuition construct. 

8.1.1 Contributions 

The contributions of this thesis were both theoretical and methodological. The frst 
theoretical strand included: 

(a) an integration of multiple research areas through an extensive integrative lit-
erature review, 

(b) developing a theoretical framework for intuition associated factors, 
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(c) an organization of attributes associated with non-creative versus creative forms 
of intuition, 

(d) an organization of additional attributes and viewing intuition as a cognitive 
object with various attributes attached to it. 

The methodological contribution built from this theoretical contribution consisted of: 

(e) designing a prototype survey instrument to practically extract the attribute 
values of learner’s reported intuition objects (NCCFIS), 

(f) characterizing the ‘partial-make up of intuition’ as an object with qualitative 
and quantitative data values attached to it, and 

(g) applying the Fuzzy C-Means Algorithm by Bezdek et al. (1981) to classify 
abstract algebra learners’ reported intuition objects based on attribute similarity. 

To the best of my knowledge the NCCFIS instrument seems to be a frst of its kind in the 
area of intuition research. Furthermore, to the best of my knowledge, an application of 
the FCM algorithm to classify different intuitions has never been done. It may or may 
not have been a strange coincidence that I used fuzzy partitions to analyze learners’ 
reported intuitions related to hard partitions induced by group actions. 

A second contribution strand included theoretical work in the area of semiotics that led 
to: 

(h) the derivation of a new construct termed a fuency digraph that crossed modes 
of semiotic production modes of aquisition, and modality. The fuency digraph 
was later aligned with the practical methodological data collection tool of card-
sorting, 

(i) two representational fuency tasks, the collapsing and adding structure tasks 
were designed with multiple solutions, registers built in, and interview protocols, 
and 

(j) An analytic representational fuency framework. 

Additional contributions included: 

(k) insightful results on abstract algebra learners’ interpretations of metaphorical 
language and representational fuency related to the homomorphism concept, 
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(l) examples of learners’ semiotic and pseudo-semiotic representations of a ho-
momorphism, or quotient, and direct-product across several registers, and 

(m) their intuitions related to group actions afforded by novel approaches to data 
collection and analysis. 

8.1.2 Limitations 

The ongoing limitations that occured in fuency studies, that also continue to be a chal-
lenge for semiotic researchers, is the ability to rigorously separate single register use or 
multimodal use in which several registers are being used at the same time but are not all 
observable (Sandoval & Possani, 2016). Knowing which mix of registers are being used 
seems to be exacerbated when analyzing data from more advanced learners who tend to 
use multiple registers simultaneously. Another diffculty during analysis was that many 
conversions may be occurring within the total move from one register to another for 
a specifed object. One helpful tactic was to fx and keep focus on one mathematical 
object at a time (e.g., a specifc quotient map) and track it across observable registers. 

The current analytic framework for representational fuency, purposeful sam-
pling, instrumentation with multiple registers and analysis used in this study highlighted 
the presence of different fuency levels for the homomorphism concept. While this ap-
proach brought out several criteria for different levels of fuency, the discrimination of 
different levels was limited by inferences based on qualitative analysis. More work is 
needed to defne a rigorous discrimination between these levels in order to extend this 
qualitative demonstration to a viable larger scale mixed study. 

In reference to the example-based intuition study, the new non-creative versus 
creative forms of intuition (NCCFIS) survey and accompanied analysis needs to un-
dergo critical reviews and revisions. At this time the NCCFIS is based on an extensive 
literature review and a few interviews with mathematicians. More expert consultations 
with mathematicians, education researchers, and quantitative psychologists are needed 
to revise the instrument to satisfy content validity. At this time, it is unclear how to 
obtain validity, beyond theoretical grounding and content validity, for the self-report 
NCCFIS instrument. 

While the self-report instrument, used in this thesis, may be considered a limita-
tion, alternatives such as a researcher trying to infer non-observable aspects of learners’ 
intuitions has also been problematic (Bubp, 2014). In this thesis, I have done my best to 
provide some middle ground by incorporating attribute values that are reported by the 
participant, attributes inferred by the researcher, and qualitative journal data interpreted 
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by the researcher. Lastly, the quantitative portion of this study was limited by a small 
sample size. Overall, the tools developed in this thesis that were intended to partially 
capture and examine example-based intuitions are still in their infancy. Plans to address 
some of these limitations are discussed in the next section along with future directions. 

8.2 Future Directions 

A diverse supply of studies with many design types and researchers with different 
strengths are needed. Moreover, the availability of some study designs may be con-
tingent on others. To start, a feld may conduct many evaluative case studies to identify 
learner’s diffculties and strengths followed by grounded theory to obtain a an extensive 
catalog of diffculties and strengths that learners encounter within a particular subject 
area, especially when theory from the literature is not suffcient or in some cases does 
not exist. These types of studies inform qualitative small scale teaching experiments that 
lead to local instructional theories. In addition, integrative reviews and phenomenologi-
cal studies are needed to gain insight into a cultural phenomenon or to clarify constructs. 
Building from this, quantitative instruments become available. In general, an incredi-
ble and diverse amount of work is necessary before full blown effcacy studies with 
quasi-experimental designs are within reach. 

After the work put forth in this thesis, we now return to the motivating hy-
pothesis stated in the introduction. Effcacy studies under an intuition focused research 
program for abstract algebra education involves many hurdles to overcome. While the 
case studies conducted in this thesis do not lend themselves to generalizable results. 
However, they do set a potential foundation for carrying out larger scale future studies. 
This section looks towards the next steps and provides specifc starting points where: 
1) case study designs could be extended to mixed-method case designs and 2) pockets 
where quasi-experimental designs could be conducted under the umbrella of intuition 
associated factors in abstract algebra. 

Abstract algebra education researchers continue to fnd and document that the 
homomorphism concept is diffcult for undergraduates. It is an instructional challenge 
because a deepened understanding of a homomorphism, beyond the formal defnition, 
relies on a solid understanding of the quotient group concept, the frst homomorphism 
theorem, and frst isomorphism theorem for sets and groups (Dubinsky et al., 1994; 
Asiala et al., 1997; Melhuish et al., 2020; Rupnow, 2021). More effcacy oriented 
studies are needed that compare groups of learners that receive different instructional 
sequences for these entangled concepts. It is of interest to determine whether or not 
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leaners who receive Inquiry-Oriented instructional sequences perform better on other 
quotient tasks than participants that do not receive this sequence (Larsen, Johnson, & 
Bartlo, 2013). Additional effcacy type studies that compare different instructional se-
quences for quotient group concept is one avenue for future research. 

A goal of experimental instruction is to guide undergraduate learners to develop 
higher levels of fuency compared to learners that receive more standard lecture based 
forms of instruction. It is recommended that fuency activities frst allow learners to 
become comfortable within single registers before they move on to activities that train 
conversions across registers (Sandoval & Possani, 2016). In addition to the instructional 
sequences that predominantly intersect the Cayley table or formal-symbolic registers, 
there is a need to design and implement more activities that encourage fuency for the 
object of symmetry, beyond triangle and square, as in Bergman and French (2019), ma-
trices as linear invertible maps, and digraph registers. Finally, experimental instruction 
should guide learners to confront and reduce the occurrence of pseudo-semiotic rep-
resentations. The collapsing structure task, data collection protocol, and the semiotic 
analysis, developed in this thesis, could serve as useful tools for future studies that aim 
to evaluate the effectiveness of different instructional sequences on fuency outcomes 
for the quotient concept. 

One avenue for future research is to modify and extend the qualitative case study 
design for the collapsing structure task, developed in this thesis, to a mixed-case design. 
A modifcation, along with adding switch prompts, would be to create a structured in-
terview format that adds questions for what collapsing structure or losing information 
means to the learner and how it relates to a quotient map and how it relates to a ho-
morphism. Next the task could be tightened by instructing participants to “Is there 
some way that you can modify both D8 and Q8 by constructing a quotient map so that 
the images are isomorphic with register options”. The loosening or tightening of the 
prompt may be researcher preference. The tightened prompt would certainly be eas-
ier to handle during data analysis with a larger number of participants. To transform 
qualitative transcripts to quantitative data, create a fuency attribute rubric for the task, 
input the coded attributes into the FCM algorithm. Use the FCM algorithm to defne 
more rigorous cut-offs for quotient fuency levels (i.e., little to none, moderate, and 
strong). The case study with the three consecutive level of learners helped me to see 
relevant attributes that could be used to distinguish different fuency levels within the 
context of the collapsing structure task. For example, some observable attributes were: 
the number of valid and invalid strategies that learner’s entered, the number of registers 
they naturally entered for a quotient without prompt for valid strategies, the number of 
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pseudo-semiotic representation that they produced for a quotient, the number of quo-
tient map conversions they made across natural and prompted registers, and whether or 
not they were constructing quotients and making conversions at the level of an equiva-
lence relation without normality or if they also incorporated normality. After kinks in 
the mixed-case design are worked out, it could be extended again to a large scale quasi 
design that evaluates learners’ quotient fuency that receive different types of instruction 
characterized by the Inquiry Oriented Instructional Measure. 

A second avenue for future research was motivated by an interesting piece of 
data found in this thesis that aligned with Lakatosian and Duvalian infuences. From a 
Lakatosian perspective it is important to guide the learner to: build from weaker condi-
tions and test what happens under these conditions and make progress towards stronger 
necessary conditions, maintaining awareness of implicit assumptions, and dissociating 
implicit assumptions from specifc examples to formulate a general conjecture, and try-
ing to counter the conjecture. From a Duvalian perspective in order to be a successful 
mathematics learner one has to develop the following skills: dissociating object from 
its representation or container, seeing multiple instances of an object across many regis-
ters, performing conversions, and maintaining awareness of pseudo-semiotic represen-
tations. The piece of data that is relevant to these perspectives occurred when Max was 
trying to decide if the dihedral group of order eight was isomorphic to the quaternion 
group of order eight. Max came to the conclusion that: 

So I would say, no, they’re not isomorphic because for D4 on of its gener-
ators is of order 2 and Q8 both of the generators are of order four. 

As a more seasoned mathematics learner, my brain automatically and quickly processed 
this piece of data using the following steps: 

step 1: detection of an implicit assumption that does not feel right. 

step 2: dissociate the implicit assumption from the examples and formulate it as 
a generalized logic statement -‘if the order of the generators in the group presen-
tation do not match then the two groups are not isomorphic’. 

step 3: try to fnd a counter-example to the generalized logic statement 

step 4: brainstorm, Z6 comes to mind, I can think of two different group presenta-
tions for Z6 where the orders of the generators in one presentation and the orders 
of the generators in the other do not match up. 
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step 5: state counter-example following a logical script - ‘the orders of the gener-
6 3 b2ators in < a : a = 1 > and < a, b : a = = 1, ab = ba > do not match, but 

the two groups given by these presentations are isomorphic’. 

Max did not perform this maneuver and after refecting on it I realized how diffcult such 
a maneuver, that I take for granted and do automatically, could be for an undergraduate 
learner. First feelings of rightness and wrongness, also referred to as error detecting in-
tuition, must be working properly. Without this signal that something did not feel quite 
right, I would have never had awareness of a faulty implicit assumption and so I would 
have just gone on about my day. Second, it required dissociating an implicit assumption 
from a statement about examples and generalizing. Dissociating and generalizing are 
documented to be diffcult moves in their own right for undergraduates. Third, a sound 
logical system has already been hardwired in my brain, meaning I automatically knew 
what the logical syntatic script should be and it this script is so second nature that I 
don’t even consciously think about it. Fourth, you have to think of another example 
object and be able to see the same object in multiple representations. Taking in the total 
complexity of this maneuver and the fact that Max was often unsure during the task, 
but did not know how to check was a light bulb moment. Steps 1-5 mixes several core 
cognitive skills (e.g. dissociating object from object being represented, generalization, 
shifting between registers, etc.) some of which have been documented to be extremely 
challenging for undergraduates even in isolation. More research is needed to prepare 
scaffolded instructional materials that train these complex checking and error-correcting 
maneuvers. 

A third avenue for future research is concerned with the example-based intu-
itions. The example-based intuition mixed design developed in this thesis illustrated 
ways for drawing out learners’ intuitions, classifying them in terms of non-creative and 
creative forms attributes, and classifying them in terms of confdence in truth and error 
type. This has implications for characterizing learners’ overall intuiting states based on 
reported objects (i.e., a mix of both non-creative and creative, or pre-dominantly non-
creative), detecting whether or not learners’ intuitive feelings of rightness or wrongness 
were working properly, and detecting positive and problematic densities of attribute 
combinations within a population. Moreover, the example-based intuition instrumenta-
tion and analysis can be used as a template meaning that the mathematical group actions 
content of baseline questionnaire and the experimentation task could be swapped with a 
baseline and experimentation task for mathematical concepts of the researchers choice. 
This fexible template accounts for the fact that intuition is fractionated and certain en-
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vironments may be better than others at facilitating intuition for certain concepts. 
At this time, recommendations for the example-based intuition factor are to con-

duct phenomenological studies and expert reviews to improve the NCCFIS survey. A 
more immediate use of the example-based intuition set up would be to repeat the group 
actions study in this thesis for a larger number of learners across consecutive mathe-
matical levels and take a mixed grounded theory approach. This could help to create 
a catalog of intuitions for orbit-stabilizer relationships induced by group actions and 
inform the creation of instructional texts that incorporate the perspective of the under-
graduate, frst year graduate, second year graduate, an so on that adds layers to the same 
concepts as the text advances. Another more immediate use of the example-based intu-
ition set up would be again to repeat the group actions study in this thesis, but this time 
swap the experimentation task with a Polya’s necklace problem. 
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[142] Poincaré, H. (1969). Intuition and logic in mathematics. The Mathematics 
Teacher, 62(3), 205-212. 

[143] Policastro, E. (1995). Creative intuition: An integrative review. Creativity Re-
search Journal, 8(2), 99-113. 

[144] Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies 
and methods for connecting theoretical approaches: frst steps towards a conceptual 
framework. ZDM The International Journal on Mathematics Education, 40(2), 165-
178. 

[145] Przenioslo, M. (2004). Images of the limit of function formed in the course of 
mathematical studies at the university. Educational Studies in Mathematics, 55, 103-
132. 

[146] Raftopoulos, A. (2002). The spatial intuition of number and the number line. 
Mediterranean Journal for Research in Mathematics Education, 1(2), 17-36. 

[147] Raidl, M., & Lubart, T. (2001). An empirical study of intuition and creativity. 
Imagination, Cognition, and Personality, 20(3), 217-230. 

250 

 https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home
 https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home


CHAPTER 2 INTEGRATIVE LITERATURE REVIEW REFERENCES 

[148] Raman, M. (2002) Coordinating informal and formal aspects of mathematics: 
student behavior and textbook messages. The Journal of Mathematical Behavior, 
21(2), 135-150. 

[149] Rasmussen, C. (2001). New directions in differential equation: a framework for 
interpreting students’ understandings and diffculties. Journal of Mathematical Be-
havior, 20, 55-87. 

[150] Rasmussen, C., Kwon, O., Allen, K., Marrongelle, K. & Burtch, M. (2006). 
Capitalizing on advances in mathematics and K-12 mathematics education in under-
graduate mathematics: An inquiry-oriented approach to differential equations. Asia 
Pacifc Education Review, 7(1), 85-93. 

[151] Reber, A. (1989). Implicit learning and tacit knowledge. Journal of Experimental 
Psychology: General 118(3), 219-235. 

[152] Ross, A. A., & Onwuegbuzie, A. J. (2012). Prevalence of mixed methods re-
search in mathematics education. The Mathematics Educator, 22(1), 84-113. 

[153] Ross, A. A., & Onwuegbuzie, A. J. (2014). Complexity of quantitative analy-
ses used in mixed research articles published in a fagship mathematics education 
journal. International Journal of Multiple Research Approaches, 8(1), 63-73. 

[154] Rowland, T. (2002). Generic proofs in number theory. In S. Campbell & R. Za-
skis (Eds.), Learning and teaching number theory: Research in cognition and in-
struction (pp. 157-183). New Jersey: Ablex Publishing Corporation. 

[155] Russell, C. (2005). An overview of the integrative research review. Progress in 
transplantation, 15(1), 8-13. 

[156] Sadler-Smith, E. (2015). Wallas’ four-stage model of the creative process: more 
than meets the eye? Creativity Research Journal, 27(4), 342-352. 

[157] Sadler-Smith, E. (2016). What happens when you intuit?: understanding human 
resource practitioners’ subjective experience of intuition through a novel linguistic 
method. Human Relations, 69(5), 1069-1093. 

[158] Savic, M. (2015). The incubation effect: how mathematicians recover from prov-
ing impasses. Journal of Mathematical Behavior, 39, 67-78. 

[159] Savic, M., Gulden, K., Gail, T., El Turkey, H., & Naccarato, E. (2017). For-
mative assessment of creativity in undergraduate mathematics: using a creativity-
in-progress rubric (CPR) on proving. In R. Leikin & B. Sriraman (Eds.), Creativity 
and Giftedness: Interdisciplinary Perspectives from Mathematics Education, 23-46. 
Cham: Springer. 

[160] Schneider, M. (1992). On learning the rate of instantaneous change. Educational 
Studies in Mathematics, 23(4), 317-350. 

[161] Selden, A., & Lim, K. Continuing discussion of mathematical habits of mind. 
Proceedings of the 32nd annual meeting of the North American Chapter of the In-
ternational Group for the Psychology of Mathematics Education, Columbus, Ohio. 

251 



CHAPTER 2 INTEGRATIVE LITERATURE REVIEW REFERENCES 

[162] Selden, A., & Selden, J. (2013). Proof and problem solving at the university level. 
The Mathematics Enthusiast, 10(1), 303-334. 

[163] Selden, J., & Selden, A. (2007). Teaching proving by coordinating aspects of 
proofs with students’ abilities. Technical Report. No. 2007-2. Online Submission. 

[164] Selden, A., McKee, K., & Selden, J. (2010). Affect, behavioural schemas and 
the proving process. International Journal of Mathematical Education in Science 
and Technology, 41(2), 199-215. 

[165] Selden, J., Selden, A., & McKee, K. (2008). The role of nonemotional cogni-
tive feelings in constructing proofs. Proceedings of the 11th Annual conference on 
Research in Undergraduate Mathematics Education. 

[166] Semadeni, Z. (2008). Deep intuition as a level in the development of the concept 
image. Educational Studies in Mathematics, 68, 1-17. 

[167] Simon, H. (1986). The information processing explanation of gestalt phenomena. 
Computers in Human Behavior, 2, 241-255. 

[168] Simon, H. (1992). What is an explanation of behavior? Psychological Science 
3(3), 150-161. 

[169] Sinclair, M. (2010). Misconceptions about intuition. Psychological Inquiry, 21, 
378-386. 

[170] Sinclair, M., & Ashkanasy, N. (2005). Intuition: myth or a decision-making tool? 
Management learning, 36(3), 353-370. 

[171] Sirotic, N., Zazkis, R., & Zazkis, A. (2007). Irrational numbers: the gap between 
formal and intuitive knowledge. Educational Studies in Mathematics, 65(1), 49-76. 

[172] Skemp, R. (1979). Intelligence, learning, and action: A foundation for theory 
and practice in education. Chichester: Wiley. 

[173] Smith, E., & DeCoster (1999). Associative and rule-based processing: A con-
nectionist interpretation of dual-process models. In S. Chaiken and Y. Trope (Eds.), 
Dual-process theories in social psychology (pp. 323-336). The Guilford Press. 

[174] Sriraman, B. (2009). The characteristics of mathematical creativity. ZDM Math-
ematics Education, 41, 13-27. 

[175] Sriraman, B., Haavold, P., & Lee, K. (2013). Mathematical creativity and gift-
edness: a commentary on and review of theory, new operational views, and ways 
forward. ZDM The International Journal on Mathematics Education, 45, 215-225. 

[176] Stanovich, K., West, R., & Toplak, M. (2014). Rationality, intelligence, and the 
defning features of Type 1 and Type 2 processing. Dual-process theories of the so-
cial mind, 80-91 

[177] Star, J. R., & Pollack, C. (2015). Inhibitory control and mathematics learning: 
defnitional and operational considerations. ZDM Mathematics Education, 47, 859-
863. 

252 



CHAPTER 2 INTEGRATIVE LITERATURE REVIEW REFERENCES 

[178] Stewart, S., Thompson, C., & Brady, N. (2017). Navigating through the math-
ematical world: Uncovering a geometer’s thought processes through his handouts 
and teaching journals.The 10th Congress of the European Society for Research in 
Mathematics Education (CERME 10). Dublin, Ireland. ¡hal-01941311¿ 

[179] Stout, G. (1934). Self-evidence and matter of fact. Philosophy, 9(36), 389-404. 

[180] Tall, D. (1999). The Cognitive Development of Proof: Is Mathematical Proof 
For All or For Some? In Z. Usiskin (Ed.), Developments in School Mathematics 
Education Around the World, Vol. 4. Reston, Virginia: NCTM, 117-136. 

[181] Tall, D., & Vinner, S. (1981). Concept image and concept defnition in math-
ematics with particular reference to limits and continuity. Educational Studies in 
Mathematics, 12(2), 151-169. 

[182] Tanguay, D., & Venant, F. (2016). The semiotic and conceptual genesis of angle. 
ZDM The International Journal on Mathematics Education, 48, 875-894. 

[183] Thomas, M. (2015). Inhibiting intuitive thinking in mathematics education. ZDM 
Mathematics Education, 47, 865-876. 

[184] Thurston, W. (1994). On proof and progress in mathematics. Bulletin of the 
American Mathematical Society, 30(2), 161-177. 

[185] Tirosh, D., Fischbein, E., Graeber, A., & Wilson, J. (1998). Prospective elemen-
tary teachers’ conceptions of rational numbers. Retrieved from http://jwilson.coe. 
uga.edu/Texts.Folder/Tirosh/Pros.El.Tchrs.html 

[186] Torraco, R. (2005). Writing integrative literature reviews: guidelines and exam-
ples. Human resource development review, 4(3), 356-367. 

[187] Torraco, R. (2016). Writing integrative literature reviews: Using the past and 
present to explore the future. Human resource development review, 15(4), 404-428. 

[188] Toulmin, S. E. (2003). The uses of argument(updated edition of the 1958 book). 
Cambridge: Cambridge University Press. 

[189] Tsamir, P., & Ovodenko, R. (2013). University students’ grasp of infection 
points. Educational Studies in Mathematics, 83(3), 409-427. 

[190] Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychol-
ogy of choice. Science, New Series, 211(4481), 453-458. 

[191] Vamvakoussi, X., Van Dooren, W., & Verschaffel, L. (2013). Educated adults are 
still affected by intuitions about the effect of arithmetical operations: evidence from 
a reaction-time study. Educational Studies in Mathematics, 82(2), 323-330. 

[192] Vergnaud, G. (1994). Multiplicative conceptual feld: what and why? In G. Harel 
& J. Confrey(Eds.), The development of multiplicative reasoning in the learning of 
mathematics (pp. 41-59). Albany: State University of New York Press. 

[193] Wallas, G. (1926). The Art of Thought. New York: Harcourt, Brace and Com-
pany. 

253 

http://jwilson.coe.uga.edu/Texts.Folder/Tirosh/Pros.El.Tchrs.html
http://jwilson.coe.uga.edu/Texts.Folder/Tirosh/Pros.El.Tchrs.html


CHAPTER 2 INTEGRATIVE LITERATURE REVIEW REFERENCES 

[194] Watson, J., & Callingham, R. (2013). Likelihood and sample size: the under-
standings of students and their teachers. The Journal of Mathematical Behavior, 32, 
660-672. 

[195] Watson, A., & Mason (2005). Mathematics as a constructive activity: Learners 
generating examples. Mahwah, New Jersey: Lawrence Erlbaum Associates. 

[196] Wawro, M., Rasmussen, C., Zandieh, M., Sweeney, G., & Larson, C. (2012). An 
inquiry-oriented approach to span and linear independence: The case of the magic 
carpet ride sequence. Problems, Resources, and Issues in Mathematics Undergradu-
ate Studies, 22(8), 577-599. 

[197] Weber, K., & Alcock, L. (2004). Semantic and syntactic proof productions. Ed-
ucational Studies in Mathematics, 56, 209-234. 

[198] Weber, K., & Alcock, L. (2009). Proof in advanced mathematics classes: se-
mantic and syntactic reasoning in the representation system of proof. In Teaching 
and learning proof across the grades: A K-16 perspective (pp. 323-338). Routledge 
Taylor & Francis Group. 

[199] Webster, D.M., & Krglanski, A.W. (1994). Individual differences in need for 
cognitive closure. Journal of Personality and Social Psychology, 67(6), 1049-1062. 

[200] Wilder, R. (1967). The role of intuition. Science, New Series, 156(3775), 605-
610. 

[201] Wilensky, U. (1995). Paradox, programming, and learning probability: a case 
study in a connected mathematics framework. Journal of Mathematical Behavior, 
14, 253-280. 

[202] Wilkie, K. (2019). Investigating secondary students’ generalization, graphing, 
and construction of fgural patterns for making sense of quadratic functions. Journal 
of Mathematical Behavior, 54, 100689. 

[203] Williams, S., & Leatham, K. (2017). Journal quality in mathematics education. 
Journal for Research in Mathematics Education, 48(4), 369-396. 

[204] Wittmann, E (1981). The complementary roles of intuitive and refective thinking 
in mathematics teaching. Educational Studies in Mathematics, 12(3), 389-397. 

[205] Young, J., Denton, W., & Mitchell, U. (1911). Lectures on fundamental concepts 
of algebra and geometry. Norwood: Macmillan Company and Norwood Press. 

[206] Zagorianakos, A., & Shvarts, A. (2015). The role of intuition in the process of 
objectifcation of mathematical phenomena from a Husserlian perspective: a case 
study. Educational Studies in Mathematics, 88(1), 137-157. 

[207] Zazkis, R., Liljedahl, P., & Chernoff, E. (2008). The role of examples in form-
ing and refuting generalizations. ZDM The International Journal on Mathematics 
Education, 40(1), 131-141. 

254 



Chapter 3 Abstract Algebra Education 
Research References 

[1] Agustyaningrum, N., Sari, R. N., Abadi, A. M., & Mahmudi, A. (2021). Dominant 
factors that cause students’ diffculties in learning abstract algebra: A case study at a 
university in Indonesia. International Journal of Instruction, 14(1), 847-866. 

[2] Asiala, M., Dubinsky, E., Mathews, D. M., Morics, S., & Oktac, A. (1997). Devel-
opment of students’ understanding of cosets, normality, and quotient groups. Journal 
of Mathematical Behavior, 16(3), 241-309. 

[3] Bergman, A.M., & French T.A. (2019). Developing an active approach to 
chemistry-based group theory. In M.H. Towns, K. Bain, & J.G. Rodriguez (Eds.), 
It’s Just Math: REsearch on Students’ Understanding of Chemistry and Mathemat-
ics (pp. 213-237). American Chemical Society. 

[4] Bergman, A.M. (2020). Identifying a starting point for the guided reinvention 
of the classifcation of chemically important symmetry groups. (Doctoral Disserta-
tion). Retrieved from https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article= 
6550&context=open access etds 

[5] Cook, J.P. (2012). A guided reinvention of ring, integral domain, and feld. 
(Doctoral Dissertation). Retrieved from https://shareok.org/bitstream/handle/11244/ 
319010/Cook ou 0169D 10846.pdf?sequence=1 

[6] Cook, J.P. (2018). An investigation of an undergraduate student’s reasoning and the 
zero-product property. The Journal of Mathematical Behavior, 49, 95-115. 

[7] Dubinsky, E., Dautermann, J., Leron, U., & Zazkis, R. (1994). On learning funda-
mental concepts of group theory. Educational studies in Mathematics, 27(3), 267-
305. 

[8] Fukawa-Connelly, T., Johnson, E., & Keller, R. (2016). Can math education re-
search improve the teaching of abstract algebra. Notices of the American Mathemat-
ical Society, 63, 276-281. 

[9] Gravemeijer, K. (2004). Local instruction theories as a means of support for teach-
ers in reform mathematics education. Mathematical Thinking and Learning, 6(2), 
105-128. 

255 

https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=6550&context=open_access_etds
https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=6550&context=open_access_etds
https://shareok.org/bitstream/handle/11244/319010/Cook_ou_0169D_10846.pdf?sequence=1
https://shareok.org/bitstream/handle/11244/319010/Cook_ou_0169D_10846.pdf?sequence=1


CHAPTER 3 ABSTRACT ALGEBRA EDUCATION RESEARCH REFERENCES 

[10] Hazzan, O., & Leron, U. (1996). Students’ use and misuse of mathematical the-
orems: The case of Lagrange’s theorem. For the Learning of Mathematics, 16(1), 
23-26. 

[11] Ioannou, M., & Nardi, E. (2009). Engagement, abstraction and visualisation: Cog-
nitive and emotional aspects of year 2 mathematics undergraduates’ learning ex-
perience in Abstract Algebra. Proceedings of the British Society for Research into 
Learning Mathematics, 29(2), 35-40. 

[12] Johnson, E., Andrews-Larson, C., Keene, K., Melhuish, K., Keller, R., & Fortune, 
N. (2020). Inquiry and gender inequity in the undergraduate mathematics classroom. 
Journal for Research in Mathematics Education, 51(4), 504-516. 

[13] Johnson, E., Caughman, J., Fredericks, J., & Gibson, L. (2013). Implementing 
inquiry-oriented curriculum: From the mathematicians’ perspective. The Journal of 
Mathematical Behavior, 32(4), 743-760. 

[14] Larsen, S. (2013). A local instructional theory for the guided reinvention of the 
group and isomorphism concepts. Journal of Mathematical Behavior, 32(4), 712-
725. 

[15] Larsen, S., & Lockwood, E. (2013). A local instructional theory for the guided 
reinvention of the quotient group concept. The Journal of Mathematical Behavior, 
32, 726-742. 

[16] Lockwood, E., Johnson, E., & Larsen, S. (2013). Developing instructor support 
materials for an inquiry-oriented curriculum. The journal of Mathematical Behavior, 
32(4), 776-790. 

[17] Melhuish, K. (2018). Three conceptual replication studies in group theory. Journal 
for Research in Mathematics Education, 49(1), 9-38. 

[18] Melhuish, K., Lew, K., Hicks, M., & Kandasamy, S. (2020). Abstract algebra stu-
dents’ evoked concept images for functions and homomorphisms. Journal of Math-
ematical Behavior, 60, 100806. 

[19] Mena-Lorca, A., & Parraguez, A. M. M. (2016). Mental constructions for the 
group isomorphism theorem. Mathematics Education, 11(2), 377-393. 

[20] Nardi, E. (2000). Mathematics undergraduates’ responses to semantic abbrevia-
tions, ‘geometric’ images and multi-level abstractions in group theory. Educational 
Studies in Mathematics, 43(2), 169-189. 

[21] Prediger, S., Gravemeijer, K., & Confrey, J. (2015). Design research with a focus 
on learning processes: an overview on achievements and challenges. ZDM Mathe-
matics Education, 47(6), 877-891. 

[22] Rupnow, R. (2021). Conceptual metaphors for isomorphism and homomorphism: 
Instructors’ descriptions for themselves and when teaching. Journal of Mathematical 
Behavior, 62, 100867. 

[23] Weber, K. (2001). Student diffculty in constructing proofs: The need for strategic 
knowledge. Educational studies in mathematics, 48(1), 101-119. 

256 



Remaining References 

[1] Alibali, M., & Goldin-Meadow (1993). Gesture-speech mismatch and mechanisms 
of learning: what the hands reveal about a child’s state of mind. Cognitive psychol-
ogy, 25, 468-523. 

[2] Dubinsky, E., & McDonald, M.A. (2001). APOS: A constructivist theory of learn-
ing in undergraduate mathematics education research. In D. Holton, M. Artigue, U. 
Kirchgr´ ’aber, J. Hillel, M. Niss, and A. Schoenfeld (eds) The teaching and learn-
ing of mathematics at university level (pp. 275-282). New ICMI Study Series, vol 7. 
Dordrecht: Springer. 

[3] Betsch, C. (2008). Chronic preferences for intuition and deliberation in decision 
making: Lessons learned about intuition from an individual differences approach. 
Intuition in judgement and decision making, 231-248. 

[4] Betsch, C., & Kunz, J.J. (2008). Individual strategy preferences and decisional ft. 
Journal of Behavioral Decision Making, 21(5), 532-555. 

[5] Bezdek, J.C. (1974). Cluster validity with Fuzzy sets. Journal of Cybernetics, 3,58-
73. 

[6] Bezdek, J.C., Coray, C., Gunderson, R., & Watson, J. (1981). Detection and char-
acterization of cluster substructure. I. Linear structure: Fuzzy c-lines*. Society for 
Industrial and Applied Mathematics Journal 40(2), 339-357. 

[7] Bezdek, J., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering 
algorithm. Computers & Geosciences, 10(2-3), 191-203. 

[8] Neubert, K., & Brunner, E. (2007). A studentized permutation test for the non-
parametric Behrens-Fisher problem. Computational Statistics and Data Analysis, 51, 
5192-5204. 

[9] Campello, R.J., & Hruschka, E.R. (2006). A fuzzy extension of the silhouette width 
criterion for cluster analysis. Fuzzy Sets and Systems, 157(21), 2858-2875. 

[10] Capra, M. G. (2005). Factor analysis of card sort data: an alternative to hierarchi-
cal cluster analysis. In Proceedings of the Human Factors and Ergonomics Society 
Annual Meeting, 49(5), 691-695. Los Angeles: SAGE Publications. 

[11] Chervinskaya, K. R., & Wasserman, E. L. (2000). Some methodological aspects 
of tacit knowledge elicitation. Journal of Experimental & Theoretical Artifcial In-
telligence, 12(1), 43-55. 

257 



REMAINING REFERENCES 

[12] Chi, M. (1997). Quantifying qualitative analyses of verbal data: A practical guide. 
The Journal of the Learning Sciences, 6(3), 271-315. 

[13] Creswell, J.W., & Plano Clark, V.L. (2018). Designing and conducting mixed 
methods research(Third ed.). Thousand Oaks: SAGE Publications. 

[14] Cayley, A. (1878). Desiderata and suggestions: No. 2. The theory of groups: 
graphical representation. American Journal of Mathematics, 1(2), 174-176. 

[15] Davydov, V. (1990). Types of generalization in instruction: Logical and psycho-
logical problems in the structuring of school curricula. Soviet Studies in Mathemat-
ics Education (Vol. 2). National Council of Teachers of Mathematics, Reston, VA. 

[16] Dreyfus, T., Hershkowitz, R., & Schwarz, B. (2015). The nested epistemic actions 
model for Abstraction in Context: Theory as methodological tool and methodolog-
ical tool as theory. In A. Bikner-Ahsbahs, C. Knipping, and N. Presmeg (eds.), Ap-
proaches to qualitative research in mathematics education (pp. 185–217). Dordrecht, 
The Netherlands: Springer. 

[17] Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning 
of mathematics. Educational Studies in Mathematics, 61, 103-131. 

[18] Dummit, D.S., & Foote, R. M. (2004). Abstract Algebra, 3rd ed., Hoboken: John 
Wiley. 

[19] Eli, J.A., Mohr-Schroeder, M.J., & Lee, C.W. (2011). Exploring mathematical 
connections of prospective middle grades teachers through card-sorting tasks. Math-
ematics Education Research Journal, 23(3), 297-319. 

[20] Ely, R. (2017). Defnite integral registers using infnitesimals. The Journal of 
Mathematical Behavior, 48, 152-167. 

[21] Epstein, S., Pacini, R., Denes-Raj, V., & Heier, H. (1996). Individual differences 
in intuitive-experiential and analytical-rational thinking styles. Journal of personality 
and social psychology, 71(2), 390-405. 

[22] Fonger, N. L. (2019). Meaningfulness in representational fuency: An analytic 
lens for students’ creations, interpretations, and connections. The Journal of Mathe-
matical Behavior, 54, 100678. 

[23] Fossum, T., & Haller, S. (2005). Measuring card sort orthogonality. Expert Sys-
tems, 22(3), 139-146. 

[24] Goldin, G.A. (2002). Affect, meta-affect, and mathematical belief structures. 
In Beliefs: A hidden variable in mathematics education?(pp. 59-72). Dordrecht: 
Springer. 

[25] Govindasamy, K., & Velmurugan, T. (2018). Analysis of student academic per-
formance using clustering techniques. International Journal of Pure and Applied 
Mathematics, 119(15), 309-323. 

[26] Grootenboer, P., & Marshman, M. (2016). The affective domain, mathematics, and 
mathematics education. In Mathematics, affect, and learning(pp. 13-33). Singapore: 
Springer. 

258 



REMAINING REFERENCES 

[27] Guetterman, T. (2017). What distinguishes a novice from an expert mixed methods 
researcher? Qual & Quant, 51, 377-398. 

[28] Halverscheid, S. (2008). Building a local conceptual framework for epistemic ac-
tions in a modelling environment with experiments. ZDM, 40(2), 225-234. 

[29] Hillen, A.F., & Malik, L. (2013). Sorting out ideas about function. The mathemat-
ics Teacher, 106(7), 526-533. 

[30] Johansen, M. W., & Misfeldt, M. (2018). Material representations in mathematical 
research practice. Synthese,1-21. 

[31] Judson, T. W. (2018). Abstract algebra: theory and applications. http://abstract. 
pugetsound.edu/ 

[32] Kelly, G. A. (2020). The Psychology of Personal Constructs. Routledge. 

[33] Kidron, I., Lenfant, A., Bikner-Ahsbahs, A., Artigue, M., & Dreyfus, T. (2008). 
Toward networking three theoretical approaches: the case of social interactions. 
ZDM, 40(2), 247-264. 

[34] Lajos, J., & Stewart, S. (2020). A tour of cognitive transformations of semiotic 
representations in advanced mathematical thinking. Proc. 23rd Conference of the 
Special Interest Group of the Mathematical Association of America on Research in 
Undergraduate Mathematics Education, Boston, MA. 

[35] Larsen, S., & Zandieh, M. (2008). Proofs and refutations in the undergraduate 
mathematics classroom. Educational Studies in Mathematics, 67(3), 205-216. 

[36] Leech, N.L., & Onwuegbuzie, A.J. (2009). A typology of mixed methods research 
designs. Quality & Quantity, 43(2), 265-275. 

[37] Lipton, R. J., & Regan, K. W. (2013). Enrico Bombieri: On Intuition. In People, 
Problems, and Proofs (pp. 65-69). Springer-Verlag: Berlin, Heidelberg. 

[38] Maracci, M. (2008). Combining different theoretical perspectives for analyzing 
students’ diffculties in vector spaces theory. ZDM, 40(2), 265-276. 

[39] McGee, D. L., & Moore-Russo, D. (2015). Impact of explicit presentation of 
slopes in three dimensions on students’ understanding of derivatives in multivari-
able calculus. International Journal of Science and Mathematics Education (13)(2), 
357-384. 

[40] Merriam, S.B., & Tisdell, E.J. (2015). Qualitative research: A guide to design and 
implementation. San Francisco: John Wiley & Sons Inc. 

[41] Nayak, J., Naik, B., & Behera, H. (2015). Fuzzy C-means (FCM) clustering al-
gorithm: a decade of review from 2000 to 2014. Computational intelligence in data 
mining volume 2, 133-149. 

[42] Norris, P., & Epstein, S. (2011). An experiential thinking style: Its facets and 
relations with objective and subjective criterion measures. Journal of personality, 
79(5), 1043-1080. 

259 

http://abstract.pugetsound.edu/
http://abstract.pugetsound.edu/


REMAINING REFERENCES 

[43] Pacini, R., & Epstein, S. (1999). The relation of rational and experiential informa-
tion processing styles to personality, basic beliefs, and the ratio-bias phenomenon. 
Journal of personality and social psychology, 76(6), 972. 

[44] Peirce, C. S. (1992). The essential Peirce: selected philosophical writings (Vol. 
2). Bloomington: Indiana University Press. 

[45] Piatetski-Shapiro, I. (1983). Complex Representations of GL(2,K) for Finite 
Fields K (Vol. 16). American Mathematical Society. 

[46] Plano Clark, V. (2019). Meaningful integration within mixed methods studies: 
Identifying why, what, when, and how. Contemporary Educational Psychology, 57, 
106-111. 

[47] Poincare,´ H. (1969). Classics in mathematics education: Intuition and logic in 
mathematics. The Mathematics Teacher, 62(3), 205-212. 

[48] Pretz, J. E., Brookings, J. B., Carlson, L. A., Humbert, T. K., Roy, M., Jones, M., 
& Memmert, D. (2014). Development and validation of a new measure of intuition: 
The types of intuition scale. Journal of Behavioral Decision Making, 27(5), 454-467. 

[49] Rawashdeh, M., & Ralescu, A. Crisp and fuzzy cluster validity: generalized intra-
inter silhouette index. In Proceedings of the IEEE Annual Meeting North American 
Fuzzy Information Processing Society, 2012, 11-18. 

[50] Rugg, G., & McGeorge, P. (2005). The sorting techniques: a tutorial paper on card 
sorts, picture sorts and item sorts. Expert Systems, 22(3), 94-107. 

[51] Tao, T. (2010). Cayley graphs and the geometry of groups. https://terrytao. 
wordpress.com/2010/07/10/cayley-graphs-and-the-geometry-of-groups/ 

[52] Tashakkori, A., & Creswell, J.W. (2007). The new era of mixed methods. Journal 
of Mixed Methods Research, 1(1), 3-7. 

[53] Vinner, S. (1997). The pseudo-conceptual and the pseudo-analytical thought pro-
cesses in mathematics learning. Educational Studies in Mathematics, 34(2), 97-129. 

[54] Whaley, A. L., & Longoria, R. A. (2009). Preparing card sort data for multidimen-
sional scaling analysis in social psychological research: a methodological approach. 
The Journal of Social Psychology, 149(1), 105-115. 

[55] Zadeh, L. (1965). Fuzzy sets. Information and Control, 8, 338-353. 

[56] Sandoval, I., & Possani, E. (2016). An analysis of different representations for 
vectors and planes in R3 . Educational Studies in Mathematics, 92(1), 109-127. 

[57] Serre, J. (1977). Linear Representations of Finite Groups, Graduate texts in Math-
ematics, 42. New York: Springer-Verlag. 

[58] Skemp, R. (1978). Relational understanding and instrumental understanding. 
Arithmetic Teacher, 26(3), 9-15. 

[59] Dreyfus, T. (1991). Advanced mathematical thinking processes. In D. Tall (Eds.), 
Advanced Mathematical Thinking(pp. 25-41). Dordrecht: Springer. 

260 

https://terrytao.wordpress.com/2010/07/10/cayley-graphs-and-the-geometry-of-groups/
https://terrytao.wordpress.com/2010/07/10/cayley-graphs-and-the-geometry-of-groups/


REMAINING REFERENCES 

[60] Weber, K., & Alcock, L. (2004). Semantic and syntactic proof productions. Edu-
cational studies in mathematics, 56(2), 209-234. 

261 



Appendices 

A. 1 Semi-structured interviews 

A. 1.1 Part I: Card-sort task-based interview protocol 

(Read consent to the participant. If consent is given to audio and video record, then 
move on with the study and make sure the record feature is on in Zoom. If consent is 
not given to audio and video record, then terminate study.) 

Researcher: “In your Zoom chat you will see a link, click on it.” 

(Sends card-sort activity link through zoom chat and participant clicks on the link to 
see card sort activities as shown below. The card sort-activities are listed in the follow-
ing order: (1) groups of order 6, (2) groups of order 8, (3) collapsing structure, and (4) 
adding structure.) 

Card-sort activity link: 
https://teacher.desmos.com/activitybuilder/custom/5f41f38e151b792d94ebc6ff) 

Researcher: “Begin by selecting card-sorting activity (1) titled groups of order 6. A set 
of cards will now be displayed on your screen. Each card that you see represents some 
fnite group of order 6. Take about 10 minutes to look at and get acquainted with these 
cards.” 
(Ask participant to share the screen that displays their view of the card-sort activity. 
The cards will be randomly scattered on the screen for each activity as shown below.) 

Card images are from Carter, N. (2006). Group Explorer, Version 2.0 [computer soft-
ware]. Waltham, MA. 
Researcher: “What are some of your frst thoughts about the cards?” 
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Researcher: Now I want you to form piles of cards that represent the same group. 
Create a maximal card pile for each group you see. A maximal card pile for a group G 
is a set of cards M where each card in M represents G and is the largest possible pile 
that you can make for G at this time. 

(Participants are given time to create card piles and instructed to think aloud as they 
form the piles) 

(Researcher asks the following questions for each card pile that the participant makes) 

1. Researcher: “First, tell me about each of the cards in your pile separately? What 
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information can be extracted from each of the cards?” 

2. Researcher: “Why do these cards go in the same pile? How are they related? 
Explain your reasoning.” 

3. Researcher: “Are there any additional ways you like to represent or think about 
a group of order (insert order) that is not given by a card on the board?” (If the 
participant answers yes, then allow the participant to make their own card and 
add it to the card set) 

4. Researcher: “Are there any other cards you want to add or remove from this pile? 
Is this your maximal card pile? Explain.” 
(If the participant affrms that their pile is maximal, then move on to the next 
activity.) 
(If the participant states that their pile is not maximal or is hesitant, move on to 
question 4.) 

5. Researcher: “I see that you are unsure. Take some more time to think about your 
piles, decide whether or not you want to make any modifcations to your piles.” 
(Once the participant is fnished taking time to think more and possibly make 
modifcations repeat question 3. Continue this loop until the participant affrms 
that their pile is maximal or are unable to make any further modifcations.) 

Follow up with the mode of aquisition survey for each card-collection of interpretations. 
(End this interview session and schedule a follow up session with the participant for 
activity (3) and (4) the following week.) 

A. 1.2 Part II: Collapsing and Adding structure task-based interview 
protocol 

(Read oral consent to the participant. If consent is given to audio and video 
record, then move on with the study and make sure the record feature is on in Zoom. If 
consent is not given to audio and video record then terminate study.) 

1. Researcher: “In your Zoom chat you will see a link, click on it.” (Sends card-sort 
activity link through zoom chat and participant clicks on the link to see card sort 
activities. Also instruct them to pull up group explorer so that they can manipulate 
the cards dynamically) 

Collapsing structure task-based interview protocol 
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Activity link: 
https://teacher.desmos.com/activitybuilder/custom/5f41f38e151b792d94ebc6ff) 

2. Researcher: “Click on the link and now select activity (3) titled Collapsing Struc-
ture: D4 (dihedral group of order 8) and Q8.” 
(The researcher will set up activity by arranging cards into piles as shown below.) 

3. Researcher: “Are the groups D4 [dihedral group of order eight] and Q8 isomor-
phic or not? How can you tell?” (If a wrong answer is given try to guide the 
student to recognize the confict. After they provide an answer reiterate that D4 
and Q8 are not isomorphic before moving on.) 

4. Researcher: “Is there some way that you can modify both D4 by losing infor-
mation or collapsing some structure and modify Q8 by losing information or col-
lapsing some structure so that the resultant modifcation to D4 is a group that is 
isomorphic to the resultant modifcation to Q8?” 
(Remind the participant to think aloud and give them space to think. Tell them to 
use a piece of notebook paper if they need to work something out.) 

5. Researcher: “Describe what losing information or collapsing structure means to 
you in the context of this abstract algebra task?” (Tighten task using a mapping 
diagram and insert homomorphism or quotient map depending on what aligns 
with their response to the previous question.) (If participant provides a predom-
inant response using a Cayley digraph such as collapsing parts of the digraph 
then follow up with switch prompt question 1. If the participant provides a pre-
dominantly formal response, such as using the group presentation, using quotient 
diagrams, and using language like homomorphism, quotient, and lists of cosets 
go to switch prompt question 2 and 3. If the participant provides a nice mixed 
response that illustrates their fexible use in language, then move on to question 4 
and activity 4.) 

Switch register prompts for collapsing structure task: 

1. Researcher: “Can you translate what it means to lose information or collapse 
structure like you did in the case of Dihedral group of order eight and Q8 using 
more formal language? What are the explicit quotient maps? What is the explicit 
isomorphism map? Where you looking at any of the cards to formulate an answer 
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to the previous question? Which cards? Are there any underlying assumptions 
that you are using that need to be formalized?” 

2. Researcher: “Can you translate what it means to lose information or collapse 
structure like you did in the case of the Dihedral group of order eight and Q8 
using more visual intuitive language? Were you looking at any of the cards to 
formulate an answer to the previous question? Which cards?” 

3. Researcher: “Can you translate what it means to collapse structure like you did in 
the case of the dihedral group of order eight and Q8 using the Cayley digraphs?” 

4. Researcher: “What was the most diffcult part of this task?” 

(Instruct the participant to take a picture of their work and solutions and email it to the 
Principal Investigator. Have the participant take a break and move on to activity 4, the 
adding structure task, by hitting the next button.) 
Adding structure task-based interview protocol (The researcher will set up activity 
4 by arranging cards into piles as shown below.) 

1. Researcher:“Last time you were collapsing structure, in this task you will be 
adding or combining structure. Can you build a larger group by combining the 
dihedral group of order eight and Z2?” 

(Remind the participant to think aloud and give them space to think. Tell them to 
use a piece of notebook paper if they need to work something out.) 

(If participant provides a predominantly visual intuitive response, such as com-
bining both Cayley digraphs in a way that gives a visual cross product then follow 
up with question 1 below. If the participant provides a response, such as using 
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the group presentation, multiplication table and taking the formal cross product 
without the use of other representations go to question 2 below. If the participant 
provides a nice mixed response that illustrates their fexible use in language, then 
end the study and thank the participant for their time.) 

Switch register prompts for adding structure task: 

1. Researcher: “Can you translate what it means to combine the groups using more 
formal language?” “Were you looking at any of the cards to formulate an answer 
to the previous question? Which cards/representations are you thinking about?” 
“Is there a common name for the group you are trying to construct?” 

2. Researcher: “Can you translate what it means to combine the groups using lan-
guage that describes what is visually going on?” Were you looking at any of the 
cards to formulate an answer to the previous question? Which cards?” 

3. Researcher: “Can you translate what it means to add structure using the Cayley 
digraphs?” “Does the group you are constructing have a common name?” 

4. Researcher: “What was the most diffcult part of this task?” 

(If no progress made on D4 x Z2 (3 generators) on the adding structure task try Z2 x Z4 
(2 generators)) 

(Instruct the participant to take a picture of work, scratch work, and solutions and email 
it to the Principal Investigator. Thank the participant for their time and conclude part II 
of the study.) 
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A. 1.3 Part III: Baseline questionnaire for group actions 

Defnition: A group action is a function · : G × X → X that maps (g, x) to g · x 

such that e · x = x and g · (h · x) = gh · x for all g, h ∈ G and x ∈ X . 

Defnition: A group orbit for an element x ∈ X is defned as Orb(x) = {g· ∈ 

X : g ∈ G}. 

Defnition: A stabilizer for an x ∈ X is defned as stab(x) = {g ∈ G : g ·x} = x. 

(1) Translate the defnition of a group action above in terms of homomorphism 
language. 

(2) Give three examples of a group action. 

(3) Describe a stabilizer in your own words. 

(4) Describe a group orbit in your own words. 

(5) Does the defnition of a group orbit feel familiar to you? Does it remind you 
of an object that you are more comfortable with or have worked with before? 

268 



A. 2. SURVEYS 

A. 2 Surveys 

A. 2.1 Modes of Semiotic Representation Acquisition Survey 

Mode of Acqui- Statement 
sition 
Sanctioned 1. I was directly taught or told how to represent or 

think about (insert group) this way be my instructor 
2. I learned how to represent or think about (insert 
group) this way through social interactions with my 
peers, activities in class or outside of class with little 
direction from an instructor 
3. I have never seen this way of representing (in-
sert group) before, but I fgured out what this card 
is telling me about the group during this study by 
spending time playing with it and looking at things 
from various angles. 

Non-sanctioned 4. I created this representation or way of thinking 
about (insert group) prior to this study on my own 
outside of class by spending a lot of time playing 
with and looking at (insert group) from many differ-
ent angles. 
5. Other 

A. 2.2 The Non-creative Versus Creative Forms of Intuition Survey 
with Confdence in Truth Items 
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Instructions: Fill out the survey for each intuition that you recorded in 

your journal.  Circle the number that measures how much you agree with 

each of the statements below.        

1 I have never experienced this intuition before. 

Strongly Disagree 1     2      3      4      5      6       Strongly Agree      

2 This intuition feels familiar like something I have thought about or have come 

across before. 

Strongly Disagree 1     2      3      4      5      6      Strongly Agree      

 

3 The moment this intuition came to mind I had an intense and positive 

emotional reaction like feelings of euphoria, elation, or exhilaration. 

Strongly Disagree 1     2      3      4      5      6      Strongly Agree      

 

4 The moment this intuition came to mind I had little to no emotional reaction.  

Strongly Disagree 1     2      3      4      5      6      Strongly Agree      

  

5 I found it difficult to externalize the intuition held in my mind. I felt like I did 

not have a coherent language to express it. 

Strongly Disagree 1     2      3      4      5      6      Strongly Agree      

 

6 I found it easy to transfer the intuition held in my mind into an external verbal 

or written description. 

Strongly Disagree 1     2      3      4      5      6       Strongly Agree      

7 During this task I made sketches or drawings of the way I like to think about 

groups/related concepts that feels unique to me rather than something I picked 

up from others.  

Strongly Disagree 1     2      3      4      5      6      Strongly Agree      

  

8 I relied solely on the ways I have been taught by instructor or textbook to view 

groups/related concepts while working on this task. 

Strongly Disagree 1     2      3      4      5      6       Strongly Agree      

  

9 

 

 

 

I had to use every day non-mathematical language or make drawings of what 

was in my mind in order to initially express my intuition. 

Strongly Disagree 1     2      3      4      5      6      Strongly Agree      

10 I mostly used standard mathematical terms and symbols that I was taught in 

class or textbooks to initially express my intuition. 

Strongly Disagree 1     2      3      4      5      6      Strongly Agree      

11 I got to a point of being stuck so I intentionally took a break from the task to 

let ideas simmer in my mind before I arrived at this intuition. 

Strongly Disagree 1     2      3      4      5      6      Strongly Agree        

 

12 I experienced this intuition about a problem while working for less than 15 

minutes and without taking any breaks. 

Strongly Disagree 1     2      3      4      5      6      Strongly Agree       

 



13 I am confident that my intuition is true 

Strongly Disagree 1     2      3      4      5      6      Strongly Agree      

14 I am so confident that my intuition is true that a rigorous proof of it just feels 

like busy work at this point. 

Strongly Disagree 1     2      3      4      5      6      Strongly Agree      
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A. 3 Univariate and Fuzzy C-Means Statistics 

A. 3.1 Welch t test 
Welch Two Sample t-test (significant results) 

(two-sided and confid.level=0.95) 

x-Jenni, y-Alex 

#3 Emotional intensity 

data: x and y 

t = 4.2762, df = 10, p-value = 0.001621 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 

0.6966425 2.2124484 

sample estimates: 

mean of x mean of y 

4.454545 3.000000 

#4 Emotional intentsity 

data: x and y 

t = -11, df = 7.1446, p-value = 9.793e-06 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 

-4.893169 -3.167438 

sample estimates: 

mean of x mean of y 

1.636364 5.666667 

#7 Non-Sanct. rep cues 

data: x and y 

t = 7.1157, df = 10, p-value = 3.234e-05 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 

2.560144 4.894401 

sample estimates: 

mean of x mean of y 

4.727273 1.000000 

#11 Incubation 

data: x and y 

t = 2.8025, df = 10.92, p-value = 0.01731 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 

0.4700011 3.9239383 

sample estimates: 

mean of x mean of y 

3.363636 1.166667 

#12 Incubation* 
data: x and y 

t = -2.7629, df = 10, p-value = 0.02003 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 

-3.2844561 -0.3519076 
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sample estimates: 

mean of x mean of y 

3.181818 5.000000 

A. 3.2 Permuted Brunner Munzel Test 
Brunner Munzel Permutation Test (significant results) 

>brunnermunzel.permutation.test(x,y, 

alternative = c("two.sided"), force=TRUE) 

x-Jenni, y-Alex 

#3 Emotional intensity 

data: x and y 

p-value = 0.009454 

sample estimates: 

P(X<Y)+.5*P(X=Y) 

0.09090909 

#4 Emotional intentsity 

data: x and y 

p-value = 8.08e-05 

sample estimates: 

P(X<Y)+.5*P(X=Y) 

1 

#7 Non-Sanct. rep cues 

data: x and y 

p-value = 0.0003232 

sample estimates: 

P(X<Y)+.5*P(X=Y) 

0.04545455 

#11 Incubation period 

data: x and y 

p-value = 0.07523 

sample estimates: 

P(X<Y)+.5*P(X=Y) 

0.2727273 

> brunnermunzel.permutation.test(x,y, 

alternative=c("greater"), force=TRUE) 

x-Jenni, y-Alex 

#3 Emotional intensity 

data: x and y 

p-value = 0.006626 

sample estimates: 

P(X<Y)+.5*P(X=Y) 

0.09090909 

#7 Non-Sanct. rep cues 

data: x and y 

p-value = 8.08e-05 

sample estimates: 
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P(X<Y)+.5*P(X=Y) 

0.04545455 

#11 Incubation 

data: x and y 

p-value = 0.05769 

sample estimates: 

P(X<Y)+.5*P(X=Y) 

0.2727273 

brunnermunzel.permutation.test(x,y, 

alternative=c("less"), force=TRUE) 

x-Jenni, y-Alex 

#4 Emotional Intensity 

data: x and y 

p-value = 8.08e-05 

sample estimates: 

P(X<Y)+.5*P(X=Y) 

1 
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A. 3.3 Clusters with validity indices NCC attributes 
No. Clusters = 2, Weighting Exponent m=2 

>library(’fcm’) 

>install.packages("ppclust") 

>install.packages("fclust") 

>JAdataNCC <- read_excel 

("C:/Users/Jessi Lajos/Downloads/JAdataNCC.xls") 

>res.fcm <- fcm(JAdataNCC, centers=2) 

>as.data.frame(res.fcm$u)[1:17,] 

Cluster 1 Cluster 2 

1 0.5862537 0.4137463 

2 0.3052886 0.6947114 

3 0.6161819 0.3838181 

4 0.6161819 0.3838181 

5 0.6161819 0.3838181 

6 0.1646148 0.8353852 

7 0.4309691 0.5690309 

8 0.1861474 0.8138526 

9 0.4330003 0.5669997 

10 0.2337922 0.7662078 

11 0.2539677 0.7460323 

12 0.8139089 0.1860911 

13 0.8613089 0.1386911 

14 0.8870995 0.1129005 

15 0.6952607 0.3047393 

16 0.8139089 0.1860911 

17 0.8542094 0.1457906 

>summary(res.fcm)\s 

Number of data objects: 17 

Number of clusters: 2 

Crisp clustering vector: 

[1] 1 2 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 

Initial cluster prototypes: 

#1 PersNov #2 PersNov* #3 EmotionalI #4 EmotionalI* 
Cluster 1 4 3 4 1 

Cluster 2 2 5 6 1 

#5 EaseExt #6 EaseExt* #7 NonSanctCues #8 SanctCues* 
Cluster 1 1 6 2 3 

Cluster 2 1 6 5 1 

#9 NonSanctOut #10 SanctOut* #11 IncubP #12 IncubP* 
Cluster 1 1 5 2 5 

Cluster 2 3 5 6 1 

Final cluster prototypes: 

#1 PersNov #2 PersNov* #3 EmotionalI #4 EmotionalI* 
Cluster 1 1.765483 5.071278 3.361064 4.315312 

Cluster 2 2.145535 4.275801 4.711482 1.708640 

#5 EaseExt #6EaseExt* #7 NonSanctCues #8 SanctCues* 
Cluster 1 2.296533 4.637798 2.312194 2.002540 

Cluster 2 2.838854 3.551115 4.590355 2.204996 

#9 NSanctOt #10 SanctOt* #11 IncubP #12 IncubP* 
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Cluster 1 2.896175 3.585264 1.394381 4.877264 

Cluster 2 3.456567 3.404698 4.391023 2.308405 

Distance between the final cluster prototypes 

Cluster 1 

Cluster 2 32.02712 

Difference between the initial and final cluster prototypes 

#1 PersNov #2 PersNov* #3 EmotionalI #4 EmotionalI* 
Cluster 1 -2.2345170 2.0712783 -0.6389355 3.3153117 

Cluster 2 0.1455347 -0.7241992 -1.2885184 0.7086398 

#5 EaseExt #6EaseExt* #7 NonSanctCues #8 SanctCues* 
Cluster 1 1.296533 -1.362202 0.3121944 -0.9974599 

Cluster 2 1.838854 -2.448885 -0.4096449 1.2049959 

#9 NSanctOt #10 SanctOt* #11 IncubP #12 IncubP* 
Cluster 1 1.8961745 -1.414736 -0.605619 -0.1227364 

Cluster 2 0.4565668 -1.595302 -1.608977 1.3084054 

Root Mean Squared Deviations (RMSD): 5.101523 

Mean Absolute Deviation (MAD): 180.0373 

Membership degrees matrix (top and bottom 5 rows): 

Cluster 1 Cluster 2 

1 0.5862537 0.4137463 

2 0.3052886 0.6947114 

3 0.6161819 0.3838181 

4 0.6161819 0.3838181 

5 0.6161819 0.3838181 

... 

Cluster 1 Cluster 2 

13 0.8613089 0.1386911 

14 0.8870995 0.1129005 

15 0.6952607 0.3047393 

16 0.8139089 0.1860911 

17 0.8542094 0.1457906 

Descriptive statistics for the membership degrees by clusters 

Size Min Q1 Mean Median Q3 Max 

Cls1 10 0.5862537 0.6161819 0.7360496 0.7545848 0.8441343 0.8870995 

Cls2 7 0.5669997 0.6318712 0.7131743 0.7460323 0.7900302 0.8353852 

Dunn’s Fuzziness Coefficients: 

dunn_coeff normalized 

0.6268877 0.2537753 

Within cluster sum of squares by cluster: 

1 2 

199.9000 171.1429 

(between_SS / total_SS = 26.22%) 

>res.fcmvalidity <- ppclust2(res.fcm, "fclust") 

>S <- SIL.F(res.fcmvalidity$Xca, res.fcmvalidity$U, alpha=1) 

>paste("Fuzzy Silhouette Index: ",S) 
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[1] "Fuzzy Silhouette Index: 0.503551319867993" 

>H <- PE(res.fcmvalidity$U) 

>paste("Partition Entropy: ",H) 

[1] "Partition Entropy: 0.555500049246217" 

>F <- PC(res.fcmvalidity$U) 

>paste("Partition Coefficient", F) 

[1]"Partition Coefficient 0.626887673705641" 

No. Clusters = 3, Weighting Exponent m=2, Fuzzy C-Means Algorithm 

>res.fcm <- fcm(JAdataNCC, centers=3) 

> as.data.frame(res.fcm$u)[1:17,] 

Cluster 1 Cluster 2 Cluster 3 

1 0.23090427 0.28413601 0.48495972 

2 0.65695811 0.20473749 0.13830440 

3 0.02613597 0.03571561 0.93814842 

4 0.02613597 0.03571561 0.93814842 

5 0.02613597 0.03571561 0.93814842 

6 0.74895614 0.10404533 0.14699852 

7 0.43746008 0.33229443 0.23024549 

8 0.77145894 0.09798747 0.13055359 

9 0.28200148 0.21497613 0.50302239 

10 0.55442278 0.15311493 0.29246229 

11 0.69538566 0.15935982 0.14525451 

12 0.05929375 0.86439828 0.07630798 

13 0.06938575 0.80564514 0.12496910 

14 0.02817288 0.92541201 0.04641511 

15 0.19767162 0.52279657 0.27953181 

16 0.05929375 0.86439828 0.07630798 

17 0.12151491 0.66095704 0.21752805 

> summary(res.fcm) 

Summary for ’res.fcm’ 

Number of data objects: 17 

Number of clusters: 3 

Crisp clustering vector: 

[1] 3 1 3 3 3 1 1 1 3 1 1 2 2 2 2 2 2 

Initial cluster prototypes: 

#1 PersNov #2 PersNov* #3 EmotionalI #4 EmotionalI* #5 EaseExt 

Cluster 1 1 6 

Cluster 2 5 1 

Cluster 3 3 3 

#6EaseExt* #7 NonSanctCues 

Cluster 1 1 5 

Cluster 2 6 1 

Cluster 3 5 5 

4 

3 

5 

#8 SanctCues* 
2 

2 

2 

2 5 

6 1 

2 1 

#9 NSanctOt #10 SanctOt* 
4 2 

3 3 

3 3 

#11 Incubation Period #12 Incubation Period* 
Cluster 1 6 3 

Cluster 2 1 5 
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Cluster 3 1 3 

Final cluster prototypes: 

#1 PersNov #2 PersNov* #3 EmotionalI #4 EmotionalI* #5 EaseExt 

Cluster 1 2.154471 4.160795 4.863720 1.537990 3.371506 

Cluster 2 1.544829 5.333987 3.073310 5.407282 2.786039 

Cluster 3 1.525570 5.348187 4.069294 2.047270 1.167312 

#6EaseExt* #7 NonSanctCues #8 SanctCues* #9 NSanctOt #10 SanctOt* 
Cluster 1 2.852427 4.572239 2.538154 3.680901 3.177512 

Cluster 2 4.180987 1.224863 2.126536 3.421249 3.157124 

Cluster 3 5.737880 5.349752 1.306877 2.150997 4.665085 

#11 Incubation Period #12 Incubation Period* 
Cluster 1 5.315996 1.652016 

Cluster 2 1.264258 4.799672 

Cluster 3 1.315513 5.388418 

Distance between the final cluster prototypes 

Cluster 1 Cluster 2 

Cluster 2 59.79938 

Cluster 3 52.51882 39.24972 

Difference between the initial and final cluster prototypes 

#1 PersNov #2 PersNov* #3 EmotionalI #4 EmotionalI* #5 EaseExt 

Cluster 1 1.154471 -1.839205 0.86372049 -0.46201019 -1.6284940 

Cluster 2 -3.455171 4.333987 0.07330983 -0.59271844 1.7860389 

Cluster 3 -1.474430 2.348187 -0.93070626 0.04726973 0.1673118 

#6EaseExt* #7 NonSanctCues #8 SanctCues* #9 NSanctOt #10 SanctOt* 
Cluster 1 1.8524275 -0.4277610 0.5381541 -0.3190993 1.1775121 

Cluster 2 -1.8190133 0.2248630 0.1265359 0.4212489 0.1571242 

Cluster 3 0.7378804 0.3497518 -0.6931234 -0.8490031 1.6650852 

#11 Incubation Period #12 Incubation Period* 
Cluster 1 -0.6840043 -1.3479839 

Cluster 2 0.2642585 -0.2003277 

Cluster 3 0.3155128 2.3884180 

Root Mean Squared Deviations (RMSD): 4.932512 

Mean Absolute Deviation (MAD): 150.8645 

Membership degrees matrix (top and bottom 5 rows): 

Cluster 1 Cluster 2 Cluster 3 

1 0.23090427 0.28413601 0.4849597 

2 0.65695811 0.20473749 0.1383044 

3 0.02613597 0.03571561 0.9381484 

4 0.02613597 0.03571561 0.9381484 

5 0.02613597 0.03571561 0.9381484 

... 

Cluster 1 Cluster 2 Cluster 3 

13 0.06938575 0.8056451 0.12496910 

14 0.02817288 0.9254120 0.04641511 

15 0.19767162 0.5227966 0.27953181 

16 0.05929375 0.8643983 0.07630798 

17 0.12151491 0.6609570 0.21752805 

Descriptive statistics for the membership degrees by clusters 
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Size Min Q1 Mean Median Q3 Max 

Cluster 1 6 0.4374601 0.5800566 0.6441070 0.6761719 0.7355635 0.7714589 

Cluster 2 6 0.5227966 0.6971291 0.7739346 0.8350217 0.8643983 0.9254120 

Cluster 3 5 0.4849597 0.5030224 0.7604855 0.9381484 0.9381484 0.9381484 

Dunn’s Fuzziness Coefficients: 

dunn_coeff normalized 

0.6079195 0.4118792 

Within cluster sum of squares by cluster: 

1 2 3 

140.3333 64.5000 49.2000 

(between_SS / total_SS = 53.18%) 

> res.fcmvalidity <- ppclust2(res.fcm, "fclust") 

> S <- SIL.F(res.fcmvalidity$Xca, res.fcmvalidity$U, alpha=1) 

> paste("Fuzzy Silhouette Index: ",S) 

[1] "Fuzzy Silhouette Index: 0.569220623213061" 

> H<- PE(res.fcmvalidity$U) 

> paste("Partition Entropy: ",H) 

[1] "Partition Entropy: 0.697681887166419" 

> F <- PC(res.fcmvalidity$U) 

> paste("Partition Coefficient", F) 

[1] "Partition Coefficient 0.60791945531254" 

No. Clusters = 4, Weighting Exponent m=2, Fuzzy C-Means Algorithm 

> res.fcm <- fcm(JAdataNCC, centers=4) 

> as.data.frame(res.fcm$u)[1:17,] 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

1 0.112739096 0.17625541 0.099406408 0.611599086 

2 0.155570832 0.09767078 0.505187294 0.241571091 

3 0.003572314 0.98812735 0.002707738 0.005592597 

4 0.003572314 0.98812735 0.002707738 0.005592597 

5 0.003572314 0.98812735 0.002707738 0.005592597 

6 0.083842410 0.11061203 0.646600877 0.158944683 

7 0.250720484 0.15862737 0.323138085 0.267514058 

8 0.072302676 0.09176985 0.701688042 0.134239429 

9 0.097859260 0.18841905 0.130937860 0.582783831 

10 0.113929301 0.20646980 0.428834146 0.250766750 

11 0.124504534 0.10572482 0.636542628 0.133228021 

12 0.870199714 0.03977316 0.032184320 0.057842805 

13 0.707004223 0.10303471 0.059741623 0.130219440 

14 0.906564973 0.03106656 0.019788017 0.042580454 

15 0.286864215 0.15278171 0.117205930 0.443148147 

16 0.870199714 0.03977316 0.032184320 0.057842805 

17 0.398878006 0.14729814 0.092693698 0.361130153 

> summary(res.fcm) 

Summary for ’res.fcm’ 

Number of data objects: 17 
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Number of clusters: 4 

Crisp clustering vector: 

[1] 4 3 2 2 2 3 3 3 4 3 3 1 1 1 4 1 1 

Initial cluster prototypes: 

#1 PersNov #2 PersNov* #3 EmotionalI #4 EmotionalI* #5 EaseExt 

Cluster 1 2 5 3 4 2 

Cluster 2 3 3 2 2 6 

Cluster 3 2 4 5 1 4 

Cluster 4 1 6 4 2 5 

#6EaseExt* #7 NonSanctCues #8 SanctCues* #9 NSanctOt #10 SanctOt* 
Cluster 1 5 1 3 1 3 

Cluster 2 1 4 1 6 1 

Cluster 3 2 6 4 2 5 

Cluster 4 1 5 2 4 2 

#11 Incubation Period #12 Incubation Period* 
Cluster 1 2 5 

Cluster 2 1 2 

Cluster 3 6 1 

Cluster 4 6 3 

Final cluster prototypes: 

#1 PersNov #2 PersNov* #3 EmotionalI #4 EmotionalI* #5 EaseExt 

Cluster 1 1.230786 5.709981 3.032044 5.703612 2.952812 

Cluster 2 1.130173 5.833741 4.016774 2.032038 1.090950 

Cluster 3 2.013847 4.306647 4.904378 1.473528 3.519775 

Cluster 4 3.336107 3.126555 4.073434 2.506090 1.655022 

#6EaseExt* #7 NonSanctCues #8 SanctCues* #9 NSanctOt #10 SanctOt* 
Cluster 1 4.028123 1.128574 2.053278 3.750554 3.068387 

Cluster 2 5.884758 5.807086 1.080170 2.075191 4.885769 

Cluster 3 2.650801 4.813074 2.554907 3.669115 3.180550 

Cluster 4 4.997198 2.884048 2.421079 2.477755 3.570505 

#11 Incubation Period #12 Incubation Period* 
Cluster 1 1.153829 4.864779 

Cluster 2 1.149392 5.780179 

Cluster 3 5.592253 1.575667 

Cluster 4 2.072703 3.797263 

Distance between the final cluster prototypes 

Cluster 1 Cluster 2 Cluster 3 

Cluster 2 51.17233 

Cluster 3 70.56450 66.59855 

Cluster 4 32.11151 30.54751 36.51371 

Difference between the initial and final cluster prototypes 

#1 PersNov #2 PersNov* #3 EmotionalI #4 EmotionalI* #5 EaseExt 

Cluster 1 -0.76921425 0.7099814 0.03204421 1.70361225 0.9528121 

Cluster 2 -1.86982735 2.8337409 2.01677352 0.03203786 -4.9090500 

Cluster 3 0.01384701 0.3066469 -0.09562205 0.47352764 -0.4802248 

Cluster 4 2.33610717 -2.8734453 0.07343398 0.50608971 -3.3449778 

#6EaseExt* #7 NonSanctCues #8 SanctCues* #9 NSanctOt #10 SanctOt* 
Cluster 1 -0.9718773 0.1285735 -0.9467219 2.750554 0.06838685 

Cluster 2 4.8847584 1.8070857 0.0801704 -3.924809 3.88576945 

280 



A. 3. UNIVARIATE AND FUZZY C-MEANS STATISTICS 

Cluster 3 0.6508006 -1.1869258 -1.4450933 1.669115 -1.81944963 

Cluster 4 3.9971982 -2.1159525 0.4210793 -1.522245 1.57050532 

#11 Incubation Period #12 Incubation Period* 
Cluster 1 -0.8461713 -0.1352211 

Cluster 2 0.1493921 3.7801787 

Cluster 3 -0.4077472 0.5756668 

Cluster 4 -3.9272972 0.7972627 

Root Mean Squared Deviations (RMSD): 7.14883 

Mean Absolute Deviation (MAD): 218.3971 

Membership degrees matrix (top and bottom 5 rows): 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

1 0.112739096 0.17625541 0.099406408 0.611599086 

2 0.155570832 0.09767078 0.505187294 0.241571091 

3 0.003572314 0.98812735 0.002707738 0.005592597 

4 0.003572314 0.98812735 0.002707738 0.005592597 

5 0.003572314 0.98812735 0.002707738 0.005592597 

... 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

13 0.7070042 0.10303471 0.05974162 0.13021944 

14 0.9065650 0.03106656 0.01978802 0.04258045 

15 0.2868642 0.15278171 0.11720593 0.44314815 

16 0.8701997 0.03977316 0.03218432 0.05784280 

17 0.3988780 0.14729814 0.09269370 0.36113015 

Descriptive statistics for the membership degrees by clusters 

Siz Min Q1 Mean Median Q3 Max 

Cluster 1 5 0.3988780 0.7070042 0.7505693 0.8701997 0.8701997 0.9065650 

Cluster 2 3 0.9881274 0.9881274 0.9881274 0.9881274 0.9881274 0.9881274 

Cluster 3 6 0.3231381 0.4479224 0.5403318 0.5708650 0.6440863 0.7016880 

Cluster 4 3 0.4431481 0.5129660 0.5458437 0.5827838 0.5971915 0.6115991 

Dunn’s Fuzziness Coefficients: 

dunn_coeff normalized 

0.5662883 0.4217178 

Within cluster sum of squares by cluster: 

1 2 3 4 

27.60000 0.00000 140.33333 39.33333 

(between_SS / total_SS = 60.94%) 

> res.fcmvalidity <- ppclust2(res.fcm, "fclust") 

> S<- SIL.F(res.fcmvalidity$Xca, res.fcmvalidity$U, alpha=1) 

> paste("Fuzzy Silhouette Index: ",S) 

[1] "Fuzzy Silhouette Index: 0.686785780488479" 

> H <- PE(res.fcmvalidity$U) 

> paste("Partition Entropy: ",H) 

[1] "Partition Entropy: 0.832463433402978" 

> F <- PC(res.fcmvalidity$U) 

> paste("Partition Coefficient", F) 
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[1] "Partition Coefficient 0.566288346935951" 

No. Clusters = 2, Weighting Exponent m=1.5, Fuzzy C-Means Algorithm 

> res.fcm <- fcm(JAdataNCC, centers=2, m=1.5) 

> as.data.frame(res.fcm$u)[1:17,] 

Cluster 1 Cluster 2 

1 0.82671520 0.17328480 

2 0.08827339 0.91172661 

3 0.89308290 0.10691710 

4 0.89308290 0.10691710 

5 0.89308290 0.10691710 

6 0.02817517 0.97182483 

7 0.30918419 0.69081581 

8 0.03009909 0.96990091 

9 0.64869828 0.35130172 

10 0.12870720 0.87129280 

11 0.05345039 0.94654961 

12 0.93329972 0.06670028 

13 0.97199942 0.02800058 

14 0.97638541 0.02361459 

15 0.87899093 0.12100907 

16 0.93329972 0.06670028 

17 0.97814617 0.02185383 

> summary(res.fcm) 

Summary for ’res.fcm’ 

Number of data objects: 17 

Number of clusters: 2 

Crisp clustering vector: 

[1] 1 2 1 1 1 2 2 2 1 2 2 1 1 1 1 1 1 

Initial cluster prototypes: 

#1 PersNov #2 PersNov* #3 EmotionalI #4 EmotionalI* #5 EaseExt 

Cluster 1 1 6 4 2 5 

Cluster 2 2 4 6 1 2 

#6EaseExt* #7 NonSanctCues #8 SanctCues* #9 NSanctOt #10 SanctOt* 
Cluster 1 1 5 2 4 2 

Cluster 2 4 6 1 5 2 

#11 Incubation Period #12 Incubation Period* 
Cluster 1 6 3 

Cluster 2 6 1 

Final cluster prototypes: 

#1 PersNov #2 PersNov* #3 EmotionalI #4 EmotionalI* #5 EaseExt 

Cluster 1 1.835837 5.002060 3.457181 4.015388 1.983068 

Cluster 2 2.153616 4.198053 4.779840 1.559293 3.349939 

#6EaseExt* #7 NonSanctCues #8 SanctCues* #9 NSanctOt #10 SanctOt* 
Cluster 1 4.957394 2.699692 1.901300 2.711874 3.770262 

Cluster 2 2.946994 4.531566 2.385778 3.769650 3.151335 

#11 Incubation Period #12 Incubation Period* 
Cluster 1 1.228623 5.064348 

Cluster 2 5.072474 1.718308 
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Distance between the final cluster prototypes 

Cluster 1 

Cluster 2 45.5029 

Difference between the initial and final cluster prototypes 

#1 PersNov #2 PersNov* #3 EmotionalI #4 EmotionalI* #5 EaseExt 

Cluster 1 0.8358371 -0.9979400 -0.5428185 2.0153879 -3.016932 

Cluster 2 0.1536164 0.1980528 -1.2201602 0.5592929 1.349939 

#6EaseExt* #7 NonSanctCues #8 SanctCues* #9 NSanctOt #10 SanctOt* 
Cluster 1 3.957394 -2.300308 -0.09869984 -1.288126 1.770262 

Cluster 2 -1.053006 -1.468434 1.38577765 -1.230350 1.151335 

#11 Incubation Period #12 Incubation Period* 
Cluster 1 -4.7713772 2.0643484 

Cluster 2 -0.9275262 0.7183075 

Root Mean Squared Deviations (RMSD): 6.364883 

Mean Absolute Deviation (MAD): 210.4514 

Membership degrees matrix (top and bottom 5 rows): 

Cluster 1 Cluster 2 

1 0.82671520 0.1732848 

2 0.08827339 0.9117266 

3 0.89308290 0.1069171 

4 0.89308290 0.1069171 

5 0.89308290 0.1069171 

... 

Cluster 1 Cluster 2 

13 0.9719994 0.02800058 

14 0.9763854 0.02361459 

15 0.8789909 0.12100907 

16 0.9332997 0.06670028 

17 0.9781462 0.02185383 

Descriptive statistics for the membership degrees by clusters 

Size Min Q1 Mean Median Q3 Max 

Cluster 1 11 0.6486983 0.8860369 0.8933440 0.8930829 0.9526496 0.9781462 

Cluster 2 6 0.6908158 0.8814012 0.8936851 0.9291381 0.9640631 0.9718248 

Dunn’s Fuzziness Coefficients: 

dunn_coeff normalized 

0.8266468 0.6532937 

Within cluster sum of squares by cluster: 

1 2 

223.2727 140.3333 

(between_SS / total_SS = 32.7%) 

> res.fcmvalidity <- ppclust2(res.fcm, "fclust") 

> S <- SIL.F(res.fcmvalidity$Xca, res.fcmvalidity$U, alpha=1) 

> paste("Fuzzy Silhouette Index: ",S) 

[1] "Fuzzy Silhouette Index: 0.506710125936752" 
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> H <- PE(res.fcmvalidity$U) 

> paste("Partition Entropy: ",H) 

[1] "Partition Entropy: 0.300346449416796" 

> F <- PC(res.fcmvalidity$U) 

> paste("Partition Coefficient", F) 

[1] "Partition Coefficient 0.826646834868445" 

No. Clusters = 3, Weighting Exponent m=1.5, Fuzzy C-Means Algorithm 

> res.fcm <- fcm(JAdataNCC, centers=3, m=1.5) 

> as.data.frame(res.fcm$u)[1:17,] 

Cluster 1 Cluster 2 Cluster 3 

1 0.175498477 0.091547458 0.732954065 

2 0.077242056 0.880375662 0.042382283 

3 0.005914397 0.002838779 0.991246823 

4 0.005914397 0.002838779 0.991246823 

5 0.005914397 0.002838779 0.991246823 

6 0.017530783 0.941535105 0.040934112 

7 0.287648141 0.553059962 0.159291897 

8 0.014660263 0.955256494 0.030083243 

9 0.086693784 0.120565646 0.792740570 

10 0.059306535 0.687820376 0.252873089 

11 0.035489546 0.931702407 0.032808046 

12 0.983941095 0.005823918 0.010234987 

13 0.969654686 0.006755634 0.023589680 

14 0.995664966 0.001105158 0.003229875 

15 0.714905667 0.076521321 0.208573012 

16 0.983941095 0.005823918 0.010234987 

17 0.884023201 0.022015525 0.093961274 

> summary(res.fcm) 

Summary for ’res.fcm’ 

Number of data objects: 17 

Number of clusters: 3 

Crisp clustering vector: 

[1] 3 2 3 3 3 2 2 2 3 2 2 1 1 1 1 1 1 

Initial cluster prototypes: 

#1 PersNov #2 PersNov* #3 EmotionalI #4 EmotionalI* #5 EaseExt 

Cluster 1 1 6 3 6 3 

Cluster 2 2 4 6 1 2 

Cluster 3 1 6 4 2 1 

#6EaseExt* #7 NonSanctCues #8 SanctCues* #9 NSanctOt #10 SanctOt* 
Cluster 1 4 1 2 5 2 

Cluster 2 4 6 1 5 2 

Cluster 3 6 6 1 2 5 

#11 Incubation Period #12 Incubation Period* 
Cluster 1 1 5 

Cluster 2 6 1 

Cluster 3 1 6 
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Final cluster prototypes: 

#1 PersNov #2 PersNov* #3 EmotionalI #4 EmotionalI* #5 EaseExt 

Cluster 1 1.690159 5.166187 3.013326 5.474945 2.685543 

Cluster 2 2.106843 4.216292 4.843200 1.495029 3.548808 

Cluster 3 1.859220 4.949760 4.157999 1.934086 1.093114 

#6EaseExt* #7 NonSanctCues #8 SanctCues* #9 NSanctOt #10 SanctOt* 
Cluster 1 4.304208 1.133088 2.141955 3.289546 3.144712 

Cluster 2 2.673934 4.558191 2.533426 3.815361 3.092299 

Cluster 3 5.748795 5.101979 1.468690 2.126391 4.573413 

#11 Incubation Period #12 Incubation Period* 
Cluster 1 1.201896 4.878329 

Cluster 2 5.461281 1.539839 

Cluster 3 1.308634 5.161300 

Distance between the final cluster prototypes 

Cluster 1 Cluster 2 

Cluster 2 65.11881 

Cluster 3 38.23701 53.58192 

Difference between the initial and final cluster prototypes 

#1 PersNov #2 PersNov* #3 EmotionalI #4 EmotionalI* #5 EaseExt 

Cluster 1 0.6901592 -0.8338131 0.01332645 -0.52505470 -0.31445654 

Cluster 2 0.1068428 0.2162921 -1.15680030 0.49502946 1.54880786 

Cluster 3 0.8592197 -1.0502398 0.15799896 -0.06591382 0.09311418 

#6EaseExt* #7 NonSanctCues #8 SanctCues* #9 NSanctOt #10 SanctOt* 
Cluster 1 0.3042079 0.1330875 0.1419546 -1.710454 1.1447122 

Cluster 2 -1.3260661 -1.4418087 1.5334261 -1.184639 1.0922985 

Cluster 3 -0.2512045 -0.8980206 0.4686897 0.126391 -0.4265871 

#11 Incubation Period #12 Incubation Period* 
Cluster 1 0.2018959 -0.1216712 

Cluster 2 -0.5387185 0.5398387 

Cluster 3 0.3086342 -0.8387001 

Root Mean Squared Deviations (RMSD): 2.78929 

Mean Absolute Deviation (MAD): 91.4403 

Membership degrees matrix (top and bottom 5 rows): 

Cluster 1 Cluster 2 Cluster 3 

1 0.175498477 0.091547458 0.73295407 

2 0.077242056 0.880375662 0.04238228 

3 0.005914397 0.002838779 0.99124682 

4 0.005914397 0.002838779 0.99124682 

5 0.005914397 0.002838779 0.99124682 

... 

Cluster 1 Cluster 2 Cluster 3 

13 0.9696547 0.006755634 0.023589680 

14 0.9956650 0.001105158 0.003229875 

15 0.7149057 0.076521321 0.208573012 

16 0.9839411 0.005823918 0.010234987 

17 0.8840232 0.022015525 0.093961274 

Descriptive statistics for the membership degrees by clusters 

Size Min Q1 Mean Median Q3 Max 
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Cluster 1 6 0.7149057 0.9054311 0.9220218 0.9767979 0.9839411 0.9956650 

Cluster 2 6 0.5530600 0.7359592 0.8249583 0.9060390 0.9390769 0.9552565 

Cluster 3 5 0.7329541 0.7927406 0.8998870 0.9912468 0.9912468 0.9912468 

Dunn’s Fuzziness Coefficients: 

dunn_coeff normalized 

0.8120368 0.7180552 

Within cluster sum of squares by cluster: 

1 2 3 

64.5000 140.3333 49.2000 

(between_SS / total_SS = 54.14%) 

> res.fcmvalidity <- ppclust2(res.fcm, "fclust") 

> S<- SIL.F(res.fcmvalidity$Xca, res.fcmvalidity$U, alpha=1) 

> paste("Fuzzy Silhouette Index: ",S) 

[1] "Fuzzy Silhouette Index: 0.530761123800606" 

> H <- PE(res.fcmvalidity$U) 

> paste("Partition Entropy: ",H) 

[1] "Partition Entropy: 0.357536457651714" 

> F <- PC(res.fcmvalidity$U) 

> paste("Partition Coefficient", F) 

[1] "Partition Coefficient 0.812036801279259" 

No. Clusters = 4, Weighting Exponent m=1.5, Fuzzy C-Means Algorithm 

> res.fcm <- fcm(JAdataNCC, centers=4, m=1.5) 

> as.data.frame(res.fcm$u)[1:17,] 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

1 0.1177650423 0.623317788 0.0709679731 0.187949197 

2 0.2526238757 0.031304621 0.6519354122 0.064136091 

3 0.0012597705 0.996201613 0.0006354544 0.001903162 

4 0.0012597705 0.996201613 0.0006354544 0.001903162 

5 0.0012597705 0.996201613 0.0006354544 0.001903162 

6 0.9406793545 0.010516108 0.0436561043 0.005148433 

7 0.0542050165 0.032581212 0.8525128474 0.060700924 

8 0.7626315666 0.032828300 0.1866069170 0.017933217 

9 0.1982729889 0.609833076 0.0940632380 0.097830697 

10 0.9446679007 0.029545372 0.0176186351 0.008168092 

11 0.1346597437 0.020189333 0.8219880772 0.023162846 

12 0.0039877256 0.009941518 0.0113256192 0.974745138 

13 0.0041674031 0.018375731 0.0070693553 0.970387510 

14 0.0005671558 0.002192161 0.0011708058 0.996069877 

15 0.0672929468 0.174882504 0.0877077363 0.670116813 

16 0.0039877256 0.009941518 0.0113256192 0.974745138 

17 0.0164268371 0.076890197 0.0229675030 0.883715463 

> summary(res.fcm) 

Summary for ’res.fcm’ 

Number of data objects: 17 
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Number of clusters: 4 

Crisp clustering vector: 

[1] 2 3 2 2 2 1 3 1 2 1 3 4 4 4 4 4 4 

Initial cluster prototypes: 

#1 PersNov #2 PersNov* #3 EmotionalI #4 EmotionalI* #5 EaseExt 

Cluster 1 2 4 6 1 2 

Cluster 2 4 3 4 1 1 

Cluster 3 1 6 4 2 5 

Cluster 4 1 6 3 6 3 

#6EaseExt* #7 NonSanctCues #8 SanctCues* #9 NSanctOt #10 SanctOt* 
Cluster 1 4 6 1 5 2 

Cluster 2 6 2 3 1 5 

Cluster 3 1 5 2 4 2 

Cluster 4 4 1 2 5 2 

#11 Incubation Period #12 Incubation Period* 
Cluster 1 6 1 

Cluster 2 2 5 

Cluster 3 6 3 

Cluster 4 1 5 

Final cluster prototypes: 

#1 PersNov #2 PersNov* #3 EmotionalI #4 EmotionalI* #5 EaseExt 

Cluster 1 2.109620 4.247036 5.586304 1.132274 2.254348 

Cluster 2 1.681337 5.179381 4.095479 1.963025 1.026220 

Cluster 3 2.318122 4.028364 3.575102 2.005408 4.924602 

Cluster 4 1.628453 5.258101 3.031845 5.565420 2.614437 

#6EaseExt* #7 NonSanctCues #8 SanctCues* #9 NSanctOt #10 SanctOt* 
Cluster 1 4.095487 5.301739 1.969014 3.454553 3.798127 

Cluster 2 5.853176 5.267239 1.398282 2.022232 4.707149 

Cluster 3 1.452304 3.660045 2.432122 4.582186 2.047118 

Cluster 4 4.375731 1.051974 2.175674 3.209411 3.206704 

#11 Incubation Period #12 Incubation Period* 
Cluster 1 5.729604 1.187582 

Cluster 2 1.151102 5.475020 

Cluster 3 4.066094 2.138962 

Cluster 4 1.190321 4.964498 

Distance between the final cluster prototypes 

Cluster 1 Cluster 2 Cluster 3 

Cluster 2 51.11276 

Cluster 3 29.93487 73.47548 

Cluster 4 81.02328 41.11854 55.19068 

Difference between the initial and final cluster prototypes 

#1 PersNov #2 PersNov* #3 EmotionalI #4 EmotionalI* #5 EaseExt 

Cluster 1 0.1096203 0.2470364 -0.41369635 0.132274196 0.25434755 

Cluster 2 -2.3186634 2.1793813 0.09547873 0.963025169 0.02622019 

Cluster 3 1.3181222 -1.9716357 -0.42489824 0.005407781 -0.07539766 

Cluster 4 0.6284532 -0.7418990 0.03184516 -0.434579835 -0.38556294 

#6EaseExt* #7 NonSanctCues #8 SanctCues* #9 NSanctOt #10 SanctOt* 
Cluster 1 0.09548712 -0.69826115 0.9690142 -1.5454468 1.79812740 
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Cluster 2 -0.14682381 3.26723949 -1.6017175 1.0222320 -0.29285087 

Cluster 3 0.45230363 -1.33995530 0.4321221 0.5821861 0.04711788 

Cluster 4 0.37573095 0.05197395 0.1756736 -1.7905891 1.20670401 

#11 Incubation Period #12 Incubation Period* 
Cluster 1 -0.2703962 0.18758203 

Cluster 2 -0.8488982 0.47501995 

Cluster 3 -1.9339059 -0.86103784 

Cluster 4 0.1903215 -0.03550165 

Root Mean Squared Deviations (RMSD): 3.635687 

Mean Absolute Deviation (MAD): 106.3553 

Membership degrees matrix (top and bottom 5 rows): 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

1 0.117765042 0.62331779 0.070967973 0.187949197 

2 0.252623876 0.03130462 0.651935412 0.064136091 

3 0.001259771 0.99620161 0.000635454 0.001903162 

4 0.001259771 0.99620161 0.000635454 0.001903162 

5 0.001259771 0.99620161 0.000635454 0.001903162 

... 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

13 0.004167403 0.018375731 0.007069355 0.9703875 

14 0.000567156 0.002192161 0.001170806 0.9960699 

15 0.067292947 0.174882504 0.087707736 0.6701168 

16 0.003987726 0.009941518 0.011325619 0.9747451 

17 0.016426837 0.076890197 0.022967503 0.8837155 

Descriptive statistics for the membership degrees by clusters 

Size Min Q1 Mean Median Q3 Max 

Cluster 1 3 0.7626316 0.8516555 0.8826596 0.9406794 0.9426736 0.9446679 

Cluster 2 5 0.6098331 0.6233178 0.8443511 0.9962016 0.9962016 0.9962016 

Cluster 3 3 0.6519354 0.7369617 0.7754788 0.8219881 0.8372505 0.8525128 

Cluster 4 6 0.6701168 0.9053835 0.9116300 0.9725663 0.9747451 0.9960699 

Dunn’s Fuzziness Coefficients: 

dunn_coeff normalized 

0.78151 0.70868 

Within cluster sum of squares by cluster: 

1 2 3 4 

31.33333 49.20000 56.66667 64.50000 

(between_SS / total_SS = 62.94%) 

> res.fcmvalidity <- ppclust2(res.fcm, "fclust") 

> S <- SIL.F(res.fcmvalidity$Xca, res.fcmvalidity$U, alpha=1) 

> paste("Fuzzy Silhouette Index: ",S) 

[1] "Fuzzy Silhouette Index: 0.503573648360626" 

> H <- PE(res.fcmvalidity$U) 

> paste("Partition Entropy: ",H) 

[1] "Partition Entropy: 0.437564938382639" 

> F <- PC(res.fcmvalidity$U) 
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> paste("Partition Coefficient", F) 

[1] "Partition Coefficient 0.78150997269221" 

A. 3.4 Clusters with validity indices additional attributes 

No. Clusters = 2, Weighting Exponent m=1.5, Fuzzy C-Means Algorithm 

> res.fcm <- fcm(JAAddattdata, centers=2, m=1.5) 

> as.data.frame(res.fcm$u)[1:17,] 

Cluster 1 Cluster 2 

1 0.0081954795 0.9918045205 

2 0.0135390210 0.9864609790 

3 0.9924595887 0.0075404113 

4 0.0002695265 0.9997304735 

5 0.9924595887 0.0075404113 

6 0.0176808004 0.9823191996 

7 0.0135390210 0.9864609790 

8 0.9996918254 0.0003081746 

9 0.9958583860 0.0041416140 

10 0.9920750537 0.0079249463 

11 0.9920750537 0.0079249463 

12 0.9920750537 0.0079249463 

13 0.9995682511 0.0004317489 

14 0.9976988226 0.0023011774 

15 0.9996918254 0.0003081746 

16 0.9920750537 0.0079249463 

17 0.9920750537 0.0079249463 

> summary(res.fcm) 

Summary for ’res.fcm’ 

Number of data objects: 17 

Number of clusters: 2 

Crisp clustering vector: 

[1] 2 2 1 2 1 2 2 1 1 1 1 1 1 1 1 1 1 

Initial cluster prototypes: 

#13 ConfTruth1 #14 ConfTruth2 ErrNon-ErrType 

Cluster 1 5 3 4 

Cluster 2 3 1 4 

Final cluster prototypes: 

#13 ConfTruth1 #14 ConfTruth2 ErrNon-ErrType 

Cluster 1 5.415637 3.833170 3.749645 

Cluster 2 2.604285 1.203319 2.802750 

Distance between the final cluster prototypes 

Cluster 1 

Cluster 2 15.71643 

Difference between the initial and final cluster prototypes 

#13 ConfTruth1 #14 ConfTruth2 ErrNon-ErrType 
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Cluster 1 0.4156365 0.8331699 -0.2503553 

Cluster 2-0.3957151 0.2033186 -1.1972500 

Root Mean Squared Deviations (RMSD): 1.131579 

Mean Absolute Deviation (MAD): 4.943168 

Membership degrees matrix (top and bottom 5 rows): 

Cluster 1 Cluster 2 

1 0.008195479 0.991804521 

2 0.013539021 0.986460979 

3 0.992459589 0.007540411 

4 0.000269526 0.999730474 

5 0.992459589 0.007540411 

... 

Cluster 1 Cluster 2 

13 0.9995683 0.000431749 

14 0.9976988 0.002301177 

15 0.9996918 0.000308175 

16 0.9920751 0.007924946 

17 0.9920751 0.007924946 

Descriptive statistics for the membership degrees by clusters 

Size Min Q1 Mean Median Q3 Max 

Cluster1 12 0.9920751 0.9920751 0.9948170 0.9924596 0.9981662 0.9996918 

Cluster2 5 0.9823192 0.9864610 0.9893552 0.9864610 0.9918045 0.9997305 

Dunn’s Fuzziness Coefficients: 

dunn_coeff normalized 

0.9865620 0.9731239 

Within cluster sum of squares by cluster: 

1 2 

12.83333 8.80000 

(between_SS / total_SS = 71.94%) 

> res.fcmvalidity <- ppclust2(res.fcm, "fclust") 

> S <- SIL.F(res.fcmvalidity$Xca, res.fcmvalidity$U, alpha=1) 

> paste("Fuzzy Silhouette Index: ",S) 

[1] "Fuzzy Silhouette Index: 0.835952725302842" 

> H <- PE(res.fcmvalidity$U) 

> paste("Partition Entropy: ",H) 

[1] "Partition Entropy: 0.0385105767753424" 

> F <- PC(res.fcmvalidity$U) 

> paste("Partition Coefficient", F) 

[1] "Partition Coefficient 0.986561968406358" 

No. Clusters = 3, Weighting Exponent m=1.5, Fuzzy C-Means Algorithm 

> res.fcm <- fcm(JAAddattdata, centers=3, m=1.5) 

> as.data.frame(res.fcm$u)[1:17,] 

Cluster 1 Cluster 2 Cluster 3 

1 9.835682e-01 0.0042716572 0.0121601168 

2 9.637757e-01 0.0051507199 0.0310735502 

3 1.043916e-04 0.9970366422 0.0028589661 

4 9.993165e-01 0.0001178697 0.0005656602 
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5 1.043916e-04 

6 9.658348e-01 

7 9.637757e-01 

8 1.167329e-03 

9 3.668311e-04 

10 4.719521e-05 

11 4.719521e-05 

12 4.719521e-05 

13 1.167872e-03 

14 7.472240e-04 

15 1.167329e-03 

16 4.719521e-05 

17 4.719521e-05 

0.9970366422 

0.0105265606 

0.0051507199 

0.0829404855 

0.9822014598 

0.0003118199 

0.0003118199 

0.0003118199 

0.7776272205 

0.9543915648 

0.0829404855 

0.0003118199 

0.0003118199 

> summary(res.fcm) 

Summary for ’res.fcm’ 

Number of data objects: 17 

Number of clusters: 3 

Crisp clustering vector: 

[1] 1 1 2 1 2 1 1 3 2 3 3 3 

Initial cluster prototypes: 

#13 ConfTruth1 #14 

Cluster 1 3 

Cluster 2 6 

Cluster 3 6 

Final cluster prototypes: 

#13 ConfTruth1 #14 

0.0028589661 

0.0236386160 

0.0310735502 

0.9158921850 

0.0174317091 

0.9996409849 

0.9996409849 

0.9996409849 

0.2212049075 

0.0448612112 

0.9158921850 

0.9996409849 

0.9996409849 

2 2 3 3 3 

ConfTruth2 ErrNon-ErrType 

1 4 

5 4 

4 3 

ConfTruth2 ErrNon-ErrType 

Cluster 1 2.600449 1.202636 2.796226 

Cluster 2 5.988028 4.638631 3.368104 

Cluster 3 5.011520 3.267530 3.996599 

Distance between the final cluster prototypes 

Cluster 1 Cluster 2 

Cluster 2 23.608803 

Cluster 3 11.517947 3.228494 

Difference between the initial and final cluster prototypes 

#13 ConfTruth1 #14 ConfTruth2 ErrNon-ErrType 

Cluster 1 -0.39955136 0.2026362 -1.2037739 

Cluster 2 -0.01197156 -0.3613687 -0.6318963 

Cluster 3 -0.98848028 -0.7324696 0.9965992 

Root Mean Squared Deviations (RMSD): 1.249882 

Mean Absolute Deviation (MAD): 5.528747 

Membership degrees matrix 

Cluster 1 Cluster 2 

1 0.983568226 0.004271657 

2 0.963775730 0.005150720 

3 0.000104392 0.997036642 

(top and bottom 5 rows): 

Cluster 3 

0.012160117 

0.031073550 

0.002858966 
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4 0.999316470 0.000117870 0.000565660 

5 0.000104392 0.997036642 0.002858966 

... 

Cluster 1 Cluster 2 Cluster 3 

13 0.001167872 0.77762722 0.22120491 

14 0.000747224 0.95439156 0.04486121 

15 0.001167329 0.08294048 0.91589219 

16 0.000047195 0.00031182 0.99964098 

17 0.000047195 0.00031182 0.99964098 

Descriptive statistics for the membership degrees by clusters 

Size Min Q1 Mean Median Q3 Max 

Cluster1 5 0.9637757 0.9637757 0.9752542 0.9658348 0.9835682 0.9993165 

Cluster2 5 0.7776272 0.9543916 0.9416587 0.9822015 0.9970366 0.9970366 

Cluster3 7 0.9158922 0.9577666 0.9757128 0.9996410 0.9996410 0.9996410 

Dunn’s Fuzziness Coefficients: 

dunn_coeff normalized 

0.9392371 0.9088557 

Within cluster sum of squares by cluster: 

1 2 3 

8.800000 2.400000 1.428571 

(between_SS / total_SS = 83.75%) 

> res.fcmvalidity <- ppclust2(res.fcm, "fclust") 

> S <- SIL.F(res.fcmvalidity$Xca, res.fcmvalidity$U, alpha=1) 

> paste("Fuzzy Silhouette Index: ",S) 

[1] "Fuzzy Silhouette Index: 0.733746614524144" 

> H <- PE(res.fcmvalidity$U) 

> paste("Partition Entropy: ",H) 

[1] "Partition Entropy: 0.122095053608784" 

> F <- PC(res.fcmvalidity$U) 

> paste("Partition Coefficient", F) 

[1] "Partition Coefficient 0.939237111330002" 

No. Clusters = 4, Weighting Exponent m=1.5, Fuzzy C-Means Algorithm 

> res.fcm <- fcm(JAAddattdata, centers=4, m=1.5) 

> as.data.frame(res.fcm$u)[1:17,] 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

1 0.0011616747 4.103401e-04 1.095911e-02 9.874689e-01 

2 0.0001355106 2.264168e-05 9.996361e-01 2.057141e-04 

3 0.0028120258 9.970083e-01 1.059983e-04 7.369762e-05 

4 0.0019083483 4.007458e-04 9.813434e-01 1.634749e-02 

5 0.0028120258 9.970083e-01 1.059983e-04 7.369762e-05 

6 0.0004506388 2.015655e-04 3.683408e-03 9.956644e-01 

7 0.0001355106 2.264168e-05 9.996361e-01 2.057141e-04 

8 0.9186362453 7.932471e-02 1.487358e-03 5.516881e-04 

9 0.0176543439 9.816796e-01 4.357028e-04 2.303993e-04 

10 0.9995533393 3.416037e-04 8.651617e-05 1.854082e-05 

11 0.9995533393 3.416037e-04 8.651617e-05 1.854082e-05 

12 0.9995533393 3.416037e-04 8.651617e-05 1.854082e-05 

13 0.2288573449 7.689622e-01 1.553962e-03 6.264739e-04 

14 0.0460841291 9.526021e-01 8.386896e-04 4.751053e-04 
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15 0.9186362453 7.932471e-02 1.487358e-03 5.516881e-04 

16 0.9995533393 3.416037e-04 8.651617e-05 1.854082e-05 

17 0.9995533393 3.416037e-04 8.651617e-05 1.854082e-05 

> summary(res.fcm) 

Summary for ’res.fcm’ 

Number of data objects: 17 

Number of clusters: 4 

Crisp clustering vector: 

[1] 4 3 2 3 2 4 3 1 2 1 1 1 2 2 1 1 1 

Initial cluster prototypes: 

#13 ConfTruth1 #14 ConfTruth2 ErrNon-ErrType 

Cluster 1 5 3 4 

Cluster 2 6 4 4 

Cluster 3 3 1 4 

Cluster 4 3 1 3 

Final cluster prototypes: 

#13 ConfTruth1 #14 ConfTruth2 ErrNon-ErrType 

Cluster 1 5.017690 3.274047 3.998491 

Cluster 2 5.990291 4.642518 3.366756 

Cluster 3 2.999716 1.000606 3.671962 

Cluster 4 2.001163 1.496448 1.498564 

Distance between the final cluster prototypes 

Cluster 1 Cluster 2 Cluster 3 

Cluster 2 3.217754 

Cluster 3 9.347371 22.300209 

Cluster 4 18.508929 29.301043 5.966632 

Difference between the initial and final cluster prototypes 

#13 ConfTruth1 #14 ConfTruth2 ErrNon-ErrType 

Cluster 1 0.01768953 0.274047122 -0.001509134 

Cluster 2 -0.009709335 0.642518104 -0.633243571 

Cluster 3 -0.000283535 0.000605935 -0.328037500 

Cluster 4 -0.998837490 0.496448246 -1.501436335 

Root Mean Squared Deviations (RMSD): 1.060117 

Mean Absolute Deviation (MAD): 3.678274 

Membership degrees matrix (top and bottom 5 rows): 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

1 0.001161675 0.000410340 0.010959107 0.987468878 

2 0.000135511 0.000022642 0.999636134 0.000205714 

3 0.002812026 0.997008278 0.000105998 0.000073698 

4 0.001908348 0.000400746 0.981343415 0.016347491 

5 0.002812026 0.997008278 0.000105998 0.000073698 

... 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

13 0.22885734 0.768962220 0.001553962 0.000626474 

14 0.04608413 0.952602076 0.000838690 0.000475105 
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15 0.91863624 0.079324709 0.001487358 0.000551688 

16 0.99955334 0.000341604 0.000086516 0.000018541 

17 0.99955334 0.000341604 0.000086516 0.000018541 

Descriptive statistics for the membership degrees by clusters 

Size Min Q1 Mean Median Q3 Max 

Cluster1 7 0.9186362 0.9590948 0.9764342 0.9995533 0.9995533 0.9995533 

Cluster2 5 0.7689622 0.9526021 0.9394521 0.9816796 0.9970083 0.9970083 

Cluster3 3 0.9813434 0.9904898 0.9935386 0.9996361 0.9996361 0.9996361 

Cluster4 2 0.9874689 0.9895178 0.9915666 0.9915666 0.9936155 0.9956644 

Dunn’s Fuzziness Coefficients: 

dunn_coeff normalized 

0.9488041 0.9317387 

Within cluster sum of squares by cluster: 

1 2 3 4 

1.4285714 2.4000000 0.6666667 1.0000000 

(between_SS / total_SS = 92.95%) 

> res.fcmvalidity <- ppclust2(res.fcm, "fclust") 

> S <- SIL.F(res.fcmvalidity$Xca, res.fcmvalidity$U, alpha=1) 

> paste("Fuzzy Silhouette Index: ",S) 

[1] "Fuzzy Silhouette Index: 0.776537449518855" 

> H <- PE(res.fcmvalidity$U) 

> paste("Partition Entropy: ",H) 

[1] "Partition Entropy: 0.100381480715855" 

> F <- PC(res.fcmvalidity$U) 

> paste("Partition Coefficient", F) 

[1] "Partition Coefficient 0.948804054380558" 

294 


	List of Tables
	List of Figures
	Introduction
	Motivation
	Outline of chapters

	Integrative Literature Review: Building a Conceptual Structure for Mathematical Intuition as a Research Construct
	Introduction
	An integrative literature review methodology and descriptive statistics
	Literature search and sampling procedure
	Methodological design trends
	Empirical studies at the university level

	Method of synthesis
	Synthesis results
	The general boundary of intuition
	The boundary for mathematical intuition
	Intuiting methods
	Classifying types of intuition
	Simple associative
	Matching associative
	Accumulative and constructive
	Non-creative versus creative forms of intuition
	A set of attributes that separates non-creative and creative forms of intuition
	Additional attributes


	Instructional environments that may enhance the development of mathematical intuition
	Realistic mathematics education (RME) and guided reinvention
	Lakatosian style of instruction
	Project method of teaching
	Inquiry-oriented instruction

	Summary

	Literature Background: Instructional Design Research in Abstract Algebra, Evaluative Investigations and Assessments
	Introduction
	Instructional design research
	Investigations of student thinking
	Efficacy studies
	Reflections on the literature

	Theoretical Framework
	Introduction
	Representational fluency
	Theory of Registers of Semiotic Representation
	Metarepresentational competence and modes of acquisition
	Combined and coordinated lens: technical construction of a fluency digraph
	Introductory object-specific registers for finite groups

	Example-based intuitions towards conjectures
	Counter-example stance
	Affective impacts
	Summary

	Methodology
	Introduction
	Review of mixed methods research designs
	Review of case study research designs
	Design background for this three-part study
	Participants and settings
	Part I: Fluency digraphs for small order groups
	Instrumentation and data collection

	Part II: Representational fluency during collapsing and adding structure tasks
	Instrumentation and data collection
	Qualitative parallel data analysis

	Part III: Example-based intuitions for group actions
	Instrumentation and data collection
	Qualitative data analysis: Within and across case analysis
	Quantitative data analysis: Univariate tests and the Fuzzy C-Means Algorithm


	Results
	Introduction
	Collapsing structure task: isomorphisms, homomorphisms, and quotients
	 isomorphic
	Chronological narrative for Max
	Impossible strategy to collapse the dihedral group to the quaternion group
	Impossible strategy to construct a homomorphism to Z4

	Chronological narrative for Jenni
	Impossible strategy to construct a quotient map to Z4.
	Valid strategy to construct a quotient map to Z2

	Chronological narrative for Alex
	Valid strategy to obtain an infinite group
	Valid strategy to obtain Z2 and Z2Z2

	Results in terms of the representational fluency lens
	Results in terms of the default-interventionists' intuition lens
	Results in terms of an affective impacts lens

	Adding structure task: direct or semi-direct products
	Results in terms of RBC+AiC lens

	Performance on the baseline questionnaire: group action definitions and examples
	Definition of a group action using homomorphism language
	Generating examples of group actions
	Describing group orbits and stabilizers
	Intervening session with Jenni group actions in a homomorphism frame and examples of group actions

	The make-up of learners' example-based intuitions: orbits and stabilizers of group actions
	Descriptive summary statistics and univariate tests
	Trends looking across all cluster models
	Unique versus common intuition outcomes
	A transition from a creative to non-creative intuiting state
	Additional attributes: confidence in truth and error to non-error type
	Revisiting Jenni's associative feelings that an orbit felt like a coset: associations between Lagrange's theorem and the Orbit-stabilizer theorem


	Discussion
	Homomorphisms or quotients through a semiotic lens
	Homomorphisms or quotients through other intuition lenses
	The make-up of learners' example-based intuitions

	Concluding Remarks and Future Directions
	Concluding Remarks
	Contributions
	Limitations

	Future Directions

	References
	Appendices
	Semi-structured interviews
	Part I: Card-sort task-based interview protocol
	Part II: Collapsing and Adding structure task-based interview protocol
	Part III: Baseline questionnaire for group actions

	Surveys
	Modes of Semiotic Representation Acquisition Survey
	The Non-creative Versus Creative Forms of Intuition Survey with Confidence in Truth Items

	Univariate and Fuzzy C-Means Statistics
	Welch t test
	Permuted Brunner Munzel Test
	Clusters with validity indices NCC attributes
	Clusters with validity indices additional attributes





Accessibility Report


		Filename: 

		Thesis__Final_Version_for_Defense_ (31).pdf




		Report created by: 

		

		Organization: 

		




[Enter personal and organization information through the Preferences > Identity dialog.]


Summary


The checker found problems which may prevent the document from being fully accessible.


		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 27

		Failed: 2




Detailed Report


		Document



		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content



		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Skipped		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms



		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text



		Rule Name		Status		Description

		Figures alternate text		Failed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Failed		Other elements that require alternate text

		Tables



		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists



		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings



		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting






Back to Top


