13,873 research outputs found

    Neural Networks for Modeling and Control of Particle Accelerators

    Full text link
    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.Comment: 21 p

    Predictive Control of an Intelligent Energy-saving Operation System Based on Deep Learning

    Get PDF
    An intelligent energy-saving operation system is a high-tech product specifically designed to transform the air conditioning systems, motor systems, and lighting systems, to reduce energy consumption. The concentration of equipment distribution within these systems leads to a strong coupling relationship between them. By conducting an overall energy efficiency prediction, the intelligent energy-saving operation system can fully explore its energy-saving potential. The existing research methods for the online control process of intelligent energy-saving operation systems are not accurate enough to predict energy-saving operations when numerous devices are involved. Consequently, this article focuses on studying the predictive control of an intelligent energy-saving operation system using deep learning techniques. The Generalized Regression Neural Network (GRNN) network is selected to describe the energy consumption of the system. The Beetle Antennae search algorithm is then employed to iteratively optimize the smoothing factor of the model, eliminating the need to rely on experiential parameter determination and enhancing the predictive performance of the model. For the predictive control of the intelligent energy-saving operation system, the optimized GRNN network model serves as the prediction model. The primary control objective is to minimize energy consumption while maintaining a unified carrying capacity, thus achieving intelligent energy-saving effects. Experimental results validate the effectiveness of the model

    Artificial intelligence in steam cracking modeling : a deep learning algorithm for detailed effluent prediction

    Get PDF
    Chemical processes can benefit tremendously from fast and accurate effluent composition prediction for plant design, control, and optimization. The Industry 4.0 revolution claims that by introducing machine learning into these fields, substantial economic and environmental gains can be achieved. The bottleneck for high-frequency optimization and process control is often the time necessary to perform the required detailed analyses of, for example, feed and product. To resolve these issues, a framework of four deep learning artificial neural networks (DL ANNs) has been developed for the largest chemicals production process-steam cracking. The proposed methodology allows both a detailed characterization of a naphtha feedstock and a detailed composition of the steam cracker effluent to be determined, based on a limited number of commercial naphtha indices and rapidly accessible process characteristics. The detailed characterization of a naphtha is predicted from three points on the boiling curve and paraffins, iso-paraffins, olefins, naphthenes, and aronatics (PIONA) characterization. If unavailable, the boiling points are also estimated. Even with estimated boiling points, the developed DL ANN outperforms several established methods such as maximization of Shannon entropy and traditional ANNs. For feedstock reconstruction, a mean absolute error (MAE) of 0.3 wt% is achieved on the test set, while the MAE of the effluent prediction is 0.1 wt%. When combining all networks-using the output of the previous as input to the next-the effluent MAE increases to 0.19 wt%. In addition to the high accuracy of the networks, a major benefit is the negligible computational cost required to obtain the predictions. On a standard Intel i7 processor, predictions are made in the order of milliseconds. Commercial software such as COILSIM1D performs slightly better in terms of accuracy, but the required central processing unit time per reaction is in the order of seconds. This tremendous speed-up and minimal accuracy loss make the presented framework highly suitable for the continuous monitoring of difficult-to-access process parameters and for the envisioned, high-frequency real-time optimization (RTO) strategy or process control. Nevertheless, the lack of a fundamental basis implies that fundamental understanding is almost completely lost, which is not always well-accepted by the engineering community. In addition, the performance of the developed networks drops significantly for naphthas that are highly dissimilar to those in the training set. (C) 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company

    Integration of solar energy and optimized economic dispatch using genetic algorithm: A case-study of Abu Dhabi

    Get PDF
    © 2017 IEEE. The United Arab Emirates is focusing on cultivating Renewable Energy (RE) to meet its growing power demand. This also brings power planning to the forefront in regards to keen interests in renewable constrained economic dispatch. This paper takes note of UAE's vision in incorporating a better energy mix of Renewable Energy (RE), nuclear, hybrid system along with the existing power plants mostly utilizing natural gas; with further attention for a sound economic dispatch scenario. The paper describes economic dispatch and delves into the usage of Genetic Algorithm to optimize the proposed system of thermal plants and solar systems. The paper explains the problem formulation, describes the system used, and illustrates the results achieved. The aim of the research is in line with the objective function to minimize the total costs of production and to serve the purpose of integrating renewable energy into the traditional power production in UAE. The generation mix scenarios are assessed using genetic algorithm using MATLAB simulation for the optimization problem
    • …
    corecore