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Available online 9 October 2019 for high-frequency optimization and process control is often the time necessary to perform the required

detailed analyses of, for example, feed and product. To resolve these issues, a framework of four deep
learning artificial neural networks (DL ANNs) has been developed for the largest chemicals production
process—steam cracking. The proposed methodology allows both a detailed characterization of a naphtha
Deep learni feedstock and a detailed composition of the steam cracker effluent to be determined, based on a limited
p learning . s . . . .
Steam cracking number of commercial naphtha indices and rapidly accessible process characteristics. The detailed char-
Artificial neural networks acterization of a naphtha is predicted from three points on the boiling curve and paraffins, iso-paraffins,
olefins, naphthenes, and aronatics (PIONA) characterization. If unavailable, the boiling points are also
estimated. Even with estimated boiling points, the developed DL ANN outperforms several established
methods such as maximization of Shannon entropy and traditional ANNs. For feedstock reconstruction,
a mean absolute error (MAE) of 0.3 wt% is achieved on the test set, while the MAE of the effluent predic-
tion is 0.1 wt%. When combining all networks—using the output of the previous as input to the next—the
effluent MAE increases to 0.19 wt%. In addition to the high accuracy of the networks, a major benefit is
the negligible computational cost required to obtain the predictions. On a standard Intel i7 processor,
predictions are made in the order of milliseconds. Commercial software such as COILSIM1D performs
slightly better in terms of accuracy, but the required central processing unit time per reaction is in the
order of seconds. This tremendous speed-up and minimal accuracy loss make the presented framework
highly suitable for the continuous monitoring of difficult-to-access process parameters and for the envi-
sioned, high-frequency real-time optimization (RTO) strategy or process control. Nevertheless, the lack of
a fundamental basis implies that fundamental understanding is almost completely lost, which is not
always well-accepted by the engineering community. In addition, the performance of the developed net-
works drops significantly for naphthas that are highly dissimilar to those in the training set.
© 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction and innovations in this field. One such development that has
taken the world by storm in the past few years is artificial intel-

With the majority of light olefins being produced via steam ligence (AI). Al has been widely adopted in several fields such as
cracking—both today and in the foreseeable future [1]—it is strategic gaming [2,3], natural language processing [4,5], and
important to take advantage of new technological developments autonomous cars [6,7]. More recently, Al techniques have found
their way into chemical (engineering) research [8]. Slowly but

steadily, Al is also making its way into industrial manufacturing
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comparison with the automotive sector, for example. The upcom-
ing technological revolution has been termed Industry 4.0, and is
expected to redefine the limits of production [10-14]. Examples
of the use of Al in chemistry include, among others, drug discov-
ery [15,16] and synthesis [17,18], and computational chemistry
[19]. As indicated by the examples above, Al techniques excel at
tackling highly complex and nonlinear problems. Therefore, appli-
cation of these methods to the modeling of the reactor section of
the steam cracking process, which is itself complex and nonlinear,
will deliver models that are expected to outperform traditional
detailed kinetic models in both execution speed and accuracy.
With the increasing complexity and performance of real-time-
optimization (RTO) systems—both in steam cracking and other
industries [20-22]|—the necessity for detailed inputs increases as
well. While technically feasible, the use of comprehensive, online,
two-dimensional gas chromatography (2D-GC or GC x GC) for
detailed stream characterization has not found its way into indus-
try [23], due to its labor-intensive and time-consuming data pro-
cessing. Hence, the detailed compositions required in RTO
systems are usually obtained via sampling and offline analyses.
These time-consuming analyses result in RTO systems that per-
form only one optimization step every few hours [24]. The above
does not imply that online characterization techniques are not
applied in industry; rather, the employed techniques for online
characterization often relay much less detailed information than
comprehensive GC x GC. Besides their value to RTO, detailed
knowledge of reactor input and output compositions is crucial
to safe and efficient operation. In addition, the development of
accurate reactor models relies heavily on the level of detail of
the feedstock and effluent characterization. The above implies
the necessity for both feedstock reconstruction and reactor
modeling algorithms. There is no lack of research on either of
these topics, but few approaches incorporate Al. Hudebine and
Verstraete [25], Verstraete et al. [26], and later, Van Geem et al.
[27] used entropy maximization methods with great success in
feedstock reconstruction of various petroleum fractions. In reactor
modeling, the use of increasingly detailed kinetic models domi-
nates other methods due to their capability to extrapolate beyond
the ranges of predefined training sets [28-35]. Artificial neural
networks (ANNs) are a frequently used Al tool [36]. This form
of biomimicry is a simplified mathematical representation of
the neural network of the human brain, as illustrated in Fig. 1
[37].

An example of the use of Al on the side of feedstock recon-
struction is the work by Pyl et al. [38], who developed an ANN
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to determine the detailed molecular composition of naphthas
typically used in cracking processes, based on their paraffins,
iso-paraffins, olefins, naphthenes, aromatics (PIONA) composition
and boiling point (BP) curve. Niaei et al. [39] and later Sedighi
et al. [40] used ANNs to model reactor effluent compositions,
but did so for a given feedstock. Ghadrdan et al. [41] tackled this
feedstock hiatus in a qualitative way by introducing a set of nine
feed-type parameters to the ANN model. While indisputably pow-
erful tools, traditional ANNs and more classical machine learning
techniques rely on the developer identifying the correct features
that describe the problem. In this work, a deep learning (DL)
approach is applied to the problems of feedstock reconstruction
and reactor effluent prediction for naphtha feedstocks. DL further
exploits the power of ANNs by relying on the network itself to
identify, extract, and combine the inputs into abstract features
that contain much more pertinent information to solving the
problem—that is, predicting the output, as illustrated in Fig. 2
[42,43]. The idea is that this additional level of abstraction
improves the capability of the network to generalize to unseen
data and hence outperform traditional ANNs on data outside of
the network training set.

In what follows, four interacting DL ANNs are described, with
achieving predictive accuracy on the steam cracker reactor effluent
composition as the final goal, using a limited number of
commercial indices of the feedstock as input. Fig. 3 illustrates this
interacting DL ANN framework. Network 1 uses the most basic
inputs—PIONA, density, and vapor pressure—as input to predict
the initial boiling point (IBP), mid boiling point (BP50), and final
boiling point (FBP). Network 2 uses these predicted BPs, in combi-
nation with the previously specified PIONA, to make a detailed
reconstruction of the feedstock, which can then be used as input
to Network 3. This network predicts a detailed composition of
the effluent. Network 4 serves as an extension and check for
Networks 1 and 2. Using a detailed PIONA characterization of a
naphtha, it predicts its density, vapor pressure, and the three
aforementioned BPs.

Before presenting the architecture of the individual DL ANNs in
Section 3, the theory of ANNs is briefly discussed and some
comments concerning the data are given in Section 2 and in
Supplementary data. In Section 4, the results of the trained
networks are discussed and compared with those of other recon-
struction and prediction methods, including support vector regres-
sion (SVR) and random forest (RF) regression. In the final section,
we give a brief summary and comment on future prospects of this
promising approach for steam cracking effluent prediction.
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Fig. 1. Analogy between (a) a biological neuron and (b) an artificial neuron or perceptron, after Mahanta [37]. i: inputs; w: weights; o: output; f(>"): activation function.
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Traditional artificial neural networks
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Fig. 2. Shallow ANN compared with a DL ANN, after Seif [43]. T: temperature; P: pressure; E/E: the product ratio of ethylene to ethane; P/E: the product ratio of propylene to
ethylene; M/P: the product ratio of methane to propylene; Y;: output 1; Y: output 2; Y5: output 3; a: certain value; (}"): activation function.
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Fig. 3. Schematic overview of the interaction of the different variables and the four networks in the DL ANN framework. The numbers in brackets refer to the number of

descriptors for each variable.

2. Methods and data
2.1. Deep learning artificial neural networks

The mathematical aspects of (DL) ANNs are similar; therefore,
no distinction will be made in this section between traditional
ANNs and DL ANNSs [44]. The relationship between the input vector
i and output o of a single perceptron is given by Eq. (1). All inputs
are weighted by their respective weights w; and then summed. A
constant bias term b is added to this weighted sum. The activation
function f introduces nonlinearity into the network. Commonly
used activation functions are the sigmoid, hyperbolic tangent, rec-
tified linear unit (ReLU), and softmax functions. More information
on these activation functions can be found in Section S1.1 in Sup-
plementary data. The equation for a single perceptron is easily
extended to Eq. (2) to describe a full layer of the network, where
W is the weight matrix of the layer. Each perceptron can have its
own bias parameter. The entire network is finally described math-
ematically by repeatedly applying Eq. (2), which yields Eq. (3) for
an ANN with one input layer, one hidden layer with bias by, and
one output layer y with bias b,.

o:f(zjwj-ij+b):f(w~i+b) (1)

where w is the weight vector for a single perceptron; i is the input
to the perceptron; j is the node index within the layer.

o=f(W-i+b) (2)

where o is the layer output vector.

Yy =FW; - f1(W; -x+by) + b 3)

where y is the model output vector; x is the model input vector; f;
and f5 are the activation functions for layer 1 and layer 2, respectively;
b, and b, are the bias vector for layer 1 and layer 2, respectively.
The ANNs in this work are trained via back-propagation algo-
rithms [44,45], which update the network layer weights by passing
down the error from one layer to the next, starting at the output. A
gradient descent optimization approach is used to minimize a cer-
tain objective function. Frequently used error metrics in the objec-
tive function are the (root) mean squared deviation (RMSD), mean
absolute error (MAE), and mean absolute percentage error (MAPE).
Several iterations through the complete training set are typically
required to optimize the weights. One such iteration is termed
an epoch. Within one epoch, the training set is further split into
several batches. The network weights are updated once per batch.
A small batch size—that is, a limited number of samples per opti-
mization step—results in faster training in terms of the number
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of required epochs, but slower training in terms of computing time
per epoch. Moreover, a smaller batch size results in poorer gradient
estimates, reducing the stability of the optimization.

In ANNSs, a distinction can be made between overfitting and
overtraining of the network [46]. Overfitting occurs when the net-
work becomes too complex—that is, when too many layers or too
many nodes per layer are used. According to the universal approx-
imation theorem, for any function, an ANN can be found that
approximates the data with any desired accuracy [47]. Overtrain-
ing, on the other hand, pertains to the number of training epochs.
If the training data is shown to the network too often, it will start
“memorizing” the data; that is, it will attempt to predict the exact
output values, rather than the ones expected from the generalized
trend in the data. This is illustrated by a simple example. Assume
two variables are linearly related. In the dataset, one data point
does not follow this linear trend, for example due to a measure-
ment error. After a few training epochs, the network will have rec-
ognized the linear trend. The sum of squares, however, is still high
due to the off-trend data point. During training, the sum of squares
is minimized. As a result, in each subsequent epoch, the network
will start describing a trend that is increasingly less linear, because
after seeing the off-trend data point multiple times, it “believes”
that that point is on-trend too. Overtraining can be ascertained
by monitoring the objective function or network accuracy of both
the training and validation datasets. While for the training set,
the objective function will typically follow a decreasing trend with
an increasing number of epochs, the objective function for the val-
idation data will start to increase again at some point. From this
point onward, the network is being overtrained. The above issues
can be remedied, for example, by using dropout during training
[48,49]. In this technique, during each batch of data, a randomly
selected fraction of the network nodes is temporarily eliminated
from the network. In this way, each neuron must individually learn
characteristics—it cannot rely on neighboring neurons to capture
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information. All networks in this work use a dropout ratio of 0.5.
The tradeoff for the reduced overfitting with dropout is that the
network learns more slowly, as only half the weights are updated
in each step. Other regularization techniques such as L1 and L2 reg-
ularization [50] of the objective function have not been evaluated
in this work, as the constructed networks perform well on the test
data.

The python deep learning library Keras [51], with Tensorflow
backend [52] and graphics processing unit (GPU) acceleration, is
used to train the ANNs.

2.2. Data analysis

2.2.1. Naphthas

The work of Pyl et al. [38] provides a set of 272 detailed indus-
trial naphtha compositions. The available naphtha properties
include density, vapor pressure, three BPs determined via the
ASTM D86 standard method—IBP, BP50, and FBP—and detailed
PIONA fractions per carbon number. Fig. S13 provides a correlation
matrix of the available data. It can be observed that vapor pressure
and IBP are strongly correlated, as are the density and BP50. The
FBP is less strongly correlated to density and vapor pressure, but
significant correlation to the BP50 is present. This correlation will
influence the architecture of the network to predict the BPs from
the vapor pressure and density of the naphtha, which will be dis-
cussed in Section 3.1.

Along the same lines as the work by Pyl et al. [38], a principal
component analysis (PCA [53]; details in Section S1.2) is performed
on the 10 input variables of the dataset: IBP, BP50, FBP, density,
vapor pressure, and PIONA. Fig. 4 summarizes the PCA results.
From Fig. 4(a), it can be concluded that the (training) dataset is
described by three components. The scores of the inputs on the
first two of these principal components (PCs), shown in Fig. 4(b),
confirm the findings from the correlation analysis. The high

0.8
0.6 IBP \ T
04 T o}
02 FBP i
o .O Density \ . . !
a -— P !
~0.2 BP50 " N o
-0.4 +
_06 1 Vapor
pressure
-0.8
-0.6 -0.4 -0.2 0 0.2 0.4 0.6
PC1
(b)
6—
4ﬂ
2_ »>
8 O; *s 0":0 vy
o 4 o - (X 4 "000
Y3
-2+ *
| o
_4_.
—6
-6
4
20, 02747
pc2 466 4 2
PC1

Fig. 4. (a) Eigenvalues and explained variance (the percentages above data point) by the principal components (PCs); (b) decomposition of the inputs along the first and
second PCs (score plot); (¢, d) PC representation of the naphtha test set, with outliers indicated in red. P: paraffins; I: iso-paraffins; O: olefins; N: naphthenes; A: aromatics.
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correlation observed between, for example, density and BP50
translates into parallel vectors in the PC space. Although they have
opposite directions, the IBP and vapor pressure present similar
behavior.

A second analysis based on PCA is performed on the test set. As
ANNSs rely only on the training and validation datasets during
training, it can be expected that only test data that resembles the
training and validation data will yield accurate results. One mea-
sure to determine the resemblance of a data point to the training
set is the Mahalanobis distance (MD) [54,55]. In the PC space, the
MD can be calculated via Eq. (4).

MD* =2 (1) .z (4)

where z represents the input in the PC space and contains the scores
of the original input on each of the PCs. A is the diagonal matrix of
all eigenvalues, which in this case is a 10 x 10 matrix. A’ is the
reduced 3 x 3 eigenvalue matrix, and contains only the eigenvalues
corresponding to the three selected PCs. Naphthas with a high MD
can be considered outliers, and can hence be expected to result in
poorer predictions. Figs. 4(c) and (d) indicate the test set distribu-
tion in the PC space. The dotted line corresponds to a MD of 2.5
and represents a probability of 90% that a naphtha situated within
the ellipsoid is within the range of the training set. This value of
2.5 for the MD is used as critical distance to consider whether the
corresponding naphtha is an outlier or not. One naphtha (indicated
in red in Fig. 4) has a MD of 5.08. In conclusion, this analysis indi-
cates that the predictions should be good in general, but may be
off for the aforementioned naphtha.

2.2.2. Effluent composition

Access to detailed industrial steam cracker effluent composi-
tions is highly restricted. Therefore, the state-of-the-art reactor
simulation software tool COILSIM1D by Van Geem et al. [30,56]
and Vervust et al. [57] was used to obtain the required effluent
characterizations. COILSIM1D has been validated against large
amounts of proprietary data and is used in industry for detailed
steam cracker simulations; thus, it is a reliable and accurate tool,
and the obtained results are trusted to be an adequate replacement
of the unavailable experimental or industrial data. This approach of
using simulation data as replacement for unavailable and/or lim-
ited experimental data has become common practice in other
fields, especially in the prediction of the thermodynamic properties
of molecules and reaction kinetics [58-63]. The use of simulated
data as training data, the difficulty in obtaining experimental data,
and the necessity of accurate input and output data underline both
the continuing importance of detailed, fundamental models for the
simulation and understanding of these processes and the critical
necessity for high-accuracy experimental techniques.
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COILSIM1D can predict up to hundreds of individual chemicals
in the output. The majority of these components, however, are of
minor importance to the overall operation of a steam cracker.
Therefore, 28 (pseudo-)components are identified. These comprise
several molecular components such as ethylene, propylene,
benzene, hydrogen, and butadiene, and lumped components such
as C; iso-paraffins and C;o. aromatics. The full list of components
can be found in Section S2. Two sets of simulations are run.

The first set comprises a total of 13 600 simulations, and is used
to train and test the network to predict detailed effluent composi-
tions. A different naphtha composition is used for each simulation.
The different naphtha compositions are obtained from the dataset
described in Section 2.2.1, but random variations of 0%-10% are
introduced into the concentrations. Each naphtha is combined with
a set of different process conditions. These process conditions are
the coil outlet pressure (COP) and coil outlet temperature (COT).
Fig. S14 shows that both the naphtha compositions and process
conditions cover a wide range of the variable space in a uniform
way. A single reactor and furnace configuration are used for all
simulations. It will be shown later that the exact reactor configura-
tion is of minor importance. A PCA on the new dataset is performed
to identify potentially problematic cases. Fig. 5(a) indicates that
the dataset is described well by six PCs. When projecting the test
dataset onto the first three dimensions of the PC space, as shown
in Fig. 5(b), a small amount of inputs are observed to be situated
outside of the ellipse encompassing 90% of the training data and
corresponding to a MD of 3.3. Again, this indicates that good over-
all performance on the test set can be expected, with a limited
number of poor predictions.

The second set consists of 1587 additional simulations and is
used to test the full workflow and combined performance of the
networks. The same reactor and furnace configurations as for the
previous simulations are used. A total of 32 naphtha compositions
are considered in this set, corresponding to the test set of Networks
1, 2, and 4, such that no training data is ever used during testing.
Each of these naphthas is extended by a set of process conditions
in fixed intervals. In the range between 750 and 950 °C, 10 COTs
are considered. Similarly, five COPs between 1.7 and 2.3 bar
(1 bar = 10° Pa) are accounted for. Although this results in a
somewhat grid-like coverage of the variable space, it is sufficient
for testing purposes.

3. Setup of the ANNs
3.1. From density and vapor pressure to BPs

The aim of this work is to develop a set of algorithms that allow
a user to obtain a detailed prediction of the steam cracking reactor

Fig. 5. (a) Eigenvalues and explained variance for the first 20 PCs in the PCA of the effluent dataset; (b) effluent test data in the PC space reduced to three dimensions.
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effluent, using only readily available descriptors. As detailed pre-
dictions are more reliable when using detailed feedstock character-
izations, a first step in the algorithm is reconstructing the feedstock
from its commercial descriptors. Based on previous work by Van
Geem et al. [27,30-32] and Pyl et al. [38], it is apparent that at least
some points on the naphtha BP curve are required in order to suc-
cessfully reconstruct the naphtha composition. However, BPs are
difficult to measure online, as a single ASTM 86-compliant mea-
surement can take 30-45 min [64]. Thus, they are not considered
to be readily available. Therefore, estimating three important
points on the BP curve is the first useful step toward predicting
the effluent composition. The prediction of the BPs is based on
the density, vapor pressure, and basic PIONA characterization of
the naphtha. Based on the (cor)relations between the feed param-
eters described in Section 2.2.1, a network is constructed, the
architecture of which is shown in Fig. 6. Due to the strong correla-
tion of both the IBP and BP50 with the FBP, the vector containing
the estimates for the IBP and BP50 is concatenated with the first
hidden layer. This allows the network to use the predictions for
the IBP and BP50 directly during the prediction of the FBP. The first
hidden layer is chosen over the input layer because in the DL
approach, the network is considered to learn the most relevant
representation of the input toward predicting the output in this
first hidden layer. Henceforth, this network will be referred to as
Network 1. To increase the stability and performance of the net-
work, all inputs and outputs are normalized to the range of the
dataset. The maxima and minima on which each variable is nor-
malized are listed in Table 1. The dataset of 272 naphthas is split
into training, validation, and test sets according to an 80:8:12 split.
The validation set is used to tune the hyperparameters of the net-
work—in this case, the number of nodes in the hidden layers, the
batch size, the activation functions, and the number of training
epochs. In general, the term hyperparameters denotes all parame-
ters of the network except for the node weights and biases, which
are referred to as the network parameters. The optimal combina-
tion is searched for heuristically. More detailed information on this
search is given in Section S3.1. The test set is used for evaluation of
the final optimized network.

The resulting hyperparameters are shown along with the archi-
tecture in Fig. 6. Additional figures comparing the performance of

Input: 7 x 1
P, 1, O, N, A, density, vapor pressure

——

Hidden layer 1
256 nodes, RelLU

e,

Hidden layer 2
256 nodes, sigmoid

—

Output 1: IBP, BP50
2 x 1, sigmoid

Concatenate

Table 1
Range for input and output variables of Network 1.

Variable Minimum value Maximum value
IBP (K) 303 328
BP50 (K) 323 398
FBP (K) 348 463
Denisity 0.65 0.75
Vapor pressure (kPa) 27.6 84.9
Paraffins (wt%) 27.5 50.0
iso-paraffins (wt%) 25.0 52.5
Olefins (wt%) 0 1
Naphthenes (wt%) 5 35
Aromatics (wt%) 0 17

the network with different hyperparameters can be found in
Section S3.2. The MAE is preferred to the mean squared error as
the training objective function because, given the considered
hyperparameter grid (Section S3.1), the finally chosen network is
observed to have the lower mean squared error. A detailed expla-
nation for this specific network is given in Section S3.2. Due to the
normalization of the individual components, all outputs are of a
similar order of magnitude. The use of the MAPE is therefore not
considered to be beneficial to the network accuracy. The best per-
formance in terms of MAE is achieved with a batch size of 8, after
1181 training epochs. The final network—using the optimized
hyperparameters—is trained on both the training and validation
data, after which the network is validated against the unseen test
data.

3.2. Feedstock reconstruction

The second network in the framework uses the PIONA composi-
tion of the naphtha and the BPs to reconstruct the detailed compo-
sition of the feedstock. For training the network, the experimental
BPs are used as input. In line with the work of Pyl et al. [38], 28 dif-
ferent pseudo-components are estimated, corresponding to the
detailed PIONA matrix in Fig. S15. An additional distinction is made
between xylenes and ethylbenzene, and between cyclohexane and
methyl-cyclopentane in the Ag and Ng categories, respectively. The

Hidden layer 3
256 nodes, sigmoid

Output 2: FBP
1 x 1, sigmoid

Output: IBP, BP50, FBP

Fig. 6. Architecture of Network 1, for predicting the IBP, BP50, and FBP, based on the PIONA composition, vapor pressure, and density of the naphtha.
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inputs are normalized along the same procedure as in the previous
section, with the ranges listed in Table 1. For the outputs, a differ-
ent normalization procedure is applied. The absolute concentra-
tions of the components in the different categories span a very
wide range. The mass fraction Cs and Cg components can be as high
as 35 wt¥%, while the olefin fraction can drop to 0.01 wt%. Attempt-
ing to directly predict all fractions at once, with a single softmax
function, will result in a network that is difficult to train, especially
considering the limited amount of available training data. The ben-
efit of using a single softmax layer is that the outputs sum to one,
corresponding to the physical nature of the desired mass fractions.
Due to the wide range in mass fractions, however, the five PIONA
categories in the output are normalized individually according to
the example for the paraffins in Eq. (5).

P.
Pporm — 1 5
where P{*™ represents a normalized PIONA category; P; is a PIONA
category.

By first splitting the output layer into five separate outputs, a
softmax activation function can be used for each individual compo-
nent category, with the exception of the olefin mass fraction. Due
to the fact that the total olefin concentration can be zero, and
according to the nature of the softmax activation function, the net-
work is forced to incorrectly predict an olefin distribution that
sums to one. This has a detrimental effect on the overall accuracy.
Hence, for the olefin output layer, a sigmoid activation is used. The
resulting multi-output architecture and optimized hyperparame-
ters are shown in Fig. 7. In what follows, this network is referred
to as Network 2. Again, a train/validation/test split of 80:8:12 is
used on the data. Section S3.3 of the supplementary data provides
additional details on the optimization. In short, the MAE is chosen
as the network objective function. Due to the normalization per
component class, the outputs do not span several orders of magni-
tude and hence do not require a relative cost function. For this net-
work, optimum performance is attained using a batch size of 16
and 45 285 training epochs.

3.3. Detailed effluent prediction

The third network takes a detailed PIONA composition (28
pseudo-components) and five process characteristics as input to
predict a detailed molecular composition of the steam cracker
reactor effluent. As mentioned in Section 2.2, an adapted dataset
is used for this network that contains 50 times more data points
than the set used for the previous networks. The components
considered in the detailed PIONA composition are the same as
in Fig. S15. Based on previous work by Van Geem et al. [31], five
process descriptors are identified. The first two—COT and COP—
have already been used for the generation of the dataset. The
remaining three are the product ratios of ethylene to ethane

(E/E), propylene to ethylene (P/E), and methane to propylene
(M/P). In the work of Van Geem et al. [31], it is proven that for
a given naphtha, the effluent composition is fully defined by just
two of these descriptors. However, Fig. S16 reveals that a more
accurate model is obtained when all five descriptors are included
in the input. Three contributions to this increase in accuracy can
be identified. First, by using the aforementioned product ratios as
input, the model must predict three fewer outputs, as the
methane, ethane, and propylene mass fractions can be calculated
from the prediction of the ethylene mass fractions. Second, by
including multiple descriptors that essentially describe the same
process parameters of temperature and pressure, the model
becomes robust to errors in the input, as the uncertainty is spread
over multiple inputs. The third and most important reason can be
traced back to the power of DL networks, as illustrated in Fig. 2.
By training the multilayer network on multiple inputs, it is given
the freedom to extract the information from the inputs that it
finds to be most pertinent to solving the presented problem of
predicting the effluent composition. Training the model using
only, for example, COT and COP does not make full use of the
potential of DL. By manually selecting or engineering the network
inputs and eliminating certain process descriptors from the net-
work input, potentially useful information in the data is never
shown to the network. In conclusion, all five identified descriptors
are included in the network input.

The values for COT, COP, E/E, P/E, and M/P are normalized on the
ranges given in Table 2. Due to a mismatch in size between the
inputs, the first layer is split into a process and a feedstock feature
layer, yielding a more advanced DL ANN than the regular densely
connected ones. This split allows for the extraction of independent,
equally long, relevant feature vectors for both inputs. As it is not
the complete effluent spectrum that is predicted by the network,
the sum of the outputs should not equal one. Hence, a softmax acti-
vation function cannot be applied in the output layer and a sigmoid
activation is utilized instead, taking into account that the compo-
nent fractions are bounded by zero and one. The final architecture
and hyperparameters are shown in Fig. 8. In this case, the MAPE is
chosen as the objective function. Justification for this choice is
given in Section S3.4. This network is further referenced in this
work as Network 3. For this dataset, a train/validation/test split

Table 2
Range for process-related input variables of Network 3.
Variable Minimum value Maximum value
COT (K) 948 1318
COP (bara) 1.36 2.74
E/E 2 37
P/E 0 14
M/P 0 35

Input Hidden Hidden
naphtha layer 1 layer 2
8x1 256 nodes 512 nodes
P 1,0,N,A,
IBP, BP50, Sigmoid Sigmoid
FBP

><| Output P: 8 x 1, softmax I—

Output
><| Output I: 7 x 1, softmax I— Detailed
1 composition
><| Output O: 2 x 1, sigmoid I
28 x 1

><| Output N: 6 x 1, softmax I—
><| Output A: 5 x 1, softmax I—

Fig. 7. Architecture of Network 2, for reconstructing a more detailed feedstock composition starting from the PIONA characterization and BPs.
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Input Hidden
feedstock layer 1
28 x 1 1024 nodes
Hidden Output
Detailed Sigmoid Eyerz
PIONA Q Molecular
o effluent
% composition
2 2048 nodes
o
Input Hidden o o 28 x1
Sigmoid
process layer 2 . .
Sigmoid
5x1 1024 nodes
COT, COP, Sigmoid
P/E, M/P,
E/E

Fig. 8. Architecture of Network 3, used to predict the molecular effluent compo-
sition based on the detailed feedstock composition and five process descriptors.

of 81:9:10 is applied. The network reaches the best performance
using a batch size of 8 and 2744 training epochs. Additional infor-
mation on the optimization of the hyperparameters is given in
Section S3.4.

3.4. Property estimation

A final network in the framework serves as a check for the first
two. Based on a detailed naphtha composition, the density, vapor
pressure, IBP, BP50, and FBP are estimated. The dataset is identical
to the one used for the reverse operation by Networks 1 and 2.
Given an accurate reconstruction, the predicted properties of a
reconstructed naphtha should not differ much from those reported
for the true naphtha. One could argue that the best results are
obtained by simultaneously optimizing the four networks. How-
ever, given the limited size of the dataset, training such a complex
network with multiple feedback loops is considered unfeasible at
worst and inaccurate and non-generalizing at best. The fourth net-
work—Network 4—has a straightforward, two-layer architecture,
with 28 inputs and five outputs, as illustrated in Fig. 9 along with
the optimized parameters. For similar reasons as for Networks 1
and 2, the MAE is chosen as the loss function. The 28 inputs are
the same components accounted for in the reconstruction algo-
rithm, and are listed in Fig. S15. The sum of the 28 inputs is nor-
malized to one, whereas the outputs are normalized according to
the same ranges listed in Table 1. A batch size of 8 and 5385 train-
ing epochs are found to yield the best performance. Additional
information on the optimization is provided in Section S3.5.

4. Results and discussion
4.1. Feedstock

The performance of the network to predict the IBP, BP50, and
FBP is shown in Fig. 10. Overall, the network performs very well,
with only two notably poorer predictions, each for a different
naphtha. These are indicated in red and green in Fig. 10. The calcu-
lated MD for the predictions in red is 1.82, which is below the crit-
ical value of 2.5 (Section 2.2.1), so accurate predictions are
expected. The cause of this high error is discussed further on.
The naphtha to which the green predictions correspond is situated
at a MD of 5.08, which corresponds to a probability of 2 x 10~ that
the hypothesis of it belonging to the training set holds, for an
F-statistic with (3, 237) degrees of freedom. The poorly predicted

Input Hidden Hidden Output

naphtha layer 1 layer 2
IBP, BP50,
FBP, density,
vapor pressure
28 x 1 256 256
nodes nodes 5x1

Detailed
PIONA RelLU Sigmoid Sigmoid

Fig. 9. Architecture of Network 4, to predict naphtha properties from a detailed
PIONA characterization.
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Fig. 10. Parity plot for Network 1; prediction of the IBP, BP50, and FBP from PIONA,
density, and vapor pressure. The points indicated in green are predictions for a
naphtha with a Mahalanobis distance of 5.08; those in red are predictions for one of
1.82.

IBP is outside of the normalization range of the output, as shown
in Table 1, indicating that the network must predict a value greater
than one, which is impossible by the construction of the network.
For the other two BPs, however, the model makes very accurate
predictions, despite the strong dissimilarity of the naphtha with
the training dataset. Three other naphthas have a MD greater than
the threshold value of 2.5. The predictions for these naphthas devi-
ate by up to 10K from the experimental value. This shows one of
the pitfalls of DL or any other type of regression: Inputs that are
very dissimilar to those in the training set will likely result in
poorer predictions.

Table 3 [27] shows that the predicted values deviate around 1%
or 3K from the experimental value on average, for all BPs. This
finding further substantiates the claim that it was not necessary
to consider training the network on the MAPE. The accuracy of
the network does not quite match that of experimental methods,
such as one with a maximum MAE of (2.2+1.4) K that was
reported by Ferris and Rothamer [65]. However, the DL ANN does
perform better than the maximization of the Shannon entropy
(MSE) approach used by Van Geem et al. [27]. This observation is
not unexpected. The majority of the test set that was used, while
never seen by the network during training, is situated within the
ellipsoid corresponding to a MD of 2.5 or a probability level of
0.9. Therefore, good performance of the network is expected even
on the test set. Even for the data points situated outside of this crit-
ical ellipsoid, the DL ANN model still performs similarly to the MSE
approach. This is supported by their similar maximal deviations.

A very high throughput can be achieved with the network: The
prediction of the BPs of the 32 test naphthas took 137 ms on a
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Table 3

Statistical metrics of the performance of Network 1 on the test set compared with work by Van Geem et al. [27].

Variable MAE (K) RMSD (K) MAPE (%) Max deviation (K)

DL ANN MSE DL ANN MSE DL ANN MSE DL ANN MSE
IBP 1.66 9.31 313K 9.89 0.5 3.0 14.88 14.91
BP50 1.79 4.10 2.56 K 4.64 0.5 1.2 8.82 9.81
FBP 3.87 8.19 6.43 K 10.08 0.9 1.9 28.47 23.64

2.7 GHz Intel i7-6820HQ central processing unit (CPU), or just over
4 ms per naphtha. Unfortunately, an equivalent speed test using
the method of Van Geem et al. [27] was not possible, as the esti-
mate of the BPs is reported as part of the feedstock reconstruction;
nevertheless, given the combined time of 25s, the DL ANN can
safely be assumed to be faster.

Fig. 11 shows the performance of Network 2 on a selected num-
ber of components of the output. Parity plots for all components in
the output can be found in Fig. S17. In general, the performance is
good over the entire range of concentrations. The network achieves
an overall MAE of 0.31 wt%. Two outlying predictions are singled
out in red. In Section 2.2.1, a lack of correlation for the I; compo-
nents with any of the other variables was mentioned. When leav-
ing out the naphthas corresponding to the highlighted points, the
correlation of the I; component group to other variables is found
to increase by over 1%. As the left out data accounts for about
0.7% of the data, it can be concluded that they have a significant
impact on the lack of correlation. The calculated MD for the naph-
thas is 2.27 for naphtha A and 1.82 for naphtha B. Therefore, there
is no indication that the naphtha compositions are outside of the
scope of the training set. The above suggests that it is possible that
a measurement error is causing the poor prediction. This possibil-
ity is further supported by the fact that nearly all off-trend predic-
tions noticed for other components (e.g., P4 and P) are the result of
the same two problematic naphthas. A measurement error for one
or more components could also help explain the poor prediction of
the FBP of the naphtha highlighted in red in Fig. 10, as it is the same
naphtha as naphtha B. This result highlights the critical importance
of high-quality input, both for accurately training the network and
for obtaining accurate predictions.

The performance of Network 2 is compared with previous work
on feedstock reconstruction by Van Geem et al. [27] and Pyl et al.
[38], and with two additionally constructed models; the recon-
struction algorithms are based on the following methods: MSE
(Van Geem et al. [27]), multiple linear regression (MLR) (Pyl
et al. [38]), traditional ANNs (Pyl et al. [38]), SVR, and RF regres-
sion. The MLR approach—which is the traditional method—is used
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Fig. 11. The performance of Network 2 on selected components of the output.

Table 4
MAE (wt%) of different algorithms for the detailed reconstruction of naphthas, based
on PIONA and BPs.

Component MSE MLR SVR RF ANN DLANN DL ANN MBP
P4 175 052 044 060 050 0.52 0.47
Ps 228 116 103 117 097 0.65 0.58
Ps 1.16 110 095 080 0.71 0.71 0.95
P, 1.15 0.63 048 050 047 047 0.60
Pg 066 050 039 031 029 025 0.33
Pg 0.57 032 026 026 026 020 0.23
Pio 027 022 010 0.11 011 0.10 0.09
P11 005 006 004 0.03 003 002 0.02
Iy 240 111 085 099 082 058 0.65
Is 163 140 1.03 091 085 083 0.96
I 240 102 080 080 084 066 0.72
Is 141 062 045 038 044 032 0.42
Iy 063 047 032 030 032 028 0.33
Lo 052 044 029 028 025 019 0.20
I14 0.11 010 0.05 0.04 0.04 0.03 0.03
Os 0.01 004 002 0.02 005 0.02 0.02
Og 0.04 003 001 0.02 002 001 0.01
N5 220 020 015 016 0.14 0.16 0.17
Ne-1 148 1.07 055 043 053 043 0.46
Ne-2 148 1.07 055 054 053 035 0.46
N7 218 084 065 080 056 058 0.69
Ng 056 060 045 039 031 028 0.41
Ng 093 046 042 034 034 030 0.34
As 061 054 056 050 030 028 0.31
A; 081 045 027 037 026 0.19 0.22
Ag-1 036 056 029 025 026 0.16 0.16
Ag-2 036 056 0.10 0.08 026 0.06 0.07
Ag 058 038 024 026 039 017 0.17
Average 1.02 059 042 042 039 031 0.36

MBP: modeled boiling point.

as a performance baseline. Table 4 shows the performance of the
different models on the individual components of the output.
Machine learning techniques such as SVR and (DL) ANNs show sig-
nificant improvement compared with more traditional methods
such as MLR and MSE. Fig. 12 shows the relative model perfor-
mance in terms of MAE. The DL approach clearly outperforms all
other models: Network 2 attains an MAE that is just over half
the MLR MAE and still 20% lower than the ANN MAE. Even when
using the predicted BPs based on the density and vapor pres-
sure—combining Networks 1 and 2—the DL ANN still performs
noticeably better than all other tested models. While the MSE
approach has a significantly higher MAE, its advantage is that it
relies on a case-by-case optimization—that is, the applicability of
the method is less restricted to the range of a certain training
set. In terms of required CPU time, the MSE method takes about
25 s to simulate both BPs and reconstruct the detailed composition
for the test set. Using Networks 1 and 2, the combined process only
requires about one tenth of that time—234 ms—on the same Intel
i7 processor mentioned earlier.

Network 4 also pertains to the feedstock, as it estimates proper-
ties based on a known, detailed composition. The performance of
this network is illustrated by the parity plots in Fig. 13. The
singled-out predictions in Fig. 13(a) correspond to those for
naphtha B, mentioned above. Again, the poor prediction for the
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Fig. 12. Network MAE relative to that of the MLR model. DL ANN MBP uses the
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vapor pressure could be the result of measurement errors during
the compositional analysis of the naphtha. Table 5 shows the
statistics of the network performance. The performance of the
combination of Networks 1, 2, and 4 is also displayed in the table.
There is a clear decrease in the performance of the network when
starting from the most basic commercial indices; however, reason-
ably accurate results are still obtained and the general trend of the
properties is still predicted well.

4.2. Effluent

The performance of Network 3 is first evaluated separately due
to the use of a different training and test set. All of the following
figures use a random selection of 10% of the 1360 data points in
the test set in order to maintain the legibility of the figures. The
statistical metrics are calculated on the full test set. Fig. 14
illustrates the network performance on four selected output com-
ponents—ethylene, 1,3-butadiene, hydrogen, and A;¢. pseudo-
component. Parity plots for all other components can be found in
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Fig. S18, which shows that the network performance for two other
major cracking products—methane and propene—is very similar to
that for ethylene, which is shown in Fig. 14(a). The network per-
forms well on the entire range of mass fractions. For ethylene,
butadiene, and hydrogen, the mass fraction range is limited to
about one order of magnitude. For the Ao+ pseudo-component,
however, the mass fractions of the dataset are spread out over
nearly four orders of magnitude. By accurately predicting the mass
fractions of the A;o. pseudo-component across several orders of
magnitude, the network demonstrates its predictive power. Table 6
shows the statistics for these four components specifically, along
with the averages for all components. In general, the network
achieves an accuracy of 0.1 wt%, which is very high, given the min-
imal computational cost of the predictions. The entire test set of
1360 reactions is predicted in 1.716 s, or just 1.2 ms per prediction,
once again on a standard Intel i7 laptop CPU. The state-of-the-art
tool COILSIM1D requires several seconds to determine the detailed
effluent composition for a single naphtha, indicating a tremendous
speed-up for the DL ANN model. The (nearly) negligible computa-
tion times would allow such a network to be used in a larger RTO
algorithm that is able to provide feedback to the process at a much
higher frequency than current RTO algorithms. At this computation
speed, even feed-forward process control applications are possible.
The major benefit of this tremendous speed-up is, however, the
ability to continuously monitor difficult-to-access process parame-
ters with limited input, which facilitates the anticipation of sudden
changes that might have a major (safety) impact on downstream
operations.

In Section 2.2.2, it was mentioned that the exact reactor config-
uration is of secondary importance. Van Geem et al. [31] have pro-
ven that the composition of the reactor effluent for a given naphtha
is defined by two severity indices accounting for outlet pressure
and temperature, independently of the reactor geometry. Network
3 uses these severity indices—P/E and E/E—as input. Hence, the
performance of the network will be relatively independent of the
reactor geometry and can therefore be used to obtain good predic-
tions for any type of reactor. These findings are graphically sup-
ported by Fig. S19.
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Fig. 13. Parity plots for different outputs of Network 4: (a) IBP, BP50, FBP; (b) density as specific gravity; (c) vapor pressure. Red data points correspond to naphtha B.

Table 5

Statistics on the performance of Network 4 on the test set and on the reconstruction of the test set based on the vapor pressure and density (as specific gravity) of the naphtha.

Variable MAE MAPE RMSD Max deviation

Original Artificial Original Artificial Original Artificial Original Artificial
IBP 1.87K 424K 0.6% 1.3% 3.49 K 6.40 K 16.44 K 276K
BP50 1.82K 11.8K 0.5% 3.3% 2.65 K 132K 8.70 K 229K
FBP 435K 9.93K 1.0% 2.4% 5.73 K 13.0K 13.28 K 35.3K
Specific gravity 0.001 0.02 0.2% 2.7% 0.002 0.02 0.005 0.03
Vapor pressure 2.28 kPa 11.45 kPa 3.8% 17.3% 3.94 kPa 13.80 kPa 18.09 kPa 26.41 kPa
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Table 6

Statistics on the performance of Network 3 on selected components, on the test set.

Component MAE (wt%) MAPE (%) RMSD (wt%)
Ethylene 0.42 1.9 0.763
Butadiene 0.10 3.1 0.150
Hydrogen 0.02 1.8 0.029
Aj0+ pseudo-component 0.18 7.3 0.762
Average 0.13 7.3 0.416

Table 7

Statistics on the combined performance of Networks 1, 2, and

components, on the test set.

3, on selected

Component MAE (wt%) MAPE (%) RMSD (wt%)
Ethylene 0.46 19 0.594
Butadiene 0.16 3.9 0.206
Hydrogen 0.02 3.2 0.030
Aqo+ pseudo-component 0.95 35.1 1.167
A7. pseudo-component 0.43 8.9 0.594
Average 0.19 15.0 0.385

4.3. Combined effluent prediction performance

Finally, the performance of the combination of feedstock recon-
struction from easily and rapidly accessible indices and detailed
effluent prediction is evaluated. This corresponds to evaluating
the performance of the framework elucidated in Fig. 3.

The computational cost to run the combined framework is still
very low. The 1587 test cases are simulated in just under
3.25s-2ms per reactor simulation, which is only a minimal

increase compared with the time required to simulate the effluent
from the detailed naphtha characterization. This indicates that the
combined framework is at least computationally suited for integra-
tion in RTO algorithms, or even in direct process control.

Upon comparing Fig. 14 to Fig. S20 and Table 6 to Table 7, a
drop in performance for the combination of Networks 1, 2, and
3 is observed. For several components, such as ethylene, butadi-
ene, and hydrogen, the network accuracy is still very high and
is close to the accuracy using the true naphtha composition.
The network does have significant trouble correctly predicting
the distribution between A;_g and A;q.. The parity plot for the for-
mer can be found in Fig. S21; that of the latter is provided in
Fig. S20(d). The concentration of the lighter aromatics is consis-
tently overestimated, while that of the heavier aromatics is con-
sistently underestimated. When these two pseudo-components
are further lumped into a single A;. component, the network
achieves an accuracy similar to the others, as shown in the
next-to-last row of Table 7. A potential cause for this deviation
could be a very slight, systematic underestimation of the aromat-
ics at higher concentrations in the feedstock reconstruction. It is
observed that a small variation in the aromatics content of the
feedstock can significantly impact the formation of heavier aro-
matic compounds during the cracking process. This shows the
importance of very accurate experimental data, as small measure-
ment errors can significantly impact the results.

The clustering of the results in the parity plots of Figs. S20 and
S21 is the result of the grid-like variation in the input. While the
process conditions will influence the exact characteristics of the
output, the naphtha composition is the main influence on the efflu-
ent composition. As only 32 different naphthas were considered for
this dataset, it is not surprising that only certain regions of the
effluent space are covered.
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5. Conclusions and outlook

A framework of four interacting DL ANNs has been developed
for the prediction of naphtha properties and detailed steam cracker
effluent compositions, based on a limited number of commercial,
or easily accessible, naphtha characteristics and process descrip-
tors. Each of the individual networks achieves excellent perfor-
mance that rivals or outperforms the accuracy of typical online
analysis equipment and commercially available tools such as
COILSIM1D. Using two DL ANNs to reconstruct a detailed feedstock
composition from the PIONA characterization of the naphtha and
its density and vapor pressure, an average MAE of 0.36 wt% across
28 different (pseudo-)components is achieved. The effluent com-
position can be predicted with an average MAE of 0.13 wt% when
using the true, detailed naphtha composition and an average
MAE of 0.19 wt% when using a naphtha composition reconstructed
from the above-mentioned indices. This high predictive accuracy,
combined with very low computational costs—execution of the full
framework takes place in the order of milliseconds—makes the
developed networks very well suited for real-time monitoring of
difficult-to-access process parameters. They are also suited for
use in new RTO algorithms with a much higher frequency of pro-
cess adjustments than current ones. At computational delays in
the order of milliseconds, even application in feed-forward process
control can be considered. While the presented networks have
been trained on simulations for a specific configuration of the reac-
tor and furnace, the inclusion of reactor-independent severity
indices in the input makes the network itself reactor-
independent. As a result, the presented method is applicable to
any type of reactor without loss of performance. The main disad-
vantage of DL ANNs is that the physical and interpretable meaning
of the problem is lost. For detailed cause-and-effect analyses on the
complex chemical mechanisms behind the process and process
design, detailed kinetic models are still essential. The fact that
the presented models have been trained on simulated data further
advocates the development of fundamental models. However, for
many practical applications, such as the above-mentioned RTO
and process control, the combination of execution speed, accuracy,
and ease of use are the main concerns. Due to the flexibility and
predictive power of DL ANNs, several other aspects of the steam
cracking process that influence the plant optimization—such as
coke formation—could be approached in a similar way in the
future.
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Nomenclature

Abbreviations

2D-GC
Al
ANN
BP
BP50
cop
CoT
CPD
CPU
DL

E/E
FBP
GC x GC
GPU
IBP
M/P
MAE
MAPE
MBP
MD
MLR
MSE
P/E
PC(A)
PIONA
ReLU
RF
(R)MSD
RTO
SVR

Variables
A

A

b

Ck

d

f

Fa.p,n

two-dimensional gas chromatography
artificial intelligence

artificial neural network (1 hidden layer)
boiling point (K)

mid boiling point (K)

coil outlet pressure (bar, 1bar = 10° Pa)
coil outlet temperature (K)
cyclopentadiene

central processing unit

deep learning (> 1 hidden layer)
ethylene/ethane ratio

final boiling point (K)

two-dimensional gas chromatography
graphics processing unit

initial boiling point (K)
methane/propylene ratio

mean absolute error

mean absolute percentage error
modeled boiling point (K)

mahalanobis distance

multiple linear regression
maximization of the Shannon entropy
propylene/ethylene ratio

principal component (analysis)
paraffins, iso-paraffins, olefins, naphthenes, aromatics
rectified linear unit

random forest

(root) mean square deviation

real-time optimization

support vector regression

matrix of eigenvectors

aromatics with k carbon atoms
perceptron/layer bias

hydrocarbons with k carbon atoms
(chosen) dimensionality of the PC space
activation function

F-statistic with confidence level a, p degrees of freedom,

and n samples

perceptron/layer input
perceptron/layer input vector
iso-paraffins with k carbon atoms
number of data points in dataset
naphthenes with k carbon atoms
layer output

perceptron output

olefins with k carbon atoms
paraffins with k carbon atoms
variance-covariance matrix of the dataset
weight

weight matrix for single layer
weight vector for single perceptron
model input

model input vector

model output

model output vector

input representation in the PC space
probability level

diagonal matrix of eigenvalues
eigenvalue

eigenvector matrix in the reduced-dimension PC space
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Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.eng.2019.02.013.
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