1,649 research outputs found

    Annotating digital libraries and electronic editions in a collaborative and semantic perspective

    Get PDF
    The distinction between digital libraries and electronic editions is becom-ing more and more subtle. The practice of annotation represents a point of conver-gence of two only apparently separated worlds. The aim of this paper is to present a model of collaborative semantic annotation of texts (SemLib project), suggesting a system that find in Semantic Web and Linked Data the solution technologies for en-abling structured semantic annotation, also in the field of electronic editions in Digi-tal Humanities domain. The main purpose of SemLib is to develop an application so to make easy for developers the integration of annotation software in digital librar-ies, which are different both for technical implementations and managed contents, and provide to users, indifferently from their cultural backgrounds, a simple system which could be used as a front-end. We present, for this purpose, a final example of semantic annotation in a specific context: a digital edition of a literary text and the issues that an annotation task involves

    Conceptual graph-based knowledge representation for supporting reasoning in African traditional medicine

    Get PDF
    Although African patients use both conventional or modern and traditional healthcare simultaneously, it has been proven that 80% of people rely on African traditional medicine (ATM). ATM includes medical activities stemming from practices, customs and traditions which were integral to the distinctive African cultures. It is based mainly on the oral transfer of knowledge, with the risk of losing critical knowledge. Moreover, practices differ according to the regions and the availability of medicinal plants. Therefore, it is necessary to compile tacit, disseminated and complex knowledge from various Tradi-Practitioners (TP) in order to determine interesting patterns for treating a given disease. Knowledge engineering methods for traditional medicine are useful to model suitably complex information needs, formalize knowledge of domain experts and highlight the effective practices for their integration to conventional medicine. The work described in this paper presents an approach which addresses two issues. First it aims at proposing a formal representation model of ATM knowledge and practices to facilitate their sharing and reusing. Then, it aims at providing a visual reasoning mechanism for selecting best available procedures and medicinal plants to treat diseases. The approach is based on the use of the Delphi method for capturing knowledge from various experts which necessitate reaching a consensus. Conceptual graph formalism is used to model ATM knowledge with visual reasoning capabilities and processes. The nested conceptual graphs are used to visually express the semantic meaning of Computational Tree Logic (CTL) constructs that are useful for formal specification of temporal properties of ATM domain knowledge. Our approach presents the advantage of mitigating knowledge loss with conceptual development assistance to improve the quality of ATM care (medical diagnosis and therapeutics), but also patient safety (drug monitoring)

    Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback

    Get PDF
    Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector

    Generating collaborative systems for digital libraries: A model-driven approach

    Get PDF
    This is an open access article shared under a Creative Commons Attribution 3.0 Licence (http://creativecommons.org/licenses/by/3.0/). Copyright @ 2010 The Authors.The design and development of a digital library involves different stakeholders, such as: information architects, librarians, and domain experts, who need to agree on a common language to describe, discuss, and negotiate the services the library has to offer. To this end, high-level, language-neutral models have to be devised. Metamodeling techniques favor the definition of domainspecific visual languages through which stakeholders can share their views and directly manipulate representations of the domain entities. This paper describes CRADLE (Cooperative-Relational Approach to Digital Library Environments), a metamodel-based framework and visual language for the definition of notions and services related to the development of digital libraries. A collection of tools allows the automatic generation of several services, defined with the CRADLE visual language, and of the graphical user interfaces providing access to them for the final user. The effectiveness of the approach is illustrated by presenting digital libraries generated with CRADLE, while the CRADLE environment has been evaluated by using the cognitive dimensions framework

    Extending the 5S Framework of Digital Libraries to support Complex Objects, Superimposed Information, and Content-Based Image Retrieval Services

    Get PDF
    Advanced services in digital libraries (DLs) have been developed and widely used to address the required capabilities of an assortment of systems as DLs expand into diverse application domains. These systems may require support for images (e.g., Content-Based Image Retrieval), Complex (information) Objects, and use of content at fine grain (e.g., Superimposed Information). Due to the lack of consensus on precise theoretical definitions for those services, implementation efforts often involve ad hoc development, leading to duplication and interoperability problems. This article presents a methodology to address those problems by extending a precisely specified minimal digital library (in the 5S framework) with formal definitions of aforementioned services. The theoretical extensions of digital library functionality presented here are reinforced with practical case studies as well as scenarios for the individual and integrative use of services to balance theory and practice. This methodology has implications that other advanced services can be continuously integrated into our current extended framework whenever they are identified. The theoretical definitions and case study we present may impact future development efforts and a wide range of digital library researchers, designers, and developers

    Representing Structured Objects using Description Graphs

    Get PDF
    State-of-the-art ontology languages are often not sufficiently expressive to accurately represent domains consisting of objects connected in a complex way. As a possible remedy, in our previous work we have proposed an extension of ontology languages with description graphs. In this paper, we extend this formalism by allowing for multiple graphs that can be combined in complex ways, thus obtaining a powerful language for modeling structured objects. By imposing a particular acyclicity restriction on the relationships between the graphs, we ensure that checking satisfiability of knowledge bases expressed in our language is decidable. We also present a practical reasoning algorithm

    A cooperative-relational approach to digital libraries

    Get PDF
    Copyright @ 2007 Springer-Verlag, Berlin HeidelbergThis paper presents a novel approach to model-driven development of Digital Library (DL) systems. The overall idea is to allow Digital Library systems designers (e.g. information architects, librarians, domain experts) to easily design such systems by using a visual language. We designed a Domain Specific Visual Language for such a purpose and developed a framework supporting it; this framework helps designers by automatically generating code for the defined Digital Library system, so that they do not have to get involved into technical issues concerning its deployment. In our approach, both Human-Computer Interaction and Computer Supported Collaborative Work techniques are exploited when generating interfaces and services for the specific Digital Library domain

    The modular structure of an ontology: Atomic decomposition

    Get PDF
    Extracting a subset of a given ontology that captures all the ontology’s knowledge about a specified set of terms is a well-understood task. This task can be based, for instance, on locality-based modules. However, a single module does not allow us to understand neither topicality, connectedness, structure, or superfluous parts of an ontology, nor agreement between actual and intended modeling. The strong logical properties of locality-based modules suggest that the family of all such modules of an ontology can support comprehension of the ontology as a whole. However, extracting that family is not feasible, since the number of localitybased modules of an ontology can be exponential w.r.t. its size. In this paper we report on a new approach that enables us to efficiently extract a polynomial representation of the family of all locality-based modules of an ontology. We also describe the fundamental algorithm to pursue this task, and report on experiments carried out and results obtained.
    • 

    corecore