21,265 research outputs found

    Regularized Maximum Likelihood Estimation and Feature Selection in Mixtures-of-Experts Models

    Get PDF
    Mixture of Experts (MoE) are successful models for modeling heterogeneous data in many statistical learning problems including regression, clustering and classification. Generally fitted by maximum likelihood estimation via the well-known EM algorithm, their application to high-dimensional problems is still therefore challenging. We consider the problem of fitting and feature selection in MoE models, and propose a regularized maximum likelihood estimation approach that encourages sparse solutions for heterogeneous regression data models with potentially high-dimensional predictors. Unlike state-of-the art regularized MLE for MoE, the proposed modelings do not require an approximate of the penalty function. We develop two hybrid EM algorithms: an Expectation-Majorization-Maximization (EM/MM) algorithm, and an EM algorithm with coordinate ascent algorithm. The proposed algorithms allow to automatically obtaining sparse solutions without thresholding, and avoid matrix inversion by allowing univariate parameter updates. An experimental study shows the good performance of the algorithms in terms of recovering the actual sparse solutions, parameter estimation, and clustering of heterogeneous regression data

    Regularized EM algorithm

    Full text link
    Expectation-Maximization (EM) algorithm is a widely used iterative algorithm for computing (local) maximum likelihood estimate (MLE). It can be used in an extensive range of problems, including the clustering of data based on the Gaussian mixture model (GMM). Numerical instability and convergence problems may arise in situations where the sample size is not much larger than the data dimensionality. In such low sample support (LSS) settings, the covariance matrix update in the EM-GMM algorithm may become singular or poorly conditioned, causing the algorithm to crash. On the other hand, in many signal processing problems, a priori information can be available indicating certain structures for different cluster covariance matrices. In this paper, we present a regularized EM algorithm for GMM-s that can make efficient use of such prior knowledge as well as cope with LSS situations. The method aims to maximize a penalized GMM likelihood where regularized estimation may be used to ensure positive definiteness of covariance matrix updates and shrink the estimators towards some structured target covariance matrices. We show that the theoretical guarantees of convergence hold, leading to better performing EM algorithm for structured covariance matrix models or with low sample settings.Comment: ICASSP Conference, 4 pages, 8 figure

    Comment on "Spatio-temporal filling of missing points in geophysical data sets" by D. Kondrashov and M. Ghil, Nonlin. Processes Geophys., 13, 151–159, 2006

    Get PDF
    Kondrashov and Ghil (2006) (KG hereafter) describe a method for imputing missing values in incomplete datasets that can exploit both spatial and temporal covariability to estimate missing values from available values. Temporal covariability has not been exploited as widely as spatial covariability in imputing missing values in geophysical datasets, but, as KG show, doing so can improve estimates of missing values. However, there are several inaccuracies in KG’s paper. Since similar inaccuracies have surfaced in other recent papers, for example, in the literature on paleo-climate reconstructions, I would like to point them out here

    Transposable regularized covariance models with an application to missing data imputation

    Full text link
    Missing data estimation is an important challenge with high-dimensional data arranged in the form of a matrix. Typically this data matrix is transposable, meaning that either the rows, columns or both can be treated as features. To model transposable data, we present a modification of the matrix-variate normal, the mean-restricted matrix-variate normal, in which the rows and columns each have a separate mean vector and covariance matrix. By placing additive penalties on the inverse covariance matrices of the rows and columns, these so-called transposable regularized covariance models allow for maximum likelihood estimation of the mean and nonsingular covariance matrices. Using these models, we formulate EM-type algorithms for missing data imputation in both the multivariate and transposable frameworks. We present theoretical results exploiting the structure of our transposable models that allow these models and imputation methods to be applied to high-dimensional data. Simulations and results on microarray data and the Netflix data show that these imputation techniques often outperform existing methods and offer a greater degree of flexibility.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS314 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore