41 research outputs found

    Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint generator

    Get PDF
    We consider the problem of recovering the initial data (or initial state) of infinite-dimensional linear systems with unitary semigroups. It is well-known that this inverse problem is well posed if the system is exactly observable, but this assumption may be very restrictive in some applications. In this paper we are interested in systems which are not exactly observable, and in particular, where we cannot expect a full reconstruction. We propose to use the algorithm studied by Ramdani et al. in (Automatica 46:1616–1625, 2010) and prove that it always converges towards the observable part of the initial state. We give necessary and sufficient condition to have an exponential rate of convergence. Numerical simulations are presented to illustratethe theoretical results

    Reconstructing initial data using iterative observers for wave type systems

    Get PDF
    An iterative algorithm for solving initial data inverse problems from partial observations has been proposed in 2010 by Ramdani, Tucsnak and Weiss (Automatica, 2010). In this work, we are concerned with the convergence of this algorithm when the inverse problem is ill-posed, i.e. when the observations are not sufficient to reconstruct any initial data. We prove that the state space can be decomposed as a direct sum, stable by the algorithm, corresponding to the observable and unobservable part of the initial data. We show that this result holds for both locally distributed and boundary observation

    Modelling and control of coupled infinite-dimensional systems

    No full text
    First, we consider two classes of coupled systems consisting of an infinite-dimensional part [sigma]d and a finite-dimensional part [sigma]f connected in feedback. In the first class of coupled systems, we assume that the feedthrough matrix of [sigma]f is 0 and that [sigma]d is such that it becomes well-posed and strictly proper when connected in cascade with an integrator. Under several assumptions, we derive well-posedness, regularity and exact (or approximate) controllability results for such systems on a subspace of the natural product state space. In the second class of coupled systems, [sigma]f has an invertible first component in its feedthrough matrix while [sigma]d is well-posed and strictly proper. Under similar assumptions, we obtain well-posedness, regularity and exact (or approximate) controllability results as well as exact (or approximate) observability results for this class of coupled systems on the natural state space. Second, we investigate the exact controllability of the SCOLE (NASA Spacecraft Control Laboratory Experiment) model. Using our theory for the first class of coupled systems, we show that the uniform SCOLE model is well-posed, regular and exactly controllable in arbitrarily short time when using a certain smoother state space. Third, we investigate the suppression of the vibrations of a wind turbine tower using colocated feedback to achieve strong stability. We decompose the system into a non-uniform SCOLE model describing the vibrations in the plane of the turbine axis, and another model consisting of a non-uniform SCOLE system coupled with a two-mass drive-train model (with gearbox), in the plane of the turbine blades. We show the strong stabilizability of the first tower model by colocated static output feedback. We also prove the generic exact controllability of the second tower model on a smoother state space using our theory for the second class of coupled systems, and show its generic strong stabilizability on the energy state space by colocated feedback
    corecore