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1 Université de Lorraine (Institut Élie Cartan),
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Abstract
An iterative algorithm for solving initial data inverse

problems from partial observations has been proposed in
2010 by Ramdani, Tucsnak and Weiss [1]. In this work,
we are concerned with the convergence of this algorithm
when the inverse problem is ill-posed, i.e. when the ob-
servations are not sufficient to reconstruct any initial data.
We prove that the state space can be decomposed as a di-
rect sum, stable by the algorithm, corresponding to the
observable and unobservable part of the initial data. We
show that this result holds for both locally distributed and
boundary observation [2], [3].

Introduction
Let us start by briefly recalling the principle of the re-

construction method proposed in [1] in the simplified con-
text of skew-adjoint generators and bounded observation
operator. Given two Hilbert spaces X and Y (called state
and output spaces respectively), let A : D (A) → X be
skew-adjoint operator generating a C0-group T of isome-
tries onX and letC ∈ L(X,Y ) be a bounded observation
operator. Consider the infinite dimensional linear system
given by {

ż(t) = Az(t), ∀t ≥ 0,
y(t) = Cz(t), ∀t ∈ [0, τ ].

(1)

where z is the state and y the output function (where the
dot symbol is used to denote the time derivative). Such
systems are often used as models of vibrating systems.

The inverse problem considered here is to reconstruct
the initial state z(0) = z0 ∈ X of system (1) knowing the
observation y(t) on the time interval [0, τ ].

Then, let z+0 ∈ X be a first arbitrary guess of z0 and
let us denote A+ = A−C∗C and A− = −A−C∗C and
introduce the following initial and final Cauchy problems,
for all n ≥ 1, called respectively forward and backward
observers of (1)

ż+n (t) = A+z+n (t) + C∗y(t), ∀t ∈ [0, τ ],
z+1 (0) = z+0 ,
z+n (0) = z−n−1(0), ∀n ≥ 2,

(2)

{
ż−n (t) = −A−z−n (t)− C∗y(t), ∀t ∈ [0, τ ],
z−n (τ) = z+n (τ), ∀n ≥ 2.

(3)

If we assume that (A,C) is exactly observable in time
τ > 0, i.e. that there exists kτ > 0 such that∫ τ

0
‖y(t)‖2dt ≥ k2τ‖z0‖2, ∀z0 ∈ D(A), (4)

then, it is well-known thatA+ (respectivelyA−) generate
an exponentially stable C0-semigroup T+ (respectively
T−) on X . If we set L = T−τ T+

τ , then by [1, Proposi-
tion 3.7], we have δ := ‖L‖L(X) < 1 and we obtain

‖z−n (0)− z0‖ ≤ δn‖z+0 − z0‖, ∀z0 ∈ X,n ≥ 1.

Note that since the choice of z+0 is arbitrary, we often
choose zero in the applications.

1 Main results
In this work, we investigate the case without exact ob-

servability (for the wave equation for instance, this corre-
sponds to the case where τ is too small for the geometric
optic condition of Bardos, Lebeau and Rauch [4] to hold
true). Remarking that systems (2) and (3) are still well
defined in this case (at least when C is bounded), and that
we still have

z−n (0)− z0 = Ln
(
z+0 − z0

)
,

the following questions naturally arise : does the se-
quence z−n (0) converge and if so, to what limit ?

Assume that C ∈ L(X,Y ) is a bounded observation
operator. Let us denote S the unitary C0-group gener-
ated by A. Let Ψτ ∈ L(X,L2([0,∞), Y ) be the state-to-
output operator defined by

(Ψτz0) (t) =

{
CStz0, ∀t ∈ [0, τ ],
0, ∀t > τ.

Proposition 1. We have the following decomposition of
the state space X

X = Ker Ψτ ⊕ (Ker Ψτ )⊥ := VUnobs ⊕VObs,

and this decomposition is L-stable.
Furthermore, (Ker Ψτ )⊥ = Ran Φτ , where

Φτu =

∫ τ

0
S∗τ−tC∗u(t)dt,

is the input-to-state operator.



Theorem 2. Denote by Π the orthogonal projection from
X onto VObs. Then the following statements hold true:

1. We have for all z0 ∈ X, z+0 ∈ VObs, and n ≥ 1,∥∥(I −Π)
(
z−n (0)− z0

)∥∥ = ‖(I −Π) z0‖ .
2. The sequence (‖Π (z−n (0)− z0)‖)n≥1 is strictly
decreasing and verifies∥∥Π

(
z−n (0)− z0

)∥∥ =
∥∥z−n (0)−Πz0

∥∥ −→
n→∞

0.

3. There exists a constant α ∈ (0, 1), independent
of z0 and z+0 , such that for all n ≥ 1,∥∥Π

(
z−n (0)− z0

)∥∥ ≤ αn ∥∥z+0 −Πz0
∥∥ ,

if and only if Ran Φτ is closed in X .

Using the framework of well-posed linear systems, we
can use a result of Curtain and Weiss [5] to handle the
case of (some) unbounded observation operators and de-
rive a result similar to Theorem 2 (formally, we take
A± = ±A− γC∗C, with a suitably chosen γ > 0).

2 Application
Let Ω be a bounded open subset of RN , N ≥ 2, with

smooth boundary ∂Ω = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅ and Γ0

and Γ1 being relatively open in ∂Ω. Denote by ν the unit
normal vector of Γ1 pointing towards the exterior of Ω.
Consider the following wave system

ẅ(x, t)−∆w(x, t) = 0, ∀x ∈ Ω, t > 0,
w(x, t) = 0, ∀x ∈ Γ0, t > 0,
w(x, t) = u(x, t), ∀x ∈ Γ1, t > 0,
w(x, 0) = w0(x), ẇ(x, 0) = w1(x), ∀x ∈ Ω,

(5)

with u the input function (the control), and (w0, w1) the
initial state. We observe this system on Γ1, leading to

y(x, t) = −∂(−∆)−1ẇ(x, t)

∂ν
, ∀x ∈ Γ1, t > 0. (6)

Using a result of Guo and Zhang [6, Theorem 1.1], we
can show that the system (5)–(6) fits into the framework
described above and we can thus apply Theorem 2 (in its
generalized version to unbounded observation operators)
to recover the observable part of the initial data (w0, w1).

For instance, let us consider the configuration of Fig-
ure 1. We can easily obtain two subdomains of Ω (the
striped ones on Figure 1), such that all initial data with
support in the left (resp. right) one are in VObs (resp. in
VUnobs).

We choose a suitable initial data to bring out these in-
clusions (in particular w1 ≡ 0). We perform some sim-
ulations (using GMSH and GetDP) and obtain Figure 2,
with 6% of relative error (in L2(Ω)) on the reconstruction
of the observable part of the data after three iterations.

Figure 1: An example of configuration in 2D

Figure 2: The initial position and its reconstruction
after 3 iterations
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Let

X be a Hilbert space,

A : D(A)→ X be a skew-adjoint operator,

Conservative systems{
ż(t) = Az(t), ∀ t ∈ [0,∞),
z(0) = z0 ∈ D(A).

For instance:

A =

(
0 I
∆ 0

)
(+ Dirichlet boundary conditions) on Ω ⊂ Rn

and X = H1
0 (Ω)× L2(Ω)
⇓

the classical wave equation with z =

[
w
ẇ

]
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Let

Y be another Hilbert space

C ∈ L(X,Y )

τ > 0

We observe z via y(t) = Cz(t) for all t ∈ [0, τ ].

For instance, for the classical wave
equation, let O ⊂ Ω:

y(t) =
[
0 χO

] [w(t)
ẇ(t)

]
, ∀t ∈ [0, τ ],

= χOẇ(t), ∀t ∈ [0, τ ].

Our problem

Reconstruct the unknown z0 in X from the measurement y(t).
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ẇ(t)

]
, ∀t ∈ [0, τ ],

= χOẇ(t), ∀t ∈ [0, τ ].

Our problem

Reconstruct the unknown z0 in X from the measurement y(t).

G. Haine Reconstructing initial data for wave



Introduction The reconstruction algorithm Main result Conclusion

Let

Y be another Hilbert space

C ∈ L(X,Y )

τ > 0

We observe z via y(t) = Cz(t) for all t ∈ [0, τ ].

For instance, for the classical wave
equation, let O ⊂ Ω:

y(t) =
[
0 χO

] [w(t)
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K. Ramdani, M. Tucsnak, and G. Weiss
Recovering the initial state of an infinite-dimensional system using
observers (Automatica, 2010)

Intuitive representation

2 iterations, observation on [0, τ ].
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Some remarks

2005: Auroux and Blum (C. R. Math. Acad. Sci. Paris) introduced
the Back and Forth Nuding (BFN), based on the generalization of
Kalmann’s filters

2008: Phung and Zhang (SIAM J. Appl. Math.) introduced the
Time Reversal Focusing (TRF), for the Kirchhoff plate equation

2010: Ramdani, Tucsnak and Weiss (Automatica) generalized the
TRF, based on the generalization of Luenberger’s observers
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We construct the forward observer{
ż+(t) = Az+(t)− C∗Cz+(t) + C∗y(t), ∀ t ∈ [0, τ ],
z+(0) = z+

0 ∈ D(A).

If we subtract the observed system{
ż(t) = Az(t), ∀ t ∈ [0, τ ],
z(0) = z0,

to obtain (remember that y(t) = Cz(t)), denoting e = z+ − z,{
ė(t) = (A− C∗C) e(t), ∀ t ∈ [0, τ ],
e(0) = z+

0 − z0,

which is known to be exponentially stable if and only if (A,C) is exactly
observable, i.e.

∃T > 0,∃kT > 0,

∫ T

0

‖y(t)‖2dt ≥ k2
T ‖z0‖2, ∀ z0 ∈ D(A).
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ż+(t) = Az+(t)− C∗Cz+(t) + C∗y(t), ∀ t ∈ [0, τ ],
z+(0) = z+

0 ∈ D(A).

If we subtract the observed system{
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Exponential stability ⇒ ∃M > 0, β > 0 such that

‖z+(τ)− z(τ)‖ ≤Me−βτ‖z+
0 − z0‖.

We construct a similar system: the backward observer,{
ż−(t) = Az−(t) + C∗Cz−(t)− C∗y(t), ∀ t ∈ [0, τ ],
z−(τ) = z+(τ).

From similar computations

‖z−(0)− z0‖ ≤Me−βτ‖z+(τ)− z(τ)‖ ≤M2e−2βτ‖z+
0 − z0‖.
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If

∃kτ > 0,

∫ τ

0

‖y(t)‖2dt ≥ k2
τ‖z0‖2, ∀ z0 ∈ D(A),

Ito, Ramdani and Tucsnak (Discrete Contin. Dyn. Syst. Ser. S, 2011)
proved that

α := M2e−2βτ < 1.

Iterating n-times the forward–backward observers with z+
n (0) = z−n−1(0)

leads to
‖z−n (0)− z0‖ ≤ αn‖z+

0 − z0‖.

This is the iterative algorithm of Ramdani, Tucsnak and Weiss to
reconstruct z0 from y(t).
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In this work, the exact observability assumption in time τ

∃kτ > 0,

∫ τ

0

‖y(t)‖2dt ≥ k2
τ‖z0‖2, ∀ z0 ∈ D(A),

is not supposed to be satisfied !
However, the algorithm doesn’t need this assumption to be well-posed.

Questions

Given arbitrary C and τ > 0, does the algorithm converge ?

If it does, what is the limit of z−n (0) and how is it related to z0 ?
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Decomposition of X:

Let us denote Ψτ the following continuous linear operator

Ψτ : X −→ L2 ([0, τ ], Y ) ,
z0 7→ y(t).

Intuitively, if z0 is in Ker Ψτ , then y(t) ≡ 0, and we have no
information on z0 !

We decompose X = Ker Ψτ ⊕ (Ker Ψτ )
⊥ and define

VUnobs = Ker Ψτ , VObs = (Ker Ψτ )
⊥

= Ran Ψ∗τ .

Note that the exact observability assumption is equivalent to Ψτ is
bounded from below and then ⇒ X = Ran Ψ∗τ .
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bounded from below and then ⇒ X = Ran Ψ∗τ .
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Stability under the algorithm:
Let us denote T+ (resp. T−) the semigroup generated by
A+ := A− C∗C (resp. A− := −A− C∗C) on X.

Forward–backward observers cycle ⇒ operator T−τ T+
τ , i.e.

z−(0)− z0 = T−τ T+
τ

(
z+

0 − z0

)
.

Denote S the group generated by A, then (since A = A+ + C∗C)

Sτz0 = T+
τ z0 +

∫ τ

0

T+
τ−tC

∗ CStz0︸ ︷︷ ︸
Ψτz0

dt, ∀ z0 ∈ X.

Using this (type of) Duhamel formula(s), we obtain

T−τ T+
τ VUnobs ⊂ VUnobs, T−τ T+

τ VObs ⊂ VObs.

The algorithm preserves the decomposition of X !
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Convergence of the algorithm:

It is obvious that the algorithm has no influence on VUnobs.

Let us denote L = T−τ T+
τ |VObs

, we have:
1

lim
n→∞

Lnz = 0, ∀ z ∈ X

2

‖L‖L(VObs) < 1⇐⇒ Ran Ψ∗τ is closed in X

Sketch of proof

1 L is positive self-adjoint.
Ln+1 < Ln from which we get limn→∞ Ln = L∞ ∈ L(VObs).
L2
∞ = L∞ and ‖L∞z‖ < ‖z‖ for all z ∈ VObs =⇒ Ran L∞ = {0}.

2 Duhamel formulas =⇒ ‖L‖L(VObs) in term of inf
‖z‖=1,z∈VObs

‖Ψτz‖.

Ran Ψ∗τ closed in X ⇐⇒ Ψτ bounded from below on VObs.

Furthermore, it is easy to prove that:

z+
0 ∈ VObs =⇒ z−n (0) ∈ VObs, ∀n ≥ 1.
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Theorem

Denote by Π the orthogonal projection from X onto VObs. Then the
following statements hold true for all z0 ∈ X and z+

0 ∈ VObs:

1 For all n ≥ 1,∥∥(I −Π)
(
z−n (0)− z0

)∥∥ = ‖(I −Π) z0‖ .

2 The sequence (‖Π (z−n (0)− z0)‖)n≥1 is strictly decreasing and∥∥Π
(
z−n (0)− z0

)∥∥ =
∥∥z−n (0)−Πz0

∥∥ −→
n→∞

0.

3 There exists a constant α ∈ (0, 1), independent of z0 and z+
0 , such

that for all n ≥ 1,∥∥Π
(
z−n (0)− z0

)∥∥ ≤ αn ∥∥z+
0 −Πz0

∥∥ ,
if and only if Ran Ψ∗τ is closed in X.
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Remark

Using the framework of well-posed linear systems, we obtain the same
result for some unbounded observation operator C ∈ L(D(A), Y ).

Example

Let

Ω ⊂ RN , N ≥ 2, with smooth boundary ∂Ω

∂Ω = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅
Consider the following wave system

ẅ(x, t)−∆w(x, t) = 0, ∀x ∈ Ω, t > 0,
w(x, t) = 0, ∀x ∈ Γ0, t > 0,
w(x, t) = u(x, t), ∀x ∈ Γ1, t > 0,
w(x, 0) = w0(x), ẇ(x, 0) = w1(x), ∀x ∈ Ω,

with u the control, and (w0, w1) the initial state.
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Observation

Let ν be the unit normal vector of Γ1 pointing towards the exterior of Ω,
we observe the system via

y(x, t) = −∂(−∆)−1ẇ(x, t)

∂ν
, ∀x ∈ Γ1, t > 0.

Guo and Zhang (SIAM J. Control Optim., 2005) ⇒ well-posed linear
system.

Curtain and Weiss (SIAM J. Control Optim., 2006) ⇒ construction
of forward and backward observers (formally A± = ±A− C∗C).

So we can use the algorithm.
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Choosing a suitable initial data

Supp w0 has three components W1,W2 and W3, such that

W1 ⊂ VObs

W2 ⊂ VUnobs

W3 ∩VObs 6= ∅ and W3 ∩VUnobs 6= ∅
w1 ≡ 0

To perform the test, we use

Gmsh: a 3D finite element grid generator

GetDP: a general finite element solver
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The initial position and its reconstruction after 3 iterations

⇒ 6% of relative error in L2(Ω) on the “observable part”.
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Work-in-progress:

Application to thermo-acoustic tomography (simulations in progress)

Still to be done:

Stability of VObs and VUnobs with noisy observation y

Generalization (A∗ 6= −A)
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Thanks for your attention !

G. Haine
Recovering the observable part of the initial data of an
infinite-dimensional linear system with skew-adjoint operator
(Mathematics of Control, Signals, and Systems (MCSS), In
Revision)
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