476 research outputs found

    Two Refinements of the Template-Guided DNA Recombination Model of Ciliate Computing

    Get PDF
    To solve the mystery of the intricate gene unscrambling mechanism in ciliates, various theoretical models for this process have been proposed from the point of view of computation. Two main models are the reversible guided recombination system by Kari and Landweber and the template-guided recombination (TGR) system by Prescott, Ehrenfeucht and Rozenberg, based on two categories of DNA recombination: the pointer guided and the template directed recombination respectively. The latter model has been generalized by Daley and McQuillan. In this thesis, we propose a new approach to generate regular languages using the iterated TGR system with a finite initial language and a finite set of templates, that reduces the size of the template language and the alphabet compared to that of the Daley-McQuillan model. To achieve computational completeness using only finite components we also propose an extension of the contextual template-guided recombination system (CTGR system) by Daley and McQuillan, by adding an extra control called permitting contexts on the usage of templates. Then we prove that our proposed system, the CTGR system using permitting contexts, has the capability to characterize the family of recursively enumerable languages using a finite initial language and a finite set of templates. Lastly, we present a comparison and analysis of the computational power of the reversible guided recombination system and the TGR system. Keywords: ciliates, gene unscrambling, in vivo computing, DNA computing, cellular computing, reversible guided recombination, template-guided recombination

    Simple gene assembly as a rewriting of directed overlap-inclusion graphs

    Get PDF
    The simple intramolecular model for gene assembly in ciliates consists of three molecular operations, simple Id, simple hi and simple dlad. Mathematical models in terms of signed permutations and signed strings proved limited in capturing some of the combinatorial details of the simple gene assembly process. Brijder and Hoogeboom introduced a new model in terms of overlap-inclusion graphs which could describe two of the three operations of the model and their combinatorial properties. To capture the third operation, we extended their framework to directed overlap-inclusion (DOI) graphs in Azimi et al. (2011) [1]. In this paper we introduce DOI graph-based rewriting rules that capture all three operations of the simple gene assembly model and prove that they are equivalent to the string-based formalization of the model. (C) 2012 Elsevier B.V. All rights reserved

    Models of natural computation : gene assembly and membrane systems

    Get PDF
    This thesis is concerned with two research areas in natural computing: the computational nature of gene assembly and membrane computing. Gene assembly is a process occurring in unicellular organisms called ciliates. During this process genes are transformed through cut-and-paste operations. We study this process from a theoretical point of view. More specifically, we relate the theory of gene assembly to sorting by reversal, which is another well-known theory of DNA transformation. In this way we obtain a novel graph-theoretical representation that provides new insights into the nature of gene assembly. Membrane computing is a computational model inspired by the functioning of membranes in cells. Membrane systems compute in a parallel fashion by moving objects, through membranes, between compartments. We study the computational power of various classes of membrane systems, and also relate them to other well-known models of computation.Netherlands Organisation for Scientific Research (NWO), Institute for Programming research and Algorithmics (IPA)UBL - phd migration 201

    Formal models of the extension activity of DNA polymerase enzymes

    Get PDF
    The study of formal language operations inspired by enzymatic actions on DNA is part of ongoing efforts to provide a formal framework and rigorous treatment of DNA-based information and DNA-based computation. Other studies along these lines include theoretical explorations of splicing systems, insertion-deletion systems, substitution, hairpin extension, hairpin reduction, superposition, overlapping concatenation, conditional concatenation, contextual intra- and intermolecular recombinations, as well as template-guided recombination. First, a formal language operation is proposed and investigated, inspired by the naturally occurring phenomenon of DNA primer extension by a DNA-template-directed DNA polymerase enzyme. Given two DNA strings u and v, where the shorter string v (called the primer) is Watson-Crick complementary and can thus bind to a substring of the longer string u (called the template) the result of the primer extension is a DNA string that is complementary to a suffix of the template which starts at the binding position of the primer. The operation of DNA primer extension can be abstracted as a binary operation on two formal languages: a template language L1 and a primer language L2. This language operation is called L1-directed extension of L2 and the closure properties of various language classes, including the classes in the Chomsky hierarchy, are studied under directed extension. Furthermore, the question of finding necessary and sufficient conditions for a given language of target strings to be generated from a given template language when the primer language is unknown is answered. The canonic inverse of directed extension is used in order to obtain the optimal solution (the minimal primer language) to this question. The second research project investigates properties of the binary string and language operation overlap assembly as defined by Csuhaj-Varju, Petre and Vaszil as a formal model of the linear self-assembly of DNA strands: The overlap assembly of two strings, xy and yz, which share an overlap y, results in the string xyz. In this context, we investigate overlap assembly and its properties: closure properties of various language families under this operation, and related decision problems. A theoretical analysis of the possible use of iterated overlap assembly to generate combinatorial DNA libraries is also given. The third research project continues the exploration of the properties of the overlap assembly operation by investigating closure properties of various language classes under iterated overlap assembly, and the decidability of the completeness of a language. The problem of deciding whether a given string is terminal with respect to a language, and the problem of deciding if a given language can be generated by an overlap assembly operation of two other given languages are also investigated

    Doctor of Philosophy

    Get PDF
    dissertationGenotype Phenotype Association (GPA) is a means to identify candidate genes and genetic variants that may contribute to phenotypic variation. Technological advances in DNA sequencing continue to improve the efficiency and accuracy of GPA. Currently, High Throughput Sequencing (HTS) is the preferred method for GPA as it is fast and economical. HTS allows for population-level characterization of genetic variation, required for GPA studies. Despite the potential power of using HTS in GPA studies, there are technical hurdles that must be overcome. For instance, the excessive error rate in HTS data and the sheer size of population-level data can hinder GPA studies. To overcome these challenges, I have written two software programs for the purpose of HTS GPA. The first toolkit, GPAT++, is designed to detect GPA using small genetic variants. Unlike pervious software, GPAT++'s association test models the inherent errors in HTS, preventing many spurious GPA. The second toolkit, Whole Genome Alignment Metrics (WHAM), was designed for GPA using large genetic variants (structural variants). By integrating both structural variant identification and association testing, WHAM can identify shared structural variants associated with a phenotype. Both GPAT++ and WHAM have been successfully applied to real-world GPA studie

    Volume 67- Issue 6- March, 1956

    Get PDF
    The Rose Thorn, Rose-Hulman\u27s independent student newspaper.https://scholar.rose-hulman.edu/rosethorn/2067/thumbnail.jp

    Women in Science 2016

    Get PDF
    Women in Science 2016 summarizes research done by Smith College’s Summer Research Fellowship (SURF) Program participants. Ever since its 1967 start, SURF has been a cornerstone of Smith’s science education. In 2016, 150 students participated in SURF (144 hosted on campus and nearby eld sites), supervised by 56 faculty mentor-advisors drawn from the Clark Science Center and connected to its eighteen science, mathematics, and engineering departments and programs and associated centers and units. At summer’s end, SURF participants were asked to summarize their research experiences for this publication.https://scholarworks.smith.edu/clark_womeninscience/1005/thumbnail.jp

    Published work on freshwater science from the FBA, IFE and CEH, 1929-2006

    Get PDF
    A new listing of published scientific contributions from the Freshwater Biological Association (FBA) and its later Research Council associates – the Institute of Freshwater Ecology (1989–2000) and the Centre for Ecology and Hydrology (2000+) is provided. The period 1929–2006 is covered. The compilation extends an earlier list assembled by in 1979
    • …
    corecore