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ABSTRACT 

 

Genotype Phenotype Association (GPA) is a means to identify candidate 

genes and genetic variants that may contribute to phenotypic variation.  

Technological advances in DNA sequencing continue to improve the efficiency 

and accuracy of GPA.  Currently, High Throughput Sequencing (HTS) is the 

preferred method for GPA as it is fast and economical.  HTS allows for 

population-level characterization of genetic variation, required for GPA studies. 

Despite the potential power of using HTS in GPA studies, there are technical 

hurdles that must be overcome.  For instance, the excessive error rate in HTS 

data and the sheer size of population-level data can hinder GPA studies. 

To overcome these challenges, I have written two software programs for the 

purpose of HTS GPA.  The first toolkit, GPAT++, is designed to detect GPA using 

small genetic variants.  Unlike pervious software, GPAT++’s association test 

models the inherent errors in HTS, preventing many spurious GPA.  The second 

toolkit, Whole Genome Alignment Metrics (WHAM), was designed for GPA using 

large genetic variants (structural variants).  By integrating both structural variant 

identification and association testing, WHAM can identify shared structural 

variants associated with a phenotype.  Both GPAT++ and WHAM have been 

successfully applied to real-world GPA studies. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Identifying the genetic basis of phenotypic variation 

Phenotypic variation is any measureable difference between two individuals 

within a population.  An astounding amount of phenotypic variation can exist 

within a single species.  For example, there are over 300 different breeds of 

domestic rock pigeons with varying size, weight, pigmentation, and plumage 

patterns, all derived from a single ancestral phenotype (Figure 1.1).  There are 

two general classifications for phenotype variation, continuous and discrete traits.  

Continuous traits, like weight or height (complex traits), have continuous 

distributions, meaning they can take on any value within a range, while discrete 

traits (simple traits) only fall into a few categories.  An example of a discrete trait 

is the head crest, which is present in some pigeon breeds, but not others (Figure 

1.1)(Shapiro et al., 2013a).  Phenotypic variation is not limited to visible 

differences, but can also include molecular phenotypes.  For example, within the 

human population, genetic variation in the bitter taste receptor gene, TAS2R, 

confers the ability to taste PTC (Kim et al., 2003).  Another example of a
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molecular phenotype in humans is the blood group determination system (Owen, 

2000).  Phenotypic variation can be passed from parents to offspring.  The 

amount of phenotypic variation explained by genetics is called heritability 

(Visscher et al., 2008).  Many simple traits like hair or eye color have high 

heritability, while other traits, like weight and height, have low heritability. 

The quest to understand the genetic basis of phenotypic variation has been 

ongoing for over a century. Open-ended questions in the field are: How do 

environmental factors affect the phenotypic outcome of genetic variation?  How 

do genetic variants interact with each other (epistasis)?  Which classes of 

variants are beneficial, conferring adaptive potential, and which classes are 

deleterious or disease causing?  Early geneticists began working on these 

questions by studying the heritability of traits in crossbreeding experiments.  For 

example, Gregor Mendel, an Augustine friar, established the rules of heritability 

by observing the outcome of crossing pea plants with different phenotypes. 

Unlike Mendel’s experiments, later work showed that two phenotypes can be 

transmitted together and thus suggests they are linked genetically. Alfred 

Sturtevant, a student of Thomas Hunt Morgan, pioneered linkage/genetic 

mapping in Drosophila by crossbreeding flies with different phenotypes (Griffiths 

et al., 1999).  Linkage analyses track the co-occurrence of phenotypes over 

reproductive generations.  During sexual reproduction, in many organisms, 

sections of two homologous chromosomes cross over, redistributing the genetic 

variants responsible phenotypic variation.  The frequency at which two 

phenotypes co-occur in the progeny of a genetic cross is thus inversely 
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proportional to the physical distance of the causal variants on a chromosome.  

Genetic variants within genes that are in close physical proximity tend to 

segregate together, while recombination breaks the linkage between distant 

genes.  Carefully tracking the co-occurrence of many phenotypes over many 

crosses allows for a genetic map to be built without any knowledge of physical 

position of the genes (physical map). 

The physical map describes the location of genetic attributes on a 

chromosome; landmarks include genes and restriction enzyme cut sites.  

Linkage maps and physical maps are positively correlated.  However, the 

relationship is not linear.  Along a chromosome, there are regions of low 

recombination where the genetic distance increases at a slower rate than the 

physical distance. 

Recent advances in automated DNA sequencing provided the means to 

characterize the physical map of the human genome at base pair level 

(McPherson and Others, 2001).  The Human Genome Project, completed in 

2003, provided the full sequence of the human genome and annotated ~20,500 

genes (Hattori, 2005; Lander et al., 2001).  This breakthrough allowed for human 

linkage analyses to be overlaid upon the physical map, accelerating the rate at 

which phenotypes and genes could be linked.  The Human Genome Project also 

allowed for standing genetic variation within the human population to be mapped 

to a physical location.  The International HapMap Project used automated 

sequencing to survey the genetic diversity (bi-allelic Single Nucleotide 

Polymorphisms [SNPs]) across unrelated individuals of Yoruban, Chinese, 
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European, and Japanese ancestry (The International HapMap Consortium, 

2005).  By capturing a wide swath of haplotype diversity in the human population, 

the International HapMap Project provided a set of genetic markers linked to the 

physical map, a resource that has been widely used for genome-wide association 

studies in the years since. 

 

1.2 Genome-wide association studies (GWASs) in  

the SNP chip era 

Genome-wide association studies were developed shortly after the 

completion of the Human Genome Project and the International HapMap Project.  

Array-based genotyping (SNP chips) used evenly spaced HapMap SNPs (at 

least one SNP every 5Kbps) to create genotype markers across the genome 

(The International HapMap Consortium, 2005).  Early iterations of these arrays 

only contained tens of thousands of markers, but modern chips represent over a 

million SNP loci (LaFramboise, 2009). SNP chips make genotyping hundreds of 

humans financially feasible (Spencer et al., 2009).  Genotypes called from SNP 

arrays are highly accurate.  For example, the genotypes called from Affymetrix 

arrays have concordance rates above 0.99 for HapMap data (Rabbee and 

Speed, 2006).  The low costs of SNP chips and high-quality data obtained have 

allowed geneticists to carry out large GWASs for a variety of medically relevant 

phenotypes (Altshuler, 2009).  GWASs work by measuring the association 

between phenotypes and the genotypes at common SNP loci (Hancock and 

Scott, 2012).  There are two subclasses of GWAS, one that is designed for 
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discrete phenotypic variation and the other that is designed for continuous 

phenotypic variation, or quantitative traits.  GWAS for simple traits requires two 

cohorts, an affected group (called cases or target) and a healthy group (called 

controls or background).  The allele frequencies of the cases and controls are 

compared at each marker to test for an association.  GWAS for continuous traits 

does not require two cohorts, but instead measures individuals’ phenotype(s) and 

groups these phenotypic measures by genotypes.  If the grouped phenotypic 

values differ between genotypes then the genotype may affect the phenotypic 

variance.  To date, GWAS has been successful in identifying regions of the 

genome that are associated with human maladies such as Crohn’s disease, 

heart disorders, and obesity, to name a few (Welter et al., 2014).  

There are many statistical and biological considerations in GWAS design.  It 

is important to consider the factors that can confound true and false associations. 

In simple trait association studies, population stratification between cases and 

controls can cause false positives (Tian et al., 2008).  For example, if the affected 

cohort is comprised of Caucasians and the background is made up of people 

with African ancestry, there will be a high degree of allelic differentiation between 

the two groups that has nothing to do with the phenotype in question.  Ideally, the 

cases and controls should be genetically indistinguishable, except for the 

locus/loci causing the phenotypic difference(s).  In other words, they should be a 

single homogeneous population.  There are several common methods used to 

test for population stratification.   Principle component analyses (PCA) can unveil 

hidden stratification within the cases and controls (Patterson et al., 2006). Cryptic 
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relatedness between individuals in a study can also generate false positives as 

related individuals share large haplotypes that inflate association (Astle and 

Balding, 2009).  There are regional methods that can identify shared genomic 

segments (SGS) between individuals (Knight et al., 2012).  The statistical models 

in GWAS have also been modified to directly account for population stratification 

and cryptic relatedness.  The linear models in GWAS can be adjusted for co-

variants including age, sex, weight, and other common vital signs.  Another 

approach to GWAS is to look for regional ancestry differences between cases 

and controls, termed admixture mapping (Winkler et al., 2010).  If care is taken 

during GWAS design, it can be a very powerful tool for identifying candidate 

genomic intervals associated with a phenotype of interest. 

SNP chip-based GWAS has several shortcomings.  The most inherent 

drawback of SNP GWAS is that it only identifies the causative loci with 

neighboring marker SNPs through linkage disequilibrium. This is an indirect 

association as a GWAS does not identify the causative variant, but localizes the 

association, through the principle of linkage disequilibrium, to a genomic 

neighborhood.  The second drawback is that GWAS is dependent on 

recombination rates (Visscher et al., 2012).  The resolution of genetic mapping 

depends on the number of recombination events across the region.  If a 

hypothetical causative variant is within a low recombination interval, it will take 

many more samples to recover enough recombination events to fine map the 

variant.  Ascertainment bias is another inherent and serious drawback of SNP 

chip GWAS (Albrechtsen et al., 2010).  The genetic variation present in some 
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human populations is not well represented on the SNP chips.  As a result, the 

allele frequency spectra are skewed toward common alleles.  Severe 

ascertainment bias can reduce the power of GWAS when informative markers 

are not included on the chip.  Lastly, rare variants are poorly represented on SNP 

chips (Zeggini et al., 2005).  This poses a problem because these variants often 

have low linkage disequilibrium with the SNPs present on the chip, meaning very 

large sample sizes are needed to generate an association signal.  Each of these 

drawbacks must be accounted for when designing a GWAS experiment. 

 

1.3 Genotype Phenotype Association with HTS 

In the mid 2000s, high throughput sequencing (HTS) methods became widely 

available (Mardis, 2008).  Technical advances in molecular biology, microfluidics, 

and optical imaging paved the way for HTS technologies. Companies like 454 

Life Sciences (now Roche), Illumina, PacBio, and Oxford Nanopore all offer 

unique variations of HTS.  Over the past decade, the costs of HTS have 

plummeted and it is projected that sequencing a whole human genome will soon 

cost less than $1,000.  Because of low HTS costs, studies designed to link 

genetic variants to phenotypes often use HTS over SNP arrays. 

There are several advantages of using HTS for GWAS over SNP chips.  The 

most obvious difference between these technologies is that HTS can identify the 

causative genetic variants underlying a phenotype or disease.  Directly linking 

genetic variants and phenotypes is called Genotype Phenotype Association 

(GPA).  Again, SNP chips only provide a set of markers; therefore, they do not 
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directly identify causative variants.  The second difference is that, unlike SNP 

chips, HTS does not have an ascertainment bias.  On average, roughly three 

million variants are identified when a new human genome is sequenced and 

compared to a reference sequence. This allows for the unbiased identification of 

both rare and novel variants, including de novo mutations.  The unbiased nature 

of whole genome sequencing also allows for structural variants ranging from 1bp 

up to several megabases to be identified (Abel and Duncavage, 2013).  Before 

HTS, array comparative genomic hybridization and tiling-based arrays were used 

to identify structural variation.  These methods are expensive and have poor 

resolution for smaller structural variants (Coe et al., 2007).  For these reasons, 

HTS has become the preferred technology for GPA.  The genetic basis of many 

phenotypes and diseases has been established using HTS (Bahassi and 

Stambrook, 2014). 

HTS GPA can be performed using both whole genome and exome 

sequencing data.  Exome sequencing is accomplished by capturing the ~1% of 

the genome that is protein coding using hybridization techniques (Biesecker and 

Green, 2014).  Exome sequencing has two advantages over whole genome 

sequencing (WGS).  First, exome sequencing analyses are constrained to the 

better-understood regions of the genome.  The functional implications of single 

nucleotide variants and structural variant within coding sequences are easier to 

predict than noncoding variants. The second advantage is financially motivated; 

exome sequencing is ~1/6th the cost of whole genome sequencing. Increased 

sampling further increases the power to associate variants with phenotypes.  In 
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contrast to exome sequencing, WGS allows for the analysis of noncoding 

variants.  There is growing awareness that noncoding variants are functionally 

relevant in evolution and disease and should not be ignored (Maurano et al., 

2012; Wray, 2007).  

The role of rare variants in common diseases can be quantified using both 

WGS and exome sequencing.  Burden tests have been developed over the last 

decade to detect associations between phenotypes and rare variants contained 

with a gene. Diseases or phenotypes that are causes by many unique alleles in 

the same gene cannot be detected by single marker tests, as there is little to no 

genetic sharing. Burden tests summarize the load of predicted deleterious 

variants within a genomic feature.  In most cases, a feature is defined as the 

coding region of a gene.  Burden tests only require one statistical test per gene, 

whereas single marker tests require a statistical test for every genetic variant.  

Burden tests are not dependent on allelic sharing to detect an association; 

however, shared alleles increase the power of some burden tests. SKAT, 

VAAST, and C-alpha are all programs that can conduct a burden test (Neale et 

al., 2011; Wu et al., 2011; Yandell et al., 2011).  Burden tests can also be 

extended to de novo genetic variants for small pedigrees (trios and quartets).  

Under a de novo model, all variants shared between a proband and their family 

members can be excluded.  In the case of large pedigree analyses, pVAAST can 

incorporate signals of linkage into its burden test to gain statistical power (Hu et 

al., 2014).  Burden tests have been widely adopted in genotype-phenotype 

association studies. 



	
  
	
  

	
  

10	
  

Another approach to identifying genetic basis of a phenotype is variant 

prioritization. Variant prioritization tools categorize genetic variants as damaging, 

benign, or somewhere in-between. Variant prioritization tools integrate amino 

acid substitution frequencies, allele frequency, and phylogenetic conservation to 

annotate the affect of mutations and rank damaging alleles.   Sift, Annovar, 

CADD, and PolyPhen are just a few of the popular tools in use today (Adzhubei 

et al., 2010; Kircher et al., 2014; Ng, 2003; Wang et al., 2010).  These tools 

generally produce allele-specific scores rather than a p-value from a statistical 

test.  Researchers then scour lists of ranked variants to find candidates for the 

phenotypes they are studying.  By applying a priori knowledge, in the form of a 

gene candidate list, the number of potential candidates can further be reduced. 

Variant prioritization remains a popular approach as it is intuitive and provides 

researchers the ability to sort candidates based on their biological knowledge. 

HTS has opened the world of GPA and genomics to many model and 

nonmodel and species.  Before HTS, creating a physical map and designing a 

SNP chip for GPA in a new species was prohibitively expensive.  It is now 

common for hundreds of de novo genomes to be published each year, 

accompanied by population level resequencing projects (Ekblom and Galindo, 

2011; Ellegren et al., 2012).  Alleles controlling phenotypic variation in rice, 

chickens, cows, and dogs have all been identified using HTS GPA (Freedman et 

al., 2014; Huang et al., 2010; Jansen et al., 2013; Rubin et al., 2010).  GPA 

studies in domesticated species have been wildly successful because of strong 

artificial selection.  During domestication, humans have often selected for one or 
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a few alleles per phenotype of interest.  It is easier to identify a GPA when there 

are only a few alleles controlling the trait of interest.  GPA studies in domestic 

systems are being used to further basic biological research and increase the 

effectiveness of animal husbandry. 

 

1.4 The challenges of Genotype Phenotype Association 

(GPA) using HTS 

There are several unique sources of error that can affect HTS GPA studies. 

These errors can be divided into four general categories: sequencing errors, 

mapping errors, genotyping errors, and pipeline bias.  If GPA studies do not 

control for these errors, they can suffer high false discovery rates or fail to 

identify causative variant(s). GPA methodology must keep evolving to cope with 

new types of HTS data and the associated errors.  In this section, I will discuss 

the four types of errors and ways to prevent error propagation.  

  Sequencing error, also known as base calling error, occurs when a 

nucleotide is misread either by machine or by human.  Automated HTS base 

calling has an error rate ten times higher than Sanger sequencing (Kircher and 

Kelso, 2010).  For example, in Illumina data, base calling errors occur at a rate of 

0.26% to 0.8% depending on the platform (Quail et al., 2012). HTS error rates 

are not constant across a read.  Errors are more common at the start and end of 

a read due to the sequencing chemistry (Minoche et al., 2011). Long read 

technologies, such as pacBio SMRT sequencing, have base calling error rates 

around 10-14%, which is two orders of magnitude greater than Illumina 
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sequencing technologies (Roberts et al., 2013). There are also sequence-specific 

errors; repeats of ‘GCC’ and ‘GGC’ cause Illumina sequencing errors (Nakamura 

et al., 2011; Quail et al., 2012).  HTS errors occur randomly, with the exception of 

sequence-specific errors. Therefore, sequencing a genome to a higher depth can 

mitigate the affects of base calling errors.  An alterative strategy for dealing with 

base calling errors is to trim the 5’ and 3’ of reads, removing many erroneous 

nucleotides (Schmieder and Edwards, 2011).  

 Mapping errors are a serious and pervasive form of error that affects all GPA 

analyses.  HTS reads derived from complex or highly repetitive regions of the 

genome cannot be uniquely mapped and are randomly assigned (Li, 

2014)(Figure 1.2A-B). Reads derived from high copy number sequences, such 

as transposable elements including LINE-1 and ALU elements, are often 

ambiguously mapped.  Reads with real genetic variation that are incorrectly 

mapped introduce false variant calls at the positions where they were placed.  

Reads sampled from real genetic variants, such as insertions, cannot be mapped 

because the insertion sequence is not represented in the reference genome.  

Structural variants, including deletions and inversions (Figure 1.4.1C-D), can 

induce false variant calls when their breakpoints are not correctly identified.  

There are three ways to reduce the number of mapping errors.  First, mate-pair 

sequencing allows mapping software to find genomic positions where both mates 

map.  If one fragment is present in a repetitive sequence, its mate can rescue it 

to the correct location.  Second, as HTS reads get longer, the ability to map the 

reads will improve.  Third, efforts to identify and re-assemble erroneous regions 
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in reference genomes will reduce mapping errors.  

Genotyping errors are a direct consequence of sequencing and mapping 

errors.  Variant callers rely on the mapping qualities and base qualities provided 

by upstream tools (Nielsen et al., 2011).  Modern variant callers integrate many 

sources of information into their probabilistic models (Li, 2011; McKenna et al., 

2010).  However, even with these models, errors are common.  Downstream 

filtering is a common way to reduce the number of false positive variant calls.  

Common filters are depth, genotype likelihoods, and frequency of the variant. 

Population genetic metrics such as Hardy Weinberg Equilibrium have also been 

widely used. Genotyping algorithms can also leverage pedigree- or population- 

level allele frequencies to improve the quality of calls. For example, in the case of 

a trio pedigree, the rules of inheritance can be applied to reduce false variant 

calls, except in the case of de novo mutations.  Insuring that only high-quality 

genotype calls are used for GPA will reduce the amount of spurious associations. 

The last source of errors is pipeline/logistical errors.  These errors include 

everything from study design, to sample preparation, to the software tools used 

for the analyses (O’Rawe et al., 2013; Robasky et al., 2014).  When designing a 

GPA, it is imperative that enough samples are gathered for the study to tolerate 

human errors such as mislabeling.  Other sources of logistical error include 

mechanical malfunctions during sequencing and hard drive failures. Pipeline 

biases can occur when multiple samples are processed with different alignment 

software, or variant callers.  This last source of error is common when small 

research groups compare their genomes to large consortiums like One Thousand 
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Genomes Project or the Exome Aggregation Consortium (ExAC)(Abecasis et al., 

2012).  Significant effort should be expended to ensure that both the cases and 

controls of a GPA are processed in the same way. 

 

1.5 Summary of chapters  

In this thesis, I present several examples applying HTS for Genotype 

Phenotype Association.  We have developed two software suites for this 

purpose.  The first tool, GPAT++, discussed in Chapter 2, is used for Genotype 

Phenotype Association for bi-allelic SNPs and indels.  GPAT++ was extensively 

applied to biological data in Chapters 3 and 4.  In Chapter 5, I introduce WHAM, 

a tool designed for structural variant GPA.  Unlike GPAT++, WHAM does not rely 

on variant calls from other tools, but rather directly calls structural variants and 

conducts association testing from binary alignment files.  The development and 

application of GPAT++ and WHAM represent the majority of my Ph.D. efforts.  

 

1.5.1 GPAT++ 

The application of population genomics to nonmodel organisms is greatly 

facilitated by the low cost of next-generation sequencing (NGS), including 

methods that seek to overcome some of the problems discussed above. Barriers, 

however, exist for using NGS data for population level analyses. Traditional 

population genetic metrics, such as Fst, are not robust to the genotyping errors 

inherent in noisy NGS data. Additionally, many older software tools were never 

designed to handle the volume of data produced by NGS pipelines. To overcome 
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these limitations, we have developed a flexible software library designed 

specifically for large and potentially noisy NGS datasets. The Genotype 

Phenotype Association Toolkit (GPAT++) implements both traditional and novel 

population genetic methods in a single user-friendly framework. GPAT++ 

consists of a suite of command-line tools and scripts that enable rapid genotype-

phenotype association with visualization methods to aid analyses.  The methods 

implemented in GPAT++ have been applied to several projects presented in 

subsequent chapters of this thesis.  We have used GPAT++ on a variety of non-

model systems including, but not limited to, pigeon, pine fungus, poxvirus, and 

Tetrahymena.   

At the core of the GPAT++ suite is a single marker genotype-phenotype 

association test called pFst.  The GPA tool, pFst, is comprised of two separate 

likelihood ratio tests that work on diploid organisms (genotypic data) or pooled 

sequencing data (allele frequency data).  Unlike previous GPA statistical tests, 

pFst integrates genotype likelihoods for nonpooled data.  Modeling the 

genotyping errors, via the genotype likelihoods, helps to reduce the numbers of 

false positives.  pFst can process tens of millions of variant sites in a variant call 

file (VCF) within a few hours.  For these reasons, pFst is an excellent assay for 

initial association testing.    

In this chapter, I will describe, in detail, the statistical test pFst and the 

implementation.  The code is publically available on Github and a detailed wiki 

provides the necessary user documentation to run the code.   
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1.5.2 Genomic diversity and the evolution of the head crest 

 in the rock pigeon 

The phenotypic variation present in domestic rock pigeons is astounding.  In 

2013, we published the rock pigeon genome along with the genome re-

sequencing of more than 30 phenotypically diverse breeds (Shapiro et al., 

2013b).  This single dataset has been leveraged to map the genetic basis of 

head-crest and several other traits.  At the time, it was one of the earliest 

examples of using whole-genome resequencing to map the genetic basis of an 

avian trait.  This dataset spurred us to write the GPAT++ suite, as many of the 

tools that were available were woefully ill-suited for 40 whole genomes.  

In the manuscript, we describe mapping the allele that caused the recessive 

headcrest trait using two complementary approaches.  Traditional metrics of 

natural selection including Fst and XP-EHH were used to identify a candidate 

region (scaffold 612) based on allele frequency differences and haplotype 

structure around the headcrest locus.  The Variant Annotation And Search Tool 

(VAAST) is a disease gene-finding tool that was coopted for GPA.  VAAST’s 

ability to integrate differences in allele frequencies between cases and controls, 

phylogenetic conservation, models of amino-acid substitutions, and models of 

inheritance makes VAAST a powerful tool for GPA.  VAAST identified a single 

amino acid substitution in the EphB2 gene as the best candidate for the 

headcrest phenotype genome-wide.  Additional Sanger-based genotyping 

bolstered the perfect association of the allele in Ephb2 and the head-crest 

phenotype. 
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In addition to mapping headcrest, we used the 40 genomes to model the 

evolutionary history of the domestic pigeon, including the effective population 

size and relationships between the breeds.  We found genetic introgression 

between birds that supported ancient human trade routes between different 

ethnic groups.  Phylogenetic analyses of the birds revealed that artificial selection 

from breeders has affected the genetic diversity across all domestic pigeons.  We 

found within-breed diversity was low while between-breed diversity is quite high.  

This supported the idea that pigeon breeders have maintained the “purity” of 

breeds over time. 

 

1.5.3 Epistatic and combinatorial effects of pigmentary gene 

 mutations in the domestic pigeon 

Pigmentation plays an important role in mate choice, predator avoidance, and 

mimicry in many natural populations.  In domestic species like the pigeon, 

breeders’ preference often determines if a bird’s plumage coloration is favorable.  

Domestic pigeon breeds have a variety of pigmentation and patterning.  Black, 

brown, yellow, red, and blue are all colors that are observed across the breeds.  

These colors often appear to possess epistatic interactions with one another.  In 

lay terms, when two different color alleles are present in the same bird, the 

phenotype will be discrete rather than a blending of colors.  Chapter 4 presents 

the paper “Epistatic and combinatorial effects of pigmentary gene mutations in 

the domestic pigeon” (Domyan et al., 2014). In this paper, we discovered three 

genes, Tryp1, Sox10, and Slc45a2, as well as several alleles within these genes 
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that interact to generate six unique plumage colors.  Some of the alleles were 

genic (Tryp1 and Slc45a2), while two alleles, e1 and e2, were deletions of a 

melanocyte specific enhancer upstream of Sox10.  We used pFst to identify the 

association of recessive red with the region upstream of Sox10 and through 

careful analysis, the noncoding e1 and e2 alleles were discovered.  VAAST was 

applied to identify the coding variants within Slc45a2 and Tyrp1.  The two tools, 

VAAST and pFst, are complementary as VAAST has excellent power in coding 

regions, while pFst excels at identifying noncoding variants associated within 

phenotypes.  This paper demonstrates that pigeon genetics and genomics can 

be used to unravel the interactions between genes and alleles. 

 

1.5.4 DisAp-dependent striated fiber elongation is required to 

 organize ciliary arrays 

Tetrahymena thermophila is a free-living ciliate that serves as a good model 

system for dissecting one of the most complex eukaryotic molecular motors, the 

cilium.  Tetrahymena are covered from tip to tail with cilia, which are required for 

cell motility.  Genetic screens have been carried out in Tetrahymena to identify 

and characterize mutations that cause motility defects.  These defects are of 

great interest to molecular biologists as they mimic primary ciliary dyskinesia, a 

serious human disease where cilia fail to clear mucus from the respiratory tract 

(Noone et al., 2004). 

Genetic screens in the late 1970s discovered a Tetrahymena mutant with 

basal body defects resulting in the disorganization of cilary arrays.  The mutation, 
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that caused the phenotype, was recessive and called disA-1.  I used GPAT++ to 

map the disA-1 locus, which allowed our colleagues to genetically and 

molecularly characterize the role of the novel protein DisAp (Galati et al., 2014). 

 

1.5.5 WHAM: Identifying structural variants of biological 

 consequence 

Genotype phenotype association (GPA) testing using high throughput 

sequencing data has traditionally excluded structural variants (SV) due to 

inaccuracies during SV detection. High rates of false positives and negatives are 

common among the state-of-the-art tools.  Most SV detection tools error on the 

side of specificity at the expense of sensitivity, meaning they often fail to call true 

structural variants.  This aspect of SV detection is highly detrimental for GPA as 

SV alleles associated with a phenotype can be missed.  To incorporate SV calls 

into genotype phenotype association, there are three challenges that must be 

addressed.  First, the breakpoints of SVs must be reliably identified across 

multiple individuals.  Second, the breakpoints must be genotyped correctly.  

Lastly, genotyping and breakpoint identification errors must not be systematic 

between the cases and controls.  Error must be random and even across the 

case and control cohorts. 

To address these issues, we have created an association-testing tool for 

structural variants entitled: Whole Genome Alignment Metrics, or WHAM for 

short.  WHAM is a population-level structural variant caller that also conducts 

genotype-phenotype association testing.  WHAM is highly sensitive with respect 
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to SV identification. WHAM provides high positional breakpoint accuracy and 

reliable genotype calls.  In this chapter, I present WHAM benchmarked on both 

simulated and biological datasets.  As a proof of principle, WHAM was applied to 

re-discover the e1 allele, a deletion that is responsible for the recessive red 

phenotype in pigeons (see Chapter 3). 
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Figure 1.1. The phenotypic diversity amongst domesticated pigeons.  A) The 
feral rock pigeon, Columba livia, is the progenitor of domestic pigeons.  B) Mane 
crested Old Dutch Capuchin. The presence or absence of a headcrest is an 
example of a simple or binary trait.  C)  A compilation of different pigeon breeds 
exhibiting many derived phenotypes. 
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Figure 1.2. Mapping errors and structural variation present in a high coverage re-
sequenced genome (NA12878).  From top to bottom in each panel: the genomic 
position track, the smoothed read depth track, and the HTS paired-end read 
alignments.  The intensity of the grey hue denotes the mapping quality of each 
read.  Reads that are white have the lowest mapping quality. Reads that are not 
grey scaled have mates that map to other chromosomes.   Reads with partial 
matches (soft clipped) are shown as grey bars with colored patches at the 5’ or 3’ 
end(s) of the read.  A) Several microsatellites close to a centromere.  Most reads 
within this region have low mapping qualities (white) and many are soft clipped 
(colored regions at the start or end of a read).  B) Simple (CA)n repeat rich region 
near a telomere.  The reads in the region have high mapping qualities and many 
are soft clipped.  C) A homozygous partial deletion of a LINE-1 element.  Reads 
are shown as mate-pairs.  Read pairs shown in red are mapped too far apart, 
indicating a deletion, similarly reads at the breakpoint of the deletion are soft 
clipped. D) An inversion.  Teal read pairs are reads that both map to the same 
strand, which is indicative of an inversion. 
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CHAPTER 2 

 

THE GENOTYPE PHENOTYPE ASSOCIATION TOOLKIT 

 

2.1 Background 

The field of population genetics has greatly benefited from the precipitous 

drop in the cost of high throughput sequencing (HTS).  The bottleneck in the field 

has shifted from manually gathering genetic markers to processing population-

level HTS data (Pool et al., 2010).  While the theoretical foundation of population 

genetics is relatively stable, the HTS data used are rapidly evolving and growing 

in size. Traditional population genetic metrics were not designed to cope with 

missing genotypes or genotyping errors, frequent in all HTS data (Pompanon et 

al., 2005). If downstream analyses do not account for these errors, basic 

population genetic parameters can be biased.  For example, HTS data can skew 

estimates of both the allele frequency spectrum and genetic diversity (Nielsen et 

al., 2011; Sackton et al., 2009).  These estimates are skewed as HTS errors 

result in an abundance of rare variants. HTS errors can also affect the outcome 

of genotype-phenotype association (GPA) studies. The statistical models used in 

association studies rely on both accurate genotypes and estimates of the allele 

frequency spectrum.  The methodology for population genetic and GPA analyses
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need to be updated to cope with the typical errors of HTS data.  In response to 

the growing number of HTS population genetics and GPA studies, dozens of 

toolkits have been developed, each filling a specific niche. 

One tool, ANGSD, focuses on estimating the allele frequency utilizing 

genotype likelihoods (Korneliussen, 2014).  Another tool, Lositan, detects Fst 

outliers, a measure of population differentiation (Antao et al., 2008).  Over the 

past several years, the software ecosystem has become crowded. Some of the 

options researchers have to choose from include VCFtools, ngsTools, 

PoPoolation, Pegas, Arlequin 3.0, and PlinkSEQ (Danecek et al., 2011; Excoffier 

et al., 2005; Fumagalli et al., 2014; Kofler et al., 2011; Paradis, 2010).  While 

there are many published population genetic / GPA toolkits, not all are created 

equal.  Some tools are difficult to install because of extensive external 

dependencies, while others are difficult to use because they have their own 

unique file formats.  Also, many of these tools do not account for genotype 

uncertainty. 

Recently, the benefits of accounting for genotype uncertainty when analyzing 

HTS data have become apparent (Fumagalli et al., 2013, 2014; Korneliussen, 

2014; Li, 2011a).  The uncertainty of a genotype call is quantified with genotype 

likelihoods.  Formally, genotype likelihoods summarize the probability of the data 

(HTS reads at a position in the genome) given a genotype (SNPs, indels) (Li, 

2011a; McKenna et al., 2010; Nielsen et al., 2011, 2012).  In the case of a bi-

allelic SNP, three genotype likelihoods will be reported by a variant caller:  

homozygous reference (0/1; 0), heterozygous (0/1; 1), and homozygous non-
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reference (1/1; 2).  Genotype likelihoods are affected by mapping quality, base 

quality, and priors such as the allele frequency of the variant in the population.  

Tools that make use of genotype likelihoods have been shown, through 

simulation, to lower the mean bias between estimated and simulated population 

genetic parameters (Fumagalli et al., 2013).  As many real-word datasets contain 

large numbers of individuals sequenced to low depth, it is critical that HTS 

analyses account for the uncertainty in the data by using genotype likelihoods 

(Abecasis et al., 2012; Kim et al., 2010; Li et al., 2011). 

Here we present the Genotype Phenotype Association Toolkit, or GPAT++ for 

short.  GPAT++ is a C++ population genetics toolkit that focuses on association 

and population differentiation testing.  The algorithms in GPAT++ either directly 

use genotype likelihoods to account for HTS errors or provide sensible filters to 

facilitate rapid and reliable analyses.  The tools within GPAT++ were developed 

to fit the needs of several unique genotype-phenotype association (GPA) study 

designs and later generalized into a user-friendly toolkit. Novel and traditional 

methods within GPAT++ have been vetted in eukaryotic systems (Domyan et al., 

2014; Galati et al., 2014) and viral data.  The main GPA test within GPAT++ is 

pFst, a single-marker test that has proven effective in mapping the genetic basis 

of traits in genotypic and pooled (allele frequency-based) HTS data. Besides the 

association tests and population differentiation statistics, GPAT++ also provides 

scripts for postprocessing of results and data visualization.  Here we describe the 

novel methods implemented in GPAT++ and provide several examples of how to 

use GPAT++ on real data. 
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2.2 Methods 

GPAT++ analyses start directly downstream of variant calling.  GPAT++ takes 

a joint-called VCF formatted file containing population-level bi-allelic SNPs and 

INDELs (Danecek et al., 2011).  This VCF file is compressed and indexed by 

chromosome and position using Tabix, which allows for range queries within 

GPAT++ (Li, 2011b).  GPAT++ analyses prevent file splitting and merging by 

allowing the user to subset individuals within the VCF file.  Care has been taken 

to homogenize GPAT++ command line options, reducing the amount of time 

required to learn GPAT++ workflows.  A full list of analyses available in GPAT++ 

is presented in Table 2.1.  GPAT++ provides a mix of modified and traditional 

GPA and population genetic measures.  Most of our efforts have been directed 

towards our keystone tool, pFst. 

 

2.2.1 Genotype phenotype association with a likelihood ratio test 

GPAT++’s pFst test quantifies the difference between the target and 

background allele frequencies using a likelihood ratio test (LRT) under a binomial 

likelihood model.  The basic LRT used within pFst has been widely adopted for 

association studies (Kim et al., 2010; Li, 2011a; Yandell et al., 2011).  The null 

model of pFst LRT assumes that the allele frequencies of both the target (AFT) 

and background (AFB) groups are the same (same distribution), while the 

alternative hypothesis is that the allele frequencies of the two groups come from 

two separate distributions. The allelic counts in the model come from the 

genotype calls. 
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𝐷   = −2   ∗   𝑙𝑛(   !(!!,!!,!"!)
!(  !!,!!,!"!  )  ×  !(!!,!!,!!!)

 ) 

 
(2.1) 

 

The binomial density function (B(n, k, p)) is parameterized by the number of 

successes n, the number of trials k, and the probability of success p.  In the 

current application, n is the number of nonreference alleles in the target (NT), 

background (NB), and the target/background combined (NC). The parameter k is 

the number of alleles in the target (KT), background (KB), and the 

target/background combined (KC).  The probability of success p corresponds to 

the target (AFT), background (AFB), and combined (AFC) allele frequencies.  The 

parameter D is the likelihood ratio test statistic. Larger D values can indicate that 

the null hypothesis should be rejected under the assumptions of the binomial 

model.  A chi-sq lookup can be used to convert the D statistic into a p-value.  

By default, pFst uses a modified form of the likelihood ratio, presented in 

equation 2.1, that incorporates the genotype likelihood information.  The allele 

counts (equation 2.2 and 2.3) and the allele frequencies (equation 2.4) are 

estimated by integrating over the genotype likelihoods: 

 

 
𝑎𝑙𝑙𝑒𝑙𝑒𝐴!"#$%  !"#$%&#! = (2 ∗ 𝑔𝑙! + 𝑔𝑙!)

!!!

!!!

 (2.2) 
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𝑎𝑙𝑙𝑒𝑙𝑒𝐵!"#$%  !"#$%&#! = (2 ∗ 𝑔𝑙! + 𝑔𝑙!)

!!!

!!!

 (2.3) 

 

 𝐴𝐹!"!!!"# =
𝑎𝑙𝑙𝑒𝑙𝑒𝐵!"#$%  !"#$%&#!

𝑎𝑙𝑙𝑒𝑙𝑒𝐵!"#$%  !"#$%&#! + 𝑎𝑙𝑙𝑒𝑙𝑒𝐴!"#$%  !"#$%&#!
 (2.4) 

 

The variable gl represents the genotype likelihood and the subscript is the 

genotype (1,2,3; 0/0, 0/1, 1/1). The summation is over the subpopulations (cases 

and controls).  The estimates from equations 2.2, 2.3, and 2.4 are used in 

equation 2.1. 

For pooled samples the binomial equation used in 2.1 is replaced with a beta 

distribution.  The parameters of the beta distributions are estimated using the 

methods of moments.  The pooled version of pFst requires that both the target 

and background have more than one biological sample. 

 

2.3 Applications of GPAT++ 

In this section, we demonstrate GPAT++’s functionality on HTS pigeon variant 

calls by examining the genetic basis of “headcrest”, shown in Figure 2.1A 

(Shapiro et al., 2013).  The presence or absence of headcrest can be attributed 

to a single allele (cr) of the Ephb2 gene. Cr is a G to T nucleotide substitution 

causing a missense mutation (arginine to cysteine) in the EphB2 protein (Shapiro 

et al., 2013).  In the head crest example, we use GPAT++ to identify the cr allele 

and interrogate the haplotype structure around cr.  The GPAT++ commands and 

data used for the analyses are annotated in Table 2.2.  GPAT++’s plotting scripts 
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directly generated the figures presented in this section. 

We begin be examining the association signal on scaffold612 between birds 

with and without head crest.  Figure 2.1B-D shows the results of running of pFst, 

wcFst (Weir and Cockerham’s Fst), and a Bayesian implementation of Fst.  The 

highest peak for pFst and wcFst is cr at position 596,613. Weir and Cockerham’s 

Fst and pFst generate association signals that are similar in appearance for 

scaffold612, while the Bayesian method appears to have more noise.  One 

advantage of the Bayesian method over the other two methods is it provides 

confidence intervals around the best estimate of Fst.  However, the Bayesian 

method is computationally burdensome, as each calculation requires thousands 

of Markov Chain Monte Carlo iterations.  All three methods show elevated scores 

around the cr allele, suggesting that cr is an extended haplotype. 

To explore the cr haplotype, we used GPAT++’s haplotype plotting and 

linkage disequilibrium (LD) tools.  The core haplotype carrying the cr allele is 

~10Kb long.  We used GPAT++ to plot the haplotype within 25kb window of the 

cr allele (Figure 2.2A).  At this distance, the haplotype sharing has completely 

decayed, although many of the haplotypes are very similar.  Towards both edges 

of the haplotype plot, the haplotype diversity starts to increase due to 

recombination events between the cr haplotype and non-cr haplotypes.  To 

quantify the amount of recombination in the region, we next used GPAT++’s 

linkage disequilibrium measure.  GPAT measures LD as the D statistic (Devlin 

and Risch, 1995).  Using this traditional method, we found little linkage 

disequilibrium around the cr allele for the birds with head crests (Figure 2.2B-C).  



	
  
	
  

	
  

36	
  

This is not unexpected as cr is recessive (fixed within the target population) and 

“D” cannot assay fixed alleles.  The low density of assayable sites, visible in 

Figure 2.2B, is due to the fixed cr allele.  To overcome this inherent shortcoming 

of “D”, we allow users to provided external estimates of allele frequencies, 

allowing for fixed sites within a population to be assayed.  By providing 

GPAT++’s LD method a background set of individuals we recovered the linkage 

disequilibrium surrounding the cr allele (Figure 2.2C). 

 

2.4 Conclusion 

GPAT++ provides powerful methodology for analyzing, summarizing, and 

visualizing complex population level datasets.  Through the applied example, we 

demonstrate that GPAT++ is applicable to real-world datasets.  The examples 

provided here are not all encompassing of GPAT++’s functionality, but merely a 

brief tutorial.  For full documentation and additional examples of using GPAT++, 

please see the wiki: https://github.com/jewmanchue/vcflib/wiki. Continual 

development will focus on supporting new file formats and implementing 

additional population genetics metrics. 
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Table 2.1 Primary analyses available in GPAT++.  The last two columns state the 
requirements of each method: genotype data or pooled sequencing or phased or 
unphased diploids. 
 

Method Genotype 
or Pooled 

Reference Phased Variant 
requirement 

Population 
statistics  

Both NA Phased/unphased 

pFst Both  NA Phased/unphased 
Weir and 
Cockerham 
Fst  

Genotype 
only 

(Weir and 
Cockerham, 
1984) 

Phased/unphased 

Bayesian Fst 
 

Genotype 
only 

(Holsinger 
et al., 2002) 

Phased/unphased 

ABBA-BABA Genotype 
only 

(Durand et 
al., 2011) 

Phased/unphased 

iHS 
 

Genotype 
only 

(Voight et 
al., 2006) 

Phased only 

XP-EHH Genotype 
only 

(Sabeti et 
al., 2007) 

Phased only 

Linkage 
disequilibrium 
(D) 

Genotype 
only 

(Devlin and 
Risch, 
1995) 

Phased only 

Nucleotide 
diversity  

Genotype 
only 

(Nei and Li, 
1979) 

Phased only 
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Table 2.2 GPAT++ commands used for the head crest analyses 

Task: Identify genetic variants with different allele frequencies (associated with 
head crest). 
 
Command: ../bin/pFst --target 1,20,25,29,30,38,43,46 --background 
2,3,4,5,6,7,21,22,22,23,24,26,26,28,31,32,33,34,35,36,37,39,40,41,42,44,45 --
deltaaf 0.0 --file scaffold612.vcf --counts --type PL   > 612.counts 2> 612.err 
 
Explanation: A list of target and background birds is provided to pFst using the 
–target and –background flags.  Genetic variants with allele frequency 
differences less than –deltaaf are skipped.  The –counts flag instructs pFst to 
use the genotype count model.  The –type flag denotes the format of the 
genotype likelihoods in the VCF.  The STDOUT and STDERR are redirected to 
612.counts and 612.err, respectively. 
Task: Plot the output of pFst 
 
Command: R --vanilla < ../bin/plotPfst.R --args 612.counts 
 
Explanation: GPAT++ analyses use the statistical language R for plotting 
functions.  The R script (plotPfst.R) is passed the pFst file as an argument.  The 
R script writes a plot file with the same prefix as the input file and the suffix is 
the time and date. 
Task: Identify genetic variants that show evidence of differential inbreeding 
between populations using Weir and Cockerham’s Fst.  For this example the two 
populations are birds with and without head crests. 
 
Command: bin/wcFst --target 1,20,25,29,30,38,43,46 --background 

2,3,4,5,6,7,21,22,22,23,24,26,26,28,31,32,33,34,35,36,37,39,40,41
,42,44,45 --deltaaf 0.0 –type PL --file scaffold612.vcf   > 
612.wcfst.txt 2> 612.wcfst.err 

 
Explanation: The command line options are identical to the pFst command. 
 
Task: Plotting the output of wcFst. 
 
Command: R --vanilla < ../bin/plotWCfst.R --args 612.wcfst.txt 
 
Explanation: The same syntax as plotPfst. 
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Table 2.2 continued 
Task: Identify genetic variants that show evidence of differential inbreeding 

between populations using a Bayesian method.  For this example the 
two populations are birds with and without head crests. 

 
Command: bin/bFst --target 1,20,25,29,30,38,43,46 --background 

2,3,4,5,6,7,21,22,22,23,24,26,26,28,31,32,33,34,35,36,37,39,40,41
,42,44,45 --deltaaf 0.0 --file scaffold612.vcf > 612.bFst 

 
Explanation: The command line options are identical to the pFst command. 
 
Command: R --vanilla < ../bin/plotBfst.R --args 612.bFst 
 
Explanation: The same syntax as plotPfst. 
Task: Visualize the haplotypes around the Ephb2 gene.  This is a two-step 

process.  The first step generates the input for the plotting script. 
 
Command: bin/plotHaps --target  1,20,25,29,30,38,43,46 --file 

~/gpat/samples/scaffold612.phased.vcf.gz  --type GP --region 
scaffold612:584000-609000 > headCrest.haps.txt 

 
Explanation: Generating the input for the haplotype plotting script.  –target are 

the individuals to plot. –type is the genotype format.  In this case 
the VCF file is from Beagle 4.0. –region specifies the bounds of 
the analysis. 

 
Task: Plot the haplotype data generated in the prior step. 
 
Command: R --vanilla < bin/plotHaplotypes.R --args headCrest.haps.txt 
 
Explanation: Plot the haplotypes using the output of the last command. 
Task: Calculated the linkage disequilibrium between genetic variants for the 

birds with a head crest.  
 
Command: bin/LD --target 1,20,25,29,30,38,43,46 –d –w 20 > within-

pop.ld.11.txt 
 
Explanation: Calculate the linkage average linkage disequilibrium within 20 

SNP windows.  –target is the individuals to use. –d is the flag 
instructs the program to use the non-reference haplotype 
frequency. –w is the SNP window size.   
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Table 2.2 continued 
Task: Plotting the LD calculated in the previous step. 
 
Command: R --vanilla <  bin/plotLD.R --args within-pop.ld.11.txt 
 
Explanation: Plotting mean LD using the output from the last command 
Task: Calculating the LD around the Ephb2 for birds with a head crest.  Unlike 

the previous LD calculation a background will be used. 
 
Command: bin/LD --target 1,20,25,29,30,38,43,46 --background 

2,3,4,5,6,7,21,22,22,23,24,26,26,28,31,32,33,34,35,36,37,39,40,41
,42,44,45 --type GP --file samples/scaffold612.phased.vcf -e -d -w 
20 > between-pop.ld.11.txt 

 
Explanation: Calculating the LD for the target population (--target) using the 

background individuals for the haplotype frequency expectation.  
–e is the flag that instructs LD to use external allele frequencies. 

Task: Plotting the LD calculated in the previous step. 
 
Command: R --vanilla <  bin/plotLD.R --args between-pop.ld.11.txt 
 
Explanation: Plotting mean LD using the output from the last command  
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Figure 2.1.  Mapping the genetic basis of headcrest using three different methods 
A) An uncrested and crested bird. B-D)  The genotype-phenotype association 
scans for headcrest on scaffold612. The position of the headcrest allele (cr) is 
highlight by the arrow. B) pFst run with genotype counts. C) Weir and 
Cockerham’s Fst. D) Bayesian Fst. 
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Figure 2.2. Analysis of the cr allele using GPAT++ haplotype-based methods. A) 
Haplotype plot of scaffold612 (584Kb-609Kb) for birds with the cr allele. Each 
row is a single haplotype and the columns are variable sites (bi-allelic SNPs and 
indels). The haplotypes are clustered by similarity. The dendrogram below the 
haplotype plot summarizes the clustering. The haplotypes carrying the cr allele 
are very similar, resulting in the “comb” like appearance in the dendrogram. B-C) 
The average Linkage disequilibrium (measured with the D statistic) across 
scaffold612 is plotted. The headcrest allele, cr, is notated with an arrow. B) The 
D static using the allele frequency and haplotype frequency within the target 
population. Many of the variable sites around cr cannot be assayed as they are 
fixed within the target population. C) By using the background population’s allele 
frequency as the expectation, we are able to score sites fixed in the target, but 
variable in the background.  
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CHAPTER 3 

 

GENOMIC DIVERSITY AND EVOLUTION OF THE 

 HEAD CREST IN THE ROCK PIGEON 

 
 

From Shapiro, M.D., Kronenberg, Z., Li, C., Domyan, E.T., Pan, H., Campbell, 
M., Tan, H., Huff, C.D., Hu, H., Vickrey, A.I., et al. (2013). Genomic diversity and 
evolution of the head crest in the rock pigeon. Science 339, 1063–1067. 
reprinted with permission from AAAS 

 

3.1 Contribution 

For this paper, I carried Genotype Phenotype Association (GPA) for head 

crest (Figure 2 in the paper), estimating general population genetic parameters, 

inferring breed histories and the relationship between the 40 sequenced birds 

(Figure 1 in the paper). There were many technical challenges in this project.  

For example, the variant calls I received from our collaborators required filtering 

and care quality assurance.  In total, it took a full year to do all of the analyses for 

this project. 

This project encouraged me to write GPAT++, which expedites many of the 

analyses in the paper.  The 40 sequenced birds have been an immense resource 

for developing new algorithms and testing methods already in existence.  The 

regions around the head crest locus   Ephb2 has been used so extensively for 

GPAT++ development that it is distributed with the code for a tutorial.   
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enrichment, should be paced by changes in dust
concentration. During TIII, the change in dust oc-
curs earlier than the change in ice isotope at both
EDC and Vostok (figs. S7 and S8), whereas these
two records are approximately in phase during TI
(fig. S8). This could explainwhy the Vostok d40Ar
record is in advance with respect to the aCO2

record, without contradicting our finding of syn-
chronous changes in aCO2 and AT. During TII at
EDC (fig. S8), on the other hand, the change in
d15N occurs at a deeper depth than the change in
dust. Dust concentration therefore cannot be the
only factor influencing the LID.

Our results are also in general agreement with
a recent 0- to 400-year aCO2-AT average lag es-
timate for TI (20), using a different approach.
Although this study does not make any assump-
tion about the convective zone thickness, it is
based on coastal cores, whichmight be biased by
local changes in ice sheet thickness; and firn den-
sification models, which may not be valid for
past conditions (see the supplementary materials
for a more detailed discussion).

Our chronology and the resulting aCO2-AT
phasing strengthens the hypothesis that there was
a close coupling between aCO2 and AT on both
orbital and millennial time scales. The aCO2 rise
could contribute to much of the AT change dur-
ing TI, even at its onset, accounting for positive
feedbacks and polar amplification (21), which
magnify the impact of the relatively weak rCO2

change (Fig. 4) that alone accounts for ~0.6°C of
global warming during TI (21). Invoking changes
in the strength of the Atlantic meridional over-
turning circulation is no longer required to ex-
plain the lead of AT over aCO2 (22).

Given the importance of the Southern Ocean
in carbon cycle processes (23), one should not
exclude the possibility that aCO2 and AT are in-
terconnected through another common mecha-
nism such as a relationship between sea ice cover
and ocean stratification. Although the tight link
between aCO2 and ATsuggests a major common
mechanism, reviews of carbon cycle processes
suggest a complex association of numerous inde-
pendent mechanisms (2, 23).

Changes in aCO2 and AT were synchronous
during TIwithin uncertainties. Ourmethod, based
on air 15Nmeasurements to determine the ice/gas
depth shift, is currently being used in the con-
struction of a common and optimized chronology
for all Antarctic ice cores (24, 25). The assump-
tion that no convective zone existed at EDC dur-
ing TI might be tested in the future by using Kr
and Xe isotopes (26). Further studies on the firn
are needed to understand the causes of the past
variations of the LID, such as the possible impact
of impurity concentrations on the densification
velocity. Although our study was focused on the
relative timing of TI climatic records extracted
from Antarctic ice cores, there is now the need to
build a global chronological framework for green-
house gases, temperature reconstructions, and
other climate proxies at various locations (22).
Although the timings of theBølling, YoungerDryas,

and Holocene onsets as visible in the methane
records are now well constrained by a layer-
counted Greenland chronology (27), determining
the timing of the onset of TI in Antarctic records
remains challenging.Modeling studies using cou-
pled carbon cycle–climate models will be needed
to fully explore the implications of this synchro-
nous change of AT and aCO2 during TI in order
to improve our understanding of natural climate
change mechanisms.
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Genomic Diversity and Evolution
of the Head Crest in the Rock Pigeon
Michael D. Shapiro,1* Zev Kronenberg,2 Cai Li,3,4 Eric T. Domyan,1 Hailin Pan,3

Michael Campbell,2 Hao Tan,3 Chad D. Huff,2,5 Haofu Hu,3 Anna I. Vickrey,1

Sandra C. A. Nielsen,4 Sydney A. Stringham,1 Hao Hu,5 Eske Willerslev,4

M. Thomas P. Gilbert,4,6 Mark Yandell,2 Guojie Zhang,3 Jun Wang3,7,8*

The geographic origins of breeds and the genetic basis of variation within the widely distributed
and phenotypically diverse domestic rock pigeon (Columba livia) remain largely unknown.
We generated a rock pigeon reference genome and additional genome sequences representing
domestic and feral populations. We found evidence for the origins of major breed groups in the
Middle East and contributions from a racing breed to North American feral populations. We
identified the gene EphB2 as a strong candidate for the derived head crest phenotype shared by
numerous breeds, an important trait in mate selection in many avian species. We also found
evidence that this trait evolved just once and spread throughout the species, and that the crest
originates early in development by the localized molecular reversal of feather bud polarity.

Since the initial domestication of the rock
pigeon in Neolithic times (1), breeders
have selected striking differences in be-

havior, vocalizations, skeletal morphology, feather
ornaments, colors, and color patterns to establish
over 350 breeds (2). In many cases, the number
and magnitude of differences among breeds are

more characteristic of macroevolutionary changes
than of changes within a single species (2, 3).
Indeed, Charles Darwin was so fascinated by
domestic pigeons that he repeatedly called atten-
tion to this dramatic example of diversity within
a species to communicate his ideas about natural
selection (3, 4).
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The genetic architecture for many derived
traits in pigeons is probably relatively simple
(5, 6), probably more so than that for interspe-
cific trait variation among many wild species,

because breeders often focus on qualitative rather
than quantitative variation; this increases the chance
of identifying genes responsible for differences
among breeds. Additionally, several morpho-
logical traits show similar patterns of variation in
different breeds, making it possible to test whether
the same or different genes underlie similar pheno-
types. Despite these advantages, the pigeon is
underused as a model for the molecular genetic
basis of avian variation because of the paucity
of genetic and genomic resources for this bird.

We examined genomic diversity, genetic struc-
ture, and phylogenetic relationships among do-
mestic breeds and feral populations (free-living
birds descended from escaped domestics) of the
rock pigeon. The pigeon reference genome was
sequenced from a male Danish tumbler with the
Illumina HiSeq 2000 platform, and we also re-
sequenced 40 additional Columba livia genomes

to 8- to 26-fold coverage (38 individuals from
36 domestic breeds and two feral pigeons) (7).
Genome-wide nucleotide diversity in the rock
pigeon (p = 3.6 × 10−3) and the mutation rate
estimate in the pigeon lineage (1.42 × 10−9

substitutions per site per year T 2.60 × 10−12 SE)
are comparable to those of other avian species
(8, 9). The observed heterozygosity indicates a
large effective population size for the rock pigeon
of Ne ≈ 521,000; demographic inferences based
on the allele frequency spectrum indicate that,
aside from a very recent bottleneck, Ne has been
remarkably stable over the past 1.5 million gen-
erations (7).

Patterns of linkage disequilibrium (LD) are
indicative of haplotype sizes and genome-wide
recombination rates and inform decisions about
genetic mapping strategies. Using genotype data
from the 40 resequenced C. livia genomes, we

1Department of Biology, University of Utah, Salt Lake City, UT
84112, USA. 2Department of Human Genetics, University
of Utah, Salt Lake City, UT 84112, USA. 3BGI–Shenzhen,
Shenzhen, 518083, China. 4Centre for GeoGenetics, Natural
History Museum of Denmark, University of Copenhagen, Øster
Voldgade 5-7, 1350 Copenhagen, Denmark. 5Department of
Epidemiology, University of Texas M. D. Anderson Cancer
Center, Houston, TX 77030, USA. 6Ancient DNA Laboratory,
Murdoch University, Perth, Western Australia 6150, Australia.
7Department of Biology, University of Copenhagen, DK-1165
Copenhagen, Denmark. 8Novo Nordisk Foundation Center for
Basic Metabolic Research, University of Copenhagen, DK-
1165 Copenhagen, Denmark.

*To whom correspondence should be addressed. E-mail:
mike.shapiro@utah.edu (M.D.S.); wangj@genomics.org.cn
( J.W.)

Fig. 1. Relationships among rock pigeons and the hill pigeon C. rupestris. A
consensus neighbor-joining tree based on 1.48 million genomic SNPs and
1000 bootstrap replicates (see fig. S16 for bootstrap support) is shown.
Branches are colored according to traditional breed groups (12) and/or
geographic affinities: orange, toy breeds; brown, pouters and utility breeds;

light blue, Indian and Iranian breeds; green, tumblers and highflyers; pink,
homers and wattle breeds; red, Mediterranean and owl breeds; black, voice
characteristics (14). Bold red lettering indicates breeds with the head crest
phenotype. Scale bar, Euclidean distance. [Photo credits: T. Hellmann (do-
mestic breeds) and M. V. Shreeram (C. rupestris)]
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Fig. 2. EphB2 is associated with the derived head crest phenotype. (A) Head crests
are variable among breeds (left to right: Indian fantail, Old German owl, Old Dutch
capuchin, Jacobin). (B) FST between crested and uncrested pigeons, with maximum
value for individual SNPs plotted for nonoverlapping 100-kb windows across the
genome. Red star, window with the highest score. Dashed red line, top 1% of
scores. (C) Genome-wide VAAST scan. Each dot represents a single gene. Red star,
gene with the highest score. Dashed red line, genome-wide significance cutoff. (D)
Magnification of scaffold 612 in shaded region of (B) and (C). Black trace,maximum
FST between crested and uncrested birds over a 300-SNP window. Red trace,
unstandardized cross-population extended haplotype homozygosity (XP-EHH);
higher values are evidence of selection (see fig. S21, genome-wide plot). Dashed

vertical line, position of the lone genome-wide significant VAAST hit. Green bar, the
27.4-kb haplotype shared by all crested birds, includes only the EphB2 gene. Blue
bars, gene predictions on + and – DNA strands. (E) The cr mutation induces a
charge-changing amino acid substitution; black bar, highly conserved DLAARN
motif of catalytic loop. (F) Genotypes of 159 birds from79 breeds at the cr locus are
perfectly associated with the crest phenotype under a recessive model. (G) Network
diagram of the minimal 11-kb haplotype shared by all resequenced rock pigeons
with the crmutation (also see fig. S23). Many haplotypes contain the+ allele (blue),
but only one contains the cr SNP (red). The sizes of the circles are proportional to the
number of chromosomes containing a haplotype. Line segments represent single-
nucleotide differences. [Jacobin photo credit: T. Hellmann]
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found that mean “useful LD” (10) (coefficient of
determination, r2 > 0.3) decays in 2.2 kb (fig.
S10J). This suggests that we should expect little
LD between typical pairs of genes in an analysis
across breeds; thus, the pigeon is well suited for
association-mapping strategies.

We leveraged our whole-genome data to de-
termine breed relationships, using 1.48 million
variable loci. A neighbor-joining tree rooted on
C. rupestris, the sister species of C. livia (11),
yielded several well-supported groups (Fig. 1 and
fig. S16). Notably, the two feral pigeons grouped
with the wattle and homer breeds (Fig. 1, pink
branches), supporting the idea that escaped racing
homers are probably major contributors to feral
populations (12). As with many domesticated
species, pigeon evolution is probably not exclu-
sively linear or hierarchical (12). We therefore
examined genetic structure among breeds by
analyzing 3950 loci with ADMIXTURE (13)
and found a best model fit at K = 1 (a single
population, where K is the number of assumed
ancestral populations). However, higher values
of K can also be biologically informative (figs.
S17 to S20). Our analysis includes some of the
oldest lineages of domestic pigeons and breeds
that were not exported from the Middle East
until the late 19th or early 20th centuries (14),
providing information about likely geographic
origins of breeds and their exchange along an-
cient trade routes (7).

Derived traits in domesticated birds tend to
evolve along a predictable temporal trajecto-
ry, with color variation appearing in the earliest
stages of domestication, followed by plumage
and structural (skeletal and soft tissue) variation,
and finally behavioral differences (2). One of
the genetically simplest derived traits of pigeons
is the head crest. Head crests are common orna-
ments in many bird species (2) and are impor-
tant display structures in mate selection (15). In
pigeons, head crests consist of neck and occipi-
tal feathers with reversed growth polarity, so
that the feathers grow toward the top of the head
instead of down the neck. Crests can be as small
and simple as a peak of feathers or as elaborate
as the hood of the Jacobin, which envelops the
head (Fig. 2A). Classical genetics experiments
suggest that the head crest segregates as a sim-
ple Mendelian recessive trait (6, 14). Moreover,
previous studies suggest that the same locus con-
trols the presence of a crest in numerous breeds,
either with alternative alleles at this locus or ad-
ditional modifier loci controlling the extent of
crest development (6, 14).

We resequenced eight individuals with head
crests to directly test whether the same mutation
controls crest development in different breeds.
We sorted genomic variants from birds with and
without head crests into separate bins and calcu-
lated allele frequency differentiation (FST) across
the genome (Fig. 2B). We identified a region of
high differentiation between crested and uncrested
birds in the pigeon ortholog of Ephrin receptor
B2 (EphB2; FST = 0.94, top hit genome-wide;

fig. S22A) (Fig. 2D). The role of EphB2 in fea-
ther growth is not known, but it plays important
roles in tissue patterning and morphogenesis and
is a member of a receptor tyrosine kinase family
that mediates development of the feather cyto-
skeleton (16, 17). All eight crested birds were
homozygous for a T nucleotide at scaffold 612,
position 596613 (hereafter, the cr allele), where-
as uncrested birds were heterozygous (n = 3) or
homozygous (n = 30, including the uncrested
outgroup C. rupestris) for the putatively an-
cestral C nucleotide (the + allele). These results
were consistent with the known simple reces-
sive architecture of the trait and implicated a
common polymorphism associated with head
crest development in multiple breeds with dif-
ferent genetic histories (Fig. 1). This trend ex-
tended well beyond our resequencing panel: We
genotyped an additional 61 crested birds from
22 breeds and 69 uncrested birds from 57 breeds,
and found a perfect association between cr/cr
genotype and the crest phenotype (Fig. 2F). By
treating the genomes of crested and uncrested
birds as separate populations, we also found sug-
gestive evidence for positive selection around the
cr allele using cross-population extended haplo-
type homozygosity analysis (Fig. 2D and figs.
S21 and S22B).

We then used the Variant Annotation, Anal-
ysis, and Search Tool [VAAST (18)] to inves-
tigate the pigeon genomes for additional coding
changes associated with the head crest pheno-
type. This identified one gene with genome-wide
significance: EphB2, and specifically the cr single-
nucleotide polymorphism (SNP) (Pgenome = 2.0 ×
10−8) (Fig. 2, C and D). The cr allele has a pre-
dicted charge-changing arginine (basic) to cys-
teine (polar uncharged) transition in the catalytic

loop of the intracellular tyrosine kinase domain of
EphB2 (Fig. 2E). This amino acid position is in-
variant among other vertebrates, suggesting strong
purifying selection for conserved protein function.
The same DLAARN to DLAACN motif change
we observe in EphB2 is sufficient to abrogate ki-
nase activity in human and mouse orthologs of
the protein tyrosine kinase ZAP-70, and in both
mammals and pigeons the mutant phenotypes are
inherited recessively (19). Hence, the pigeon cr
mutation probably abrogates kinase activity in
EphB2 and disrupts downstream signal propaga-
tion, consistent with the high VAAST score for
this gene. EphB2 is therefore a convincing candi-
date for the cr locus of classical pigeon genetics
(5–7, 14).

In several wild and domesticated species,
the repeated evolution of a derived trait has oc-
curred by selection on the same gene, possibly
owing to the repeated selection on the same
allele or haplotype (20–22). Similarly, the cr
SNP is part of a 27.4-kb haplotype that is shared
by all crested pigeons, suggesting that the muta-
tion occurred just once and spread to multiple
breeds by introgression among domestic breeds,
or was selected repeatedly from a standing variant
in wild rock pigeons (Fig. 2G and fig. S23; the
core haplotype containing the cr mutation is
reduced to 11 kb when uncrested heterozygotes
are included). The only gene present in the
shared cr haplotype is EphB2 (Fig. 2D, green
bar), although at this time we cannot rule out the
presence of regulatory variants that might alter
the expression of another gene. Crested mem-
bers of the toy, fantail, Iranian, Jacobin, and owl
breed groups are not more closely related to each
other than to uncrested breeds (Fig. 1). Neverthe-
less, members of these groups had head crests

Fig. 3. Feather bud polarity
is reversed in the cr mutant.
(A and B) Expression of the
feather structural gene Ctnnb1
reveals the direction of out-
growth of early feather buds.
St., Hamburger-Hamilton em-
bryonic stage. (A) Neck and
occipital head expression of
Ctnnb1 in an embryo of the
uncrested racing homer. Feather
buds point downward along
the contour of the head and
neck (arrowheads). (B) Occip-
ital feather buds point upward
in the equivalent region of the
crested English trumpeter, indi-
cating morphological reversal
of feather orientation. (C and D)
Expression of the polarity marker
EphA4 was assayed at an earlier
developmental stage to test
whether feather placodes, the
ectodermal thickenings that
give rise to feather buds, are also reversed. (C) Polarity marker EphA4 is expressed posteriorly (arrowheads)
in feather placodes of the racing homer. (D) The polarity of placodes is reversed in the English trumpeter.
Expression of EphB2 in the skin is weak and unpolarized at this stage in both morphs (fig. S26).

5DFLQJ�+RPHU (QJOLVK�7UXPSHWHU
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hundreds of years ago (14), so some of these in-
trogression events must have occurred in the dis-
tant past. Breeds with a wide variety of crest
phenotypes share the same derived allele; there-
fore, allelic variation at the cr locus alone does
not control all aspects of crest development (14).
Other genetic and developmental factors beyond
this locus must contribute to variation in crest
morphology, akin to the presumed complex ge-
netic architecture of species-level divergence in
feather ornaments (2).

In crested pigeons, feather placode polarity
and bud outgrowth are inverted during embryo-
genesis (Fig. 3). Expression of EphB2 is not
polarized in early placodes (fig. S26), so the ef-
fects of the cr mutation on feather polarity are
probably exerted earlier in development. Why
might the crest phenotype be limited to the head
and neck? In Naked neck chicken mutants, re-
gionalized production of retinoic acid allows uni-
form up-regulation of Bmp7 expression to change
skin phenotypes in the neck but not the body
(23). Similarly, the head crests of several chicken
breeds, in which feathers are elongated but do not
have a reversed growth trajectory as in pigeons,
are localized to the top of the head, probably due
to ectopic expression of Hox positional cues (24).
Together these examples provide evidence for
regionalization of the developing head and neck
skin in the chicken. We propose that analogous
mechanisms might underlie skin regionalization
in the pigeon and allow cr to change feather po-
larity in the occiput and neck, but not elsewhere.

Our study of domestic rock pigeons illus-
trates how combining comparative genomics and
population-based analyses forwards our under-
standing of genetic relationships and the ge-
nomic basis of traits. Many of the traits that vary

among pigeon breeds also vary among wild
species of birds and other animals (2, 25); thus,
pigeons are a model for identifying the genetic
basis of variation in traits of general interest.
Moreover, variation in many traits in domestic
pigeons, including the head crest phenotype de-
scribed here, is constructive rather than regres-
sive: Breeds derived from the ancestral rock
pigeon possess traits that the ancestor does not
have. Although adaptive regressive traits are im-
portant, the genetic basis of constructive traits in
vertebrates remains comparatively poorly under-
stood. The domestic pigeon is thus a promising
model with which to explore the genetic archi-
tecture of derived, constructive phenotypes in a
bird that is amenable to genetic, genomic, and
developmental investigation.
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KNOX2 Genes Regulate the
Haploid-to-Diploid Morphological
Transition in Land Plants
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Unlike animals, land plants undergo an alternation of generations, producing multicellular
bodies in both haploid (1n: gametophyte) and diploid (2n: sporophyte) generations. Plant body
plans in each generation are regulated by distinct developmental programs initiated at either
meiosis or fertilization, respectively. In mosses, the haploid gametophyte generation is dominant,
whereas in vascular plants—including ferns, gymnosperms, and angiosperms—the diploid
sporophyte generation is dominant. Deletion of the class 2 KNOTTED1-LIKE HOMEOBOX (KNOX2)
transcription factors in the moss Physcomitrella patens results in the development of gametophyte
bodies from diploid embryos without meiosis. Thus, KNOX2 acts to prevent the haploid-specific
body plan from developing in the diploid plant body, indicating a critical role for the evolution
of KNOX2 in establishing an alternation of generations in land plants.

Plants have a life cycle characterized by al-
ternation between two generations, haploid
(gametophyte) and diploid (sporophyte),

where each phase develops a multicellular body
(1, 2). The gametophyte produces gametes—sperm
(or pollen) and egg cells—and may be the domi-

nant photosynthetic generation, as in liverworts,
mosses, and hornworts. The sporophyte produces
haploid spores via meiosis and is the dominant
photosynthetic generation in the vascular plants.
The alternation of generations in land plants re-
sults in the possibility that tissue differentiation
in each generation is governed by different ge-
netic programs, initiated by either fertilization
(haploid to diploid) or meiosis (diploid to hap-
loid). Land plants probably evolved from a fresh-
water algal ancestor, with a life cycle similar to
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CHAPTER 4 

 

EPISTATIC AND COMBINATORIAL EFFECTS OF PIGMENTARY 

 GENE MUTATIONS IN THE DOMESTIC PIGEON 

 

Reprinted from Current Biology, 24, Eric T. Domyan, Michael W. Guernsey, Zev 
Kronenberg, Shreyas Krishnan, Raymond E. Boissy, Anna I. Vickrey, Clifford 
Rodgers, Pamela Cassidy, Sancy A. Leachman, John W. Fondon, Mark Yandell, 
Michael D. Shapiro , Epistatic and Combinatorial Effects of Pigmentary Gene 
Mutations in the Domestic Pigeon, 459-464, Copyright (2014), with permission 
from Elsevier Current Biology  

 

4.1 Contribution 

In this project, I had two roles.  First, I called genetic variants for all the re-

sequenced birds.  This included re-phasing the variants and many quality 

assurance steps.  My second role was assisting Eric Domyan with the GPA 

analyses.  For the GPA studies we ran VAAST and GPAT++.  The GPAT++ 

analyses (pFst) revealed an association between noncoding variants upstream of 

Sox10 and the recessive red phenotype.  The candidate genetic variant, the e1 

allele, is a ~7Kb that removes a melanocyte specific enhancer.  The discovery of 

the e1 allele encouraged me to start working on WHAM, for structural variant 

GPA.  
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Summary

Understanding the molecular basis of phenotypic diversity
is a critical challenge in biology, yet we know little about
the mechanistic effects of different mutations and epistatic
relationships among loci that contribute to complex traits.
Pigmentation genetics offers a powerful model for identi-
fying mutations underlying diversity and for determin-
ing how additional complexity emerges from interactions
among loci. Centuries of artificial selection in domestic
rock pigeons (Columba livia) have cultivated tremendous
variation in plumage pigmentation through the combined
effects of dozens of loci. The dominance and epistatic
hierarchies of key loci governing this diversity are known
through classical genetic studies [1–6], but their molecular
identities and the mechanisms of their genetic interactions
remain unknown. Here we identify protein-coding and cis-
regulatory mutations in Tyrp1, Sox10, and Slc45a2 that
underlie classical color phenotypes of pigeons and present
a mechanistic explanation of their dominance and epistatic
relationships. We also find unanticipated allelic heterogene-
ity at Tyrp1 and Sox10, indicating that color variants evolved
repeatedly though mutations in the same genes. These re-
sults demonstrate how a spectrum of coding and regulatory
mutations in a small number of genes can interact to gene-
rate substantial phenotypic diversity in a classic Darwinian
model of evolution [7].

Results and Discussion

In the domestic rock pigeon (Columba livia), hundreds of years
of accumulated experience by amateur and professional
geneticists provide strong evidence that many complex color
traits can be partitioned into combined effects of multiple
loci, and that the same loci control similar traits across breeds
[6]. The classical major color locus (B) is a sex-linked gene that

confers one of three ‘‘base’’ colors [1–5]: wild-type blue/black
(B+), ash-red (BA), and brown (b) (Figures 1A–1C). The BA allele
is dominant to B+ and b, and b is recessive to the others. Blue/
black and brown phenotypes result from high amounts of
eumelanin and low amounts of pheomelanin; melanin ratios
are reversed in ash-red birds [8]. In addition, the autosomal
recessive mutation recessive red (e) acts epistatically to the
B locus to elevate pheomelanin production, generating red
plumage color irrespective of B locus genotype [2, 8] (Fig-
ure 1D).Mutant alleles of a third locus, the sex-linked recessive
dilute (d), interact additively with B and e to lighten plumage
color and further enrich pigmentation diversity [1, 2, 8] (Figures
1E–1H). This detailed Mendelian understanding of key pheno-
types provides a robust foundation to investigate how genes
and alleles interact to generate color variation. However, the
molecular basis of this diversity—including the identities of
genes underlying major pigmentation variants and a mecha-
nistic explanation for their intra- and interlocus interactions—
remains unknown [9, 10].

Multiple Mutations in Tyrp1 Underlie Base Color Variation
in Pigeons
Previously, we reported whole-genome sequences for 41 rock
pigeons [11] with diverse color phenotypes. To investigate
the molecular identity of the B color locus, we compared the
genomes of 6 ash-red pigeons to 26 blue/black pigeons for
coding changes associated with pigmentation phenotypes
using the Variant Annotation, Analysis, and Search Tool
(VAAST) [12]. A single gene achieved genome-wide signifi-
cance: tyrosinase-related protein 1 (Tyrp1) (p = 1.3 3 1026;
see Figure S1A available online), which encodes a key enzyme
in the melanin synthesis pathway. All blue/black pigeons were
homozygous G on the Tyrp1 sense strand at position 214991
on genomic scaffold 6 (B+ allele), whereas ash-red pigeons
were hetero- or homozygous for C (BA allele), consistent with
the dominant mode of inheritance of ash-red. The BA mutation
causes an alanine-to-proline substitution at codon 23 (A23P),
corresponding to the cleavage site of the signal peptide (Fig-
ure 2A). In addition to finding a single haplotype containing
the BA allele in our whole-genome panel (Figure S1B), we
found a perfect association between the dominant BA muta-
tion and the ash-red phenotype in an additional 49 ash-red
birds from 20 breeds, and 105 blue/black or brown birds
from 36 breeds (Figure 2B). These results suggest that the
ash-red mutation occurred only once and spread species-
wide through selective breeding, similar to our previous find-
ing that the same mutation in EphB2 underlies the head crest
phenotype in multiple pigeon breeds [11].
Quantitative RT-PCR analysis revealed that Tyrp1 mRNA

levels from developing feathers of B+ and BA pigeons were
indistinguishable (Figure S1C); however, the location of the
BA mutation at the highly conserved cleavage site of the signal
peptide (Figure S1E) suggested that cleavage efficiency might
be affected. We therefore expressed N- and C-terminally
tagged B+ and BA versions of TYRP1 protein in cell culture,
and we found that cleavage efficiency was dramatically
reduced by the BA mutation (relative efficiency: B+ = 1 6
0.18, BA = 0.14 6 0.04; n = 4 independent transfections each;*Correspondence: shapiro@biology.utah.edu
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p < 0.002) (Figure 2C). Furthermore, spatial organization of
pigment synthesis differed between B genotypes: premela-
nosomes in regenerating blue/black (B+) feathers had a
well-organized, lamellar matrix, and melanosomes were
darkly pigmented, whereas ash-red (BA and B+BA) feathers
had a disorganized matrix and only lightly pigmented mela-
nosomes (Figure 2D). After incubation with the melanin
precursor L-DOPA, melanosomes from both wild-type and
ash-red birds became darkly pigmented, indicating normal
catalytic activity of the melanogenic enzyme tyrosinase
(TYR) in ash-red birds. However, pigment synthesis in B+

feathers showed strongest staining localized to the limiting
membrane of the melanosome (Figure 2D), whereas staining
was diffuse in melanosomes from BA and B+BA feathers.
Thus, the striking reduction in TYRP1 cleavage efficiency
may disrupt the spatial organization of pigment synthesis
activity, providing insight into the molecular basis of domi-
nance of the BA allele. The dominant Light (Blt) Tyrp1 allele
of mice, a missense mutation near the same cleavage site,
causes melanocyte death, probably through the accumula-
tion of cytotoxic pigment intermediates [13]. Whether a
similar accumulation of cytotoxins contributes to the pheo-
melanic phenotype of ash-red pigeons is unknown. However,
unlike the mouse Blt allele, the pigeon BA allele results in a
different kind and localization of melanin production rather
than abrogation of melanogenesis.

In contrast to the single ash-red mutation, Tyrp1 sequences
from 51 brown pigeons from 30 breeds revealed three different
nonsense and frameshift mutations (R72X, b1;411-418 del, b2

;893 delA, b3) (Figures 2A and S1D), predicted to be null alleles.
Indeed, Tyrp1 mRNA abundance in b3 pigeons—the most
common b allele in our sample—is greatly reduced or absent
(relative expression: B+ = 1 6 0.53, n = 4; b3 = 0.009 6 0.005,
n = 3; p = 0.05) (Figure 2E), consistent with the activation of
nonsense-mediated decay. This indicates that, in contrast
to the single origin of the ash-red phenotype, brown color
has evolved multiple times in pigeons. Several brown pigeons
did not have any of the identified b alleles, raising the possibil-
ity that additional mutations might also cause brown feather
color (Figure S1D).

Together, these results demonstrate distinct effects of
different mutations in the same gene and also confirm the
predicted orthology of the classical mouse and pigeon B loci
[5, 14]. Our analyses suggest a model in which BA is a neo-
morphic allele that alters processing of the mutant TYRP1
protein within the cell. Since TYRP1 can modulate TYR activity

[15–18], we postulate that the BA version of TYRP1 protein al-
ters normal TYR functionality, resulting in an increased ratio of
pheomelanin to eumelanin production. In contrast, Tyrp1 loss-
of-function alleles b12b3 cause brown pigment production,
consistent with findings in other vertebrates [19].

Recurrent Deletions of a Sox10 Enhancer Underlie
Recessive Red
In addition to the dominant, sex-linkedBA allele, the autosomal
mutation recessive red (e) acts epistatically to B to increase
pheomelanogenesis and decrease eumelanogenesis (Fig-
ure 1D). VAAST scans for the e locus did not identify a strong
candidate, suggesting that an unannotated structural variant,
such as a large insertion or deletion, might underlie this pheno-
type. To identify candidates for e, we compared expression of
several genes involved in melanin biosynthesis and found that
the transcription factor Sox10 and one of its target genes,
Tyrp1 (the B locus), were significantly downregulated in
feathers of recessive red birds (Figure 3A) (Sox10 relative
expression: blue/black = 1 6 0.62; recessive red = 0.14 6
0.07, p = 0.001; Tyrp1 relative expression: blue/black = 1 6
0.556, recessive red = 0.0001 6 0.00006, p = 0.002; n = 6 for
each). Other melanin biosynthesis genes did not show altered
transcript levels (Figure S2A), suggesting that a mutation
directly or indirectly affecting Sox10 expression might underlie
the recessive red phenotype.
Deletions of a conserved Sox10 enhancer result in pigmen-

tation defects in other vertebrates, including a lack of pigmen-
tation in mouse and increased pheomelanin production in
chicken [20, 21]. Alignment of the pigeon reference genome
assembly (a recessive red Danish tumbler [11]) upstream of
Sox10 to the orthologous regions of the chicken and zebra
finch genomes identified a 7.5 kb deletion in the pigeon
genome (Figures 3B and S2B). Furthermore, four recessive
red birds in our genome resequencing panel—but no wild-
type birds—were homozygous for this deletion. Importantly,
the deletions in pigeon, chicken, and mouse all span a
conserved enhancer element that drives Sox10 expression in
melanocytes [20, 23].
To test for broader association between the pigeon Sox10

enhancer deletion and recessive red, we genotyped 41 reces-
sive red pigeons from 19 breeds and 103 wild-type pigeons
from 45 breeds. We found that 21 recessive red birds
(but no wild-type birds) were homozygous for the deletion
harbored by the reference genome (e1 allele; Figures 3B
and 3C). An additional 17 of the recessive red birds (but no

A B C D

E F G H

Figure 1. Common Color Phenotypes of Domes-
tic Rock Pigeons

(A–C) Allelic variation at sex-linked major color
locus (B).
(D) Recessive autosomal mutation recessive
red (e).
(E–H) Recessive allele at another sex-linked lo-
cus, dilute (d), reduces color intensity to generate
ash-yellow (E), dun (F), khaki (G), or recessive
yellow (H) phenotypes.
Black chevrons (>) indicate order of dominance
among alleles; red chevron indicates epistasis
between loci. Breeds shown are show-type rac-
ing homer (A, B, and E–G), mookee (C), parlor
roller (D), and Birmingham roller (H).

Current Biology Vol 24 No 4
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wild-type birds) were homozygous for a second, 2.5 kb dele-
tion (e2) that partially overlaps e1, and the remaining three
birds were heterozygous e1e2 (Figures 3B and 3C). Since
both pigeon deletions span the Sox10 melanocyte enhancer,
we predicted that the reduction in Sox10 expression in
recessive red birds was due to a cis-regulatory change.

We therefore assayed allele-specific expression of E+ and
e2 alleles of Sox10 in E+e2 heterozygous birds, and we found
that the e2 allele was expressed at only w10% of E+ levels
(SNP1 = 0.126 6 0.055, SNP2 = 0.056 6 0.043, SNP3 =
0.127 6 0.059; p < 0.0001 for each, n = 10 E+e2 birds) (Fig-
ure 3D). Since in heterozygotes both the E+ and e2 alleles

A

B C

ED
B+ BA

Figure 2. Tyrp1 Is the Major Color Locus B in Domestic Pigeons

(A) Schematic of the genomic Tyrp1 locus with putative BA and b mutations.
(B) Histogram of genotypes of pigeons displaying wild-type or ash-red phenotypes.
(C) Schematic and western blot analysis of cleavage of TYRP1 proteins encoded by B+ and BA alleles, demonstrating reduced cleavage efficiency of the
BA allele. HA, N-terminal hemagglutinin epitope tag; V5, C-terminal V5 epitope tag. Boxes in (C) and (E) span first to third quartiles; bars extend to minimum
and maximum observed values; black line indicates median. **p < 0.002.
(D) Ultrastructural analysis of melanocytes from B+, BA, and B+BA feathers. Asterisks indicate premelanosomes, arrows indicate untreated melanosomes,
and arrowheads indicate DOPA-treated melanosomes. Scale bar represents 500 nm.
(E) Tyrp1 mRNA abundance in B+ and b3 feathers by qRT-PCR. *p = 0.05.

Pigmentation Genetics in Pigeons
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are in the same cellular environment, this experiment con-
firmed that the reduction in Sox10 expression from the e2

allele is due to a cis-acting mutation. Together, these genetic
and expression results implicate the deletion of a Sox10
melanocyte enhancer as the molecular basis of recessive
red in domestic pigeons (Figure 3B). These results also
demonstrate that the E (extension) loci of mammals (Mc1r)
and pigeons (Sox10) are not orthologous [5, 9, 24–26]. More-
over, similar to the brown phenotype, recessive red appears
to have evolved more than once in pigeons. While we do not
observe obvious phenotypic distinctions between e1 and e2

homozygotes, it is possible that the different deletions
generate subtly different effects on color by altering other
unidentified regulatory elements [27].

The epistatic relationship of e to B is now easily reconciled
in light of their molecular identities and mutations: Sox10
directly regulates Tyrp1 expression in melanocytes [28] (Fig-
ure 3A), explaining how loss of Sox10 expression abrogates
phenotypic effects of Tyrp1 genotypes. Interestingly, the
recessive red phenotype caused by Sox10 downregulation is
distinct from the brown phenotype of Tyrp1 loss-of-function
mutants, possibly owing to contributions of additional Sox10
regulatory targets or residual b allele activity.

A B

DC

E F

Figure 3. Sox10 and Slc45a2 Are the recessive
red (e) and dilute (d) Loci of Domestic Pigeons

(A) qRT-PCR analysis of Sox10 and Tyrp1 in wild-
type versus recessive red feathers (see Figure S2
for additional genes). Boxes in (A) and (D) span
first to third quartiles; bars extend to minimum
and maximum observed values; black line indi-
cates median. **p % 0.002.
(B) Schematic of deletions upstream of Sox10 in
recessive red pigeons (e1, e2), dark-brown (db)
chicken [20], and Hry mutant mouse [21]. Red
asterisk denotes a conserved element deleted
in all three species. Conservation track is based
on Multiz alignment to chicken, human, mouse,
rat, opossum, Xenopus tropicalis, and zebrafish
in UCSC Genome Browser (http://genome.ucsc.
edu/; chicken assembly v2.1 used as framework).
(C) Histogram of genotypes of pigeons displaying
wild-type or recessive red phenotypes.
(D) Expression of SNPs in the e2 allele relative to
the E+ allele of Sox10 in feathers of E+e2 hetero-
zygous pigeons. Blue dashed line indicates
normalized expression level of E+ allele. ***p <
0.0001.
(E) Schematic of SLC45A2 protein with putative
d mutation in red. Mutations in chicken and quail
associated with lightened feather color are indi-
cated in gray. Adapted from [22].
(F) Histogram of genotypes of pigeons displaying
wild-type or dilute phenotypes.

Missense Mutation in Slc45a2 Is
Associated with Color Dilution
While the B and E loci affect pigment
color, the sex-linked recessive dilute (d)
reduces pigment quantity, further en-
riching pigmentation diversity [8] (Fig-
ures 1E–1H). To identify candidates
for d, we compared the genomes of
5 birds with diluted feather color and
31 birds with nondiluted pigment inten-
sity usingVAAST.Asingle geneachieved
genome-wide significance: solute carrier

family 45 member 2 (Slc45a2, p = 2.65 3 1026; Figure S3A),
which is associated with pigmentation phenotypes in diverse
vertebrates, including other birds [22, 29–32], but is not orthol-
ogous to the dilute locus inmouse (Myo5a) [33]. In pigeons, the
dmutation causes a histidine-to-arginine substitution (H341R)
at a highly conserved intramembrane residue of SLC45A2
(Figures 3E and S3C). We genotyped an additional 59 diluted
birds from 26 breeds and 67 nondiluted birds from 41 breeds
and found a strong (but not perfect) association between d ge-
notypes and color intensity under a recessive model (Fisher’s
exact test, p < 2.2 3 10216) (Figure 3F). Fourteen birds not
homozygous for d had diluted feather color, and one homozy-
gote was reported to have nondiluted color. However, several
other loci can cause either lightened (e.g., milky, reduced,
and faded) or darkened (e.g., dirty, sooty, and smoky) pigmen-
tation in pigeons [6], and it is expected that a broad hobbyist-
identified sample should include birds with varied genetic
bases for color intensity.

Mutations and Color Traits Cosegregate in a
Controlled Cross
As an independent test of our association analyses, we exam-
ined cosegregation of pigmentation phenotypes and our three

Current Biology Vol 24 No 4
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candidate loci in progeny of a male pigeon doubly heterozy-
gous for BA and d alleles (BAB+,D+d,E+E+) mated to two reces-
sive yellow females (B+,d,e2e2; females have heterogametic
sex chromosomes and are therefore hemizygous at the sex-
linked B and D loci). As anticipated, segregation of the ash-
red (dominant) and dilute phenotypes was observed in the
F1 and F2 generations, whereas recessive red was observed
only in the F2. We genotyped all three generations for the
candidate mutations in Tyrp1, Sox10, and Slc45a2 and found
complete cosegregation between alleles at these loci and their
respective pigmentation phenotypes (Figure 4A). Coupledwith
our genetic association results, these transmission genetics
data strongly support the molecular identities of the classical
BA (and b), e, and d alleles as mutations in Tyrp1, Sox10, and
Slc45a2, respectively.

Few Loci Generate Many Phenotypes
Similar to the genetic architecture of dog coat morphology
[34], a relatively small number of loci generate a wide range
of plumage color phenotypes in pigeons (Figure 4B). We found
that coding changes at the base color locus B result in a
neomorphic dominant allele (BA, ash-red) that interferes with
melanosome formation and localization of melanogenesis to
cause one derived phenotype, andmultiple recessive, putative
null alleles (b12b3, brown) that underlie another phenotype.
The e mutation is epistatic to B genotypes due to a regulatory
mutation in Sox10, which is a transcriptional regulator of
Tyrp1. A mutation at the d locus influences the color of birds
of all genotypes at B and e by reducing the quantity of pigment
produced, generating an additional layer of genetic complexity

A

B

Figure 4. Segregation Analysis and Mechanistic
Model of Common Color Phenotypes

(A) Representative feathers from F1 and F2 offspr-
ing in a cross segregatingBA, e2, anddmutations;
numbers of birds with a given genotype are listed
below each phenotype.
(B) Schematic illustrating common feather colors
in pigeons and mutations responsible for their
production. Other pigmentation genes (PGs) are
probably also affected by a decrease in Sox10
expression, thereby causing differences between
b (Tyrp1 loss of function) and e (Sox10 loss of
function) phenotypes.

and phenotypic diversity. We find evi-
dence that some color phenotypes,
such as ash-red, appear to have a single
origin whereas others, such as brown
and recessive red, originated multiple
times.
Many color phenotypes in pigeons

and other domestic animals result from
artificial selection [35]. Nevertheless,
the combination of coding and regu-
latory changes, combined effects of
multiple loci on a common phenotypic
output, and single and multiple origins
of derived alleles is reminiscent of the
genetic architecture of a variety of adap-
tive traits in the wild (e.g., [27, 36–38]).
Additionally, the specific genes that
we have implicated in plumage color
phenotypes in pigeons also contribute

to both natural pigmentation diversity and skin disease in
humans, including melanoma risk [39, 40]. Thus, by elucidat-
ing the complex interactions among these loci, we enrich
our mechanistic understanding of adaptive and nonadaptive
variation across species.
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CHAPTER 5 

 

DISAP-DEPENDENT STRIATED FIBER ELONGATION IS 

 REQUIRED TO ORGANIZE CILIARY ARRAYS 

 

©Galati et al., 2014. Originally published in The Journal of Cell Biology. doi: 

10.1083/jcb.201409123. 

 

5.1 Contribution 

I mapped the disA-1 recessive allele to the DisA locus.  While this sounds 

trivial, the T. thermophila genome is divided between two nuclei with similar DNA 

content.  The duplicate genome makes short-read mapping very difficult.  Other 

researchers were unable to map the disA-1 allele with the same data.  I set up a 

special workflow for mapping mutations in T. thermophila.  Unlike previous 

efforts, I expended the search for the disA-1 allele outside of coding sequences.  

The disA-1 allele is a splice acceptor mutation, which results in a truncated 

protein.  This analysis is the first example of mapping a T. thermophila mutant 

using high throughput sequencing data.  My contribution can be seen in 

supplemental Figure 1C-D. 
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Introduction
Motile cilia are whiplike projections that generate hydrody-
namic force. Cilia-generated fluid flow is required for symmetry 
breaking during embryogenesis, mucus clearance, cerebrospi-
nal fluid flow, and the directed movement of unicellular organ-
isms (Marshall and Kintner, 2008). One cycle of ciliary beating 
constitutes a power stroke and a subsequent recovery stroke. 
Thus, ciliary beating is directional, and to produce coherent 
fluid flow, multiple cilia must orient their beating along a com-
mon plane, which is typically the cell’s anterior–posterior axis. 
The importance of proper cilia orientation is underscored by 
the observation that cilia orientation defects accompany pri-
mary cilia dyskinesias, a devastating class of genetic disorders 
(Rayner et al., 1996).

Cilia are organized by cylindrical microtubule scaffolds 
called basal bodies (BBs) that dock at the cell cortex (Jana  
et al., 2014). BBs are innately asymmetric and their polarity 
is reflected in the attachment of auxiliary structures, including 
striated fibers (Allen, 1969; Pearson, 2014). Thus, BBs have  

a specific orientation that determines the direction of cili-
ary beating (Tamm et al., 1975; Gibbons, 1981; Hoops et al., 
1984). BBs with improper orientation relative to the cellular 
anterior–posterior axis will disrupt cilia-generated fluid flow. 
The mechanisms that organize and maintain BB orientation  
remain ill-defined.

Striated fibers project asymmetrically from BBs and influ-
ence BB positioning by an unknown mechanism (Allen, 1967; 
Wright et al., 1983; Hoops et al., 1984). SF-assemblin and root-
letin are coiled-coil proteins that self-organize into filamentous 
fiber structures and constitute major structural components of 
striated fibers in protists and vertebrates, respectively (Lechtreck 
and Melkonian, 1991; Yang et al., 2002), although other proteins 
are also present (Lechtreck and Melkonian, 1998; Park et al., 
2008; Chien et al., 2013). Moreover, striated fibers display dy-
namic assembly and disassembly (Salisbury et al., 1984; Sperling 
et al., 1991; Francia et al., 2012). Thus, striated fibers are complex 

Cilia-organizing basal bodies (BBs) are microtubule 
scaffolds that are visibly asymmetrical because 
they have attached auxiliary structures, such as 

striated fibers. In multiciliated cells, BB orientation aligns 
to ensure coherent ciliary beating, but the mechanisms 
that maintain BB orientation are unclear. For the first time 
in Tetrahymena thermophila, we use comparative whole-
genome sequencing to identify the mutation in the BB 
disorientation mutant disA-1. disA-1 abolishes the local-
ization of the novel protein DisAp to T. thermophila stri-
ated fibers (kinetodesmal fibers; KFs), which is consistent  

with DisAp’s similarity to the striated fiber protein SF- 
assemblin. We demonstrate that DisAp is required for KFs 
to elongate and to resist BB disorientation in response 
to ciliary forces. Newly formed BBs move along KFs as 
they approach their cortical attachment sites. However, 
because they contain short KFs that are rotated, BBs in 
disA-1 cells display aberrant spacing and disorientation. 
Therefore, DisAp is a novel KF component that is essential 
for force-dependent KF elongation and BB orientation in 
multiciliary arrays.

DisAp-dependent striated fiber elongation is 
required to organize ciliary arrays
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(Sperling, 1989), suggesting that the family of SF-assemblin 
genes expanded in ciliates. Indeed, DISA belongs to a family of 
genes that has undergone frequent duplications, especially evi-
dent in P. tetraurelia, and appears to be conserved in Giardia, a 
lineage distantly related to ciliates (Fig. S1 D and Table S1). 
However, SF-assemblin from C. reinhardtii does not associate 
with the clade, as assessed by reciprocal BLAST searches that 
failed to recover identity between these proteins (unpublished 
data). Therefore, to test whether DisAp localizes to T. thermoph-
ila KFs, wild-type (WT) GFP-DisAp and mutant disA-1 GFP-
disA-1p were localized relative to BBs and KFs in otherwise 
WT cells. GFP-DisAp localizes to punctae along ciliary rows 
that colocalize with the proximal portion of the KF (Fig. 1,  
E and F). In contrast, mutant GFP-disA-1p does not localize to 
KFs (Fig. 1 E). GFP-DisAp is restricted to ciliary row BBs and 
is absent from oral apparatus BBs (Fig. 1 E, arrows), which 
form normally in disA-1 cells (Fig. 1 D, arrows).

DisAp’s localization near the base of the KF suggested 
that it localizes to a discrete domain within the KF. Endoge-
nously tagged DisAp-mCherry also localizes to the proximal 
portion of the KF (Fig. 1 F). Signal for DisAp is anterior to BBs 
and decreased below 50% 500 nm before KF intensity de-
clined to 50%. Consistently, DisAp localized by immuno-EM 
clustered near the base of the KF (Fig. 1 G, yellow arrows; and 
Fig. S1 E). We also detected DisAp adjacent to the KF (Fig. 1 G,  
white arrows), which may reflect a population that has not in-
corporated into the KF. Thus, DisAp localizes to a domain at 
the proximal portion of the KF and is phylogenetically distinct 
from SF-assemblin.

DisAp loss disrupts BB orientation  
and prevents temperature-induced  
KF elongation
In disA-1 cells, KFs are disoriented relative to the cellular ante-
rior–posterior axis. Therefore, DisAp could either specify the 
location of KF attachment to BBs or prevent BB rotation. Nor-
mally, KFs from adjacent BBs are aligned along a common axis 
and are oriented 180° from postciliary microtubules (Fig. 2 A;  
Allen, 1969). This KF placement is analogous to vertebrate BBs 
where the basal foot microtubules are positioned 180° from 
the striated rootlet (Steinman, 1968; Peraldi-Roux et al., 1991). 
In disA-1 cells, KFs are positioned 180° from the postciliary 
microtubules (Fig. 2 A), which suggests that DisAp prevents 
BB rotation and does not affect accessory structure placement. 
Moreover, disA-1 KFs are shorter than WT KFs (Fig. 2 A). 
Thus, DisAp prevents BB rotation and is required to establish 
and/or maintain appropriate KF length. We propose that DisAp 
functions as a regulator of KF elongation.

BB orientation defects in disA-1 cells are exacerbated by 
elevated temperature (Fig. 2 B; Jerka-Dziadosz et al., 1995). 
Thus, short KFs might allow temperature-induced BB rotation. 
If true, long KFs should prevent BB rotation. One prediction 
from this inference is that KFs elongate at elevated tempera-
tures to resist BB rotation. To test this, we developed a semiau-
tomated image analysis routine to measure KF length as well 
as BB orientation, and we assessed these parameters after shift-
ing G1-arrested cells to 37°C and releasing them into the cell 

and dynamic structures of which our molecular understanding  
is limited.

Unicellular ciliates, such as Tetrahymena thermophila, 
and multiciliated vertebrate cells harbor hundreds of cilia orga-
nized into ciliary arrays. Ciliary array BBs exhibit evolution-
arily conserved striated fiber placement directly opposite the 
cilium’s power stroke (Allen, 1969; Peraldi-Roux et al., 1991; 
Frankel, 1999). The Tetrahymena striated fiber, the kinetodes-
mal fiber (KF), emanates close to the BB’s base and terminates 
within or directly underneath the membrane-skeletal layer near 
the adjacent anterior BB (Allen, 1967, 1969). The apposition 
of the KF and the postciliary microtubules from the anterior 
BB supports speculation that KFs stabilize ciliary rows by 
providing a physical linkage between neighboring ciliary units 
and by linkage to subcortical structures (Allen, 1967; Iftode 
and Fleury-Aubusson, 2003; Wloga and Frankel, 2012). Al-
though this hypothesis has been strengthened by observations 
in Chlamydomonas reinhardtii (Wright et al., 1983; Hoops  
et al., 1984), a mechanistic understanding of how striated fibers 
organize ciliary arrays and respond to and resist mechanical 
forces has not been established.

Results and discussion
DisAp localizes to KFs and orients BBs
disA-1 is a single-locus, recessive mutation generated in a muta-
genesis screen for T. thermophila BB organization defects 
(Frankel, 1979, 2008; Jerka-Dziadosz et al., 1995). DISA orga-
nizes BBs into ciliary rows, but is dispensable for global cellular 
polarity and for ciliogenesis (Fig. 1 A; Jerka-Dziadosz et al., 
1995). The disA-1 gene was identified using comparative genome 
sequence analysis with next-generation sequencing (Fig. S1,  
A and C). This approach identified a splice acceptor site muta-
tion in intron 1 of a novel gene (TTHERM_00941400), which 
results in a severely truncated protein (Fig. 1 B and Fig. S1 B). 
The gene encodes a protein (DisAp) containing a similarity to 
the SF-assemblin consensus domain (Fig. 1 C; Lechtreck and 
Melkonian, 1998). Although the faint resemblance to SF- 
assemblin alerted us to a potential role in KF structure (pfam06705; 
BLASTp query of the Conserved Domain Database), phyloge-
netic analysis revealed that DisAp is a member of a distinct fam-
ily of proteins conserved among ciliates, with seven paralogues 
in T. thermophila. Although this family includes other proteins 
with proposed roles in BB function (i.e., Bbc29p and Bbc39p; 
Kilburn et al., 2007), it does not include SF-assemblin. There-
fore any shared function between DisAp and SF-assemblin may 
reflect convergent evolution, similar to previous observations 
for dynamin-like proteins in ciliates and metazoans (Elde et al., 
2005). Introduction of TTHERM_00941400 into disA-1 cells 
rescues BB disorganization (Fig. 1 D). Thus, BB disorganiza-
tion in disA-1 is caused by the mutation of DisAp. Moreover, 
our discovery of DisAp provides proof-of-principle for the com-
bined use of Tetrahymena forward genetic screens and next-
generation sequencing to identify novel BB mutants.

SF-assemblin is the major component of algal striated fi-
bers (Lechtreck and Melkonian, 1991). Striated fibers in Para-
mecium tetraurelia are composed of multiple polypeptides 
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cycling cells that were not synchronized in G1 also caused  
WT KF elongation (Fig. 3, A and B) and increased disA-1 BB 
disorientation (Fig. 3 C). Thus, increased temperature, and not 
starvation, promotes DisAp-dependent KF elongation and in-
creases the severity of BB disorientation in disA-1 cells. Col-
lectively, these data uncover a novel relationship between KF 
length and BB orientation. First, the KF is dynamic and elon-
gates in response to elevated temperature. Second, normal KF 
length requires DisAp. When the KF length is impaired, BBs 
are susceptible to rotation. We next investigated how tempera-
ture induces these changes in BB morphology.

cycle (Fig. 2 C). Before the temperature shift, WT cells had 
a mean KF length of 1.10 µm (Fig. 2 D). After the tempera-
ture shift, KF elongation reached 1.38 µm in length after 24 h  
(Fig. 2 D and Fig. S2 A). disA-1 KFs were approximately half 
as long (0.49 µm), and elongation was more gradual than in WT 
cells (Fig. 2 D and Fig. S2 B). Unlike WT, disA-1 cells displayed a  
time-dependent randomization of BB orientation (Fig. 2, E and F;  
and Fig. S2, C and D). These experiments were performed 
after a starvation-induced G1 arrest. Because starvation affects 
cortical organization (Nelsen and Debault, 1978), this could 
complicate our analyses. However, increased temperature in 

Figure 1. DISA encodes a KF localizing protein. (A) Disorganized BBs in disA-1 mutants. BB (centrin; red) and cilia ( -tubulin; green) localization at 30°C 
is shown. (B) The disA-1 mutation in Intron 1 of TTHERM_00941400. cDNA size increases due to the retained intron. (C) DisAp domain organization.  
(D) disA-1 phenotypes at 37°C are rescued with WT DISA. Arrows point to the location of the oral apparatus. (E) WT GFP:DisAp and mutant GFP:disA-1p 
localization relative to KFs and BBs. (F) DisAp-mCherry (red) localizes to the proximal portion of KFs (green). Shown on the right is a fluorescence intensity 
line scan of a single BB/KF unit. (G) Immuno-EM localization of DisAp-mCherry. Representative transverse (left) and longitudinal (right) sections are taken 
through a single BB. Yellow arrows point to gold particles associated with KF, and white arrows point to gold particles not associated with the KF. Bars: 
(A, D, and E) 10 µm; (F) 750 nm; (G) 200 nm.
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Figure 2. Elevated temperature lengthens 
WT KFs and disrupts disA-1 BB orientation. 
(A) TEM of ciliary rows at 25°C. DisAp loss 
causes BBs to rotate and decreases KF length. 
Red and white asterisks mark KFs and postcili-
ary microtubules, respectively. Bars, 200 nm. 
(B) BB disorientation increases in disA-1 cells 
at 37°C (BB, red; KF, green). Bars: (left panels) 
10 µm; (enlarged panels) 750 nm. (C) Quan-
tification of KF (green) length and BB (red) ori-
entation. Angular measurements represent the 
angle between the anterior pole (0°) and the 
tip of the KF. Length (L) is the distance between 
the BB and the KF tip. (D) Elevated tempera-
ture temporally lengthens KFs. n > 300 KFs. 
(E) BB disorientation in disA-1 cells is tempera-
ture sensitive. Arrow direction represents the 
mean angular measurement (mean vector) for 
BB orientation within a cell and arrow length 
represents the R value (mean vector length) 
for all measured angles for that cell. n > 100. 
(F) Temperature-induced BB disorientation in 
disA-1 cells. n > 100. Brackets indicate the 
samples being compared and asterisks indi-
cate statistical significance (P < 0.01). Error 
bars indicate SEM.

DisAp confers resistance to mechanical 
forces produced by ciliary beating
Elevated temperature increases cilia beat frequency and cell 
swimming speed (Goto et al., 1982; Pearson et al., 2009), which 
confers greater cilia-generated forces on BBs (Bayless et al., 
2012). We explored whether temperature-induced increases in 
force in disA-1 corresponds with the observed BB disorientation 
by quantifying cellular swim speeds at differing temperatures 
(Fig. 3, D and E). At 25°C, WT cells swam at 272 µm/s; this in-
creased to 392 µm/s after a 10-min incubation at 37°C (acute) but 
decreased to an intermediate level (315 µm/s) after prolonged 

24-h incubation at 37°C (chronic). disA-1 cells at 25°C exhib-
ited a reduced swimming rate relative to WT cells (123 µm/s). 
Acute temperature shift increased the velocity (228 µm/s). 
However, unlike WT cells, increased motility was not sustained, 
as chronic maintenance at 37°C decreased the swimming rate 
below that of disA-1 cells grown at 25°C. This motility defect 
parallels disA-1 BB disorganization, with prolonged growth at 
37°C causing more severe BB disorientation. The initial  
increase in swim speed in disA-1 cells shifted to 37°C for  
10 min (acute) is likely the result of increased beat frequency. 
However, prolonged exposure to increased beating forces may 
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experience can be increased by increasing their environmental 
viscosity with polymers (Spoon et al., 1977; Jung et al., 2014). 
In cycling cells cultured in high viscosity media (polyethylene 
oxide [PEO]) at 25°C, WT KFs elongated (Fig. 3 F) and disA-1 
cells increased BB disorientation (Fig. 3 G). Moreover, high 
viscosity media also caused G1-arrested WT cells to undergo 
KF elongation (Fig. 3 F) and disA-1 cells to exhibit random-
ization of BB orientation (Fig. 3 G). Because G1-arrested cells 

drive BB disorientation, thereby decreasing the effective rate of 
cell swimming.

Cilia-generated force increases WT KF 
length and disA-1 BB disorientation
We next tested whether increases in ciliary force influence  
KF elongation and BB orientation independent of tempera-
ture changes. The drag forces (physical resistance) that cilia  

Figure 3. Increased ciliary forces disorient BBs in disA-1 cells. (A) Elevated temperature in cycling cells increases the disA-1 phenotype. BB, red; KF, green. 
Bars: (left panels) 10 µm; (enlarged panels) 750 nm. (B) Elevated temperature lengthens KFs. n > 280 KFs. (C) Elevated temperature increases disA-1 
BB disorientation. n > 54. (D) Elevated temperature increases cell motility. The node spacing represents the distance traveled in 170 ms. Bar, 100 µm.  
(E) disA-1 cells do not maintain temperature-induced increases in motility. n > 48. (F and G) High-viscosity media lengthens WT KFs (n > 153 KFs) and 
disA-1 BB disorientation (n > 30) in cycling and G1-arrested cells grown in PEO at 25°C. Brackets indicate the samples being compared, and asterisks 
indicate statistical significance (P < 0.01). Error bars indicate SEM.
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do not assemble new BBs, BB assembly is not required for 
KF elongation or BB disorientation. Finally, increasing ciliary 
beat frequency with the cAMP agonist IBMX (Hennessey and 
Lampert, 2012) lengthened WT KFs and increased disA-1 BB 
orientation defects (Fig. S3, B and C), and when high tempera-
ture shift was accentuated with increased viscosity, an additive 
effect was observed (Fig. S3, D–F). Thus, increased ciliary-
generated force triggers KF elongation. In the absence of KF 
elongation, as observed for disA-1, enhanced ciliary forces dis-
rupts BB orientation.

Because cilia-generated force leads to KF elongation, 
we asked whether a reduction in ciliary beating prevents  
temperature-induced KF elongation. In the presence of NiCl2 
or vanadate, WT temperature-induced KF elongation at 2 and  
8 h was abolished (Fig. 4 A and Fig. S3 G), which suggests that 
KFs elongate due to cilia-generated forces. Consistent with this, 
growth at 15°C slows cell swimming (Beveridge et al., 2010) 
and reduces KF length (Fig. S3 G). Moreover, the disorienta-
tion observed upon shifting disA-1 cells to 37°C was rescued by 
reducing ciliary beating with either NiCl2 or vanadate (Fig. 4,  
B and C). Similarly, growth at 15°C slightly reduced disA-1 
BB disorientation (Fig. S3 H; not statistically significant). Thus, 
cilia-generated force is both necessary and sufficient to increase 
BB disorientation in disA-1 cells, and BB rotation is resisted by 
DisAp-mediated KF elongation.

KFs guide nascent BBs and maintain the 
position of mature BBs
KFs terminate subjacent to the cortical membranes in the  
membrane-skeletal layer, where stable attachment of the KF 
may stabilize BBs against rotation. To determine whether KF 

Figure 4. Decreased cilia beating forces block 
KF elongation and rescue BB disorientation in 
disA-1 cells. (A) Reduced ciliary beating prevents 
KF elongation. WT cells were grown at 37°C in 
NiCl2. n > 286 KFs. (B) Reduced ciliary beating 
rescues temperature-induced BB disorientation 
in disA-1 cells. The circular R value is given for 
disA-1 cells grown as in A. n > 56. (C) Polar plots 
of the mean angular measurement for disA-1 
cells where cilia beating was reduced. n > 56. 
Brackets indicate the samples being compared 
and asterisks indicate statistical significance  
(P < 0.01). Error bars indicate SEM.

elongation increases contacts between the KFs and the membrane- 
skeletal layer, we used three-dimensional image averaging to 
determine the mean length of the KF that lies near to the cell 
cortex. This position is defined by centrin, which marks the dis-
tal end of the BB near the membrane-skeletal layer (Stemm-Wolf 
et al., 2005). In WT cells at 25°C, the KF full-width at half 
maximum (FWHM) intensity above the plane of centrin was 
1.09 µm long, which increased to 1.28 µm upon shifting to 37°C 
for 24 h (Fig. 5 A). In disA-1 cells cultured at 25°C, the KF 
FWHM was 0.57 µm, and it decreased to 0.51 µm after shifting 
to 37°C (Fig. 5 B). These results argue that force-dependent KF 
elongation augments the contact between the KF and anchoring 
structures in the cell cortex.

BB orientation in ciliates is propagated via a nongenetic 
process termed cytotaxis, which relies upon preexisting struc-
tures, such as old BBs, to constrain the position and orientation 
of newly arising structures, such as new BBs (Sonneborn, 1964; 
Beisson and Sonneborn, 1965; Beisson, 2008). Interactions be-
tween BBs and KFs or striated rootlets are proposed to organize 
the even spacing of BBs (Allen, 1969; Wright et al., 1983; Hoops 
et al., 1984; Lechtreck et al., 2002; Iftode and Fleury-Aubusson, 
2003). In ciliates, these interactions occur between the KF and 
the postciliary microtubules of adjacent BBs in a ciliary row 
(Fig. 5 C). Nascent BBs are assembled at a mother BB and then 
transported along the mother BB’s KF to separate the daughter 
from the mother (Fig. 5 C). In disA-1, the association between 
neighboring BBs and the KF is generally preserved (Fig. 5 D), 
which suggests that DisAp is not essential to link adjacent BBs 
to the KF. However, because disA-1 KFs are short and disori-
ented with respect to the cellular anterior–posterior axis, BB 
separation along the KF leads to clusters of closely spaced BBs 
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We have identified situations (DisAp-deficient) in which cilia-
generated forces weaken and partially abolish cytotaxis. This 
expands upon the concept of structural inheritance to demon-
strate that it is both plastic and subservient to the forces that act 
on BBs.

Conclusion
We demonstrate that the length of the striated fiber in T. ther-
mophila, the KF, is responsive to forces generated by cilia. Fur-
thermore, KF elongation stabilizes BB orientation, ensuring 

oriented along a shared axis, each of which deviates from the 
cellular polarity (Fig. 5 D). Thus, similar to striated fiber-dependent  
centrosome cohesion and daughter cell positioning (Bahe et al., 
2005; Francia et al., 2012), KFs actively position BBs in multi-
ciliary arrays. Moreover, by ensuring that KFs reach an appro-
priate length, which prevents BB rotation, DisAp allows cytotaxis 
to perpetuate accurate cortical patterning.

We show that the KF is a major component of the struc-
tural environment into which nascent BBs are born. In addition, 
a genetic input, DISA, is required to maintain this environment. 

Figure 5. The KF guides and maintains the 
position of nascent BBs. (A and B) Averaged im-
ages showing increased KF presence near the 
membrane-skeletal layer after force-dependent 
elongation. Shown is the average KF signal 
(green) at the plane of the cell (broken line)  
orthogonal to the 90th percentile of centrin BB sig-
nal (red). Normalized line scans of fluores-
cence intensity along the broken line are shown.  
(C) BBs traverse the KF as they separate from their 
mother. (C, top) Fluorescence images. White  
arrowheads, mother BB. Yellow arrowheads, 
daughter BB. (C, bottom) TEMs representing BB  
separation. Bar, 200 nm. (D) The association 
between BBs and KFs is retained in disA-1 cells.  
(D, top) Shortened and disoriented KFs organize 
closely spaced BBs aligned along a common, 
but disoriented, axis (yellow arrows). (D, bottom)  
EM of a daughter BB (yellow arrowhead) as-
sociated with a parent BB (white arrowhead) 
in a disA-1 cell. (E) WT BBs are oriented along 
the cellular anterior–posterior axis. When force  
increases, the KF lengthens in a DisAp-dependent 
manner, which prevents BB rotation. disA-1 BBs  
are disorganized, but generally polarize along 
the cellular anterior–posterior axis. When force  
increases, KFs do not elongate, leading to force- 
dependent BB rotation and severe BB disori-
entation. Bars: (A and B); 320 nm; (C, top)  
750 nm; (C, bottom) 200 nm; (D, top) 1.5 µm; 
(D, bottom) 200 nm.
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by PCR amplifying (5 -CGGGATCCAAAATTGCAACTATCTAAAC-3  and  
5 -CGGAGCTCTCAAGTGAGCTTTAACTATC-3 ) and cloning the final 0.6 kb  
of DISA without the TGA stop codon into p4T2-1-mCherryLAP (Winey  
et al., 2012). A 0.9-kb fragment downstream of the TGA stop codon 
(5 -CGGGTACCAGAAAATCATATTGAAACAC-3  and 5 -CGGAATTCTT-
GACGGAAGTTCTTATCAATTCTCTAGCAAGTG-3 ) was then cloned into 
the plasmid to create p4T2-1:DISA:mCherry. This plasmid contains NEO2 
drug selection.

Next-generation sequencing and identification of disA-1
To generate a backcross of the disA-1 mutation, IA217 (disA-1) and B1868 
(WT) Tetrahymena lines were crossed to produce micronuclear heterozy-
gous F1 progeny. Two F1 clones of different mating types (F1.1 and F1.8) 
were then mated to produce 18 F2 disA-1 mutant lines. Total genomic DNA 
was purified from each line using a urea-SDS lysis and phenol:chloroform 
extraction (Gaertig et al., 1994) and measured using a Qubit Fluorometer 
(Invitrogen). Equal DNA was pooled for all 18 F2 clones to produce a 
single Illumina Tru-seq library. A second DNA preparation of B1868 was 
also prepared. Using Illumina’s standard TruSeq DNA library preparation, 
DNA was first sheared to a 300–400-bp distribution using sonication, and 
then end-repaired and A-tailed using a combination of T4 polynucleotide 
kinase (PNK), T4 DNA polymerase, and Klenow. A-tailed DNA was then li-
gated to Illumina Truseq adapters, and further independently indexed using 
PCR. Both libraries were size selected to remove adapter and PCR dimers, 
pooled, and co-sequenced on a single lane of the Illumina HiSeq 2000 
using a 2 × 100 base pair format. Postsequencing bioinformatics were 
used to separate sequences from each of the two libraries using the unique 
indexes incorporated during the library process.

The pipeline for mapping and variant calling in the data are reported in 
a publicly available Wiki (https://github.com/jewmanchue/pooled-mapping). 
To improve read quality, 10 and 5 bp were trimmed from the 5  and 3  
ends, respectively. Reads were locally aligned simultaneously to two refer-
ence sequences (micronucleus: tetrahymena_thermophila_sb210__mic__ 
2_supercontigs; and macronucleus: JCVI-TTA1-2.2) using bowtie-2.0.0. 
(Langmead and Salzberg, 2012). Discordant mate pairs were discarded. 
The reads mapped to the genome were >98% for B1868 control and >95% 
for the disA-1 F2. Sequencing coverage for the entire genome was 0.96 and 
0.60 for the B1868 and disA-1 strains, respectively. Alignment cleanup was 
performed using Samtools to remove PCR duplicates GenomeAnalysisTK-
2.4-7 was used to realign indels and polish alignments (Li et al., 2009; 
McKenna et al., 2010; DePristo et al., 2011). Joint variant calling for the 
disA-1 F2 and the B1868 control pool was performed using SNVerPool 
(Wei et al., 2011).

Heuristic filters were applied to the 8,795,723 mutations (SNVs, 
7,346,955; insertions, 648,913; deletions, 799,855) using the Genotype- 
Phenotype Association Toolkit (https://github.com/jewmanchue/vcflib/wiki). 
Positions in the genome with a depth <5 in the B1868 or disA-1 mutant pools 
were removed. The second filter removed positions where the B1868  
pool contained the nonreference allele. The last filter leniently enforced a 
recessive model by requiring the frequency of the nonreference allele in 
the disA-1 mutant pool to be >0.75. A filter of 0.75 was used to avoid 
false negatives created from sequencing errors. However, the disA-1  
mutation did have an allele frequency of 1.0. After filtering, only 206 
mutations were remaining, 26 of which were homozygous nonreference 
(allele frequency of one) in the disA-1 mutant pool (Fig. S1 C). We fo-
cused on the nine mutations mapped to the macronuclear sequence. 
Nine candidate positions for the disA-1 mutation were identified and nar-
rowed down by searching for proteins containing domains commonly as-
sociated with BBs and their auxiliary structures. Hand annotation revealed 
that one of the mutations was a splice site mutation in the 3  acceptor site 
(G to A) in TTHERM_00941400. This mutation was found in both the 
macronuclear and micronuclear sequences. The mutation was also con-
firmed by both PCR of the genomic region and cDNA of TTHERM_
00941400 and sequencing.

Phylogenetic analysis
The amino acid sequence of DisAp from T. thermophila (XP_001026900) 
was used in a protein–protein blast query (http://www.ncbi.nlm.nih.gov) 
to identify related sequences (Table S1). Alignments were generated with 
ClustalW2 (http://www.ebi.ac.uk) and trimmed by eye to eliminate inser-
tions and deletions. Model fitting and tree inference of the alignment was 
performed with Mr. Bayes v3.2.2 (Ronquist and Huelsenbeck, 2003). The 
“rtrev” amino acid substitution model was best supported by the data and 
used for inferring the tree. After the burn-in phase, the remainder of 500,000 
generations of Markov chain Monte Carlo analysis were considered for  

ciliary alignment and coherent fluid flow. Through next-generation 
sequencing, we identified DISA as a gene responsible for BB 
organization whose protein is required for KF elongation. Fi-
nally, the stability of BB orientation and KF length are impor-
tant for the propagation of the structural order in cells.

How the forces generated by cilia are sensed and then 
translated into KF length regulation remains to be determined, 
and the site of force detection, whether it be the BB or the KF, 
is also unknown. Because DisAp localizes near the BB and is 
important for KF elongation, it is an attractive target for force 
response. Furthermore, our results extend beyond cortical pat-
terning in ciliates. In vertebrates, the striated rootlet, which is 
analogous to the KF, plays a prominent role in stabilizing the 
orientation of the ciliary unit (Chien et al., 2013). Therefore, 
our study raises the intriguing possibility that force sensing and 
response by BB-associated striated fibers is a conserved mecha-
nism that has independently evolved in different eukaryotic lin-
eages to couple ciliary forces to BB orientation.

Materials and methods
Tetrahymena culture
T. thermophila cells were grown in 2% SPP media (2% proteose peptone, 
0.2% glucose, 0.1% yeast extract, and 0.003% Fe-EDTA) at the indicated 
temperatures (either 15°, 25°C, or 37°C). For all cycling cell studies, cells 
were analyzed at mid-log phase (density between 105 and 4 × 105 cells/ml)  
as determined using a Coulter Counter Z1 (Beckman Coulter). For starva-
tion experiments, cells were arrested in the G1 phase of the cell cycle 
by washing and culturing in 10 mM Tris-HCl, pH 7.4, for 18–24 h. For 
microscopy experiments, analyses were restricted to nondividing cells as 
judged by those lacking an oral primordium. To expose cells to increased 
viscosity, Tetrahymena were propagated in 2× SPP supplemented with an 
equal volume of 7.5% polyethylene oxide (mol wt 900,000; Acros Organ-
ics), which was prepared in ddH2O by gentle mixing at 37°C for 24–48 h. 
Alternatively, 2% SPP was supplemented with 750 nm of the phosphodies-
terase inhibitor 3-isobutyl-1-methylxanthine (IBMX; Sigma-Aldrich), which 
increases cAMP levels and cilia beat frequency. To expose cultures to de-
creased forces, Tetrahymena were propagated in 2% SPP supplemented 
with 250 µm NiCl2 (Sigma-Aldrich), which was added directly to the cul-
ture vessel from a 5-M stock. Dynein-dependent ciliary beating is inhibited 
by NiCl2, which blocks plasma membrane calcium channels and directly 
inhibits dynein motors (Larsen and Satir, 1991). Alternatively, 2% SPP  
was supplemented with 750 µm sodium orthovanadate (Sigma-Aldrich; 
Gibbons et al., 1978; Nilsson, 1999), which was added directly to the 
culture vessel from a 100-mm stock (pH 10).

Plasmids and Tetrahymena strain construction
To rescue the disA-1 phenotype with WT DISA, disA-1 cells (IA217) were 
transformed with the DISA ORF, and flanking sequences were inserted ex-
ogenously into the genome at RPL29. Specifically, DISA was PCR amplified 
from WT (B2086) cells using oligos (5 -CGCTGCAGAAAGATAGATGCTT-
GCTTGC-3  and 5 -CGGAGCTCGCTGTATTCTAAAGTTCAAG-3 ) and 
cloned into pBSMCSCHX. After release with Blp1 digest, the rescue con-
struct was biolistically transformed into disA-1 cells and selected for cyclo-
heximide resistance and rescue of the disA-1 phenotype.

GFP-DISA and GFP-disA-1 were cloned into pNEO2-MTTpr-GFP that 
inserts an MTT-GFP cassette upstream of the endogenous gene (Winey  
et al., 2012). The cassette containing either WT or disA-1 mutant sequence 
was inserted into otherwise WT cells. 0.6 kb of sequence upstream of DISA 
was PCR amplified (5 -CGGAGCTCCTGTTTAAAATTAAGCATGCTC-3  
and 5 -CGGGATTCGCCTTATTAACCGTTTCCTT-3 ) and cloned into 
pNEO2-MTTpr-GFP. Next, a 0.6-kb sequence of either DISA or disA-1  
was PCR amplified (5 -CGCTCGAGATGTCTGCTTTCGGCTCTCC-3  and  
5 -CGGGGCCCCTTAATTTCTTTACCCTTTC-3 ) and cloned into the plas-
mid to produce either pNEO2-MTT-GFP-DISA or pNEO2-MTT-GFP-disA-1.

A DisAp-mCherry strain was constructed. The p4T2-1:DisA:mCherry 
cassette integrates at the endogenous DISA locus and remains under the 
control of the endogenous promoter. p4T2-1:DISA:mCherry was generated 
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orientation, a box (10 µm wide × 5 µm tall) was placed in the center of 
a Tetrahymena cell and angular measurements were made for 10 BBs 
within that box. For each BB, the angular measurement represents the 
angle between the tip of the KF and the anterior pole of the cell (Fig. 2 C).  
For each cell, the mean vector and the length of the mean vector (R value) 
for the 10 measured BBs were calculated using circular statistics and dis-
played on polar plots. Each cell was measured twice, once on each side; 
thus each cell produced two R values. On the polar plots the mean vector 
is represented by the direction of the arrow. Variance in the mean vector 
is represented by the length of the arrow. An arrow length of 1 indicates 
no variation in the mean vector and an arrow length of 0 represents pure 
randomness in the mean vector. On the polar plots, the dashed circles 
represent 0.2 arbitrary units of R value. To compare the amount of BB 
orientation defects across different populations of cells, the mean R value 
for the cell population was determined in linear space. Circular statistics 
were calculated using the ORIANA circular statistics suite (Kovach Com-
puting Services).

Image analysis: fluorescent image averaging
The brightest centrin (BB) voxel for an individual BB was determined. A 5-µm 
box was centered over this voxel in the x, y, and z dimensions. The raw BB 
and KF image stacks were cropped in the xy dimension using the 5-µm box, 
and they were cropped in the z dimension by taking five slices below the 
slice containing the brightest BB voxel and five slices above the brightest BB 
voxel (11 slices total; 3.3 µm). Next, cropped stacks were rotated so that the 
tip of the KF was aligned with a straight line that ran down the middle of the 
5-µm box and passed through the brightest centrin pixel. This procedure was 
performed on 100 BBs from 10 different cells for each condition. The raw 
images used for averaging were part of the 0 h and 24 h time points (SPP 
condition) of the dataset used in Fig. S3 (D and E). To create the average 
image stack, individual image stacks were averaged on a per-slice basis. All 
image cropping was performed with FIJI using the crop, rotate, and dupli-
cate stack commands. The yz images were created by rotating the averaged 
image stacks in three dimensions using the TransformJ plugin.

Statistical analysis
All linear statistical analyses were performed in Excel (Microsoft). All tests 
for significance were unpaired, two-tailed t tests. All error bars indicate 
SEM. Statistical significance was set at P < 0.01.

Online supplemental material
Fig. S1 shows the scheme used for the identification of the disA-1 mutation, 
a phylogenetic tree of related DisAp proteins, and immuno-EM confirm-
ing DisAp’s localization at the KF. Fig. S2 shows the frequency distribu-
tions of WT and disA-1 KF length and BB orientation upon temperature 
shift, which documents population-wide shifts in KF length and BB orienta-
tion. Fig. S3 shows that WT BBs are resistant to force-induced orienta-
tion defects, whereas additional force perturbations impact WT KF length 
and disA-1 BB orientation. Table S1 lists the Tetrahymena DISA-1 clade 
members. Online supplemental material is available at http://www.jcb 
.org/cgi/content/full/jcb.201409123/DC1.
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Supplemental material

Galati et al., http://www.jcb.org/cgi/content/full/jcb.201409123/DC1

Figure S1. Identification of the KF component DisAp and its phylogenetic conservation. (A) A schematic of the workflow used to identify the disA-1 locus. 
(B) The sequence for disA-1 cDNA highlighting the introduction of a premature stop codon within intron 1. (C) The allele frequency (number of reads sup-
porting the nonreference base) of the 206 candidate mutations in the disA-1 mutant pool sorted in increasing order. Only 26 of these candidates fit the re-
cessive nature of the disA-1 mutation. (D) Phylogenetic analysis of the DISA gene family. A Bayesian-based phylogenetic tree was constructed using Mr. 
Bayes v3.2.2. The resulting 50% majority rule consensus tree is shown with percentage posterior probabilities indicated at each node. Highly duplicated 
genes from the reference genome of Paramecium tetraurelia are collapsed with the number of closely related orthologues indicated. Tt, Tetrahymena ther-
mophila; Im, Ichthyophthirius multifiliis; Pt, Paramecium tetraurelia; Ot, Oxytricha trifallax; Gi, Giardia intestinalis; Gl, Giardia lamblia; Nc, Neospora 
caninum; Tg, Toxoplasma gondii; Pf, Plasmodium falciparum. (E) Serial sections from the DisAp-mCherry immuno-EM used in Fig. 1 G.
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Figure S2. WT and disA-1 phenotype distribution. (A and B) Relative histograms for KF length for 0 h and 24 h temperature shifted WT (A) and disA-1 
cells (B). The averaged data are in Fig. 2 D. (C and D) Relative histograms for BB orientation for 0 h and 24 h temperature-shifted WT (C) and disA-1 cells 
(D). The averaged data are in Fig. 2 F.
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Figure S3. KFs and the disA-1 phenotype are modulated by ciliary beating. (A) WT BB orientation is not affected by high-viscosity media. n > 100.  
(B and C) The cAMP agonist IBMX lengthens WT KFs (B; n > 141 KFs) and increases disA-1 BB disorientation (C; n = 30). (D) High-viscosity media exacer-
bates temperature-induced KF elongation. Mean KF length for WT cells grown at 37°C in SPP without PEO (black) or SPP with PEO (gray) is shown. n > 
298 KFs. (E) High-viscosity media exacerbates temperature-induced BB disorientation in disA-1 cells. The mean circular R value for disA-1 cells grown is 
given as in D. n > 56. (F) Polar plots of the mean angular measurement for disA-1 KFs in high-viscosity media. n > 56. (G) WT KF length is reduced at low 
temperature (15°C), and temperature-induced KF elongation is abolished by the dynein inhibitor sodium orthovanadate. n > 259 KFs. (H) Temperature-in-
duced disA-1 BB disorientation is rescued by the dynein inhibitory sodium orthovanadate. n = 50. Brackets indicate the samples being compared and as-
terisks indicate statistical significance (P < 0.01).
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Table S1. TtDISA1 clade members

Gene identifier Accession No. Description Abbreviation

296004794 XP_002808749 Conserved Plasmodium protein, unknown function (Plasmodium falciparum 3D7) Pf DISA
401399829 XP_003880645 conserved hypothetical protein (Neospora caninum Liverpool) Nc DISA
237841033 XP_002369814 hypothetical protein, conserved (Toxoplasma gondii ME49) Tg DISA
403369035 EJY84356 hypothetical protein OXYTRI_17902 (Oxytricha trifallax) Ot DISA5
308163082 EFO65444 Hypothetical protein GLP15_2488 (Giardia lamblia P15) Gl DISA1a
253746803 EET01832 Hypothetical protein GL50581_905 (Giardia intestinalis Gi DISA1
159115484 XP_001707965 Hypothetical protein GL50803_14341 (Giardia lamblia ATCC 50803) Gi DISA1b
229595185 XP_001019366 Hypothetical protein TTHERM_00388620 (Tetrahymena thermophila) Tt DISA4
145523770 XP_001447718 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA3a
145502961 XP_001437458 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA3b
118354193 XP_001010359 IQ calmodulin-binding motif family protein (Tetrahymena thermophila) Tt DISA3
471235683 XP_004039726 IQ calmodulin-binding motif family protein, putative (Ichthyophthirius multifiliis) Im DISA2
146176274 XP_001019897 Hypothetical protein TTHERM_00588900 (Tetrahymena thermophila) Tt DISA2
145527424 XP_001449512 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA2a
145497615 XP_001434796 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA2b
145475419 XP_001423732 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA2c
145533184 XP_001452342 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA2d
145545841 XP_001458604 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA2e
145550195 XP_001460776 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA2f
145517692 XP_001444729 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA2g
145534684 XP_001453086 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA2h
145529105 XP_001450341 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA2i
145500718 XP_001436342 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA2j
145517396 XP_001444581 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA2k
403367908 EJY83781 Hypothetical protein OXYTRI_18485 (Oxytricha trifallax) Ot DISA2a
403351290 EJY75132 Hypothetical protein OXYTRI_03485 (Oxytricha trifallax) Ot DISA2b
146183721 XP_001026900 Hypothetical protein TTHERM_00941400 (Tetrahymena thermophila) Tt DISA
471229666 XP_004035676 Hypothetical protein IMG5_092570 (Ichthyophthirius multifiliis) Im DISA1
145503081 XP_001437518 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA1a
145523660 XP_001447663 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA1b
145518359 XP_001445057 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA1c
145506455 XP_001439188 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA1d
145530515 XP_001451035 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA1e
145502176 XP_001437067 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA1f
145523051 XP_001447364 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA1g
145537045 XP_001454239 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA1h
145519858 XP_001445790 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA1i
145503562 XP_001437756 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA1j
145553443 XP_001462396 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA1k
145476379 XP_001424212 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA1l
145525064 XP_001448354 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA1m
145538085 XP_001454748 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA1n
145542877 XP_001457125 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA1o
145544358 XP_001457864 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA1p
145513414 XP_001442618 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA1q
145533745 XP_001452617 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA1r
403331043 EJY64442 Hypothetical protein OXYTRI_15526 (Oxytricha trifallax) Ot DISA4a
403339270 EJY68893 Hypothetical protein OXYTRI_10490 (Oxytricha trifallax) Ot DISA4b
145487977 XP_001429993 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA4a
145491824 XP_001431911 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA4b
145515856 XP_001443822 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA4c
145493704 XP_001432847 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA4d
145476945 XP_001424495 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA4e
74830847 CAI39115 KdD6 (Paramecium tetraurelia) Pt KdD6
145538552 XP_001454976 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA4g
145502275 XP_001437116 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA4h
145524201 XP_001447928 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA4i
118366717 XP_001016574 Hypothetical protein TTHERM_00188980 (Tetrahymena thermophila) Tt DISA5
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Table S1. TtDISA1 clade members (Continued)

Gene identifier Accession No. Description Abbreviation

471223386 XP_004030473 Hypothetical protein IMG5_160360 (Ichthyophthirius multifiliis) Im BBC39a
471221309 XP_004027596 Hypothetical protein IMG5_180510 (Ichthyophthirius multifiliis) Im BBC39b
118387667 XP_001026936 Hypothetical protein TTHERM_00688340 (Tetrahymena thermophila) Tt BBC39
145492272 XP_001432134 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA4j
145499182 XP_001435577 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA4k
145492266 XP_001432131 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt DISA4l
145479681 XP_001425863 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt BBC29a
145539800 XP_001455590 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt BBC29b
145513234 XP_001442528 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt BBC29c
145529630 XP_001450598 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt BBC29d
145521063 XP_001446387 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt BBC29e
145549333 XP_001460346 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt BBC29f
145483303 XP_001427674 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt BBC29g
145537508 XP_001454465 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt BBC29h
145541010 XP_001456194 Hypothetical protein (Paramecium tetraurelia strain d4-2) Pt BBC29i
118387711 XP_001026958 Hypothetical protein TTHERM_00688560 (Tetrahymena thermophila) Tt BBC29
471220004 XP_004025084 Hypothetical protein IMG5_192870 (Ichthyophthirius multifiliis) Im BBC29



CHAPTER 6 

 

WHAM: IDENTIFYING STRUCTURAL VARIANTS OF 

 BIOLOGICAL CONSEQUENCE  

 

6.1 Abstract 

Existing methods for identifying structural variants (SVs) from short-read 

datasets are inaccurate. This complicates disease-gene identification and efforts 

to understand the consequences of genetic variation. In response, we have 

created WHAM (Whole-genome Alignment Metrics) to provide a single, 

integrated framework for both structural variant calling and association testing, 

thereby bypassing many of the difficulties that currently frustrate attempts to 

employ SVs in association testing.  Here we describe WHAM, benchmark it 

against two other widely used SV identification tools, Lumpy and Delly, and 

demonstrate WHAM’s ability to identify and associate SVs with phenotypes using 

data from humans, domestic pigeons, and vaccinia virus.  
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6.2 Author summary 

The ability to rapidly and accurately identify structural variants associated with 

diseases or other phenotypic variations is an ongoing bioinformatics challenge. 

WHAM is the first tool that provides means to both identify structural variants and 

to associate them with phenotypes. WHAM’s structural variant detection and 

genotyping algorithms have been designed specifically for association testing 

with target and background individuals. WHAM maintains high sensitivity, 

ensuring it does not miss putative causal variants.  In its association-testing 

mode, WHAM can filter out false positives that are shared between the cases 

and controls. WHAM works on both sequenced individuals and pooled data, and 

its association framework can be used in conjunction with a variety of SV 

detection tools.  WHAM was designed for ease of use and has clear 

documentation.  WHAM analyses can easily be performed in parallel to standard 

variant calling pipelines.  We provide two examples of how WHAM can be used 

to find structural variants associated with traits of interest.  These examples show 

that WHAM is a flexible and reliable tool for genotype-phenotype association 

testing and disease gene discovery. 

 
 

6.3 Introduction 

Structural variation (SV) is a major source of phenotypic variation (Axelsson 

et al., 2013; Chan et al., 2010; Gemayel et al., 2010; Perry et al., 2008) and 

human disease (McCarroll and Altshuler, 2007; Stankiewicz and Lupski, 2010; 

Weischenfeldt et al., 2013).  Unfortunately, detecting SVs in short-read sequence 
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data is challenging (Onishi-Seebacher and Korbel, 2011).  Moreover, using SVs 

in association studies remains problematic, primarily due to three technical 

difficulties.  First, SV callers suffer from both high false positive and false 

negative rates (McCarroll and Altshuler, 2007). Second, the breakpoints of SVs 

are highly variable, making it difficult to detect an association between a 

phenotype and a complex ensemble of overlapping SVs (Kidd et al., 2008).  

Lastly, to our knowledge, there are no statistical tests specifically designed to 

identify SV enrichment in cases vs. controls within a framework amenable with 

high throughput sequence analysis. As we demonstrate, WHAM (Whole-genome 

Alignment Metrics) effectively addresses these problems. 

 Current mapping-based algorithms (Chen et al., 2009; Hart et al., 2013; 

Layer et al., 2014; Marschall et al., 2012, 2013; Rausch et al., 2012; Sindi et al., 

2012)  use various mapping attributes such as read depth (RD), paired-end 

mapping (PEM), split-read mapping (SRM), and soft-clipping to identify SVs.  

Tools that incorporate more than one of the short-read mapping signals, like 

Lumpy, Delly, and GASVPro, show improvements over their predecessors that 

only use a single attribute to discover SVs (Hart et al., 2013; Layer et al., 2014; 

Rausch et al., 2012; Sindi et al., 2012). SV callers have varying accuracy for 

different classes of SVs, and some have specifically designed heuristics for the 

identification of certain SV types (e.g., Delly). Because of this, ensemble 

methods, such as iSVP, SVmerge, and bcbbio-nextgen, have emerged.  These 

methods integrate SV calls from multiple tools to improve accuracy (Chapman; 

Mimori et al., 2013; Wong et al., 2010).  



	
  

	
  

80	
  

Other approaches for identifying structural variants use sequence assembly 

methods in order to pinpoint SVs.  There are two main assembly-based methods 

for SV detection: de novo and local.  De novo assembly can identify SVs with 

great accuracy (Li et al., 2011), but also can be prohibitively expensive in 

computational terms.  There are also postprocessing barriers for examining SVs 

from multiple individuals using de novo assembly.  For example, synchronizing 

the coordinates of SVs present from de novo assemblies across many individuals 

is not a trivial task.  Multiple sequence alignments provide one approach, but this 

is computationally expensive and is itself subject to systematic errors (Kemena 

and Notredame, 2009). Another option for assembly-based SV detection is local 

assembly. This approach uses read mapping information to confine assembly to 

putative breakpoints within a genomic range, thus circumventing the need for 

whole genome assembly (Chen et al., 2014; Narzisi et al., 2014; Quinlan and 

Clark, 2010). One drawback of local assembly is that it cannot discover 

sequences of large novel insertions, which might only be revealed by de novo 

assembly—and alignment of reads to a reference genome remains problematic.  

Lastly, gains made possible by local and de novo assembly are dependent upon 

higher read depths.  Given finite resources, sequencing fewer individuals at a 

higher depth compromises power for conducting downstream association testing 

(Kim et al., 2010; Sims et al., 2014). 

Whereas other modern SV callers strike a balance between sensitivity and 

specificity (Alkan et al., 2011), WHAM is configured to err on the side of 

sensitivity.  This is because using structural variant calls for genotype-phenotype 
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association discovery benefits from high-sensitivity and high-quality genotype 

calls. Under calling variants can result in the failure to detect biologically relevant 

SVs. Furthermore, specificity is less of an issue for association testing; so long 

as false positives occur randomly or systemically across cases and controls, they 

will fall by the wayside during association testing. WHAM’s highly sensitive SV 

identification and genotyping algorithms are tuned for association testing. As we 

show, WHAM is able to pinpoint SVs in pooled and genotypic data that cause 

phenotypic variation.  WHAM thus fills the need for a fast, easy to use, and highly 

sensitive SV caller and association-testing tool that is compatible with most 

standard variant calling pipelines. 

 

6.4 Results and Discussion 

WHAM integrates multiple mapping-based signals to identify putative SV 

breakpoints.  Both individual genome and populations of individuals (pooled 

sequencing) datasets can be processed with WHAM.  Additionally, if two cohorts 

of genomes are provided (target and background), WHAM can be used to 

conduct an association test. This provides means both to identify SV’s with 

genotype phenotype associations and to filter SV false positives.  WHAM also 

provides means for classification of SV type (deletions, duplications, inter-

chromosomal events/insertions, and inversions).  Classification is performed post 

hoc, as WHAM conducts genotyping and association testing independent of the 

SV type.  Here we explore the accuracy of WHAM’s SV detection and genotyping 

by first using simulated short-read datasets, followed by two whole genome 
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human datasets.  We also use WHAM to identify biologically important structural 

variants in nonhuman data.  

 

6.4.1 Validation of WHAM using simulated data 

We first examined the performance of WHAM’s SV detection heuristic and 

compared it to two other SV callers, Delly (Rausch et al., 2012) and Lumpy 

(Layer et al., 2014), using simulated whole genome sequencing (WGS) data. 

Synthetic reads were generated for 10x and 50x whole genome coverage with 

simulated occurrences of four classes of structural variants (deletions, 

duplications, interchromosomal events/insertions, and inversions; see Materials 

and Methods for details). Simulated insertion events were created by placing 

sequences from other chromosomes into alternate locations mimicking inter-

chromosomal copy number variants; we will refer to these events as insertions 

throughout the rest of this section.  We chose to benchmark Delly and Lumpy 

because both tools can identify multiple types of SVs, are widely used, and are 

easy to install and run directly from BAM files.  Lumpy also provides a point of 

reference against GASVPro and Pindel, as it has already been benchmarked 

against these tools under matched simulation conditions (Sindi et al., 2012; Ye et 

al., 2009).  We used a previously published interval size (regions defined by 25 

bp up and downstream of each simulated variant breakpoint) as “truth intervals” 

to determine true positive calls, unless otherwise noted (Layer et al., 2014).  A 

SV is considered a true positive only if both of the called breakpoints lie within a 

“truth interval.”  For specific details regarding the simulations, see Materials and 
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Methods. 

WHAM, Lumpy, and Delly were run in their default modes across the 

simulated data to identify SV breakpoints.  For a high depth simulated dataset 

(50x), WHAM and Lumpy have comparable sensitivity overall (0.94 and 0.90, 

respectively), while Delly has slightly lower sensitivity (0.84).  The structural 

variant size drives the largest differences in sensitivity between the three tools 

(Fig. 6.1A).  For example, neither Lumpy nor Delly is able to detect many of the 

smaller duplications (50 bp and 100 bp; collapsed into the 0.05-1kbps interval 

[Fig. 6.1A]).  Delly’s limitation in detecting smaller SVs (~300bp) has been 

acknowledged by the authors.  For smaller SVs (<60bp) the sensitivity of WHAM 

is generally 2-3 times greater than the other tools (Figure 6.1A; 0.05-1kbps 

interval).  All three tools have similar sensitivity for detecting simulated SVs 

greater than 1kb in size with Lumpy showing slightly higher sensitivity.  Given 

that the observed frequency of SVs follow a power law distribution with respect to 

size, we would expect that Delly and Lumpy will miss many more SV calls than 

WHAM on real biological datasets (Abecasis et al., 2010; Pang et al., 2010).  

Compared to its performance on other classes, WHAM has the lowest sensitivity 

for insertions in a 10x coverage simulated dataset (Fig. 6.1A).  This is due to 

WHAM incorrectly identifying one of the two breakpoints at lower depths (data 

not shown), which ceases to be a limitation at higher depth of coverage.  These 

sensitivity assays demonstrate that WHAM excels at finding small SVs (less than 

1kb) while maintaining similar performance to Lumpy and Delly for SVs greater 

than 1kb. 
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Next we assayed the false discovery rate (FDR) of the three tools on the 

same simulated data. WHAM has an FDR of 0.05 at 50x with 50bp of slop, which 

is higher than Delly (0.02), but lower than Lumpy (0.11) (Fig. 6.1B). Lumpy has 

the lowest overall FDR if insertions are excluded.  Reducing the amount of slop 

added to the confidence intervals slightly increases the FDR for Delly and 

Lumpy, but not WHAM.  WHAM’s FDR can be attributed to misclassification of 

SV type and failures when identifying both breakpoints.  All three tools exhibited 

a positive correlation between depth and FDR when comparing the 10x and 50x 

datasets.  For example, Delly’s FDR for deletions nearly doubles in the 50x 

relative to the 10x data. All three tools had elevated FDRs for insertion events. 

This is because our simulated insertions create interchromosomal duplications, 

which increase mapping errors, leading to false positive SV calls.  As expected, 

the FDRs for the simulated data are much lower than the human benchmarks, 

presented later. 

To assess the breakpoint accuracy of the tools, we removed the confidence 

intervals for deletions and then incrementally added 1bp-500bp of bi-directional 

slop to both breakpoints (Fig. 6.1C). WHAM has the highest positional accuracy 

for deletions of the three tools, as it has the highest sensitivity (0.75) with only 

1bp of slop.  Lumpy exhibits a marked gain in sensitivity from 10bp to 25bp of 

slop as it is designed to detect “soft” breakpoint boundaries (Layer et al., 2014), 

whereas Delly’s sensitivity exhibits an increase from 1bp to 5bp of slop. In 

contrast, WHAM maintains a near constant sensitivity down to 5bp of slop, after 

which WHAM’s sensitivity drops, but remains greater than 0.75. WHAM 
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maintains sensitivity at small intervals by relying on highly accurate mapping and 

soft clipping. WHAM, unlike the other tools, uses soft-clipping information to call 

small SVs. WHAM’s breakpoint sensitivity is important for maintaining power 

during association testing.  The power to detect an association between a SV 

and a disease is diminished when breakpoints are miscalled within a cohort of 

affected individuals.  All three tools showed improved breakpoint detection at 

higher depth (Fig. 6.1C).  The high positional sensitivity shows that mapping-

based methods can reliably localize SV breakpoints down to a 3bp interval.  This 

small interval provides sufficient accuracy for association testing.  

Genotyping accuracy is critical for association testing; therefore, we wanted to 

assay WHAM’s genotyping accuracy.  WHAM provides bi-alleleic genotype calls 

(homozygous, heterozygous, homozygous nonreference) for individual(s). The 

proportion of correctly called genotypes is reported in Fig. 6.1D for Delly and 

WHAM (Lumpy does not directly provide a genotype call). For this benchmark, 

we used the same simulated dataset used in Fig. 6.1A-C, in which all simulated 

structural variants were homozygous nonreference.  True positives were defined 

as structural variant calls genotyped as homozygous nonreference. Delly 

exhibited slightly higher genotype sensitivity for deletions, whereas WHAM has 

higher sensitivity for inversions (Fig. 6.1D). Interestingly, both WHAM and Delly 

fail to correctly genotype duplications of any size (Fig. 6.1D); all simulated 

homozygous duplications were genotyped as heterozygous.  The catastrophic 

genotyping failure rate for duplications can be attributed to mapping artifacts.  

Duplications create nonunique sequences and mapping software commonly 
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deals with this problem by random assignment of reads between breakpoint 

boundaries, making the assessment of ploidy extremely difficult. Both WHAM 

and Delly also had marginal sensitivity for insertions as they were simulated as 

interchromosomal duplications.   

Collectively, these simulations show that WHAM provides a robust means for 

SV identification and genotyping. Compared to the other two tools, WHAM excels 

at finding smaller structural variants across all simulated SV classes and has the 

highest breakpoint sensitivity. This is significant as SVs are distributed 

geometrically with respect to length, thus shorter SVs comprise the overriding 

majority of real events (Abecasis et al., 2012; Lappalainen and Lopez, 2013).  As 

we will show later, WHAM also maintains high sensitivity for real human short-

read data, but at the cost of a much higher false discovery rate. 

 

6.4.2 Validation using human WGS data 

We began our human benchmarks with NA12878, the best characterized 

genome.  For the truth set, we used the One Thousand Genomes SV dataset 

(phase III submitted calls)(Abecasis et al., 2012) downloaded from dbVar 

(estd214)(Lappalainen and Lopez, 2013).  This dataset contains 2,975 integrated 

SV calls, ranging in size from ~200bp to ~900Kbp. Deletions, large indels, and 

mobile element insertions make up the majority of the NA12878 subset. It is 

worth noting that Delly calls are represented in this truth set, but not WHAM or 

Lumpy calls.  We ran each SV caller, as per best practices, over NA12878, 

generating between ~10K and 600K SV calls (Table 6.1).  The expected number 
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of SV calls in NA12878 depends on the SV size range and the tolerated FDR.  

The One Thousand Genomes project imposes at 10% FDR for structural 

variants, improving the accuracy at the expense of sensitivity (Abecasis et al., 

2012).  Therefore, the One Thousand Genome Project SV calls for NA12878, 

while highly accurate, are very much an underestimation of the total number of 

SVs for NA12878.  In an upward extreme, another group (Bickhart et al.) 

reported over a million deletions in NA12878 (Bickhart et al., 2015). The high 

number of SV calls for NA12878 made by WHAM, reported in Table 6.1 and 

reported by Bickhart et al., highlights the importance of post hoc filtering prior to 

downstream analyses. Table 6.1 lists the three filters we used to improve both 

the sensitivity and FDR of the tools we benchmarked. The first filter removes SV 

calls where either breakpoint was located in a low complexity region (Li, 2014).  

The second filter removes sites where the depth of coverage was drastically 

higher than average.  The last filter removes breakpoints that overlap NIST 

NA12878 indels (Zook et al., 2014).  Removing indels lowers WHAM’s FDR as 

small indels are not found in the Phase III SV call set (they are present in the 

integrated SNV call set).  After all filters were combined, WHAM, Delly, and 

Lumpy had 250.7K, 40.6K and 3.7K SV calls, respectively (Table 6.1). These 

steps removed several hundred thousand WHAM calls. However, recall that 

Delly was employed to produce the Phase III NA12878 ‘truth’ set used here. We 

confined our subsequent benchmarks to the two most common classes of SVs in 

the Phase III dataset, deletions (976), and Mobile element insertion (1,070; MEI). 

The three SV callers have similar performance for deletions (Fig 6.1A); 
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Lumpy has the highest sensitivity (0.63) and lowest FDR (0.75) overall. The 

sensitivity for all three tools starts at ~0.75 in the 150bp-1Kbp interval and tapers 

off to ~0.25 for SVs greater than 10Kb (Fig. 6.2A).  The FDR was high for the 

smallest and largest size categories (100bp-1Kbp and 10Kb-1Mb).  Between 

these two categories, the smaller size window contained the largest number of 

false positives and true positives for each tool.  For example, Delly has over 167 

true positives and 28,769 false positives in the smallest size category.  WHAM’s 

sensitivity (0.61) was lower than Lumpy (0.63), but not Delly (0.60) and overall, 

WHAM’s FDR (0.80) was below Delly’s (0.98). We next assayed the three tools’ 

ability to detect mobile element insertions (MEIs).  There are more MEIs (1,070) 

in the NA12878 truth set than deletions (976).  We intersected all Delly and 

Lumpy calls, regardless of classification with the NA12878 MEIs.  In contrast, 

because WHAM has the ability to classify insertions, we only intersected the 

WHAM insertions with the MEI calls. Unlike the previous benchmarks, if either 

breakpoint of a putative MEI overlaps a Phase III MEI, it is classified as a true 

positive.  Novel insertions and MEIs only have one breakpoint relative to the 

reference sequence. Out of the three tools, WHAM was the only SV caller that 

detected a sizable number of MEIs albeit with a high FDR (Fig 6.1B).  If all SV 

classes are grouped together, WHAM has the highest sensitivity (0.70) and the 

highest FDR (0.98) for the NA12878 dataset. The Phase III NA12878 SV truth 

set is highly conservative; therefore, we expect that as more real SV calls are 

integrated into the One Thousand Genomes Project, the sensitivity and FDR of 

each tool will improve.   
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For a second, independent, human benchmarking experiment, we used the 

recently published single-molecule, real-time (SMRT) sequencing dataset of a 

hydatidiform mole cell line (CHM1) (Chaisson et al., 2014).  Both PacBio and 

Illumina sequence data were generated from DNA recovered from CHM1 cells. 

The 101 bp Illumina reads and PacBio (~8kb average length) reads cover the 

haploid genome to 40.7x and 36.6x depth, respectively. The structural variant 

calls from the PacBio single molecule sequencing were generated by first 

identifying putative SV breakpoints followed by local assembly (see supplement 

of (Chaisson et al., 2014)). The PacBio SMRT SV calls are a good standard for 

validating WHAM’s performance on the related Illumina datasets because PacBio 

SMRT sequencing does not require DNA cloning or amplification, two common 

sources of sequencing artifacts. Moreover, the absence of allelic heterogeneity in 

the haploid CHM1 genome facilitates accurate assembly (Chaisson et al., 2014; 

Steinberg et al., 2014).  Additionally, PacBio reads can capture small and 

moderately sized SVs internally within a read, providing a more accurate source 

for detecting SVs.  We analyzed the Illumina data with WHAM, Delly, and Lumpy, 

and compared their SV calls to the 11,311 SMRT deletions and 15,330 insertions 

(http://eichlerlab.gs.washington.edu/publications/chm1-structural-variation). 

WHAM ses Lumpy and Delly in sensitivity for the CHM1 dataset.  WHAM has 

the highest number of true positive deletion calls (1,983), followed by Lumpy 

(1,759) and Delly (1,547) (Fig. 6.2C; both size intervals combined). This finding is 

in contrast with the NA12878 benchmarking where WHAM had the lowest 

sensitivity for deletions.   We attribute this difference to the size distributions of 
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the two truth sets.  The CHM1 dataset is enriched for smaller SVs whereas the 

Phase III NA12878 calls focus on larger SVs (greater than 200bp).  WHAM has 

increased sensitivity for smaller structural variants (Fig. 6.2C; 25bp-500bp).  In 

the larger size category (500bp-100k), Lumpy has a higher sensitivity than 

WHAM, but not Delly. WHAM’s false discovery rate (0.47) was higher than 

Delly’s (0.41) and Lumpy’s (0.34) (Fig. 6.2C; both size intervals combined).  Next 

we turned our attention to the CHM1 insertions. WHAM had the highest 

sensitivity, finding over 38% of the CHM1 insertions (Fig. 6.2D).  WHAM’s 

exceptionally high FDR for insertions (0.86) is a result of not filtering.  We did not 

apply filtering as 9,445 of the 15,373 CHM1 insertions overlap low complexity 

regions of the genome (Chaisson et al., 2014; Li, 2014).  Lastly, we examined the 

distribution of deletions sizes called by WHAM, Delly, and Lumpy compared to 

the CHM1 dataset (Fig. 6.2E).  WHAM’s size distribution for deletions closely 

tracks the CHM1 dataset.  Both datasets are enriched for deletions less than 

100bp, which is concordant with previous studies (Abecasis et al., 2012; Mills et 

al., 2006).  The peaks in the size distributions at 300bp and 6000bp correspond 

to ALUs, STRs, and LINE-1 elements.  The variability between the size 

distribution of the tools suggests that each tools is well suited for a slightly 

different size class. 

The results from benchmarking on real data have several important 

implications.  First, WHAM is a sensitive structural variant caller and achieves 

comparable, or better, performance relative to other commonly used structural 

variant callers, but at the cost of higher FDR. Importantly, WHAM provides robust 
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means for discovering small structural variants and mobile element insertions. 

MEIs comprise 55% of all NA12878 SV calls in the One Thousand Genomes 

Project (phase III).  Second, the low overlap between SV classes among the 

tools tested here supports the power of integrated SV call sets.  Frameworks, like 

the approaches of bcbio, which acts by combining SV calls from a variety of 

callers (including WHAM), can capture a greater swath of genetic diversity while 

also providing higher confidence for concordant allele calls across varying 

heuristic methods (Chapman; Mimori et al., 2013; Wong et al., 2010). 

 

6.4.3 Identifying candidate SVs with WHAM’s association test 

Although all three tools have relatively similar sensitivity for NA12878 

deletions, any critical appraisal of their performance must take into account the 

very high false discovery rates of all three tools.  Using the NA12878 deletion 

data, for instance, WHAM’s FDR is 0.80, Delly’s is 0.98, and Lumpy’s is 0.75. 

These values illustrate just how difficult SV discovery is using short-read data. 

However, for purposes of genotype-phenotype association, high false discovery 

rates are tolerable so long as false positives are either randomly distributed 

across cases and controls (nondifferential error), or else systematic, e.g., called 

in every individual. In both scenarios, false positives will cancel out in an 

association test. Thus given a reasonable true positive rate, robust association 

signals will be obtained even in the face of very high FDR.  Bearing these issues 

in mind, in the analyses below, we demonstrate the suitability of WHAM for 

association testing and demonstrate the efficacy of its association test using real 
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biological datasets from domestic pigeons and vaccinia virus. 

We first sought to test if WHAM’s nondifferential false discovery rate creates 

spurious signals of association. To examine this, we used a cohort of individuals 

with a high degree of genetic relatedness such that if they were assigned 

randomly into two groups for association testing, there should be little to no 

differentiation.  We chose the CEPH/Utah Pedigree 1463, comprised of 

seventeen individuals across three generations (Abecasis et al., 2012; Illumina).  

This pedigree should not harbor appreciable levels of population stratification, 

thus removing a potential confounding source of false positive associations in our 

sampling.  WHAM was run in default mode three times, randomly dividing the 

pedigree into two groups of eight individuals for assignment to either target or 

background groups.  One genome was excluded each round so that the target 

and background had the same number of individuals.  True and false SV calls 

were assigned according to their proximity to the phase III One Thousand 

Genomes Project SV calls using a 50 bp truth interval.  In total, 16,470 

association tests were run for the true positive SV calls, while 380,005 were run 

for the false positives.  Comparing the distributions of WHAM’s LRT p-values 

(Chi-sq one degree of freedom) between the groups showed a significant 

difference between the true and false SVs, shown in Fig. 6.3 (Two-sample 

Kolmogorov–Smirnov [KS] test D = 0.0948, p-value = 2.2e-16). The median p-

value for the true positive group was 0.66 and 0.69 for the false positive group 

(1.03 times higher).  To see if the significant difference is robust to the number of 

variants assayed, we subsampled 100 WHAM p-values for both groups and the 
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KS test was rerun.  Over 1000 iterations, only 362 of the 1000 KS tests achieved 

significance.  This suggests that there is a small, albeit significant, difference 

between true positives and false positives.  Together, this demonstrates that 

WHAM’s false SV calls are only expected to slightly inflate the number of 

spurious associations. 

While WHAM has a high false discovery rate for SV detection, WHAM’s 

association-testing framework is robust to many of these errors as they are non-

differential between the cases and controls.  To demonstrate that WHAM’s high 

FDR for SVs does not hinder association studies, we used WHAM on both 

genotypic (pigeon) and pooled (viral) datasets. In the pigeon dataset, WHAM was 

used to remap a SV causative for the recessive red pigmentation trait and in the 

viral dataset, we show that WHAM reliably identifies the breakpoints of a 

duplication involved in viral adaptation.  

 

6.4.4 Identifying the genetic basis of recessive red coloration 

 in domestic pigeons 

Pigeon fanciers have selected for a wide range of phenotypic variation in 

domestic pigeons over thousands of years. These traits include plumage 

patterns, behavior, size, and pigmentation (Shapiro et al., 2013).  Several alleles 

in three genes, Tryp1, Sox10, and Slc45a2, were recently identified that affect 

the melanin synthesis pathway (Domyan et al., 2014).  For example, birds 

homozygous for a 7-kb deletion spanning a melanocyte-specific enhancer of 

Sox10 (e1 allele) have reduced expression of Sox10 and its target Tyrp1, 
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resulting in the ‘recessive red’ color phenotype. Using a previously generated 

WGS dataset, we examined the power of WHAM’s association test to re-identify 

the e1 allele.  In conjunction with the WHAM analyses, we also ran the same 

association test for SNPs (implemented in pFst Chapter 2) and Delly SV 

genotype calls.  Lumpy was excluded from these analyses, as it does not provide 

a method for joint genotyping, which is required for WHAM’s association 

framework.  

WHAM re-identified the e1 allele as the best genome-wide candidate for 

recessive red using a likelihood ratio test (LRT; Fig. 6.4A, Fig. 6.4C). The LRT 

implemented in WHAM measures the differences in allele frequencies based on 

the genotype calls at every SV position in the genome. Five recessive red and six 

wild type birds were processed with WHAM to identify SVs and conduct 

association testing. The highest WHAM LRT scores were present on scaffold974 

at the two PCR confirmed breakpoints of the e1 allele (Fig. 6.4C).  Because the 

pigeon reference genome was assembled from a recessive red bird that 

harbored the e1 deletion allele, WHAM indirectly identified the location of the 

deletion by identifying an “insertion” in the wild-type birds, relative to the 

reference genome. Delly was unable to identify this allele, because it was not 

designed to identify novel insertions (Fig. 6.4C). WHAM also detected several 

inversions that are contained within the e1 allele and close to the deletion 

breakpoints. Delly additionally failed to detect these inversions. The increased 

LRT scores (converted to p-values) around the e1 allele are attributed to linkage 

disequilibrium since e1 is on a shared haplotype.  This linkage is more notable in 
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the SNP data, which has a much higher density of variants. The p-values from 

WHAM’s association test fit a uniform distribution, suggesting little to no 

population stratification between the cases and controls in domestic pigeon (Fig. 

6.3B).  Importantly, WHAM’s demonstrated high false discovery rate did not 

affect our ability to rediscover the e1 allele.  This analysis demonstrates the utility 

of WHAM for rapidly identifying candidate SVs for simple Mendelian traits. 

 

6.4.5 Identifying adaptive structural variation in vaccinia  

virus populations 

Structural variants in the form of gene copy number variation (CNV) in DNA 

virus genomes provide a mechanism for rapid virus adaptation to host immune 

defenses (Brennan et al., 2014; Elde et al., 2012; Erlandson et al., 2014; 

Slabaugh et al., 1989).  For example, frequent recombination events creating 

tandem gene duplications have been observed in vaccinia virus (VACV) as a 

means of adaptation to the human antiviral host factor protein kinase R (PKR) 

during experimental evolution (Elde et al., 2012).  In this system, selective 

pressure was placed on the virus by deleting the E3L gene encoding a strong 

PKR inhibitor, leaving only a weak PKR inhibitor encoded by the K3L gene 

(Beattie et al., 1995).  Experimental evolution of this ΔE3L virus in HeLa cells 

revealed that copy number expansion of the K3L gene provides gains in viral 

fitness.  To test whether CNV is a common mechanism of adaptation and 

determine whether WHAM is an effective tool to detect and characterize such 

events, we passaged the ΔE3L VACV strain ten times in a different cell line 
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derived from primary human fibroblasts. 

We analyzed short-read sequencing data from viral genomes obtained from 

both a virus population after ten passages and the parental ΔE3L strain for 

comparison. This analysis revealed areas of structural variation in the adapted 

viral population.  Plotting read depth across genomic positions revealed a spike 

in read depth corresponding to the K3L locus that is only present in the adapted 

strain (Fig. 6.5A).  This is consistent with previous work in which a similarly large 

increase in depth corresponded to increased K3L copy number as a means of 

adaptation (Elde et al., 2012). To determine the exact position of the 

recombination event generating the CNV, and to find any novel structural 

variants, we performed SV calling using either WHAM or Lumpy. Using similar 

filtering schemes, WHAM identified 6 SV calls in the adapted viral population, 

compared to 20 SV calls identified by Lumpy (Fig. 6.5A).  Overlaying SV calls on 

the read depth plots shows the increased specificity of using WHAM to identify 

SVs (Fig. 6.5A). 

WHAM analysis identified four SVs in the parental strain, and an additional 

two in the adapted strain. Notably, all six SVs map near the K3L locus or the E3L 

deletion (Fig. 6.5B, Table 6.2).  The two breakpoints near the K3L locus were 

only identified in the adapted population, suggesting that the SV was not present 

in the parental strain.  These two breakpoints have very high read support, 

indicative of the same recombination event dominating throughout the adapted 

viral population (Table 6.2).  Indeed, when we specifically amplified and 

sequenced the region around the K3L breakpoint, we identified a single 



	
  

	
  

97	
  

breakpoint in the adapted strain, but could not detect any SV in the parental 

strain at this location.  Importantly, the WHAM-identified breakpoints match the 

exact positions of the breakpoint identified by PCR and Sanger sequencing (Fig. 

6.4B).  Thus WHAM is able to identify SVs in viral populations, down to single 

nucleotide accuracy. This analysis also suggests that K3L CNV is a common 

mechanism for VACV to overcome the antiviral PKR defense pathway. 

Surprisingly, the other four breakpoints WHAM identified with high read 

support map near the E3L deletion (Fig. 6.4C, Table 6.S1). This is unexpected 

because E3L was originally replaced with a β-galactosidase (β-gal) selective 

marker, creating an insertion much larger than the reads from deep sequencing. 

However, the ΔE3L virus was originally engineered to express β-gal under the 

control of the VACV 11K promoter. This promoter naturally drives expression of 

the F17R gene, and is thus present in the reference genome at the F17R locus 

approximately 5kb upstream of E3L.  Therefore, one end of the E3L deletion is 

supported by split reads mapping to the natural viral promoter.  The other end of 

the deletion does not have SR support as the β-gal gene itself is not in the 

reference genome, but WHAM did pick up a breakpoint with mate-pair support at 

this end.  Importantly, the genomic positions identified by direct sequencing of 

both the parental and adapted strains for each end of the E3L deletion were 

correctly called by WHAM (Fig. 6.4C).  These data show that WHAM can identify 

both a genetic rearrangement (K3L) and a novel insertion (β-gal) with respect to 

a reference sequence. In comparison, while Lumpy successfully identified the 

K3L duplications (also down to the exact base pair on one end), it failed to 
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identify two of the E3L breakpoints detected by WHAM. Overall, three of the five 

breakpoint positions identified by direct sequencing were called using Lumpy, 

although the remaining two are in close proximity to one of the called positions. 

Also, only one of these positions exactly matches the sequenced position, 

consistent with Lumpy providing a region rather than a specific position. Thus, 

although this is only one experiment, WHAM shows greater specificity as 

demonstrated by fewer total SV calls, as well as improved accuracy when 

compared to Lumpy in analyzing this dataset.  While WHAM’s low call rate in this 

example is not consistent with the human data, there are two possible 

explanations for this trend; the truth sets for the human data are under called, 

resulting in WHAM’s high FDR, or WHAM under calls pooled datasets.  The 

second possibility is unlikely since WHAM correctly identified the breakpoints of 

all SVs independently verified in the viral dataset (Elde et al., 2012). 

Taking a closer look at WHAM calls with mate-pair (MP) support in addition to 

SR calls, we discovered a complex set of breakpoints around one end of the E3L 

deletion.  For the K3L breakpoint, WHAM only called the two positions of the 

single breakpoint, whereas it called one additional position with high read support 

on one end of the E3L deletion (Fig. 6.4B-6.4C).  To determine whether these 

calls represent true variants, we performed PCR and Sanger sequencing across 

the region spanning from E2L to E4L, which includes the entire β-gal cassette.  

This analysis revealed SVs in both the parental and adapted strains that contain 

partial deletions of the β-gal and the 11K promoter. Thus WHAM correctly 

identified a previously unknown variable deletion (Fig. 6.4C).  We have two 
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hypotheses to explain the appearance of variable deletions in this region.  First, 

in the absence of selection on the β-gal marker gene, there is a fitness cost to 

carrying the engineered marker, so viruses losing this region have a fitness 

advantage compared to ones retaining it.  Alternatively, using a VACV promoter 

for β-gal expression present at a second location only ~5kb away in the genome 

might promote localized recombination in this region of the VACV genome.  

These hypotheses are not mutually exclusive and highlight how genetically 

engineered virus strains may not always be homogenous. 

In addition to identification of SVs from sequencing individual genomes, this 

analysis demonstrates that WHAM is able to detect variable structural changes 

within polymorphic populations.  This provides an example of WHAM’s utility as a 

tool for accurate detection of SVs in rapidly changing microbial populations. 

Gene amplification can play a major adaptive role in response to selective 

pressure in both viral (Brennan et al., 2014; Elde et al., 2012; Erlandson et al., 

2014; Slabaugh et al., 1989) and bacterial populations (reviewed in (Andersson 

and Hughes, 2009; Elliott et al., 2013; Romero and Palacios, 1997; Sandegren 

and Andersson, 2009)), so it is important to accurately define the adaptive 

potential of structural variants. Recent advances in whole genome sequencing 

provide a wealth of genetic information about microbial population dynamics, and 

WHAM provides a tool to rapidly identify potentially adaptive SVs. 
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6.5 Conclusions 

WHAM is a highly sensitive structural variant caller and association-testing 

tool.  It is flexible enough to work on a broad range of data including pooled and 

diploid individuals. We show that WHAM’s SV detection compares favorably with 

other popular mapping-based SV calling methods and performs well across a 

number of SV types in both simulated and real datasets. While WHAM, like other 

SV calling tools, suffers from high false positive rates, we show that this is 

unlikely to affect the association statistics from WHAM’s association testing. 

WHAM’s ease of use also makes it an ideal package for inclusion with integrated 

SV callers.  By simply running WHAM in its default association-testing mode, we 

were able to identify the causal SV allele of a recessive trait in pigeons. Similarly, 

WHAM’s accurate breakpoint predictions were able to locate a copy number 

variant in viral populations relative to a parental strain with very high precision. 

Future efforts will focus on expanding WHAM’s association test to handle 

locus and allelic heterogeneity. Currently, WHAM does not have ability to detect 

genotype-phenotype associations for nonoverlapping structural variants. 

Integrating structural variant size, phylogenetic conservation, and the burden of 

SVs in the cases versus controls will increase the power and utility of WHAM’s 

association test. 
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6.6 Materials and Methods 

6.6.1 Identification of breakpoint and genotyping 

WHAM integrates mate-pair mapping, split read mapping, soft-clipping, 

alternative alignment, and consensus sequence-based evidence to predict SV 

breakpoints with single-nucleotide accuracy.  WHAM generates a combined 

pileup (ensemble of reads covering a position of the genome) for all BAM files 

provided.  Reads from all individuals included in joint calling that are soft or hard 

clipped are hashed by position to identify shared breakpoints.  Positions in the 

pileup where three or more primary reads share the same breakpoint are 

interrogated as a putative SV. The soft clipped sequences that overhang the 

breakpoint are collapsed into a consensus sequence using a multiple sequence 

alignment (MSA) provided in the seqAn library (Döring et al., 2008).  WHAM 

applies three filters to the consensus sequences. Breakpoints are not reported in 

cases where consensus sequences are shorter than 10bp or contain more than 

50% mismatches in the alignment, as they more likely reflect mapping errors 

rather than allelic heterogeneity. Overlapping alleles that do not share the same 

breakpoints are reported as independent records in the VCF file, allowing for 

allelic heterogeneity.  Alleles that share an exact breakpoint, but different 

sequences, fail the mismatch consensus filter and are discarded.  

WHAM uses split-read (SR) alignments, mate-pair (MP) positional 

information, and alternative alignments to find the other SV breakpoint (the 

breakpoint not present in the current pileup position). WHAM is unaware of past 

SV calls; therefore, it outputs an SV call for the 5’ and 3’ breaks independently.  
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Each split read entry in a BAM file reports the other supplemental alignments in 

the “SA” tag and alternative alignments are reported in the “XA” tag.  WHAM 

processes the cigar strings of the SA and XA tag to identify shared positions as 

candidate endpoints of the reported SV.  WHAM clusters all the candidate 

breakpoints and rounds their positions to the nearest tenth base pair.  The 

position with the highest number of read support  is reported. If the soft-clipped 

consensus sequence can be aligned to the putative breakpoint region using 

Smith and Waterman, the breakpoint is further refined to the location of the 

consensus sequence alignment.  The amount of support for the breakpoint is 

listed in the “SP” info field.  

Translocations and structural variants greater than 1Mb undergo additional 

filtering.  These classes of SVs can be highly deleterious genomic aberrations; 

therefore, we require them to have additional support.  Large intrachromosomal 

SVs require that the other breakpoint (outside pileup position) has at least two 

reads supporting the exact breakpoint.  This same filter is applied to 

translocations. Additionally, in the case of translocations, if the split reads in the 

pileup map to more than three different chromosomes, the SV is discarded.  This 

filter removes many false positive SV calls resulting from interchromosomal 

mapping errors introduced by repetitive sequences.  

Genotyping is accomplished using a bi-allelic likelihood model (Li, 2011; 

Nielsen et al., 2011).  Rather than using base quality at the breakpoint position, 

we use the mapping quality of the read. Each read that contains the breakpoint, 

internally or soft clipped, is counted as nonreference.  Additionally, reads that are 
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discordantly mapped or show signs of an inversion (same strand mate pair 

mapping) are also considered to be nonreference for use in genotype calling.  

During joint calling at least one individual must have three reads supporting the 

alternative allele.  This filter prevents randomly shared start and stop soft clipping 

across individuals from triggering a nonreference allele call.  

For best performance, we recommend using BWA mem (Li, 2013) followed by 

sorting and duplicate removal (duplicate marking is also supported) of the BAM 

files.  The BWA mem algorithm provides soft clipping and split read annotations.  

Specifically, the “SA” and “XA” optional fields in the BAM files are heavily utilized 

by WHAM.  Supplementary read alignments (0x800 / split reads) can be marked 

as secondary with no detrimental effect.  Marking or removing duplicates is highly 

recommended as these duplicates cause false positive SV calls.  Other mapping 

software like Bowtie2 (Langmead and Salzberg, 2012) also provides soft 

clipping, which is sufficient to run WHAM, but produces results with lower 

sensitivity (data not shown).  WHAM can be run on single-end sequencing data, 

but for best results, paired-end data is recommended.  

 

6.6.2 Classification of SV type 

WHAM classifies the type of structural variant by using an ensemble of 

decision trees (random forest) implemented in scikit-learn (Pedregosa et al., 

2011). This approach is similar to another SV caller, forestSV (Michaelson and 

Sebat, 2012).   WHAM’s raw breakpoint calls (in VCF format) are postprocessed 

by ‘classify_WHAM_vcf.py’ to add SV type to the INFO field.  The WHAM 
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classifier provides the SV type in the “WC” info field and probability of each type 

in the “WP” info field.   We use fourteen attributes of a genomic position for the 

classifier (Table 6.3).  Each attribute is a fractional measure reflecting the 

number of reads that belong to each attribute, normalized the by the read depth 

at the pileup position.  Some of the fourteen attributes have low to no importance 

for training the model, but we chose to maintain them as they allow further 

downstream development. The training dataset is derived from our simulated 

dataset, which includes deletions, insertions/translocations, duplications, and 

inversions.  The k-fold cross-validation implemented in scikit-learn reports a 

validations rate of ~0.94 for the simulated dataset.  A user may create their own 

training set consisting of a truth set of variants, supplying as many variant types 

as they see fit.  To do this, WHAM should be run over a BAM file containing SVs 

that have been validated.  Then the “AT” info field should be split into a tab-

delimited file with the last column providing the validated SV type.  The resulting 

training file should match the format of the file distributed with WHAM.  

Additionally, WHAM can be extended to annotate as many features as the user 

sees fit. False positive WHAM SV calls can be annotated and added to a training 

set.  This flexibility makes WHAM extendable to identify many patterns in a pileup 

that differentiate between SV types.   
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6.6.3 WHAM’s association test 

When the “target” and “background” options are enabled, WHAM quantifies 

the difference between the target and background allele frequencies using a 

likelihood ratio test (LRT) under a binomial likelihood model with one degree of 

freedom.  The basic LRT used within WHAM has been widely adopted for 

association studies (Kim et al., 2010; Li, 2011; Yandell et al., 2011).  WHAM’s 

LRT has also been implemented in GPAT++, a population genetics library 

(Kronenberg).  

The null model of WHAM’s LRT assumes that the allele frequencies of both 

the target (AFT) and background (AFB) groups are the same, while the alternative 

hypothesis is that the allele frequencies of the two groups come from two 

separate distributions.  The allelic counts in the model come from the genotype 

calls.   

 

𝐷   = −2   ∗   𝑙𝑛(   !(!!,!!,!"!)
!(  !!,!!,!"!  )  ×  !(!!,!!,!!!)

 ) 

 
(6.6.3.1) 

 

The binomial density function (B(n, k, p)) is parameterized by the number 

of successes n, the number of trials k, and the probability of success p.  In the 

current application, n is the number of nonreference alleles in the target (NT), 

background (NB), and the target/background combined (NC). The parameter k is 

the number of alleles in the target (KT), background (KB), and the 

target/background combined (KC).  The probability of success p, corresponds to 
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the target (AFT), background (AFB), and combined (AFC) allele frequencies.  

WHAM reports the D statistic in the “LRT” info field.  Larger LRT values can 

indicate that the null hypothesis should be rejected under the assumptions of the 

binomial model.  A chi-sq lookup, with 1 df, can be used to convert the D statistic 

into a p-value.  

 

6.6.4 Simulations and human benchmarks 

Nonoverlapping homozygous deletions, duplications, inversions, and 

translocations/insertions were independently injected into the human reference 

genome (hg19, GATK resource bundle (DePristo et al., 2011; McKenna et al., 

2010)) using SVsim (Faust). SVsim generates insertions by placing fragments 

from another chromosome into the target site; therefore, we denote insertions as 

translocations/insertions.  Two SV sizes, one and five, were incremented by 

powers of 10 (1-6) generating SVs from 50bp – 1Mb.  From the mutated 

sequences, 150bp paired-end reads were simulated using DWGsim at two 

average depths, ten and fifty (Homer).  DWGsim added single nucleotide 

polymorphisms, but no additional SVs.  The simulated reads were aligned to the 

human reference genome using BWA mem in the default mode (Li, 2013). The 

alignments were converted to BAM files, sorted, and duplicates were removed 

using Samtools (Li et al., 2009).  Each sample was run independently with 

WHAM, Delly, and Lumpy.  WHAM and Delly VCFs were converted to BEDPE 

format using two scripts distributed with WHAM (WHAMToBedPe.pl and 

dellyToBedPe.pl).  For benchmarking, we used bedtools set operations to 
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determine true and false positives (Quinlan and Hall, 2010).  The ‘pairToPair –

type both –slop 50 –is’ command was used to find true positives, requiring both 

putative breakpoints overlap with a single simulated SV.  False positives were 

counted with ‘pairToPair –type notboth –slop 50 –is’.  This benchmarking scheme 

has previously been used and honors the confidence intervals provided by all 

three tools. 

All of Illumina’s platinum genomes (17 member CEPH pedigree 1463) were 

aligned using BWA mem, sorted with Sambamba (v0.5.0-dev), and duplicates 

were removed with Samblaster (0.1.20) (Faust and Hall, 2014; Tarasov). The 

truth set (phase III One Thousand Genomes Project) was downloaded from 

dbVar (http://www.ncbi.nlm.nih.gov/news/11-04-2014-1000-genomes-phase-3-

data-dbvar/) and converted to BEDPE with 25bp of bi-directional slop added.  

Both the truth and caller-derived SV sets were further filtered with the low 

complexity region file (Li, 2014), the high coverage region file provided by Lumpy 

(Layer et al., 2014), and the NA12878 NIST indel calls  

(http://www.nist.gov/mml/bbd/ppgenomeinabottle2.cfm).  These sequential filters 

were done with the ‘pairToBed  -type neither’ command in bedtools.   The 

benchmarks for NA12878 followed the same procedures as the simulations with 

the exception of mobile element insertions (MEIs). We used ‘pairToPair –type 

either –slop 50 –is’ for true positives and ‘pairToPair –type neither –slop 50 –is’ 

for false positives because the MEIs in the truth set are represented with single 

intervals.  

The CHM1 publicly available structural variant call set 
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(http://eichlerlab.gs.washington.edu/publications/chm1-structural-variation) was 

downloaded with the accompanying 101bp Illumina reads (SRX533609). We 

converted the CHM1 bed files to BEDPE files adding 50bp of bi-directional slop.  

Without slop, the concordance of the tools tested here and the CHM1 datasets 

was too low.  The Illumina reads were aligned to the b37 (GATK resource 

bundle) reference genome using BWA mem version 0.7.10-r868-dirty (Li, 2013).  

The aligned reads were sorted and duplicates were removed using Samtools 

version 0.1.19-44428cd (Li et al., 2009).  WHAM, Lumpy, and Delly were run in 

default mode over the Illumina BAM files.  The benchmarks used the same 

methods as previously described without the filtering steps as many of the CHM1 

calls are in low complexity regions.  

 

6.6.5 Biological datasets 

All biological datasets are publically available on Sequence Reads Archive 

(SRA).  The eleven resequenced pigeons used in the association study can be 

found under SRA054391.  The five recessive red birds have the following SRA 

ids: SRS346872, SRS346882, SRS346899, SRS346902, SRS346883 and the 

nonrecessive red birds (backgrounds) have the following SRA ids: SRS346895, 

SRS346873, SRS346870, SRS346896, SRS346874, SRS346877.  Each re-

sequenced bird has a depth of coverage ~10x from paired-end Illumina reads. 

The reads were aligned to the pigeon assembly (GenBank assembly accession: 

GCA_000337935.1).  The viral dataset, including the parental (SRS812401) and 

adapted strain (SRS812403), are associated with SRP051821. 
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WHAM was run over both the viral and pigeon datasets in default mode.  In 

the pigeon genome-wide association study, we removed sites where there were 

no-calls (missing genotypes). Sites with LRT values less than 1.5 were also 

excluded for the Manhattan plot for the purpose of visualizing the dataset.  We 

also removed sites with less than three reads supporting the start position. In the 

VACV dataset, we removed inverted terminal repeats (10kb on either end of the 

genome) to avoid false positives from reads mapping to complementary regions 

of the genome. We then excluded sites where the start position was supported 

by fewer than 50 reads. Similarly, we discarded Lumpy calls that had fewer than 

50 reads supporting a SV.  Increasing the filter to 100 removed almost all of the 

spurious calls from Lumpy.  

The genotype-phenotype association test for the e1 allele using Delly data 

was done using GPAT++ (Kronenberg).  WHAM’s likelihood ratio test is 

implemented in pFst using the “count” setting.  Delly was run over the pigeon 

BAM files using all four modes (DEL, DUP, INV, TRA).  These different call sets 

were merged (union) and passed to pFst (Kronenberg). 

 
 

6.6.6 PCR validation in the poxvirus dataset 

The ΔE3L vaccinia virus was passaged 10 times in primary human fibroblasts 

at a multiplicity of infection of 0.1 for 48 hours (see (Elde et al., 2012) for details). 

Deep sequencing of viral populations was performed on libraries prepared from 

genomic viral DNA isolated from either the parental ΔE3L or an adapted strain 

after 10 serial passages using the Nextera XT DNA sample prep kit (Illumina, 
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Inc., San Diego, CA, USA). Barcoded libraries were combined and sequenced on 

a single lane using an Illumina MiSeq instrument. Reads were mapped to the 

vaccinia virus Copenhagen strain reference genome (accession M35027.1; 

modified on poxvirus.org) using BWA mem in default mode, duplications were 

removed using samtools, and SVs in the adapted and parental strains were 

called with both WHAM and Lumpy. 

PCR primers were designed to amplify products across the potential 

breakpoints identified by WHAM. The K3L breakpoint was amplified using 

primers K3L break F (5’ GGGATAAACTGGTAGGGAAAACTGTAAAAG 3’) and 

K3L break R (5’ CAGAGTGAGGATAGTCAAAAAGATAAATGTATAG 3’). The 

E3L deletion junctions were amplified using E2L int F (5’ 

GGAGCTACAGTTCTTGGC 3’), E4L int R (5’ CCTTCGCTATCTCTTATTCGG 

3’), and 46731R (5’ CTAGCGTACGATCGCTTCTAG 3’). The resulting products 

were Sanger sequenced and aligned to the reference genome using blastn 

(NCBI). 

 
 

6.6.7 Software 

WHAM and all associated software can be found on github  

(https://github.com/jewmanchue/WHAM), documentation is on the wiki 

(http://jewmanchue.github.io/WHAM/).  For community support, please post 

questions to Biostars.org (Parnell et al., 2011). 
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Table 6.1. The number of NA12878 calls before and after filtering. The rows 
show how many calls are removed if each filter is applied independently.  The “all 
filters combined” row was the data used for the benchmarks presented in Figure 
6.1.  
 

 Delly LUMPY WHAM Phase III NA12878 

Total calls 53,946 11,907 579,004 2,597 

LCR filter 43,388 6,341 274,787 2,149 

High coverage filter 52,427 8,101 579,004 2,520 

INDEL filter  50,666 11,004 510,994 2,574 

All filters combined 40,652 3,678 250,730 2,079 

Deletions after filters 40,652 2,166 6,935 658 
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Table 6.2. WHAM and Lumpy breakpoint positions in the adapted vaccinia virus 
population (related to Fig. 6.5). WHAM and Lumpy breakpoint positions in the 
adapted vaccinia virus genome, corresponding to the breakpoints shown in Fig. 
6.4. WHAM split-read (SR) and mate-pair (MP) read support is listed for each 
position.  Asterisks (*) indicate breakpoints for which the breakpoint position is 
the same as the Sanger sequencing verified breakpoint. 
 

WHAM 

breakpoint 

WHAM  

breakpoint 

position 

WHAM  

SR count 

WHAM  

MP count 

Lumpy  

breakpoint 

position 

1 31725* 977 73 31725* 

2 30296* 456 100 30295 

3 50913* 0 6 N/A 

4 46840 1 160 46746 

5 46731* 344 65 N/A 

6 51483* 314 62 51482 
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Table 6.3.  The factors used to classify the SV type.  All factors reported in the 
VCF “AT” info field are the fraction of the reads in the pileup falling into one or 
more of the 14 categories described above.  During the training step, the 
importance of each factor is reported as shown above.  The importance is the 
relative weight each attribute contributes to the classification.  
 

Category Notes Importance  

0. Both mates mapped NOT USED NOT USED 

1. Discordant  

 

Not paired  0.056 

2. Mate not mapped SAM bit flag 8 0.0 

3. Mates mapped to same strand  Mate pairs on same strand  0.089 

4. Mates on different seqids  RefID != MateRefID 0.148 

5. Number of split reads  Contains the ‘SA’ optional tag 0.078 

6. Split read (fragment 1) on same 

strand as mate 

combination of SAM flag and SA 

tag  

0.071 

7. Split read (fragment 2) on same 

strand as mate 

combination of SAM flag and SA 

tag  

0.071 
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Table 6.3 continued   

Category Notes Importance  

8. Split read (fragment 1) and read 

two (fragment  2) on same strand  

combination of SAM flag and SA 

tag 

0.13 

9. Internal insertion Cigar string contains ‘I’ operation 0.0002 

10. Internal deletion Cigar string contains ‘D’ operation 0.0135 

11. Mates mapped too close  Insert < (2.5 * sd average insert 

size) 

0.024 

12. Mates mapped to far  Insert > (2.5 * sd average insert 

size) 

0.101 

13. Everted pairs Position and orientation of mate 

pairs 

0.075 

14. Relative depth Depth at position for each sample 

relative to their mean depth 

0.137 
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Figure 6.1. Sensitivity and false discovery rates (FDR) for simulated data.  
The specificity and FDR of Delly, Lumpy, and WHAM for simulated deletions, 
duplications, insertions, and inversions.  The sensitivity is measured for each 
category at depths of 10x and 50x.  SVs ranging from 50bp to 1Mb are grouped 
into four left-closed size intervals.  A) The sensitivity of the three tools is faceted 
on size, depth, and SV type.  At 10x WHAM has noticeably better sensitivity for 
deletions and duplications in the smallest size class.  WHAM’s sensitivity is 
higher than Delly and Lumpy for insertions at 10x and gains sensitivity at 50x. B) 
The FDR for each type of SV faceted by depth and the amount of slop added to 
each confidence interval. In the 25bp slop category, each confidence interval was 
extended in both directions by 25bp.  At 10x depth, WHAM has the highest FDR 
across all SV classes and Lumpy has the lowest. At 50x, Delly has heightened 
FDR for deletions and Lumpy has a much higher FDR for insertions.  Shrinking 
the confidence intervals increases the FDR for Delly and Lumpy, but not WHAM. 
C) Breakpoint sensitivity for deletions.  The confidence intervals, provided by the 
three tools, are ignored and slop is incrementally added to the predicted 
breakpoints.  WHAM has the highest sensitivity when 1-10bp of slop is added. D) 
Genotype sensitivity for the homozygous nonreference simulated SVs. Delly and 
WHAM have similar sensitivity for deletions and duplications while both tools fail 
to correctly genotype duplications. 
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Fig. 6.2. Benchmarking Delly, Lumpy, and Wham against NA12878 and CHM1 
datasets. A) The sensitivity and FDR for filtered NA12878 Phase III deletion calls 
across four size intervals. The number of true positives and the number NA12878 
calls are listed above sensitivity, while the total number of false positives and 
total calls for each tool are listed above FDR.  Most true positives and false 
positives are within the 150bp to 1,000bp interval. B) The sensitivity and FDR for 
NA12878 Phase III mobile element insertion (MEI) calls. Unlike the other 
benchmarks, if either breakpoint of a SV call falls within the MEI truth interval, the 
call is considered a true positive. Delly and Lumpy calls, regardless of SV type, 
are intersected with the MEI calls as are WHAM insertion calls.  The FDRs for 
Delly and Lumpy are not meaningful as the call sets were not restricted to one 
SV type.  WHAM insertion calls overlap 75% of the MEI calls in Phase III One 
Thousand Genomes Project.  C) The sensitivity and FDR for all CHM1 deletions.  
In the 25bp to 500bp interval size, WHAM discovers ~200 more SVs than the 
other tools, while Lumpy finds more of the SVs in the 500bp to 100Kbp interval. 
D) The size distribution of the true positive calls that overlap the CHM1 deletions.  
One thousand true positives were randomly sampled from each tool and the truth 
set (CHM1-DEL). 
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Fig. 6.3. WHAM false positives and true positives share similar p-value 
distributions.  Quantile-quantile plots for WHAM’s LRT statistic after conversion 
to p-values (y-axis).  Left panel: The p-values for the structural variants that 
intersect with the phase III One Thousand Genomes Project dataset (within +/- 
25bp). Right panel: The p-values for structural variants that do not intersect with 
the phase III One Thousand Genomes Project dataset. Both the true and false 
positive SV calls have very similar distributions. 
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Fig. 6.4. Identification of the e1 allele using WHAM’s LRT. A) WHAM’s LRT 
interrogates allele frequency differences between recessive red and wild-type 
birds.  The colors denote different scaffolds in the pigeon assembly.  Scaffolds 
are sorted by their size in increasing order.   The highest LRT score, denoted 
with the dashed vertical line, is a 10Kb deletion upstream of the Sox10 gene.  
The Sox10 transcription factor is important in the melanin synthesis pathway.  B) 
The quantile-quantile plot after converting WHAM’s likelihood ratio values to p-
values. Only LRT values above 1.5 are shown in A. C) Scaffold974 association 
tests from SNPs, WHAM SV calls, and Delly SV calls. 
  

A.

C.

B.



	
  

	
  

127	
  

 

Fig. 6.5. WHAM detects structural variation in vaccinia virus populations A) Read 
depth normalized within each sample is plotted across the ~200kb vaccinia 
genome (excluding inverted terminal repeats) for either the parental strain (top 
panel) or an adapted strain (middle and bottom panels, called by WHAM or 
Lumpy, respectively).  Arrows highlight the positions of K3L CNV and E3L 
deletion.  The black lines represent the breakpoints of every SV call after filtering 
(see Materials and Methods). B) WHAM calls in the adapted strain near the K3L 
duplication breakpoint are shown as black triangles above the viral genes in 
colored boxes.  The height of the triangle represents split-read (SR) count 
supporting the call.  Sanger sequencing positions relative to the reference 
sequence are listed below.  Asterisks (*) indicate WHAM calls that match the 
exact breakpoint determined by Sanger sequencing (see Table S1 for WHAM 
and Lumpy breakpoints).  C) WHAM calls in the adapted strain near the E3L 
deletion are shown above the genes, and Sanger sequence confirmed positions 
below, as in B.  The arrow indicates the position of the 11K promoter driving β-
gal expression.  For breakpoints in grey, the height of the triangle indicates the 
relative mate-pair count from WHAM, as these positions do not have SR support. 
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CHAPTER 7 

 

CONCLUSION 

 

The work presented in this thesis is an attestation that High Throughput 

Sequencing (HTS), even with its sizable error rates, is suitable for Genotype-

Phenotype Association (GPA) studies.  In this dissertation, I have presented 

examples of successful HTS GPA studies in nonmodel organisms.  These 

studies were greatly facilitated by the novel GPA methods I have developed, 

GPAT++ and WHAM.  These two tools, when applied to both structural-variant 

and SNP data, can find associations between genetic variants and phenotypes.  

In this chapter, I will discuss how these tools have enabled new lines of biological 

inquiry, how new types of HTS data will improve GPA methodology, and how 

new types of data will affect GPA studies.  

 

7.1 Enabling biological inquiry with GPAT++ and WHAM 

Both WHAM and GPAT++ were built over the course of several biological 

projects.  Each tool was originally designed for a single purpose, but they 

evolved into fully developed and general software packages that can be used for 

many kinds of GPA studies.  In addition to being broadly applicable, the 

interfaces of these tools are user friendly.  Often, collaborators who use our tools 
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have limited experience with command line environments.  Therefore, it is

critical to provide sufficient user documentation.  Both GPAT++ and WHAM have 

publically available wikis, documenting usage statements and providing use case 

scenarios.  Additionally, we have provided downstream tools that help biologists 

interpret GPAT++ and WHAM output. 

Both of our GPA tools are being used locally and globally.  Within the 

research community at the University of Utah, our methods have been applied to 

pigeon, virus, whale, pine fungus, C. elegans, human exome data, a human 

chromosome transferred into a mouse cell line, and pathogenic strains of 

Streptococcus phenomena.  Outside of collaborations, 153 people have 

accessed GPAT++ and 54 people have accessed WHAM in April.  The global 

distribution of users is dispersed across many continents.  We hope to continue 

to provide support and novel GPA methods in both WHAM and GPAT++ as our 

user base grows. 

 

7.2 Third-generation sequencing technologies will improve GPA 

Third-generation sequencing technologies have the potential to drastically 

improve the efficacy of GPA. These technologies, unlike second-generation 

sequencing, require fewer enzymatic steps before sequencing.  For example, 

PacBio and Oxford nanopore do not require PCR amplification of genomic DNA. 

Third-generation sequencing platforms are also advantageous because they 

produce read lengths an order of magnitude longer than second-generation 

sequencing.  Even with high error rates, these long reads can be mapped back to 
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the reference genome with higher accuracy.  Improved read mapping reduces 

the number of false variants that are included in GPA studies  

Third-generation sequencing technologies will allow GPA studies to venture 

into complex and repetitive regions of the genome.  Expansions of simple 

repeats have been associated with over thirty different human diseases (Mirkin 

2007).  Many of these expansions are longer than second-generation reads, but 

not third-generation reads.  Similarly, the genetic variation contained within LINE-

1 and ALU elements is difficult to characterize with short-read technologies. 

Longer reads will allow both clinicians and biologists to study how complex 

regions of the genome cause disease and phenotype variation. 

Structural variation (SV) GPA studies will greatly benefit from third-generation 

sequencing.  Structural variants are difficult to detect when they are not entirely 

contained within a read; take for example novel insertions.  If the inserted 

sequence is longer than a read, it cannot be characterized with mapping-based 

methods.  Currently PacBio reads are, on average, long enough to capture the 

entire sequence of an ALU insertion, the most common DNA sequence in the 

human genome.  Localizing breakpoints of SVs will become less burdensome 

with third-generation sequencing.  SVs that are partially contained within a read 

lower that read’s mapping score or cause the read to not map entirely.  Third-

generation sequencing reads carrying partial SV sequences are more likely to 

map correctly, which allows for the breakpoint of the SV to be found.  Third-

generation sequencing will provide a way to properly identify SVs and 

characterize SV diversity within the human population.   
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While third-generation sequencing technologies will greatly improve GPA, it 

has not been widely adopted due to fiscal reasons.  These technologies are too 

expensive for population-level sequencing projects, required for GPA.  However, 

hybrid approaches might be a solution.  Individual genomes could be sequenced 

at high depth with second-generation sequencing and at very low depths with 

third-generation sequencing technologies.  These data could drastically improve 

GPA for both structural and single nucleotides variants while being finically 

feasible.  

 

7.3 Future computational challenges for GPA 

The ever-growing size of HTS population-level GPA data requires novel 

computational methods.  The N+1 problem is an example of how the number of 

HTS samples is creating a computational nightmare.  N+1 is a concept in which a 

single new genome is sequence, but it needs to be analyzed with a cohort of 

other genomes.  As more and more genomes are sequenced, the computational 

cost grows rapidly.  Representing the known genetic variation in a format that 

allows for new genomes to be analyzed, in context of current genomes, without 

processing past genomes is paramount.  On this front, several groups are 

working on graph-based representation of genetic variation.  HTS reads from 

new genomes can be aligned to a graph containing both the reference genome 

and the previously characterized genetic variation.  This process can be repeated 

many times, saturating the genetic variation represented in a single graph. 

If graph-based genetic variant representation is proven to be effective, GPA 
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methods will need to be updated to conduct association testing from the graph 

data structure.  This is one area where GPAT++ could be expanded in the future.  

GPAT++ would need to be able to traverse the graph and identify paths enriched 

in the target cohort less frequently in the background. 

Another computational task warranting further efforts is GPA using 

population-level whole genome de novo assemblies.  By creating de novo 

assemblies, the nature and sequence of many small structural variants can be 

resolved.  The challenge will then be to compare these assemblies to one 

another or to a reference genome.  New GPA methodology will need to handle 

the comparison of thousands of assembled sequences across many individuals. 

All of the computational challenges discussed provide exciting opportunities 

for the next wave of Ph.D. students in the field of Computational Biology.  There 

is much we still do not know about how genetic variation causes phenotypic 

variation and hopefully continual advances in HTS will allow us to find GPA 

between complex phenotypes and novel genetic variants. 
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