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Abstract

The simple intramolecular model for gene assembly in ciliates consists of three
molecular operations, simple ld, simple hi and simple dlad. Mathematical mod-
els in terms of signed permutations and signed strings proved limited in cap-
turing some of the combinatorial details of the simple gene assembly process.
Brijder and Hoogeboom introduced a new model in terms of overlap-inclusion
graphs which could describe two of the three operations of the model and their
combinatorial properties. To capture the third operation, we extended their
framework to directed overlap-inclusion (DOI) graphs in [1]. In this paper we
introduce DOI graph-based rewriting rules that capture all three operations
of the simple gene assembly model and prove that they are equivalent to the
string-based formalization of the model.

Keywords:

1. Introduction

Ciliates, an old group of unicellular eukaryotes, part of the phylum Cil-
iophora, have developed into a wide variety of lineages [2]. Ciliates possess
two types of nuclei, each present in multiple copies, depending on the species:
macronuclei (abbreviated as MAC ) and micronuclei (MIC ) [2, 3]. The ciliate
genome is very differently organized in the two types of nuclei. The macronu-
clear genes are presented as contiguous sequence of nucleotides. In contrast,
the micronuclear genes are split into blocks (macronuclear destined sequences,
or MDSs) that are separated by noncoding sequences (internally eliminated se-
quences, or IESs), and may even be inverted. At some stage during their life
cycle, ciliates destroy all their macronuclei and rebuild their macronuclear genes
by assembling in the orthodox order all MDSs from their micronuclear genes in
a process called gene assembly. The process is enabled by some short, specific
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nucleotide sequences called pointers that are repeated at the end of an MDS
and at the beginning of the MDS that should follow it in the orthodox order.
We refer to [2, 4] and references therein for details.

The gene assembly of ciliates has been investigated through several differ-
ent molecular models, see [3]. One of them is the simple intramolecular model,
originally introduced in [5], consisting of three molecular operations: the ld,
the simple hi, and the simple dlad operations. This model could successfully
predict the assembly of all currently known genes, see [6]. The simple model
was modeled mathematically as a sorting of signed permutations in [7], a string
rewriting system in [8, 9] and as signed overlap-inclusion graphs in [10]. All these
models were limited in capturing the details of the local interactions postulated
by the simple model, especially in capturing the details of the simple dlad op-
erations. To address this difficulty we extended in [1] the framework of [10]
and defined the directed overlap-inclusion (in short, DOI) graphs as a model for
ciliate genes. The extension is in fact quite small with respect to the overlap-
inclusion graphs of [10]: we simply replace their undirected overlap edges with
directed overlap edges where we additionally represent the order in which they
occur in the string. In this way we replace a ‘hybrid’ directed/undirected graph
with a directed graph that turns out to capture enough information to be able
to represent all three operations of the simple model.

2. Preliminaries

We introduce here some of the notions and notations we use throughout the
paper. For more details we refer to [2].

2.1. The simple gene assembly model

We focus in this paper on the intramolecular model for gene assembly in
ciliates, introduced in [11, 12]. The model consists of three molecular operations,
all conjecturing the folding of the gene in a specific pattern (a loop, a hairpin,
or a double loop) so that a pair of pointers (two pairs in the case of dlad) are
aligned. Recombination on those pointers is thus enabled and as a result, two
(or, in some special cases of dlad, even three) MDSs get spliced together to form
a longer MDS. The gene assembly process is thus modeled as a computational
process in which the MDSs get longer in each step, to eventually yield as an
output the assembled gene. We refer to [2] for details on the model.

The simple version of the intramolecular model, introduced in [6], assumes
that the folds involved in each of the three operations are as simple as possible:
in-between the aligned pointers there is a minimal number of other pointers
(zero in the case of simple ld and simple dlad, one in the case of simple hi). The
resulting model was shown in [6] to be capable of explaining the assembly of all
currently known ciliate genes in [13]. We refer to [2] and [3] for more details,
including figures of the folds of the three molecular operations of the model.
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2.2. Legal strings

Let ∆k = {2, 3, . . . , k} be an alphabet the elements of which are called
pointers and let Σk = ∆k ∪ {m}, for some k ≥ 1 and Σk = ∆k ∪m be a signed
copy of Σk, where letter m refers to a marker. We make no distinction on this
level between the beginning and the ending markers – we simply treat them as
being two occurrences of the special symbol m.

Let Σ∗
k be the set of all strings over Σk and let Σz

k = (Σk ∪ Σk)
∗ where for

each p ∈ Σk, p = p.
We say that a string u in Σz

k is legal if for any p ∈ Σk, u contains either 0 or
2 occurrences from the set {p, p}. If u contains occurrences from the set {p, p},
for some p ∈ Σk, then we say that p occurs in u and denote it by p ∈ u. We
define the domain of u as dom(u) = {p ∈ Σk | p ∈ u}. The ith occurrence in
u (when scanned from left to right) of a pointer/maker from {p, p} is denoted
by pi, where i = 1 or i = 2. We say that u is sorted if dom(u) = {m}; in other
words, u is sorted if it only contains the two markers and no pointers.

Let p ∈ Σk ∪ Σk and let u ∈ Σz
k be a legal string. If u contains both

substrings p and p then p is said to be positive in u; otherwise, it is said to be
negative. If u = u1p

1u2p
2u3, with p

1, p2 ∈ {p, p}, then the p-interval of u is the
substring u2.

For any distinct p, q ∈ dom(u), p and q have one of the following relations:

• p and q overlap if exactly one occurrence from {p, p} can be found in the q-
interval of u. We denote the overlapping relation by p⇒u q, if the first oc-
currence from {p, p}, i.e. if the order of occurrence is q1 · · · p1 · · · q2 · · · p2,
and we denote it by q ⇒u p otherwise;

• q is included in p if the two occurrences from {q, q} are found within the
p-interval. This relation is denoted by p→u q;

• p and q are disjoint if they do not overlap and neither is included in the
other in u.

2.3. Overlap inclusion graphs

Overlap-inclusion graphs have been introduced first in [10]. Using our nota-
tion, for a legal string u its overlap-inclusion graph G = (V, σ,E) is defined as
follows: V = dom(u) , σ : V → {+,−} is the signing of its vertices such that for
each p ∈ V , σ(p) = + if p is a positive pointer in u and σ(p) = − otherwise and
E = {{p, q} | p ⇒u q or q ⇒u p)}

∪
{(p, q) | q →u p}. In this way, for any pair

of overlapping pointers {p, q} in u there is an undirected edge in G between p
and q, and for any pointer p whose interval is included in the interval of some
pointer q, G has the edge p→G q from p to q.

Example 1. The overlap-inclusion graph corresponding to u = 255m2343m4
is shown in Figure 1(a).

3



GFED@ABCm−

		��
��
��
��
��
��
��
��
��

++
++
++
++
++
++
++
++
++

++
++
++
++
++
++
++
++
++GFED@ABC2+ //

rrrrrrrrrrrrr

rrrrrrrrrrrrr GFED@ABC5−

GFED@ABC3− GFED@ABC4+

GFED@ABCm−

		��
��
��
��
��
��
��
��
��

��
++
++
++
++
++
++
++
++
+

++
++
++
++
++
++
++
++
+

GFED@ABC2+ //

5=rrrrrrrrrrrr

rrrrrrrrrrrr GFED@ABC5−

GFED@ABC3− +3 GFED@ABC4+

(a) (b)

Figure 1: (a) The overlap-inclusion graph and (b) the directed overlap-inclusion graph corre-
sponding to string u = 255m2343m4.

2.4. Directed overlap-inclusion graphs

We recall here the notion of directed overlap-inclusion (DOI) graphs intro-
duced in [1] and recall some of their properties. We first recall that a directed
graph G is called connected if for any distinct vertices u and v of G, there is
either a (directed) path from u to v, or a (directed) path from v to u. We also
recall that for a set of vertices U of G we denote by G \ U the graph obtained
from G by removing all vertices in U and all edges incident to them.

Definition 1 ([1]). Let u be a legal string over some Σk. The directed overlap-
inclusion (DOI) graph Gu = (V, σ,Eo, Ei) corresponding to u is defined as
follows: V = dom(u) is the set of vertices, σ : V → {+,−} is the signing of its
vertices such that for each p ∈ V , σ(p) = + if p is a positive pointer in u and
σ(p) = − otherwise. Eo and Ei are sets of its directed edges, Eo = {(p, q) |
p⇒u q} and Ei = {(p, q) | p→u q}. For a DOI graph G and any string u such
that G = Gu we say that u corresponds to G.

Example 2. The DOI graph corresponding to string u = 255m2343m4 is shown
in Figure 1(b).

Definition 2. Let G be a directed, vertex- and edge-labeled graph. We say
that G is forbidden if there is no string u such that G is isomorphic to the DOI
graph corresponding to u.

The following results have been proved in [1].

Theorem 1 ([1]). Let G be a directed labeled graph with {+,−} as vertex labels
and with two edge colors as edge labels. If G is a 3-vertex, acyclic graph, then
G is forbidden if and only if it is isomorphic to one of the graphs in Figure 2.

Theorem 2 ([1]). Any DOI graph G is a directed acyclic graph.

Example 3. We notice that there can exist more than one string correspond-
ing to a DOI graph. For example, the strings 245566324377, 246655324377,
772455663243 and 772466553243 have the same DOI graph as shown in Fig-
ure 3.
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Figure 2: All 3-vertex, acyclic, forbidden graphs. Inclusion edges are illustrated as simple
arrows and overlap edges as double arrows.GFED@ABC2− +3
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Figure 3: A graph with more than one string corresponding to it.

3. The strings-to-DOI graphs mapping

We discuss in this section the injectivity of the strings-to-DOI graphs map-
ping. While in general the same DOI graph can correspond to several strings,
we show that this is not true for the realistic strings and for the overlap-only
connected DOI graphs.

Lemma 3. Let G be a connected DOI graph consisting of overlap edges only,
i.e. without inclusion edges. Then there is a unique string uG corresponding to
G.

Proof. It follows from Theorem 2 that in any connected component G with at
least two vertices there is a vertex with indegree 0. Since G is connected, there is
only one such vertex; we denote it by p. Similarly, there exists a unique vertex,
say q with outdegree 0.

We prove now that there is a directed path from p to q visiting all vertices
of G. Since G is connected, there is a path P from p to q, say p = p0 ⇒ p1 ⇒
. . . ⇒ pn = q, for some n ≥ 1. Assume there is a vertex r not visited by this
path. A path from p to r exists as well: p = p0 ⇒ p1 ⇒ . . . ⇒ pi ⇒ r0 ⇒
r1 ⇒ . . . ⇒ rm = r, for some 0 ≤ i < n, with r0 not visited by path P . Thus,
by replacing r with r0, we can assume without loss of generality that r has an
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edge from a vertex pi in path P , for some 0 ≤ i < n. Moreover, we choose the
largest i with this property.

Note that there must be an overlap edge between pi+1 and r since otherwise
the subgraph induced by pi, pi+1 and r would be forbidden, being isomorphic
with the graph in Figure 2(2). Based on the maximality of i, there cannot be
an edge from pi+1 to r. Consequently, there is an edge from r to pi+1 and so,
we can replace path P with the path p = p0 ⇒ p1 ⇒ . . . ⇒ pi ⇒ r ⇒ pi+1 ⇒
. . . ⇒ pn = q, which visits r, as well as all vertices visited by P . By iterating
this argument, we build a path from p to q visiting all vertices of G.

We claim now that G consists of a single path from p to q. Assume that this
is not true and that there is an edge pi ⇒ pj , for some 0 ≤ i, j ≤ n, i+ 1 < j.
We choose the largest such i. In order for the subgraph induced by pi, pi+1

and pj not to induce the forbidden subgraph in Figure 2(2), there must be an
overlap edge between pi+1 and pj . Based on the maximality of i we obtain that
pj ⇒ pi+1 is an edge in G. But then we obtain that pi+1, pi+2, . . . , pj induce a
cycle in G, a contradiction.

It is easy to see now that there is a unique string corresponding to G:
p0p1p0p2p1p3 · · · pipi+2 · · · pn−2pnpn−1pn.

Note that the analogous result for inclusion-only graphs does not hold. For
example, pqqrrp and prrqqp have the same DOI graph.

We discuss next the case of the so-called realistic strings and we show that the
string-to-DOI graphs mapping is injective for this type of strings. Realistic legal
strings correspond to the concrete IES strings describing the genome structure
of ciliates; see [2].

In the following, for clarity, we identify the marker m with the pointer 1,
and we consider the pointers modulo k. In this case k + 1 ≡ 1 (mod k), i.e., m
follows k. For this reason, let Γk = {1, 2, . . . , k}, and let Γz

k denote the strings
over the alphabet Γ ∪ Γk in the natural manner.

A legal string u ∈ Γz
k is called realistic, if u = φ(w), where

• w ∈ Γz
k is a signed permutation, i.e., each symbol p ∈ Γk occurs in w

exactly once - either in the form p or p;

• φ : Γz
k → Γz

k is a homomorphism that satisfies the substitution laws

φ(p) = p(p+ 1), φ(p) = (p+ 1)p .

By our convention, we have φ(k) = k 1 and φ(k) = 1 k. For example, if k = 4
then w = 3142 is a signed permutation that gives the realistic string φ(w) =
34121423.

Theorem 4. If u and v are different realistic strings, then Gu ̸= Gv.

Proof. Let u and v be two different realistic strings corresponding to a common
DOI graph G. Therefore there are permutations w and w′ such that u = φ(w)
and v = φ(w′). If w = qs and w′ = qs′ for a common prefix symbol q ∈ Γk ∪Γk
and strings s and s′, then also Gφ(sq) = Gφ(s′q). Hence we can assume that the
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permutations w and w′ do not have any nonempty common prefix, i.e., their
first symbols are different. It follows, by the definition of φ, that also the first
pointers in u and v are different. Let then

u = pp2 . . . pn and v = qq2 . . . qn ;

where n = 2k, p, q, pi, qi ∈ Γk ∪ Γk for each i, and p ̸= q.
Since Gu = Gv, the p-intervals Iu(p) of u and Iv(p) of v contain the same

number of each pointer from Γk.
Suppose first that q = p. By symmetry, we may assume that p ∈ Γk. It

follows that u = p(p + 1)α and v = p(p− 1)β for some strings α and β. Since
the sign of p is the same in Gu and Gv, we have either

u = p(p+ 1) · · · (p− 1)pσu,

v = p(p− 1) · · · (p+ 1)pσv ,
(1)

or

u = p(p+ 1) · · · p(p− 1)σu,

v = p(p− 1) · · · p(p+ 1)σv ,
(2)

because u and v are realistic.
In Case (1), the pointer p + 1 occurs once in the p-interval Iu(p) of u, and

hence it occurs also once in the p-interval Iv(p) of v, i.e., φ(p+1) = (p+1)(p+2)
is in Iv(p). Moreover, p+2 occurs only once in Iv(p), since p+1 does so in the
interval Iu(p) of u. We proceed by induction to obtain that the intervals Iu(p)
and Iv(p) contain a unique occurrence of every pointer Γk \ {p}.

Now, the second occurrence of p+ 1 in u and v lies in the suffix σu and σv,
respectively.

Let then t with t ̸= p, p+ 1 be a pointer. From the form of the string u, we
deduce that p + 1 ⇒ t or p + 1 → t, since one occurrence of t belongs to the
p-interval. The form of the string v yields that the second possibility cannot
hold. Thus p+1 ⇒ t for all pointers t ̸= p, p+1. But clearly, in the string v this
does not hold for t = p − 1, because the first occurrence of p − 1 comes before
than the first occurrence of p+ 1 in v. This contradiction shows that Case (1)
does not hold.

In Case (2), the pointer p − 1 occurs once in the p-interval Iu(p), and an
analogous reasoning to the previous gives that each pointer different from p has
a unique occurrence in the p-intervals of u and v. As in the case for (1), we
derive a contradiction.

We now assume that q /∈ {p, p}.
Note that we do not have any overlap edge in G between the pointers p and

q: Indeed, if p⇒ q, then p⇒ q in the string u and q ⇒ p in the string v. Note
also that the intervals Iu(p) and Iv(q) cannot be included in the other one.

We can now write

u = p1δ1p
2δ2q

1δ3q
2δ4

v = q1δ′1q
2δ′2p

1δ′3p
2δ′4.
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We define u1 = p1δ1p
2δ2, u2 = q1δ3q

2δ4, v1 = q1δ′1q
2δ′2, p

1δ′3p
2δ′4. We claim

that u1 and u2 do not contain common pointers, and neither do v1 and v2.
Let t be a pointer such that t1 ∈ u1 and t2 ∈ u2. If t2 ∈ δ3 then, t ⇒ q,

which is a contradiction since in v the pointer q starts the word. Similarly, if
t2 ∈ δ4 then t → q, which is again a contradiction. A similar argument gives
that v1 an v2 are disjoint of pointers.

By our assumptions, we can again assume that u is either of the forms

u = p(p+ 1) · · · (p− 1)pδ2q
1δ3q

2δ4,
u = p(p+ 1) · · · p(p− 1)δ2q

1δ3q
2δ4.

Since u1 and u2 are disjoint of pointers. If a pointer t occurs in u1, then both
occurrences of t are in u1, and either t = q− 1 or also t+1 (modulo k) is in u1,
since φ(t) = t(t+1), i.e., t+1 leans on t inside u1. Hence, we obtain inductively
that all pointers p, p+ 1, · · · , q − 1 (modulo k) are in u1. Similarly, by going in
the other direction down from p, we have that the pointers p, p−1, p−2, · · · , q+1
(modulo k) are all in u1. However, u2 ̸= q1q2 by the form of u = φ(wu). This
contradiction proves the claim.

4. Simple gene assembly in ciliates

We introduce in this section our DOI-graph-based model for simple gene
assembly in ciliates. We first recall the formulation of the model in terms of
legal strings.

4.1. Simple gene assembly on legal strings

A gene can be represented as a legal string by simply denoting it as a se-
quence of pointers and markers. The three molecular operations are defined on
legal strings as follows.

Definition 3. The string pointer reduction system is formalized as follows. In
each case p, q ∈ ∆k are distinct pointers and u1, u2, u3 ∈ Σz.

i. The simple string negative rule ssnp is defined as follows:

ssnp(u1p̃p̃u2) = u1u2, ssnp(p̃u3p̃) = u3, ,

where p̃ ∈ {p, p} and u3 contains only markers (boundary case). We
denote Ssn = {ssnp | p ∈ ∆k, k ≥ 2}.

ii. The simple string positive rule sspp for a pointer p is defined as follows:

sspp(u1p̃qp̃u3) = u1qu3,

where p̃ ∈ {p, p} and q̃ ∈ {q, q}. We denote Ssp = {sspp | p ∈ ∆k, k ≥ 2}.
iii. The simple string double rule ssdp,q for pointers p and q is defined as

follows:
ssdp,q(u1p̃q̃u3p̃q̃u5) = u1u3u5,

where p̃q̃ ∈ {pq, pq}. We denote Ssd = {ssdp,q | p, q ∈ ∆k, k ≥ 2}.
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The string-based versions of the simple operations are based on “locality”:
only pointers that are at a minimal distance from each other can be removed by
such an operation. This concept of locality is however lost when going from a
legal string to its associated overlap graph since overlap graphs do not contain
the information about the order of pointers in their corresponding strings. By
adding the concept of “inclusion” to overlap graphs it is possible to capture the
information about the domains of p – intervals for each pointer p.

4.2. Simple gene assembly on DOI graphs

Definition 4. Let G be a DOI graph and p an arbitrary vertex of G. We
introduce the following terms:

i. Incoming inclusion edges: we denote by inSeti(p) the set of all vertices q
such that q → p is an (inclusion) edge in G. Also, inDegi(p) is the number
of vertices in inSeti(p).

ii. Outgoing inclusion edges: we denote by outSeti(p) the set of all vertices
q such that p → q is an (inclusion) edge in G. Also, outDegi(p) is the
number of vertices in outSeti(p).

iii. Incoming overlap edges: we denote by inSeto(p) the set of all vertices q
such that q ⇒ p is an (overlap) edge in G. Moreover, inDego(p) is the
number of vertices in inSeto(p).

iv. Outgoing overlap edges: we denote by outSeto(p) the set of all vertices q
such that p⇒ q is an (overlap) edge in G. Also, outDego(p) is the number
of vertices in outSeto(p).

We define now the DOI graphs-based version of our gene assembly opera-
tions: simple graph negative rule sgn, simple graph positive rule sgp, and simple
graph double rule sgd.

Definition 5. Let G = (V, σ,Eo, Ei) be a DOI graph be a directed, vertex-
and edge-labeled graph. For any distinct vertices p, q ∈ V \ {m}, the graph
operations sgnp, sgpp and sgdp,q are defined on G as follows:

(i) The simple graph negative rule sgn for p, denoted sgnp, is applicable to G
if σ(p) = − and inDego(p) = outDego(p) = outDegi(p) = 0. In this case,
sgnp(G) = G \ {p}.

We denote Sgn = {sgnp | p ∈ ∆k, k ≥ 2}. We say that sgnp corresponds to a
string-rewriting rule ssnp.

(ii) The simple graph positive rule sgp for p, denoted sgpp, is applicable to G
if σ(p) = +, inDego(p) + outDego(p) = 1, and outDegi(p) = 0. Let q be the
vertex with the property inSeto(p) ∪ outSeto(p) = {q}. In this case, sgpp(G) is
the graph obtained from G \ {p} by switching the label of q: q is negative in
sgpp(G) if and only if it is positive in G.

We denote Sgp = {sgpp | p ∈ ∆k, k ≥ 2}. We say that sgpp corresponds to a
string-rewriting rule sspp.

(iii) The simple graph double rule sgd for p, q, denoted sgdp,q, is applicable to G
if:
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• σ(p) = σ(q) = −,

• q ∈ outSeto(p),

• inSeto(p) ∪ p = inSeto(q),

• outSeto(p) = outSeto(q) ∪ q,

• inSeti(p) = inSeti(q) and

• outSeti(p) = outSeti(q).

In this case, sgdp,q(G) = G \ {p, q}.
We denote Sgd = {sgdp,q | p, q ∈ ∆k, k ≥ 2}. We say that sgdp,q corresponds

to a string-rewriting rule ssdp,q.

Definition 6. Let G be a DOI graph, G is said to be reduced by a composi-
tion ϕ of operations from Sgn∪Sgp∪Sgd if ϕ(G) consists of the isolated negative
vertex m only.

Example 4. Consider the DOI graph G corresponding to u = m234566m3245,
see Figure 4(a). Clearly, sgn6 is applicable to G since vertex 6 is negative
and inDego(6) = outDego(6) = outDegi(6) = 0. The result is the graph G′

illustrated in Figure 4(b): vertex 6 is removed with all its incident edges. We
can apply to G′ operation sgd4,5, since both 4 and 5 are negative, edge 4 ⇒ 5
is present in G′ and there are no other paths from 4 to 5, sets of incoming
overlap edges into 4 and 5 are the same with the exception of edge 4 ⇒ 5,
sets of outgoing overlap edges from 4 and 5 are the same with the exception of
4 ⇒ 5, and sets of incoming and outgoing include edges of 4 and 5 are equal
(empty). As a result of the application of sgd4,5 we obtain graph G′′ depicted in
Figure 4(c): vertices 4 and 5 are removed together with all their incident edges.
Then, we can apply sgp3 to G′′, since 3 is positive in G′′, it has one incoming
overlap edge and no outgoing edges (both overlap and inclusion). Consequently
we obtain graph G′′′ (see Figure 4(d)) with vertex 3 removed together with its
incident edges and vertex m changed its sign from negative to positive. Then,
we can apply sgp2 to G′′′ and finally obtain single isolated negative vertex m.

Next we prove that the string-based model for simple gene assembly and the
DOI graph-based one are equivalent.

Theorem 5. Let u be a legal string, Gu its DOI graph, and ψ ∈ Ssn∪Ssp∪Ssd.
Let ϕ ∈ Sgn∪Sgp∪Sgd be the DOI graph operation corresponding to ψ. Then ϕ
is applicable to Gu and Gψ(u) = ϕ(Gu).

Proof. We prove the claim inductively.

Case 1: ψ = ssnp. In this case u = u1ppu2, for some strings u1, u2. Thus
there are no overlap edge incident to p in Gu no inclusion edges starting from p.
Thus, sgnp(u) is applicable toGu; sgnp(u) removes the pointer p and any possible
incoming inclusion relations, yielding the graph corresponding to sgnp(Gu).
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Figure 4: Reducing overlap-inclusion graph: (a) G is the DOI graph corresponding to u =
m234566m3245, (b) G′ = sgn6(G) corresponds to u′ = ssn6(u) = m2345m3245, (c) G′′ =
sgd4,5(G

′) corresponds to u′′ = sdr4,5(u′) = m23m32, (d) G′′′ = sgp3(G
′′) corresponds to

u′′′ = spr3(u
′′) = m2m2, (e) Giv = sgp2(G

′′′) corresponds to uiv = spr2(u
′′′) = mm.

Case 2: ψ = sspp. In this case u = u1pu2pu3, for some strings u1, u2, u3,
where |u2| = 1. Thus p must have a single (outgoing or incoming) overlap edge,
and cannot have any outgoing inclusion edges. Operation sspp(u) removes the
pointer p and all inclusion and overlap relationships connected to it, in addition
to reversing the sign of the pointer found in u2. The result follows from the
definition of sgpp(Gu).

Case 3: ψ = ssdp,q. In this case u = u1pqu2pqu3. Thus, p, q overlap in u and as
they are adjacent to each other in the string, the corresponding vertices in Gu
have the same overlap and inclusion neighbours, except for each other. Opera-
tion ssdp,q(u) removes both pointers, thus yielding the DOI graph corresponding
to sgdp,q(Gu).

Theorem 6. Let G be a DOI graph corresponding to a legal string u. Let
G′ = ϕ(G), where ϕ ∈ Sgn∪ Sgp∪Sgd and ψ is the string-based operation
corresponding to ϕ. Then ψ is applicable to u and ψ(u) is a string corresponding
to ϕ(G).

Proof. We discuss the following three cases.

11



Case 1: ϕ = sgnp(G). Vertex p has no overlap and no outgoing inclusion edge,
therefore, any corresponding string must have the form u = u1ppu2. The claim
follows since ssnp(u) = u1u2.

Case 2: ϕ = sgpp(G). Vertex p has only one overlap edge, either outgoing or
incoming and no outgoing inclusion edge, therefore, any corresponding string
must have the form u = u1pqpu2, or u = u1pqpu2. To obtain G′ from G, vertex
p is removed and the signing of the vertex which is overlap-adjacent to p will be
reversed. The claim follows since sspp(u) = u1qu2.

Case 3: ϕ = sgdp,q(G). By the definition of sgdp,q, we have that σ(p) = σ(q) =
−, q ∈ outSeto(p) and inSeto(p) ∪ p = inSeto(q), outSeto(p) = outSeto(q) ∪ q,
inSeti(p) = inSeti(q) and outSeti(p) = outSeti(q). It follows then that u =
u1pαqu2pβqu3, for some string u1, u2, u3, α, β. We claim that α and β are
both empty. If α were not empty, then let r be a pointer occurring in α.
Depending on where the other occurrence from the pointer set {r, r}, we get a
contradiction with the relationships above on the neighborhoods of p andq. A
similar argument holds for β. Thus, u = u1pqu2pqu3. If G′ = sgdp,q(G), then
in G′, p, q are removed, as well as all the edges incident to them, yielding the
DOI graph corresponding to ssdp,q(u) = u1u2u3.

Corollary 7. Let G be a DOI graph and ϕ ∈ Sgn∪Sgp∪ Sgd applicable to G.
Then ϕ(G) is also a DOI graph.

Example 5. Consider string u = b234566e3245 from Example 4. Its overlap-
inclusion graph G is presented in Figure 4(a). If we apply ssn6 to u, we obtain
string u′ = b2345e3245 to which graph G′ = sgn6(G) from Figure 4(b) corre-
sponds. If we apply to u′ operation ssd4,5, then we obtain string u′′ = b23e32
to which graph G′′ = sgd4,5(G

′) from Figure 4(c) corresponds. By applying

ssp3 to u′′ we obtain string u′′′ = b2e2 to which graph G′′′ = sgp3(G
′′) from

Figure 4(d) corresponds. Finally, by applying ssp2 to u′′′ we obtain string be
which corresponds to graph sgp2(G

′′′) consisting of a single negative vertex m,
see Figure 4(e).

5. Discussion

In this paper we introduced a graph-based formalization of the simple gene
assembly operations. The formalization is based on a new type of graphs – DOI
graphs – as a model for the pointer structure of ciliate genes. The DOI graphs
extend a closely related type of graph, overlap-inclusion graphs, introduced
in [10] for the same purpose. While the overlap graphs were used successfully
in [10] to represent two of the three simple gene assembly operations, they
could not be used for defining the third operation, the so-called simple double
rule, called also the simple double-loop alternating direct repeat rule in [2]. We
proved here that our DOI graph-based rules are equivalent with the string-based
rewriting system for simple gene assembly, thus capturing successfully all three
operations of the model, answering to the open problem formulated in [10].
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A number of interesting problems remain open in connection to the DOI
graphs and the graph-based simple operations; we only mention here two. The
first one is concerned with the injectivity of the string-to-DOI graphs mapping.
While the mapping is in general not injective, as we showed in this paper,
it seems that it is injective for several interesting classes of strings, such as
realistic strings, see [2], and of graphs, such as overlap-only graphs. The second
one is concerned with the characterization of the reduction power of the simple
operations: which graphs can be reduced by using only negative rules, only
positive rules, only double rules, only negative and positive rules, etc. The power
of the negative and the positive rules (both by themselves and in combination
with each other) was characterized in [10] in terms of overlap-inclusion graphs
and the results can be extended to DOI graphs as well; the counterparts of these
results where double rules are involved remain open.
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