49 research outputs found

    A model of security monitoring

    Get PDF
    A model of security monitoring is presented that distinguishes between two types of logging and auditing. Implications for the design and use of security monitoring mechanisms are drawn from this model. The usefulness of the model is then demonstrated by analyzing several different monitoring mechanisms

    LogBase: A Scalable Log-structured Database System in the Cloud

    Full text link
    Numerous applications such as financial transactions (e.g., stock trading) are write-heavy in nature. The shift from reads to writes in web applications has also been accelerating in recent years. Write-ahead-logging is a common approach for providing recovery capability while improving performance in most storage systems. However, the separation of log and application data incurs write overheads observed in write-heavy environments and hence adversely affects the write throughput and recovery time in the system. In this paper, we introduce LogBase - a scalable log-structured database system that adopts log-only storage for removing the write bottleneck and supporting fast system recovery. LogBase is designed to be dynamically deployed on commodity clusters to take advantage of elastic scaling property of cloud environments. LogBase provides in-memory multiversion indexes for supporting efficient access to data maintained in the log. LogBase also supports transactions that bundle read and write operations spanning across multiple records. We implemented the proposed system and compared it with HBase and a disk-based log-structured record-oriented system modeled after RAMCloud. The experimental results show that LogBase is able to provide sustained write throughput, efficient data access out of the cache, and effective system recovery.Comment: VLDB201

    Transactions Processing Subsystems for Databases Based On ARIES Write-Ahead Logging for The Client-Server Architecture Approach

    Get PDF
    This paper proposes a formal framework specification that applies an advanced recovery mechanism, functional in a client-server architecture while addressing atomicity and consistency issues. Another palpable issue in using such dominant architectures is recovery. This paper also addresses this issue in context with the client-server architecture using extensions of the original ARIES algorithm and concepts of Software Transaction Memory. This novelty has been successfully implemented and tested for propriety and applicability

    Improving the Performance and Endurance of Persistent Memory with Loose-Ordering Consistency

    Full text link
    Persistent memory provides high-performance data persistence at main memory. Memory writes need to be performed in strict order to satisfy storage consistency requirements and enable correct recovery from system crashes. Unfortunately, adhering to such a strict order significantly degrades system performance and persistent memory endurance. This paper introduces a new mechanism, Loose-Ordering Consistency (LOC), that satisfies the ordering requirements at significantly lower performance and endurance loss. LOC consists of two key techniques. First, Eager Commit eliminates the need to perform a persistent commit record write within a transaction. We do so by ensuring that we can determine the status of all committed transactions during recovery by storing necessary metadata information statically with blocks of data written to memory. Second, Speculative Persistence relaxes the write ordering between transactions by allowing writes to be speculatively written to persistent memory. A speculative write is made visible to software only after its associated transaction commits. To enable this, our mechanism supports the tracking of committed transaction ID and multi-versioning in the CPU cache. Our evaluations show that LOC reduces the average performance overhead of memory persistence from 66.9% to 34.9% and the memory write traffic overhead from 17.1% to 3.4% on a variety of workloads.Comment: This paper has been accepted by IEEE Transactions on Parallel and Distributed System

    A Flexible Framework For Implementing Multi-Nested Software Transaction Memory

    Get PDF
    Programming with locks is very difficult in multi-threaded programmes. Concurrency control of access to shared data limits scalable locking strategies otherwise provided for in software transaction memory. This work addresses the subject of creating dependable software in the face of eminent failures. In the past, programmers who used lock-based synchronization to implement concurrent access to shared data had to grapple with problems with conventional locking techniques such as deadlocks, convoying, and priority inversion. This paper proposes another advanced feature for Dynamic Software Transactional Memory intended to extend the concepts of transaction processing to provide a nesting mechanism and efficient lock-free synchronization, recoverability and restorability. In addition, the code for implementation has also been researched, coded, tested, and implemented to achieve the desired objectives
    corecore