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Abstract: Programming with locks is very difficult in multi-threaded programmes. Concurrency control of access to shared data limits scalable 

locking strategies otherwise provided for in software transaction memory. This work addresses the subject of creating dependable software in the 

face of eminent failures. In the past, programmers who used lock-based synchronization to implement concurrent access to shared data had to 

grapple with problems with conventional locking techniques such as deadlocks, convoying, and priority inversion. This paper proposes another 

advanced feature for Dynamic Software Transactional Memory intended to extend the concepts of transaction processing to provide a nesting 

mechanism and efficient lock-free synchronization, recoverability and restorability. In addition, the code for implementation has also been 

researched, coded, tested, and implemented to achieve the desired objectives.  
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I. THE PROBLEM 

The problem is to design a transactional framework that 

supports nested transactions in a single processing or 

multiprocessing environment and promotes concurrency, 

recoverability, and liveliness of the program, making sure 

that there are no deadlocks, indeterminate waiting, priority 

inversion, and obstructions, which are difficult to detect and 

solve and badly affect the excellent performance of 

transaction execution. Coupled with these problems that are 

normally difficult to achieve are militant problems such as 

larger storage overheads, synchronizing asynchronous 

transaction, and managing contention. This paper work 

explores efficient techniques to solving these problems 

without exacerbating them. It also explores the creation of a 

new framework that supports an advanced feature, such as 

nesting transactions. Among other things it is intended that 

this advanced transaction model for transaction execution 

will ensure correctness in multiple autonomous nested 

subsystems, enhance operational semantics on multilevel 

transactions and concurrency or parallelism, and improve 

user-defined or system-defined intra-transaction rollback, 

otherwise known as partial rollback for full recovery from 

failed situations. 

This is to evaluate how advanced features of Software 

Transaction Memories (STM) out-perform the conventional 

programming with locks and how important properties 

pertaining to transaction processing in databases are 

implemented in software engineering mechanisms to 

maximize performance and fault tolerance. 

This work is a continuation of earlier results reported on 

DSTM2 by [10]. It provides ample theoretical bases to 

justify the applicability of multilevel nested transactions in 

DSTM2. 

This paper makes the following contributions: It 

explains why multilevel nested transactions are correct and 

efficient, and how nested transactions are dealt with in this 

environment. It develops a realistic framework model for 

nested transactional processing and execution on top of 

DSTM2 or other STMs. 

Significant landmarks achieved here is that STMs can 

support such advanced feature as nesting. This is a giant 

contribution to the quest to optimize multiple processing 

cores in shared environments or distributed systems in 

nested transaction fashion with or without using locks and 

significantly affect how object-oriented-based STMs are 

implemented. 

 

BASIC CONCEPTS OF SOFTWARE TRANSACTION 

MEMORY 

I. SOFTWARE TRANSACTION PROCESSING 

 This sections discusses the fundamental concepts 

and theories of software transactional memory as a new 

paradigm especially in single and multiprocessing cores, 

what are transactions, how they provide correctness 

guarantees or fault tolerance and what practical limitations 

they have. This is followed by a segment that sets up the 

environment that no operation can take place without the 

call to atomicity. The next section talks about the intent and 

purpose of STMs and how they are used to achieve 

atomicity, concurrency, and recovery. It goes on to describe 
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the DSTM2 Library. This section provides the necessary 

fundamental issues not only for the rest of the material but 

also for design, development, and operations of  the STMs.  

 Software Transaction Memory is a model for 

executing processes atomically and exactly once to 

synchronize processes that were otherwise asynchronous. 

There are no overhead costs in terms of memory access. 

Transactions can run concurrently and commit concurrently 

mostly when they have nothing in common or share the 

same memory locations.  Transactions can easily update 

shared memory locations and instantiate objects.  

 Consider the normal conventional procedural 

method of executing the instruction:  

Void foo () { x(): y(): }.It will be impossible to roll back 

changes made by x(), if y() fails in the cause of execution or 

throws an exception. The fact that x() has made an 

irreversible change poses difficult challenges. But if 

transactions were employed under this circumstance, the 

difficulty and overheads will be greatly reduced. At the 

failure of y(), it is aborted and x() is rolled back because it 

has not been committed. Hence restoring foo() to its original 

state is guaranteed and can be re-executed until it commits. 

The concept of transactions holds a powerful solution to 

software engineering problems with shared memory 

updates.  

A recent study by [2] explains that a transaction is 

an atomic unit of work that is either completed in its entirety 

or not done at all in its scope and ensuring that all its shared 

resources are protected from multiple users. A transaction is 

a dynamic execution of a sequenceof operations, which 

should appear to execute instantaneously with respect to 

other concurrent transactions. For recovery purposes, 

systems need to keep track of when the transaction starts, 

terminates, and commits or aborts. Therefore a recovery 

manager keeps track of the following operations: 

begin_transaction, read or write, end_transaction, 

commit_transaction, and rollback or abort. 

The state transition in a typical transaction 

execution describes how a transaction goes into activestate 

(BEGIN_TRANSACTION) immediately after it starts 

execution, where it can perform READ or WRITE 

operations. When the transaction ends 

(END_TRANSACTION), it moves to the partially 

committed state. At this point some recovery protocols need 

to ensure that a system failure will not result in an inability 

to permanently record the changes of the transaction. Once 

this check is successful, the transaction is said to have 

reached its commit point and enters the committed state 

(COMMIT_TRANSACTION).  Optimistic concurrency 

control technique, known as validation or certification, 

requires that certain checks are made at this point to ensure 

that the transaction did not interfere with other executing 

transactions while the transaction was executing. Two 

transactions conflict if they issue operations that conflict. 

Transaction systems impose concurrency control to prevent 

conflicting transaction executions. Once a transaction is 

committed, it has concluded its execution successfully, and 

all its changes must be recorded permanently. However, a 

transaction can go to the failed state if one of the checks 

fails or if the transaction is aborted during the active state. 

The transaction may have to be rolled back to undo the 

effect of the changes made (ROLLBACK OR ABORT). The 

terminated state corresponds to the transaction leaving the 

system. The transaction information that is maintained in the 

system tables while the transaction has been running is 

removed when the transaction terminates. Failed or aborted 

transactions may be restarted later, either automatically or 

after being resubmitted by the user as brand-new 

transactions. 

II. PROPERTIES OF STMS 

STMs have a lot of properties enforced by the 

principles of concurrency and recoverability, representing 

Atomicity, Consistency, Isolation, and Durability (ACID). 

Atomicity and Isolation properties will be discussed in detail 

because they hold important issues for this project. 

Reference [10] states the other characteristics as given 

briefly below:  

1. In transactional programming the code that accesses 

shared memory is divided into transactions, and 

executed atomically. 

2. Operations of two different transactions are not 

interleaved. 

3. A transaction may commit or abort. 

4. If two transactions conflict, then one must wait for 

the other either to commit or abort. 

5. Aborted transaction may be typically retried until it 

commits when contention has been resolved [19]. 

6. A transaction must be consistent and preserving. 

7. Changes applied after commit must persist to ensure 

recoverability. 

III. ATOMICITY 

A transaction is said to be atomic if it completes all 

its set of activities successfully (that is, commit) or if it fails 

(that is, abort) when all of its effects executed are undone. 

Atomicity features prominently in this project. Therefore, 

much time will be devoted to establish what it is and how 

much it brings to bear on the entire process.  

The concept of atomicity is not original with this 

work, having been used extensively in database applications 

projects by [3] and [4]. These properties are borrowed from 

database concepts and adopted for software engineering 

purposes.  

The quest to guarantee atomicity is a fundamental 

concept underpinning this application programming 

interface (API). 

Two properties distinguish an activity as being 

atomic: indivisibility and recoverability. The usual method 

of providing indivisibility in the presence of concurrency 

and the one adopted is to guarantee serializability [3]. 

Reference [14] explains that actions are scheduled 

in such a way that their overall effect is as if they had been 

run sequentially in some order. To prevent one action from 

observing or interfering with the intermediate states of 

another action, we need to synchronize access to shared 

objects. In addition, to implement the recoverability 

property, we need to be able to undo the changes made to 

objects by aborted actions.    
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A. Consistency 

The main purpose of running transactions on shared 

memory or data is to ensure constancy, reliability, and 

stability. If problems such as dirty read and non-repeatable 

reads are to be avoided, then consistency becomes an 

important issue to receive so much attention. According to 

[2], a transaction is consistency preserving, if its complete 

execution takes the database or the shared object from one 

consistent state to another (p. 620). 

Ensuring consistency in concurrent programming is 

very hard to achieve, but that is the only way to reach the 

target of efficiency and improving response time. According 

to [15] consistency embraces reliability issues while 

coordinating concurrent transactions. The indivisibility of 

transactions ensures that consistent results are obtained even 

when requests are processed concurrently or failures occur 

during a request. Consistency improves stability, constancy, 

dependability, and reliability issues of transaction 

processing. The transactions must maintain the semantic and 

physical integrity of the data.  

 

B. Isolation 

Transactions are prone to dirty read, non-repeatable 

read, and a host of others if the isolation level is set so low. 

Put differently, transaction must execute independently to 

avoid unnecessary interferences from competing 

transactions running concurrently. Partial results are to be 

prevented from being altered or seen by other concurrent 

transactions. Lower levels of isolation allow other 

concurrent transactions to gain access to dirty reads, which 

make it very unsuitable for distributed systems where strict 

isolation ensures data integrity. 

 

C. Durability 

Durability ensures that nothing can cause updates to be 

lost once a transaction is committed. Changes made after the 

transaction is committed must persist to ensure that 

recoverability is possible. Committed changes must not be 

lost because of system failure and failed transactions. 

 

IV. WHY SOFTWARE TRANSACTIONAL 

MEMORIES? 

Parallel or concurrent execution of programs holds the 

prospects of optimization and efficiency but the question 

remains, how can consistency be maintained? How possible 

is it that we can consistently run two or more programs or 

threads to manipulate shared data without resorting to locks? 

An outstanding technique that provides an unprecedented 

solution is transaction memories. Transaction memories 

have incredibly wonderful solutions in both hardware and 

software applications [10]. Software transactional memory 

is an approach to solving this problem using software 

techniques. In transactional programming, the code that 

accesses shared memory can be grouped into transactions 

that are intended to be executed atomically: Operations of 

different transactions should not appear to be interleaved. A 

transaction is a single unit of work that can contain several 

programming steps that must execute collectively and 

successfully to ensure data integrity. Software transactional 

memory promotes liveliness of the program ensuring no 

deadlocks, indeterminate waiting or convoying, priority 

inversion, and obstruction so that there is the guarantee that 

there will be no performance issues rearing their ugly heads, 

which are extremely difficult to find and correct. 

According to [4] conventional programming languages 

do not understand transactions and there is no easy way to 

fix that. When using transactions with savepoints it is 

important to understand that savepoints, like transactions 

themselves, provide the control and therefore the means for 

state restoration for only those components that understand 

transactions including savepoints. For example, if an 

application invokes a ROLLBACK function, its state will 

only partially be reestablished. Some components, such as 

database manager, may cooperate and fully support the 

protocol, but the memory manager and the run-time system 

of a conventional programming language ignore both 

transaction and savepoint completely. In other words, the 

database contents will return to the state as of the specified 

savepoint, but the local programming language variables 

will not. The reason for this is that conventional 

programming languages lack durability and persistence. 

Reference [10] and [13],[17] have asserted that fine-

grained locking has been used by programmers in 

multiprocessing programming environment instead of 

coarse-grained lock, which has poor concurrency and 

scalability. Also, if the locking protocol is not deadlock-free, 

deadlock detection of the locks must be considered to be 

part of lock maintenance overhead.  

When executing in the shared environment, if the 

program crashes while in its critical section, an 

indeterminate waiting will keep other processes from 

acquiring locks and making progress. This situation is 

usually difficult to detect and solve easily. It is, therefore, a 

step in the right direction to avoid this condition by 

employing transaction semantics to ensure recoverability 

and avoid starvation of other processes. Transaction 

semantics guarantees that programs executing in their 

critical sections are obstruction free and will commit, with 

the net effect of making successful memory changes or 

rollback leaving memory intact. By extension, transactional 

semantics has an inherent recovery mechanism to revert to 

the original state when the process crashes and aborting the 

transaction becomes inevitable.This approach of getting 

over the problem of indeterminate waiting gives software 

transactional memories competitive urge over conventional 

programming with locks.  

In multicore processing environments, where there is 

excessive use of locks on blocks of shared memory due to 

operations in critical sections. It is impossible to have share 

data run parallel as well as independently. They risk 

becoming serialized instead and introduce scalability 

concerns [13].  

Programs become vulnerable to error as a result of 

sharing data or memory resources. Any undetected corrupt 

data that slip through tend to wreak havoc and more often 

than not they are extremely difficult to debug. Dirty-read 

problems are also present in transactions depending on the 

level ofisolation. Transactions possess an inherent advantage 

if the strict isolation is kept. 

Conventional locking provides poor support for code 

composition and reuse.  That is, if two or more tables 

methods synchronize internally, then there is no way to 

acquire and hold both locks simultaneously. Exporting 

tables locks, then, compromises modularity and safety [10]. 
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Finally, basic issues, such as the mapping from locks to 

data, that is, which locks protect which data, and the order in 

which locks must be acquired and released, are based on 

convention, and violations are notoriously difficult to detect 

[13]. 

In summary, lock-based synchronization can lead to 

deadlock, makes fine-grained synchronization error-prone, 

precludes composition of atomic primitives, and provides no 

support for error recovery. Reference [22] explains that 

applications that use coarse-grained monitors may see 

limited scalability, since the execution of lock-protected 

monitors is inherently serialized. Application that use fine-

grained locks, in contrast, generally provide good 

scalability, but see increased overheads and sometimes 

contain subtle bugs Transactional programming addresses 

these problems and provides a viable alternative 

synchronization [7] and [11]. For these reasons the 

transactional paradigm has evolved over the years to provide 

a viable alternative to conversional locking which is heavily 

laden with inherent problems extremely difficult to solve 

without necessarily aggravating them. 

CONCEPTS OF NESTED SOFTWARE TRANSACTION 

FRAMEWORK 

I. MULTILEVEL NESTED TRANSACTIONS 

A transaction is said to be nested if and only if new 

transactions are commenced by instructions that are already 

inside an existing transaction. These new transactions or 

sub-transactions are said to be nested within existing 

transactions, which means they have multiple successors. 

This is in sharp contrast to the classical model called the flat 

transaction that has no internal structure or allows 

transactions to be embedded within other transactions. In the 

nested transaction model, transactions at the inner levels 

must commit before the outer ones can commit. This model 

transaction may contain any number of sub-transactions 

resulting in arbitrary deep hierarchy of nested transactions. 

Nested transaction hierarchies are a collection of nested 

spheres of control where the outermost sphere is formed by 

the top level transaction which incorporates the interface of 

the outside world [6]. The atomicity and isolation properties 

of transactions make it possible for the root or host 

transaction (the node without a predecessor) to register 

changes only when the nested transactions have committed. 

Nested transactions have the ability to roll back without any 

side effects. Innermost transactions are rolled back first, 

followed by the next nearest inner ones until the outermost 

one is reached. Transaction properties such as Atomicity, 

Isolation, Consistency, and Durability as mentioned earlier 

remain valid for nested transactions. That is, nested 

transactions which are atomic in nature with properly 

isolated execution are guaranteed to make meaningful 

progress to the point where they will be committed. In the 

event of failed transactions, a rollback is invoked to restore 

modified data in shared memory. Otherwise the transactions 

are committed and persistent updates in the shared memory 

are registered. Also transactions may terminate when root or 

top level transaction is committed or aborted. Though sub-

transactions may commit independently because they appear 

isolated to other competing transactions, their success 

depends on parent transactions. They may abort with no side 

effects on surrounding transactions. Aborting any parent 

transaction will undo the effects committed by child 

transactions. The concept of nested and multilevel 

transactions is simplified when looked at as a general tree 

that can be traversed sequentially or concurrently as 

indicated in Figure 1. 

This tree structure shows multilevel for parallel 

execution with nested transactions. For the root transaction 

TR to commit, all sub-transactions on the various nodes and 

at different levels must commit successfully. Likewise, 

transaction TR1 can only commit when transaction TR11, 

transaction TR12, and transaction TR13 have succeeded 

sequentially or concurrently as a result of their subsequent 

sub-transaction such as TR121 and TR31 successfully 

committing respectively. Transactions at the same level 

follow the isolation property and are obstruction-free. They 

can run concurrently on different servers.  It follows that 

consistency as applied in this distributed fashion is not as 

required as atomicity and isolation. 

 

 
Figure 1 A general tree structure showing multilevel 

 

A closed nested transaction proposed by [15] is viewed 

as the tree described in Figure 1 where the root transaction 

can nest descendant transactions any number of levels deep. 

Transaction nodes in the tree structure lend themselves to 

strict adherence to the ACID properties, the two-phase 

commit protocol, and the serializability paradigm. These 

transactions are well suited for short-lived transactions 

which are interdependent on one another and are 

synchronized in execution to produce consistent outcome. In 

this model, parent transaction inherits all locks of a 

committing child transaction. However, on conflict a child 

transaction can be aborted without aborting the parent, 

reducing the overall cost of an abort. It is important to note 

here that under no circumstances in closed nested models 

will a child’s operations conflict with the operations of its 

parent or any of its ancestors. 

On the other hand is the open nested transactions 

proposed by [15] and [1] usually used in long-lived 

transactions where the strict compliance to isolation at the 

global level, serializability and  atomicity rules are relaxed 

to increased concurrency. Open-nested transactions offer 

higher concurrency than closed-nested or non-nested 

transactions and that allow child transactions to release 

locks early to avoid denial of service to other transactions.  
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Other nesting paradigms such as binary andlinear 

nesting have special restrictions on ancestor-descendant 

relationships for various reasons. Linear nested transaction 

describes strictly a single-parent single-child relationship, 

and binary-nested transactions allow a maximum of two 

children per parent. The policies of either closed or open 

nesting could be imposed on these other restrictive nesting 

paradigms. These sharply contrast the general tree structure 

depicted by the open-nested or closed-nested transactions 

where parent transactions are allowed to have an unlimited 

number of children. Reference [8] and [9] proposed sagas to 

use semantics knowledge to allow a transaction to release 

locks early and fully blend both short-lived and long-lived 

transactions. 

 

II. GENERAL CHARACTERISTICS OF NESTED 

TRANSACTIONS 

The term nested as used here suggests that a root or 

parent transaction can recursively be decomposed into sub-

transactions. It follows that the root or parent transaction 

may have multiple children or sub-transactions. The root or 

parent transaction is successfully completed and 

permanently updated when the sub-transactions are 

committed because all other descendant transactions are also 

committed. This implies that if a child transaction fails, the 

parent is free to retry or try an alternative task, 

compensating transactions, to rescue the overall process or 

abort and override the failed transactions if they are not 

critical to the general success of that section of the 

transaction.  

Nested transactions as we know are a concurrency 

scheme [15]. Needless to say they support top-level 

transactions with all of the ACID properties, in addition to 

supporting concurrent execution of independent actions 

within these transactions. They allow a topmost-level 

transaction to be the root of the tree for nested transactions. 

A transaction is serializable with respect to its siblings, that 

is, accesses to shared resources by sibling transactions have 

to obey the read-write and write-write synchronization rules. 

A transaction is a unit of recovery, that is, it can be aborted 

independently of its siblings. Nested transaction evolved 

from the requirement to allow transaction designers to 

design complex functionality decomposable transaction 

from the top down. A nested transaction model allows 

transaction services to be built independently and later 

combined into applications. Each service can determine the 

scope of its transaction boundaries. The application or 

service that orchestrates the combination of services controls 

the scope of the top-level transaction. It occurs when a new 

transaction is started on a session that is already inside the 

scope of an existing transaction. This new sub-transaction is 

said to be nested within or below the level of the existing 

transaction. Nested transaction allows an application to 

create a transaction that is embedded in an existing 

transaction [16]. 

 

III. ADDITIONAL PROPERTIES OF DESCENDANT 

TRANSACTIONS 

A nested transaction's child actions are not considered 

to conflict with its parent's actions. Thus, it can lock a 

resource locked by its parent as long as none of its siblings 

have locked it. A nested transaction can lock a datum in 

some mode only if its parent has locked the datum in the 

same mode. A parent transaction's actions are considered 

not to conflict with its child's actions but not vice versa. 

Thus, it cannot access a resource if a child's lock prohibits 

the access. Thus, the child's lock wins. An abort by a child 

transaction does not automatically abort the parent 

transaction. The parent is free to try alternative 

compensating transactions or override it and try other nested 

transactions. A commit by a child transaction releases the 

locks held by it to its parent and makes its actions part of the 

action set of its parent transaction. Thus, when the parent 

commits, it commits not only those actions it performed 

directly but also those performed by its descendants. 

 

IV. CONDITIONS FOR MULTILEVEL 

TRANSACTIONS 

As noted by [5], the principles of multilevel 

transactions can be stated in three rules.  

1. Abstraction hierarchy: objects of layer N are 

completely implemented by using operations of layer 

N − 1.  

2. Discipline: there are no shortcuts from layer N to 

layers lower than N − 1. 

3. Multilevel transactions rely on the existence of a 

compensation for each operation on any layer. 

Moreover, the compensations on layer N −1 are 

scheduled by layer N or higher, which introduces a 

recovery dependency across layers. 

 

V. SEMANTICS OF NESTED TRANSACTIONS 

In summary, [12] state the following: 

1. A parent can create children sequentially 

so that one child finishes before the next one starts. 

Alternatively, the parent can specify that some of its 

children can run concurrently. The transaction tree structure 

shown in Figure 1 does not distinguish between children that 

run concurrently or sequentially. A parent node does not 

execute concurrently with its children. It waits until all 

children in the same level are complete and then resumes 

execution. It may then decide to spawn additional children. 

2. A sub-transaction and all of its 

descendants appear to execute as a single isolated unit with 

respect to its concurrent siblings. For instance, if TR1 and 

TR3 run concurrently, TR3 views the sub-tree TR1, TR11, 

and TR12 as a single unit of isolated transaction and does 

not observe its internal structure or interfere with its 

execution. The same applies to TR1 and the sub-trees TR3 

and T31. Siblings are thus serializable, and the effect of 

their concurrent execution is the same as if they had 

executed sequentially in some serial order. 

3. Sub-transactions are atomic. Each sub-

transaction can commit or abort independently. The 

commitment and the durability of the effects of sub-

transactions are dependent on the commitment of its parent. 

A sub-transaction commits and is made durable when all of 

its ancestors including the root transaction commit. At this 

point the entire nested transaction is said to have committed. 

If an ancestor aborts, then all of its descendants are aborted. 

4. If a sub-transaction aborts, its operations 

have no effect. Control is returned to its parent, which may 

take appropriate action. In this way, an aborted sub-

transaction may have an impact on the state of the shared 
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data as it may influence its parents to alter its execution 

path. This situation can be contrasted with flat transactions 

where an aborted transaction cannot alter the transaction 

path of the transaction coordinator. 

5. A sub-transaction is not necessarily 

consistent. However, the nested transaction is consistent as a 

whole. 

Table 1 gives a summary of activities demonstrating the 

semantics in the coordinator of the nested transactions. 
 

 

VI. JUSTIFICATION FOR THE MULTILEVEL NESTED 

TRANSACTIONS 

To set up the theoretical bases for the multilevel 

transactions it is imperative to throw more light on flat 

transactions implemented by DSTM2 supported by 

obstruction-free and shadow factories to establish the 

distinguishing factors.  

When a flat transaction reaches the COMMIT point, its 

consistency rules put it beyond the reach of the system so 

that it cannot review its consistency constraints. In other 

words, the transaction is said to be consistent if it reaches 

the COMMIT and hence the outcome can be guaranteed.  

For flat transactions, inconsistencies in the data shared at 

COMMIT mean nothing can be done about it. This is largely 

true in flat transactions because control does not go beyond 

transaction boundaries. The flat transaction model of the 

DSTM2 is necessary in order to write reliable applications 

which share or require persistent or consistent data.  

On the other hand, multilevel nested transaction is able 

to overcome this limitation because it is hierarchical. As 

shown in Figure 1, the levels in a nested transaction ensure 

that inconsistencies or dirty reads are not grossed over. The 

ACID property guarantees that if a sub-transaction fails, 

either it is resubmitted by a compensating transaction or 

entirely aborted to ensure consistency. The ability to roll 

back in this model to get the option of stepping back to an 

earlier start inside that same transaction gives it the 

competitive urge over the flat transactions. This implies that 

if one does not want to implement nested transactions, there 

must be alternative ways of informing the system about a 

state of the application program, for recovery purposes, so 

that the application can return to it later on if the transaction 

is aborted. This is what the proposed nested transactions 

model seeks to accomplish. 

Thenested transactions model does not necessarily 

abort the whole transaction, as it is in the case of flat 

transactions, depending on how deep the failed transaction is 

nested. Support for nesting of transactions is essential for 

realizing the full potential of transactions.Other rescue 

policies, such as parent transactions overruling or 

superseding child transactions or running a compensating 

transaction by resubmitting the failed transaction, may be 

adopted to prevent a premature cessation of the entire 

process. The case of flat transaction cannot be guaranteed 

because it is simply impossible to integrate rescue policies 

in any way. 
 

 

Table 1: The Summary of activities of the coordinator in the 

Nested Transaction 

 
VII. IMPLEMENTATION OF THE NESTED 

TRANSACTIONS FRAMEWORK 

Briefly this is how the implementation works. The user 

or client requests the framework to create a user object or 

transaction, usually the root transaction. The framework 

starts and populates the constructor with user inputs. It waits 

on the user to request more user objects to be created or 

added. This call can be repeated as many times as the user 

may require transactions for a specific or the intended 

application. After all the required objects are created and 

nested appropriately, the framework will request the result 

of the processing from the user objects so far created. The 

user objects return provisional ready to commit or abort 

signals to the framework. The resulting tree structure created 

from the nesting process is traversed depth first with control 

shifting from children transactions to parent transactions. 

All results are reported to the root transaction who informs 

the coordinator or the transaction manager to enter the 

second phase of the Two-Phase Commit Protocol to commit 

changes and move them to stable storage. It must be noted 

that this application allows descendant transactions to do 

dirty reads from ancestor transactions.  

 

 

VIII. DETAIL SEMANTICS OF THE NESTED 

TRANSACTIONS FRAMEWORK 

In this model for nested transactions the user starts off 

by creating instances of the NestedTransactionInterceptor( ) 

and the root transaction objects and sends the 

runRootTransaction( ) method with the root transaction 

object as a parameter to invoke the transactionCode( ) 

operations. The transactionCode( ) method in turn fires off 

the interceptorExecutor( ) method to embedd sub-

transactions whose arguments specify the parent and child 

relationship. This helps to establish relationships between 

transactions and each transaction at this juncture executes its 

operations and returns a boolean result to the framework. If 

it returns true, it indicates that the internal operations of the 

transaction were successful and for that matter they have 

provisionally committed. On the other hand, if it returns 

false, it shows that the transaction failed and was 

provisionally aborted. It must be noted that if the aborted 

transactions were parents then all of their children or 

descendant transactions will be forced to abort. But where 

the sub-transactions are ready to commit they must wait for 
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the entire duration for the examination of the coordinator 

and for the root transaction to be committed before they are 

actually committed.  See Figure 2. 

New transactions are created which extend 

TransactionBase() and implement TransactionWrapper(). 

These transactions will also implement transactionCode 

behavior and if they return true, they are ready to commit, 

else they are ready to be aborted. The transaction 

programmer creates as many transactions as may be needed 

or is applicable under the peculiar circumstances of the 

application. Transactions are nested when an instance of the 

transaction InterceptorExecutor() is created and a message 

of the new transaction is passed to it to invoke its 

transactioncode() member function. It returns with a vote of 

whether it intends to commit or abort. A constraint worth 

noting is that the nestedTransactionInterceptor() cannot be 

used to create more than one tree structure of nested 

transactions. 

 
class NestedTransactionInterceptor { 

interceptorExecutor(TransactionWrapper tparent, TransactionWrapper 

tchild) { 
Start transaction; Status = Active; 

if (tparent is not the root) { 

Set parent child relationship 
} 

Get  childStatus from transaction code  

if (childStatus == true) {//Ready to commit 
Change the status from Active to ready to commit 

} else { 

 Set ChildStatus to ABORTED 

/*An ancestral transaction failed to Commit. Hence descendant 

transactions are provisionally forced to abort by traversing the 
tree preorder Depth First Search;*/ 

} 

interceptorStatus = childStatus; 
End of transaction 

return interceptorStatus; 

} 

 

Figure 2. The nested transaction interceptor coordinates transactions 

Room is available for other business logic to be 

provided as compensation or as additional requirements for 

transactions to show willingness to commit or otherwise. 

Figure 3 shows a typical transactioncode() method for 

inserting a value into a list data structure. This is where the 

operations of the transactions are coded by the transaction 

programmer. 

 
public class RootTransaction extends TransactionBase implements 

TransactionWrapper { 

public boolean transactionCode(NestedTransactionInterceptor c) { 
boolean result = false; 

final int value = 79; 

result = Thread.doIt(new Callable<Boolean>() { 
public Boolean call() { 

return GlobalList.inSet.insert(value); 

} 
}); 

return result; 

} 

} 

 
Figure 3. A typical transaction code method. 

 

The runRootTransaction() checks to see if the root 

is ready to commit and if so calls the 

transactionCoordinator() method passing the root transaction 

as a parameter to it to execute the globalGroupCommit() to 

complete a group commit of the second phase of the 2PCP.  

The justification for the group commit is that when changes 

are made to protected resources, there must be a guarantee 

that the changes are made correctly. For instance, if a bank 

customer attempts to transfer money from a savings account 

to a checking account, there must be a guarantee that when 

the money is deducted from the savings account it is added 

to the checking account simultaneously. Partial completion 

of this transaction will have money deducted from the 

savings account but not added to checking account. This 

transfer transaction may involve several nested transactions 

that may be required if the transfer is to be made possible. If 

there are problems with descendant transactions required in 

order to successfully complete the overall transaction, then it 

is unwise to commit the root transactions. Rolling back all 

the nested transactions will undo changes before the root 

transaction can commit. This problem must be avoided, 

hence the need to do global or group commit to fully 

coordinate and manage nested transactions that are ready to 

be committed in transactional fashion. See Figure 4. 

 
runRootTransaction(TransactionWrapper rootTransaction) { 

Set rootStatus to false; // root transaction states its intention 
Set  treeStatus  to false; // transaction tree was committed or aborted 

get the status of the root transaction from the interceptor Executor 

Execute rootStatus = interceptorExecutor(null, rootTransaction); 
if (rootStatus == true) { 

Call the transactions Coordinator to do global Commit 

// if all goes well; but this might be false sometimes 
treeStatus = true; // the tree was committed 

//The second phase was successfully committed 

//The tree was committed. 
} else { treeStatus = false; // the tree was aborted 

//The entire tree was aborted. 

} 
return treeStatus; 

} 

Figure 4. The second phase of the Two-Phase Commit Protocol. 

The all-or-nothing principle is implemented on the 

second phase of the 2PCP. What is the implementation 

strategy?  The implementation strategy adopted in this 

application is that, instead of committing the individual 

transactions and updating their status updaters, we create a 

global status updater and point each of the local status 

updaters to the global one and perform the group commit on 

it. Finally, point the status updater of the individual 

transactions to the local status updaters and change their 

values to commit. The strategy is illustrated in Figure 5. 

 
transactionsCoordinator(TransactionWrapper 

processedTransactions) { 

if (childStatus = = true) { 

//Transactions can be committed permanently" 

Point Status Updater To StatusUpdateGlobalCommit 

Perform a global Group Commit 

Locally Commit  

Point StatusUpdater To Local Status Updater 

} 

} 

Figure 5. Globally committing provisionally committed 

transactions. 
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Log files and permanent storages are immediately 

updated and the participating transactions are duly informed 

about the changes. Otherwise the transactionDoAbort() is 

called to end the transaction and its descendants. The 

implication is that no updates or changes are made to log 

files and permanent storage. Instead the aborted transaction 

must undo its sequence of operations, by executing inverses 

of those operations in the reverse order to restore the state of 

any modified location to what it was before the transaction 

modified it. The log files are called into action or maintained 

for the purposes of recovery and fault tolerance. 

The NestedTransactionExecutor() kicks in the 

coordinator otherwise known as the transaction manager 

which performs the 2PCP. All descendant transactions of the 

root transaction report their current states along with a tree 

structure except the descendants of aborted transactions. 

With all the sub-transactions in the tree provisionally 

committed, the coordinator has the yes votes from such 

individual transactions. This is where their statuses change 

from ACTIVE to READYTOCOMMIT to end the first 

phase of 2PCP. The coordinator then invokes the 

globalGroupCommit() to commit whatever is left in the tree  

to stable storage to complete the second phase of the 2PCP. 

At this stage the coordinator informs the participating 

transactions that the log files and databases have been 

updated accordingly.  

When a child commits, its log is appended to its 

parent’s log. When a child is forced to abort or is aborted 

because it failed, all of its actions and updates on the log 

files are undone and discarded.  As mentioned before, 

aborting a child does not affect its parents or ancestors, 

though the parent must be informed to take a firm decision 

on making progress to committing or aborting itself.  

The user closes the set of nested transactions by 

invoking the endTransaction() or abort() or 

transactionDoAbort() sub-routines on the  root transaction or 

on a specific sub-transaction. 

The rules and policies on isolation and concurrency 

enforced on failed transactions in this nested transaction 

model are either relaxed or made more intense.  Strict 

isolation rules, as in a single system with or without internal 

structure, permit sub-transactions at the same level to be run 

concurrently with additional rules to grant locks. 

However, ancestor transactions do not run 

concurrently with their descendant transactions because they 

must remain atomic and serializable with other sibling 

transactions. For that matter, individual transactions in the 

sub-transaction act independently. They are isolated and 

atomic, strictly enforcing the all-or-nothing principles in 

their own rights. Reference [16] confirms that the 

concurrency control scheme introduced by the closed-nested 

transaction model guarantees isolated execution for sub-

transactions and that the schedules of concurrent nested 

transaction are serializable. 

On the other hand with the rules on isolation at the 

global level relaxed on failed transactions, room is created 

for a long-lived transaction to be accommodated in this 

model. Reference [1] has proposed several extensions to the 

closed-nested transactions to increase concurrency and 

throughput by relaxing the consistency and isolations rules 

of a typical traditional transaction model.  

In this nested transaction model parent transactions 

reserve the prerogative to make progress in the event of 

descendant transactions failing. This guarantees that long-

lived transactions are not put on hold forever and much 

work completed at the time of failure is not lost. Much of 

the data resources locked is released when transactions are 

aborted to prevent the starvations of other transactions that 

might need those resources.  

It is interesting to note that this proposed nested 

model combines the strengths of both closed and open 

nesting and a blend of synchronized transactions that can be 

automatically rolled back to immediate parent transaction, 

implement the 2PCP on top of it and extensions that 

override failed transactions. 
 

 

IX. CONCLUSIONS AND RECOMMENDATIONS 

 

The concept of transactions has been employed in 

software engineering to permit management of activities and 

resources in a reliable computing environment tolerating 

faults. Transactions are able to guarantee efficient software 

engineering techniques, bringing consistency and 

concurrency into applications in the face of eminent failure. 

Nested transactions allow fine-grained control over 

serializability, concurrency, and recovery.Programmers need 

not concern themselves with the complexity of deciding 

how to best allocate locks, deadlocks, livelocks, priority 

inversion, locking granularity, and other typical lock-based 

programming issues[20].  

The flat transaction model proposed by the DSTM2 

is necessary in order to write reliable short-lived 

applications that share or require persistent or consistent 

data. Nevertheless, the new advanced feature of nesting 

transactions proposed by the paper supports enough 

flexibility and performance for complex transactions and 

long-lived transactions, making it suitable and applicable in 

single or multicore or even distributed systems. For most of 

these systems, much will depend on the policies adopted for 

the failed or aborted transactions.  

In a typical nested transaction, the outermost or 

root transaction is not aborted because one of the sub-

transactions failed in the course of execution.  The failure of 

a transaction does not necessarily lead to the failure of the 

root transaction, and until the root transaction is committed 

no durable state changes are made to the shared resource. 

For these reasons, it can conveniently be concluded that 

there are no requirements for failure recovery mechanisms. 

Since the effects of the multilevel nested transaction are 

provisional upon commit or abort of the root transaction, the 

effects are easily recovered if the root transaction aborted 

even though the descendant transactions committed. 

As far as contention management is concerned, 

access rights acquired by parents are inherited by children 

transactions and executed depth first sequentially or 

guaranteed serializability for concurrent transactions to 

avoid possible conflicts among sibling transactions.In order 

to maximize performance, several transction memory 

implementations included mechanisms allowing the 

programmer to specify whether transaction memory should 

ignore certain conflicts[21]. 

This multilevel nested transaction that is hereby 

proposed has two main advantages over flat transactions. 



 
 
International Journal on Recent and Innovation Trends in Computing and Communication                                       ISSN: 2321-8169 
Volume: 2 Issue: 11                                                                                                                                                           3389 - 3397 

_____________________________________________________________________________________ 

3397 

IJRITCC | November 2014, Available @ http://www.ijritcc.org                                                                 

______________________________________________________________________________ 

First, this model allows the potential internal consistent 

parallelism and nesting transactions many levels deep to be 

exploited. Second, it provides finer control over failures by 

limiting the effects of failures to a small part of the global 

transaction. These properties are achieved by allowing 

nested transactions within a given transaction to fail 

independently of their invoking transactions.  Changes made 

by the nested transaction, when it is committed, remain 

contingent upon commitment of all of its ancestors [18]. 

Finally more than one section of the tree could be 

created and traversed concurrently or sequentially in this 

multilevel nested transaction model. Isolation rules ensure 

that the result of each concurrent tree’s provisionally 

committed or aborted descendant transactions are not visible 

to other transactions, except their parent transaction to 

maintain consistencies throughout the lifetime of the 

transactions.  

For further study I recommend extending this 

framework to support conditional waiting and integration 

into the DSTM2 model or other similar models. 
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