
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3352 – 3359

3352
IJRITCC | November 2014, Available @ http://www.ijritcc.org

__

Transactions Processing Subsystems for Databases Based On ARIES Write-Ahead

Logging for The Client-Server Architecture Approach

1
Dominic Damoah,

2
 Dr. J. B. Hayfron-Acquah,

3
Edward D. Ansong,

4
Selby L. Maxwell Jnr.,

5
Shamo Sebastian

1345
Department of Computer Science

Valley View University

Oyibi, Ghana
2
Department of Computer, Kwame Nkrumah University of Science and Technology

Kumasi, Ghana

Contact Email: kwddamoah@gmail.com@yahoo.com

Abstract— This paper proposes a formal framework specification that applies an advanced recovery mechanism, functional in a client-server
architecture while addressing atomicity and consistency issues. Another palpable issue in using such dominant architectures is recovery. This paper also
addresses this issue in context with the client-server architecture using extensions of the original ARIES algorithm and concepts of Software
Transaction Memory. This novelty has been successfully implemented and tested for propriety and applicability.

Keyword; ARIES, databases; recovery; processing, transaction, logging, write-ahead, Concurrency, atomicity;

__*****___

I. INTRODUCTION

Transaction management has gradually become an essential
component of database management systems. It enables
multiple users to access the database concurrently while
preserving transactional properties such as atomicity,
consistency, isolation, and durability. With this in mind, it is
evident that concurrency is an important feature of transaction
management. Issues with locks arise when dealing with
accesses to specific portions of a database concurrently by
multiple clients. Also, the recovery techniques that apply to
customary query-shipping processing would not be appropriate
when it comes to recovery at workstations that are a part of the
client-server architecture. The proposed framework brings to
light how data-shipping mechanisms can be applied to ARIES
in the client-server environment to allow flexibility in the
interaction between clients and a server and simultaneously
confronting issues of recovery at both ends of the architecture.

II. ARIES

ARIES is a fairly recent refinement of the Write-Ahead-
Logging (WAL) protocol. The WAL protocol enables the use
of a STEAL/NO FORCE buffer management policy, which
means that pages on stable storage can be overwritten at any
time and that data pages do not need to be forced to disk in
order to commit a transaction. As with other WAL
implementations, each page in the database contains a Log
Sequence Number (LSN) which uniquely identifies the log
record for the latest update which was applied to the page. This
log sequence number (LSN) (referred to as the pageLSN) is
used during recovery to determine whether or not an update for
a page must be redone. LSN information is also used to
determine the point in the log from which the Redo pass must
commence during restart from a system crash. LSNs are often

implemented using the physical address of the log record in the
log to enable the efficient location of a log record given its
LSN.

Much of the power of the ARIES algorithm is due to its
Redo paradigm of repeating history, in which it redoes updates
for all transactions — including those that will eventually be
undone. Repeating history greatly simplifies the
implementation of fine grained locking and the use of logical
undo operations as shown in [12]. The resulting simplicity
allows ARIES to be adapted for use in many computing
environments.

ARIES uses a three phase algorithm for restart recovery.
The Analysis pass is the initial phase, which scans the log
forward from the most recent checkpoint. This pass determines
information about dirty pages and active transactions that
would be used in the passes that follow. The second is the
Redo pass, in which history is repeated by processing the log
forward from the earliest log record that could require redo,
thus insuring that all logged operations have been applied. The
third pass is the Undo pass. This pass proceeds backwards from
the end of the log, removing from the database the effects of all
transactions that had not committed at the time of the crash.

III. WRITE-AHEAD LOGGING

This is a recovery mechanism where sub transactions in a
transaction are not immediately written to disk as they are
executed. That is, the final values are can re-written by new
logged values. The old values are known us before image
(BFIM) and the new values are known as After Image (AFIM)
[3].

The recovery mechanism must ensure that the BFIM of the
data item is recorded in the appropriate log entry and that the
log entry is flushed to disk before the BFIM is overwritten with
the AFIM in the database on disk.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3352 – 3359

3353
IJRITCC | November 2014, Available @ http://www.ijritcc.org

__

Write-ahead logging is necessary to be able to UNDO the
operation if this is required during recovery.

A REDO-type log entry includes the new value (AFIM) of
the item written by the operation since this is needed to redo
the effect of the operation from the log.

The UNDO-type log entries include the old value (BFIM)
of the item since this is needed to undo the effect of the
operation from the log.

If a cache buffer page updated by a transaction cannot be
written to disk before the transaction commits, the recovery
method is called a no-steal approach.

On the other hand, if the recovery protocol allows writing
an updated buffer before the transaction commits, it is called
steal.

The no-steal rule means that UNDO will never be needed
during recovery, since a committed transaction will not have
any of its updates on disk before it commits.

If all pages updated by a transaction are immediately
written to disk before the transaction commits, this technique is
referred to as FORCE. Otherwise, it is termed NO-FORCE.
The force rule means that REDO will never be needed during
recovery, since any committed transaction will have all its
updates on disk before it is committed.

The advantage of STEAL is that it avoids the need for a
very large buffer space to store all updated pages in memory.
The advantage of no-force is that an updated page of a
committed transaction may still be in the buffer when another
transaction needs to update it, thus eliminating the input and
output cost to write that page multiple times to disk, and
possibly to have to read it again from disk [3].

IV. ACID PROPERTIES OF DATABASES

A transaction, exemplified in database management
systems, is an execution of a user program, entailing a series of
read and write operations. The following are properties that a
database management system should adhere to when handling
transactions in order to maintain data when concurrent access
and system failures come to play:

1. Users should be able to regard the execution of each
transaction as atomic.

2. Each transaction, run by itself with no concurrent
execution of other transactions, must preserve the
consistency of the database.

3. Users should be able to understand a transaction
without considering the effect of other concurrently
executing transactions, even if the DBMS interleaves
the actions of several transactions for performance
reasons.

4. Once the DBMS informs the user that a transaction has
been successfully completed, its effects should persist
even if the system crashes before all its changes are
reflected on disk.

These four properties are Atomicity, Consistency, Isolation,
and Durability respectively.

Users are responsible for ensuring transaction consistency.
That is, the user who submits a transaction must ensure that,
when run to completion by itself against an instance of a
consistent database, the transaction will leave the database in a
'consistent' state. Let us take a look at this scenario, fund

transfers between bank accounts should not change the total
amount of money in the accounts. When transferring money
from one account to another, a transaction should not only
debit one account, temporarily leaving the database in an
inconsistent state. The user's understanding of a consistent
database is maintained when the second account is credited
with the transferred amount. Some call this the all or nothing
property. The isolation property ensures that even though a
problem may occur in the transfer process it enforces that each
process is executed separately from the other in a particular
manner or sequence [3].

V. DATA RECOVERY

As with almost all complex forms of computer hardware
and software, there is always the possibility of failure. It is
important for database administrators to adopt effective
recovery mechanisms that can recover database contents which
have been damaged or lost in times of disasters. Recovery is
not an easy process. In some cases it is impossible to totally
recovery data that has been lost or damaged. The volatility of
memory and timing and complexity of any CPU limit database
administrators to precisely reconstruct data [4].

At all times, there are threats to data security, especially
when a database or critical transactions fail. These threats
include accidental losses attributable to human error, software
failure, hardware failure, theft and fraud, improper data access,
loss of privacy (personal data), loss of confidentiality
(corporate data), loss of data integrity, loss of customers, loss
of corporate integrity, loss of availability (through sabotage, for
example), exposure through com links, aborted transactions,
incorrect data, system failure (database intact), loss of transfers
and backups, loss of money, loss of time, and database
destruction.

To prevent some of these issues, most corporations and
companies using databases have backup and recovery systems.
They include, but are not limited to, backup facilities,
journalizing facilities, transaction logs (time, records, and input
values), database change logs (before & after images),
checkpoint facilities, recovery managers, and a restart point
after a failure. It is wise that despite having soft-copies of data
hard-copies are also very important

VI. CONCURRENCY CONTROL

Concurrency control is a concept that is used to address
conflicts with the simultaneous accessing or altering of data
that can occur with a multiple user system. Concurrency
control, when applied to a transaction processing, is meant to
coordinate simultaneous transactions while preserving data
integrity [5].

To illustrate the concept of concurrency control, consider
two business men who go log onto an online ticketing booth at
the same time to purchase a plane ticket to the same destination
on the same plane. There's only one seat left to be
accommodated, but without concurrency control, it's possible
that both business men will end up purchasing a ticket for that
one seat. However, with concurrency control, the database
wouldn't allow this to happen. Both business men would still
be able to access the plane seating database, but concurrency

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3352 – 3359

3354
IJRITCC | November 2014, Available @ http://www.ijritcc.org

__

control would preserve data accuracy and allow only one
traveler to purchase the seat.

VII. LOCKS WITH ARIES

The concept of ARIES implements optimistic locking of
the sort such that all users are granted the access to the data
entity but any change, be it an addition or deletion, are first of
all logged to a file. This eliminates the problems facing both
optimistic and pessimistic locking. Furthermore, after these
changes have been made, the database administrator or
programmer can create ―rules‖ by which the database would
then be updated based on these log file (These rules are
dependent on the size of the database). ARIES adopts a
concurrency control mechanism known as basic time stamping.
This method doesn’t use locks to control concurrency, so it is
impossible for deadlock to occur. According to this method a
unique timestamp is assigned to each transaction, usually
showing when it was started. This effectively allows an age to
be assigned to transactions and an order to be assigned. Data
items have both a read-timestamp and a write-timestamp.
These timestamps would be updated each time the data item is
read or updated respectively [6].

Adhering to the rules of the basic time stamping process
allows the transactions to be serialized and a chronological
schedule of transactions can then be created and logged.

Time stamping may not be practical in the case of larger
databases with high levels of transactions. A large amount of
storage space would have to be dedicated to storing the
timestamps in these cases [13].

VIII. RECOVERY WITH ARIES

There are two general approaches to recovery: the write-
ahead Logging (WAL) approach [7] and the shadow-page
technique [8, 7].

WAL is the recovery method of choice in most systems,
even though the shadow-page technique of System R is used in
some systems, possibly in a limited form (e.g., for managing
long fields or BLOBs). In WAL systems, an updated page is
written back to the same disk location from which it was read.
That is, in-place updating is done on disk. The WAL protocol
asserts that the log records representing changes to some data
must already be on stable storage before the changed data is
allowed to replace the previous version of that data on disk.
Each log record is assigned, by the log manager, a unique log
sequence number (LSN) at the time the record is written to the
log. The Log sequence numbers are assigned in ascending
sequence. Typically, they are the logical addresses of the
corresponding log records [9]. At times, version numbers or
timestamps are also used as LSNs [10, 11]. On finishing the
logging of an update to a page, in many systems whose
recovery is based on WAL, the LSN of the log record
corresponding to the latest update to the page is placed in a
field in the page header. Hence, knowing the LSN of a page
allows the system to correlate the state of the page with respect
to those logged updates relating to that page. That is, at the
time of recovery, given a log record, the LSN of the database
page referenced in the log record and the LSN of the log record
can be compared to determine unambiguously whether or not
that log record's update is already reflected in that page. The

buffer manager, in order to enforce the WAL protocol, uses the
LSN associated with a modified page to ensure that the log has
been forced to disk up to that Log Sequence Numbers before it
writes that page to disk. With the shadow-page technique, as it
is implemented in System R and SQL/DS, the first time a
logical page is modified after a checkpoint, a new physical
page is associated with it on disk. Later, when the page (the
current version) is written to disk, it is written to the new
location. The obsolete physical page associated with the logical
page is not discarded until the next checkpoint is reached.
Restart recovery occurs from the shadow version of the page if
a system failure should occur. With shadow paging,
checkpoints tend to be very expensive and disruptive. This is
because a checkpoint is taken only when all activities in the
data manager have been quiesced to an action-consistent state.
After quiescing, all the modified pages in the buffer pool and
the log are written to disk. Then, the shadow version is
discarded and the current version is also made the new shadow
version. As a result of all these synchronous actions by the
check pointing process, restart recovery always happens from
the internally consistent, shadow version of the database. Even
when the shadow-page technique is used for recovery, logging
of updates is still performed. The WAL approach has
commercially been much more widely adopted than the
shadow-page technique. Detailed comparative analysis
between the two methods are given in [7]. In this research,
when we talk recovery methods, it is solely based on Write
Ahead Logging. The concurrency protocols that we discuss are
applicable also to systems that use the shadow-page technique.
In the following, we will summarize the original.

IX. THE CLIENT-SERVER ARCHITECTURE

Here we addresses the correctness and performance issues
that arise when implementing logging and crash recovery in a
client-server environment.

These problems result from two characteristics of page-
server systems:

• The fact that data is modified and cached in client
database buffers that are not accessible by the server.

• The performance and cost tradeoffs that are inherent
in a client-server environment.

We describe a recovery system that we would implement
for particular client-server systems. This implementation would
support efficient buffer management policies, allow flexibility
in the interaction between clients and the server, and reduces
the load on the server by performing much of the work
involved in generating log records at clients.

The proposed mechanism is a data-shipping system which
employs a client-server architecture. The implementation of
recovery in this instance involves two main components.

The logging subsystem manages and provides access to an
append-only log on stable storage. The recovery subsystem
uses the information in the log to provide transaction rollback
and system restart. The implementation of recovery also
involves close cooperation with the buffer manager and the
lock manager. The recovery algorithm is based on original
ARIES Algorithm. ARIES is generally accepted because of its
simplicity and flexibility features, its ability to support the
efficient STEAL/NO FORCE buffer management policy [14],

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3352 – 3359

3355
IJRITCC | November 2014, Available @ http://www.ijritcc.org

__

its support for savepoints and nested-top-level actions, and its
ability to support fine-grained concurrency control and logical
Undo. However, the algorithm as specified in [12] cannot be
precisely implemented in a client-server architecture because
the architecture violates some assumptions upon which the
original ARIES algorithm is based.

We also describe the recovery manager, paying particular
attention to the modifications to the ARIES method that were
required due to both the correctness and efficiency concerns of
recovery in a client-server system.

It should be noted that the ARIES algorithm has recently
been extended in ways that are similar to some of the
extensions described in this paper.

X. ARCHITECTURE OVERVIEW

Figure 1 below shows the proposed client-server
architecture. This design was driven by the anticipated
capabilities, performance, and reliability characteristics of the

clients, server, and the network; as exemplified in our everyday
object-oriented DBMSs. Obviously, a server is expected to
have more CPU power, more disk capacity, and more memory
than a single client, but the combined processing power and
memory of individual clients is overwhelmingly greater than
the server in instances where you have a wholesome number of
clients on a network. Clients are expected to be less reliable
than the server and may not have all of their resources available
for use by the database system. The main cost of
communication is expected to be the CPU overhead of sending
and receiving messages. The system will comprise two
sections: the client’s collective archive of methods, which
would be associated to user’s application, and the server
running an independent process.

Figure 1. Client Server Architecture for proposed framework

The architecture has a clear division of logging labor

between the server and clients. The server hosts the database
and a single log volume and also provides support for lock
management using software transaction memories
(programming without locks), page allocation and de-
allocation, and recovery/rollback. Clients perform all data and
index changes during normal database transactions. Each client
process has its own storage structure (buffer) and transaction
memory and runs a single transaction at a time. The server is
multi-threaded and allows it to receive requests from multiple

clients concurrently. The server uses a separate-disk processes
so it can perform asynchronous input and output. The system
would not support access to multiple servers or federated
databases from a single client. We should however note that
while Figure 1 shows clients and the server executing on
separate machines, it is also possible, for development
purposes, to run the server and any number of clients as
separate processes on the same machine. Communication
between clients and the server can be implemented using
reliable-TCP-connections or UNIX-sockets. All

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3352 – 3359

3356
IJRITCC | November 2014, Available @ http://www.ijritcc.org

__

communication is initiated by the client and is responded to by
the server. That is, the server responds to requests from the
client for specific pages, locks, and transaction services. There
should be no means for the server to initiate contact with a
client. This would require client to also be multi-threaded
increasing complexity of their composure.

As stated above, this mechanism would employ a client-
server architecture in which the client sends requests for data
and index pages to the centralized server. During a transaction,
clients cached received data and index pages in their local
storage structure.

Before committing a transaction, the client sends all the
pages modified by the transaction to the server. A client’s
cache is purged upon the completion of a transaction.

Clients start transactions by sending a start-transaction
message to the server and can request the commit or abort of a
transaction by sending another message to the server. The
server can then decide to abort a transaction when it faces an
error. When a transaction is aborted, the server notifies the
client that the transaction has been aborted in response to the
next message the client sends to it. This sequence takes place
because there is no mechanism for the server to initiate contact
with the client. While a transaction is executing the client
generates logs based on all updates that are being made to data
and index pages. The server receives these logs from the clients
in a methodical manner and can abort a transaction when it
running out of log space.

XI. CONCURENCY ISSUES

Dealing with problems that have to do with concurrency,
worst case scenarios can transpire when multiple clients
attempt to gain access to the same data pages. In such
situations, we make very good use of transaction memories and
buffer managers. When a client is given control to specific data
pages, other requesting clients are given controlled access
using timestamps which are managed by the server process.
During the periods in which clients retain control, sub
transactions, if any, inherit locks downwards giving them
priority over other requests. After the modified data pages have
been logged and flushed to permanent storage, control can now
be passed on to the next client according to the servers
managed timestamp.

XII. WHY CENTRALIZED DATABASES WHEN APPLYING

ARIES IN A CLIENT SERVER ENVIRONMENT?

Most databases are physically located at one place and are
managed by one computer. These databases are referred to as
centralized databases.

Alternatively, with distributed databases, data are stored in
different settings and on different computers and indexes are
kept at a central computer to trace the location of data in
different places.

An information system manager must decide whether to
use centralized or de-centralized databases. There are many
reasons why a decentralized database will be selected over a
centralized one.

De-centralized or distributed databases are known to be
more flexible and permit a number of different units to update

and maintain their own data. At the same time, this increased
flexibility runs the risk that some units may institute changes
that may make them less accessible by others.

It will seem astute to any database professional to manage
distributed data with different levels of transparency like
network transparency, fragmentation transparency, and
replication transparency. With decentralized databases there is
an increase in reliability and availability. There is also easier
expansion. Decentralized databases have their downfalls too.

Decentralized databases exchange files and therefore may
exchange corrupted files or viruses that may affect the entire
system. Security of these databases are however difficult to
maintain. In decentralized databases the type of data to be
exchanged, the process of addressing the data, and the protocol
for updating the data must be agreed upon ahead of time and
plans must be in place for updating the process.

Having noted all this, we find out that questions still arise
concerning the reasons why we choose to apply the proposed
mechanism in centralized databases. Let us consider a few
factors.

A con of distributed databases is that, aside keeping the
addresses of where to locate data, an audit trail is required
indicating who updates or retrieves data. With centralized
databases we have a controlled ―audit trail‖ because everything
is stored in one location. Errors are easily pinpointed and we
understand clearly where the confidentiality of a system breaks
down. We also need not worry about the difficulty in auditing
when computers receiving data increases.

Figure 2. Centralized Architecture without ARIES

With decentralized databases, burdensome procedures are

needed to determine the quality of data.
Now our argument concerning the justification of this

research is that, in centralized databases lack of backup,
inadequate backup, and improper recovery mechanisms may
result to complete loss of data while in distributed data systems
data loss is limited to nodes affected.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3352 – 3359

3357
IJRITCC | November 2014, Available @ http://www.ijritcc.org

__

Figure 3. Federated Architecture without ARIES

Therefore to maintain the integrity of centralized systems it

is vital to tackle issues that have to do with ACID properties of
databases, hence the significance our research. The use of
ARIES WAL ensure the continuity of data access even in the
course of system failure.

Figure 4. Centralized Architecture with ARIES

Extending ARIES to the client machine further reassures us

that even when an individual client encounters a failure during
a transaction we can recover it to a consistent state to continue
from a certain point without starting all over.

XIII. IMPLEMENTATION

This section talks about the steps or processes through which
log are created and sent to the servers circular buffer of logs,
before they are flush to the server’s permanent storage. The
proposed ARIES framework is developed as a log creation,
live logging and log transfer mechanism. Its application is run
as multiple processes including a centralized server and
independent clients on the same system.

A. CREATING LOGS

In creating logs at the client side of the architecture, it is
important to follow a systematic file naming convention to
indicate the order in which log files are create. The log
sequence number (LSN) (referred to as the pageLSN) used to
create our logs is used during recovery to determine whether
or not an update for a page must be redone. LSN information
is also used to determine the point in the log (in our case the
log file) from which the Redo pass must commence during
restart from a system crash. LSNs are often implemented
using the physical address of the log record in the log to
enable the efficient location of a log record given its LSN.

Figure 5. Creating Log File (with increasing LSN)

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3352 – 3359

3358
IJRITCC | November 2014, Available @ http://www.ijritcc.org

__

In figure 5 we retrieve a global variable on the initiation of the
main code that holds the filename of the log to be created
(client). If this filename does not exists in the folder that holds
the clients logs, the file is created and the event handler is
pointed to that newly created log file.

B. WRITING TO RESPECTIVE LOGS (CLIENT

LOGS/SERVER LOG VOLUME)

Providing the file path to the respective log file we can log
changes made any transaction. This is done in our case by
appending contents of an array, each line representing a new
array index.

Figure 6. Method to write changes made by transaction to log

The same module is applied to the single log volume at the
server side. In this case logging made here represents the name

of the log file the server has received in its circular buffer and
the date and time it was received.

Figure 7. Method to write changes made to the circular buffer

Figure 7 show a similar snippet with a different method name.

C. SENDING CLIENT LOGS TO SERVER

After the client has closed the write for a particular is sends it

to the server on transaction commit. The server receives this

log file into its circular buffer and then logs the of the log file

sent by the client and the date and time the server received it.

In our case a copy of the log file is sent to avoid re-logging at

the server side. Once this activity has taken place it is now safe

to flush changes permanently to storage. Figure 8 shows us a

snippet on how logs are transferred from the client side of the

architecture to the server side of the architecture.

Figure 8. Transferring log file from client to server

XIV. OBSERVATION

A problem that arises due to the expense of communication
between clients and the server is the inability of clients to
efficiently assign log sequence numbers. The original ARIES
algorithm requires that log sequence numbers are unique within
a log, and that log records are appended to a log volume in a

monotonically-increasing log sequence number order. In a
centralized or shared memory system, this is easily achieved,
since a single source for generating LSNs can be cheaply
accessed each time a log record is generated. However, in a
client-server environment, clients generate log records in
parallel, making it difficult for them to efficiently assign unique
LSNs that will arrive at the server in monotonically increasing

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 11 3352 – 3359

3359
IJRITCC | November 2014, Available @ http://www.ijritcc.org

__

order. Furthermore, if the LSNs are to be physical (e.g., based
on log record addresses), then the server would be required to
be involved in the generation of LSNs.

To summarize, the issues that were addressed in a client-server
environment were the following:

• The assignment of state identifiers (e.g., LSNs) to
place on pages.

• The need to make undo a conditional operation.

• Changes to the Analysis pass of system restart to
ensure correctness.

XV. CONCLUSION

In this thesis, we have described the problems that arise
when implementing recovery in a client-server environment,
and have presented an extended method that addresses these
problems. The recovery method was designed with the goal of
minimizing the impact of recovery-related overhead on
networks during normal processing, while still providing
reasonable rollback and system restart times based on the
original ARIES algorithm. The method adopts efficient buffer
management policies, allows flexibility in the interaction
between clients and the server, and allows clients to off-load
the server by performing much of the work involved in
generating log records. Overhead will be reasonable. The study
also raised issues to be addressed when applying this method in
centralized databases rather than distributed databases. These
issues include: reducing log record size, batching writes to the
log disk, prefetching from the log during recovery, and
exploiting additional parallelism between logging operations
on the server and other operations on the client during normal
processing.

XVI. RECOMMENDATION

Additional studies of realistic workloads of other
architectures will be required in order to obtain a better
understanding of the performance impact of the distribution of
logging and recovery subsystems. Further research would have
to be done to extend the recovery system to include media
recovery, ARIES-RRH during the undo phase, and support for
inter-transaction caching. Finally, this work has raised a
number of interesting possibilities for applying alternative
locking strategies to ARIES, and investigations should be
carried out on the performance tradeoffs among these
alternatives.

References

[1] G. Eason, B. Noble, and I. N. Sneddon, ―On certain integrals of
Lipschitz-Hankel type involving products of Bessel functions,‖
Phil. Trans. Roy. Soc. London, vol. A247, pp. 529–551, April
1955.

[2] Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., and Schwarz,
P., "ARIES: A Transaction Method Supporting Fine-Granularity
Locking and Partial Rollbacks Using Write-Ahead Logging",
IBM Research Report RJ6649, IBM Almaden Research Center,
November, 1990.

[3] Elmasri, R., & Navathe, S. B. (1994). Fundamentals of Database
Systems 4th Edition. Pearson.

[4] Database Fundamentals - Data Security and Recovery

http://www.personal.psu.edu/glh10/ist110/topic/topic07/topic07
_08.html

[5] Coronel, Carlos, Peter Rob. Database Systems, sixth ed.
Thomson Course Technology, 2004.

[6] Ricardo, Catherine. Databases Illuminated, second ed. p386-
387 Jones & Bartlett Learning, 2012.

[7] Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz, P.
ARIES: A Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks Using Write-Ahead
Logging, ACM Transactions on Database Systems, Vol. 17, No.
1, March 1992

[8] Gray, J., McJones, P., Blasgen, M., Lindsay, B., Lorie, R., Price,
T., Putzolu, F., Traiger, I. The Recovery Manager of the System
R Database Manager, ACM Computing Surveys, Vol. 13, No. 2,
June 1981.

[9] Crus, R. Data Recovery in IBM Database 2, IBM Systems
Journal, Vol. 23, No. 2, 1984.

[10] Borr, A. Robustness to Crash in a Distributed Database: A Non
Shared-Memory Multi-Processor Approach, Proc. 10th
International Conference on Very Large Databases, Singapore,
August 1984.

[11] Mohan, C., Narang, I., Palmer, J. A Case Study of Problems in
Migrating to Distributed Computing: Page Recovery Using
Multiple Logs in the Shared Disks Environment, IBM Research
Report RJ7343, IBM Almaden Research Center, March 1990.

[12] Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., and Schwarz,
P., "ARIES: A Transaction Method Supporting Fine-Granularity
Locking and Partial Rollbacks Using Write-Ahead Logging",
IBM Research Report RJ6649, IBM Almaden Research Center,
November, 1990, to appear in ACM Transactions on Database
Systems.

[13] Kumar, V. Transaction Management Concurrency Control
Mechanisms, 2012
http://sce.umkc.edu/~kumarv/cs470/transaction/T-
management.pdf

[14] Haerder, T., Reuter, A., "Principles of Transaction Oriented
Database Recovery - A Taxonomy", Computing Surveys, Vol.
15, No. 4, December, 1983.

