7 research outputs found

    LIPIcs

    Get PDF
    The Tverberg theorem is one of the cornerstones of discrete geometry. It states that, given a set X of at least (d+1)(r-1)+1 points in R^d, one can find a partition X=X_1 cup ... cup X_r of X, such that the convex hulls of the X_i, i=1,...,r, all share a common point. In this paper, we prove a strengthening of this theorem that guarantees a partition which, in addition to the above, has the property that the boundaries of full-dimensional convex hulls have pairwise nonempty intersections. Possible generalizations and algorithmic aspects are also discussed. As a concrete application, we show that any n points in the plane in general position span floor[n/3] vertex-disjoint triangles that are pairwise crossing, meaning that their boundaries have pairwise nonempty intersections; this number is clearly best possible. A previous result of Alvarez-Rebollar et al. guarantees floor[n/6] pairwise crossing triangles. Our result generalizes to a result about simplices in R^d,d >=2

    Improved Approximation Algorithms for Tverberg Partitions

    Get PDF
    \newcommand{\floor}[1]{\left\lfloor {#1} \right\rfloor} \renewcommand{\Re}{\mathbb{R}} Tverberg's theorem states that a set of nn points in â„œd\Re^d can be partitioned into \floor{n/(d+1)} sets with a common intersection. A point in this intersection (aka Tverberg point) is a centerpoint of the input point set, and the Tverberg partition provides a compact proof of this, which is algorithmically useful. Unfortunately, computing a Tverberg point exactly requires nO(d2)n^{O(d^2)} time. We provide several new approximation algorithms for this problem, which improve either the running time or quality of approximation, or both. In particular, we provide the first strongly polynomial (in both nn and dd) approximation algorithm for finding a Tverberg point

    Unique End of Potential Line

    Get PDF
    This paper studies the complexity of problems in PPAD ∩\cap PLS that have unique solutions. Three well-known examples of such problems are the problem of finding a fixpoint of a contraction map, finding the unique sink of a Unique Sink Orientation (USO), and solving the P-matrix Linear Complementarity Problem (P-LCP). Each of these are promise-problems, and when the promise holds, they always possess unique solutions. We define the complexity class UEOPL to capture problems of this type. We first define a class that we call EOPL, which consists of all problems that can be reduced to End-of-Potential-Line. This problem merges the canonical PPAD-complete problem End-of-Line, with the canonical PLS-complete problem Sink-of-Dag, and so EOPL captures problems that can be solved by a line-following algorithm that also simultaneously decreases a potential function. Promise-UEOPL is a promise-subclass of EOPL in which the line in the End-of-Potential-Line instance is guaranteed to be unique via a promise. We turn this into a non-promise class UEOPL, by adding an extra solution type to EOPL that captures any pair of points that are provably on two different lines. We show that UEOPL ⊆\subseteq EOPL ⊆\subseteq CLS, and that all of our motivating problems are contained in UEOPL: specifically USO, P-LCP, and finding a fixpoint of a Piecewise-Linear Contraction under an ℓp\ell_p-norm all lie in UEOPL. Our results also imply that parity games, mean-payoff games, discounted games, and simple-stochastic games lie in UEOPL. All of our containment results are proved via a reduction to a problem that we call One-Permutation Discrete Contraction (OPDC). This problem is motivated by a discretized version of contraction, but it is also closely related to the USO problem. We show that OPDC lies in UEOPL, and we are also able to show that OPDC is UEOPL-complete.Comment: This paper substantially revises and extends the work described in our previous preprint "End of Potential Line'' (arXiv:1804.03450). The abstract has been shortened to meet the arXiv character limi

    Unique End of Potential Line

    Get PDF
    This paper studies the complexity of problems in PPAD ∩\cap PLS that have unique solutions. Three well-known examples of such problems are the problem of finding a fixpoint of a contraction map, finding the unique sink of a Unique Sink Orientation (USO), and solving the P-matrix Linear Complementarity Problem (P-LCP). Each of these are promise-problems, and when the promise holds, they always possess unique solutions. We define the complexity class UEOPL to capture problems of this type. We first define a class that we call EOPL, which consists of all problems that can be reduced to End-of-Potential-Line. This problem merges the canonical PPAD-complete problem End-of-Line, with the canonical PLS-complete problem Sink-of-Dag, and so EOPL captures problems that can be solved by a line-following algorithm that also simultaneously decreases a potential function. Promise-UEOPL is a promise-subclass of EOPL in which the line in the End-of-Potential-Line instance is guaranteed to be unique via a promise. We turn this into a non-promise class UEOPL, by adding an extra solution type to EOPL that captures any pair of points that are provably on two different lines. We show that UEOPL ⊆\subseteq EOPL ⊆\subseteq CLS, and that all of our motivating problems are contained in UEOPL: specifically USO, P-LCP, and finding a fixpoint of a Piecewise-Linear Contraction under an ℓp\ell_p-norm all lie in UEOPL. Our results also imply that parity games, mean-payoff games, discounted games, and simple-stochastic games lie in UEOPL. All of our containment results are proved via a reduction to a problem that we call One-Permutation Discrete Contraction (OPDC). This problem is motivated by a discretized version of contraction, but it is also closely related to the USO problem. We show that OPDC lies in UEOPL, and we are also able to show that OPDC is UEOPL-complete
    corecore