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Abstract

This paper studies the complexity of problems in PPAD ∩ PLS that have unique solutions.
Three well-known examples of such problems are the problem of finding a fixpoint of a contrac-
tion map, finding the unique sink of a Unique Sink Orientation (USO), and solving the P-matrix
Linear Complementarity Problem (P-LCP). Each of these are promise-problems, and when the
promise holds, they always possess unique solutions.

We define the complexity class UniqueEOPL to capture problems of this type. We first define
a class that we call EOPL, which consists of all problems that can be reduced to EndOfPo-

tentialLine. This problem merges the canonical PPAD-complete problem EndOfLine, with
the canonical PLS-complete problem SinkOfDag, and so EndOfPotentialLine captures
problems that can be solved by a line-following algorithm that also simultaneously decreases a
potential function.

PromiseUEOPL is a promise-subclass of EOPL in which the line in the EndOfPoten-

tialLine instance is guaranteed to be unique via a promise. We turn this into a non-promise
class UniqueEOPL, by adding an extra solution type to EndOfPotentialLine that captures
any pair of points that are provably on two different lines.

We show that UniqueEOPL ⊆ EOPL ⊆ CLS, and that all of our motivating problems are
contained in UniqueEOPL: specifically USO, P-LCP, and finding a fixpoint of a Piecewise-Linear
Contraction under an ℓp-norm all lie in UniqueEOPL. Until now, USO was not even known to
lie in PPAD or PLS. Our results also imply that parity games, mean-payoff games, discounted
games, and simple-stochastic games lie in UniqueEOPL.

All of our containment results are proved via a reduction to a problem that we call One-
Permutation Discrete Contraction (OPDC). This problem is motivated by a discretized version
of contraction, but it is also closely related to the USO problem. We show that OPDC lies in
UniqueEOPL, and we are also able to show that OPDC is UniqueEOPL-complete.

Finally, using the insights from our reduction for Piecewise-Linear Contraction, we obtain the
first polynomial-time algorithms for finding fixed points of contraction maps in fixed dimension
for any ℓp norm, where previously such algorithms were only known for the ℓ2 and ℓ∞ norms.
Our reduction from P-LCP to UniqueEOPL allows a technique of Aldous [2] to be applied,
which in turn gives the fastest-known randomized algorithm for P-LCP.

This paper substantially revises and extends the work described in our previous preprint “End of Potential Line”
arXiv:1804.03450 [25].
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1 Introduction

Total function problems in NP. The complexity class TFNP contains search problems that
are guaranteed to have a solution, and whose solutions can be verified in polynomial time [58].
While it is a semantically defined complexity class and thus unlikely to contain complete problems,
a number of syntactically defined subclasses of TFNP have proven very successful at capturing the
complexity of total search problems. In this paper, we focus on two in particular, PPAD and PLS.
The class PPAD was introduced in [64] to capture the difficulty of problems that are guaranteed
total by a parity argument. It has attracted intense attention in the past decade, culminating in a
series of papers showing that the problem of computing a Nash-equilibrium in two-player games is
PPAD-complete [11,16], and more recently a conditional lower bound that rules out a PTAS for the
problem [66]. No polynomial-time algorithms for PPAD-complete problems are known, and recent
work suggests that no such algorithms are likely to exist [4,33]. PLS is the class of problems that can
be solved by local search algorithms (in perhaps exponentially-many steps). It has also attracted
much interest since it was introduced in [47], and looks similarly unlikely to have polynomial-time
algorithms. Examples of problems that are complete for PLS include the problem of computing a
pure Nash equilibrium in a congestion game [23], a locally optimal max cut [67], or a stable outcome
in a hedonic game [30].

Continuous Local Search. If a problem lies in both PPAD and PLS then it is unlikely to be
complete for either class, since this would imply an extremely surprising containment of one class
in the other. In their 2011 paper [17], Daskalakis and Papadimitriou observed that there are several
prominent total function problems in PPAD ∩ PLS for which researchers have not been able to
design polynomial-time algorithms. Motivated by this they introduced the class CLS, a syntactically
defined subclass of PPAD∩PLS. CLS is intended to capture the class of optimization problems over a
continuous domain in which a continuous potential function is being minimized and the optimization
algorithm has access to a polynomial-time continuous improvement function. They showed that
many classical problems of unknown complexity are in CLS, including the problem of solving a
simple stochastic game, the more general problems of solving a Linear Complementarity Problem
with a P-matrix, finding an approximate fixpoint to a contraction map, finding an approximate
stationary point of a multivariate polynomial, and finding a mixed Nash equilibrium of a congestion
game.

CLS problems with unique solutions. In this paper we study an interesting subset of problems
that lie within CLS, and have unique solutions.

Contraction. In this problem we are given a function f : Rd → Rd that is purported to be c-
contracting, meaning that for all points x, y ∈ [0, 1]n we have d(f(x), f(y)) ≤ c ·d(x, y), where
c is a constant satisfying 0 < c < 1, and d is a distance metric. Banach’s fixpoint theorem
states that if f is contracting, then it has a unique fixpoint [3], meaning that there is a unique
point x ∈ Rd such that f(x) = x.

P-LCP. The P-matrix linear complementarity problem (P-LCP) is a variant of the linear comple-
mentarity problem in which the input matrix is a P-matrix [14]. An interesting property of
this problem is that, if the input matrix actually is a P-matrix, then the problem is guaranteed
to have a unique solution [14]. Designing a polynomial-time algorithm for P-LCP has been
open for decades, at least since the 1978 paper of Murty [62] that provided exponential-time
examples for Lemke’s algorithm [54] for P-LCPs.
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USO. A unique sink orientation (USO) is an orientation of the edges of an n-dimensional hypercube
such that every face of the cube has a unique sink. Since the entire cube is a face of itself,
this means that there is a unique vertex of the cube that is a sink, meaning that all edges are
oriented inwards. The USO problem is to find this unique sink.

All of these problems are most naturally stated as promise problems. This is because we have
no way of verifying up front whether a function is contracting, whether a matrix is a P-matrix,
or whether an orientation is a USO. Hence, it makes sense, for example, to study the contraction
problem where it is promised that the function f is contracting, and likewise for the other two.

However, each of these problems can be turned into non-promise problems that lie in TFNP. In
the case of Contraction, if the function f is not contracting, then there exists a short certificate
of this fact. Specifically, any pair of points x, y ∈ Rd such that d(f(x), f(y)) > c · d(x, y) give an
explicit proof that the function f is not contracting. We call these violations, since they witness a
violation of the promise that is inherent in the problem.

So Contraction can be formulated as the non-promise problem of either finding a solution, or
finding a violation. This problem is in TFNP because in the case where there is not a unique solution,
there must exist a violation of the promise. The P-LCP and USO problems also have violations
that can be witnessed by short certificates, and so they can be turned into non-promise problems
contained in the same way, and these problems also lie in TFNP.

For Contraction and P-LCP we actually have the stronger result that both problems are in
CLS [17]. Prior to this work USO was not known to lie in any non-trivial subclass of TFNP, and
placing USO into a non-trivial subclass of TFNP was identified as an interesting open problem by
Kalai [51, Problem 6].

We remark that not every problem in CLS has the uniqueness properties that we identify above.
For example, the KKT problem [17] lies in CLS, but has no apparent notion of having a unique
solution. The problems that we identify here seem to share the special property that there is a
natural promise version of the problem, and that promise problem always has a unique solution.

1.1 Our contribution

In this paper, we define a complexity class that naturally captures the properties exhibited by
problems like Contraction, P-LCP, and USO. In fact, we define two new sub-classes of CLS.

End of potential line. The complexity class EOPL contains every problem that can be reduced
in polynomial time to the problem EndOfPotentialLine, which we define in this paper (Defini-
tion 9). The EndOfPotentialLine problem unifies in an extremely natural way the circuit-based
views of PPAD and of PLS. The canonical PPAD-complete problem is EndOfLine, a problem that
provides us with an exponentially large graph consisting of lines and cycles, and asks us to find
the end of one of the lines. The canonical PLS-complete problem provides us with an exponentially
large DAG, whose acyclicity is guaranteed by the existence of a potential function that increases
along each edge. The problem EndOfPotentialLine is an instance of EndOfLine that also has
a potential function that increases along each edge.

So the class EOPL captures problems that admit a single combinatorial proof of their joint
membership in the classes PPAD of fixpoint problems and PLS of local search problems, and is
a combinatorially-defined alternative to the class CLS. We are able to show that EOPL ⊆ CLS

(Corollary 11), by providing a polynomial-time reduction from EndOfPotentialLine to the
EndOfMeteredLine problem defined by Hubáček and Yogev [45], which they have shown to
lie in CLS.
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We remark that it is an interesting open problem to determine whether EOPL = CLS. The
inspiration behind both classes was to capture problems in PPAD ∩ PLS. The class CLS does this
by affixing a potential function to the PPAD-complete Brouwer fixpoint problem, while EOPL does
this affixing a potential function to the PPAD-complete problem EndOfLine. The class EOPL is
not the main focus of this paper, however.

Unique end of potential line. An EndOfPotentialLine instance consists of an exponentially
large graph that contains only lines (the cycles that can appear in EndOfLine instances are ruled
out by the potential function.) The problem explicitly gives us the start of one of these lines. A
solution to the problem is a vertex that is at the end of any line, other than the given start vertex.
We could find a solution by following the line from the start vertex until we find the other end,
although that may take exponential time. There may be many other lines in the graph though, and
the starts and ends of these lines are also solutions.

We define the promise-problem PromiseUniqueEOPL, in which it is promised that there is a
unique line in the graph. This line must be the one that begins at the given starting vertex, and so
the only solution to the problem is the other end of that line. Thus, if the promise is satisfied, the
problem has a unique solution. We can define the promise-class PromiseUEOPL which contains all
promise-problems that can be reduced in polynomial-time to PromiseUniqueEOPL.

We are not just studying promise problems in this paper, however. We can turn PromiseU-

niqueEOPL into a non-promise problem by defining appropriate violations. One might imagine
that a suitable violation would be a vertex that is the start of a second line. Indeed, if we are
given the promise that there is no start to a second line, then we do obtain the problem Promise-

UniqueEOPL. However, with just this violation, we obtain a problem that is identical to EndOf-

PotentialLine, which is not what we are intending to capture.
Instead we add a violation that captures any pair of vertices v and u that are provably on

different lines, even if v and u are in the middle of their respective lines. We do this by using
the potential function: if v and u have the same potential, then they must be on different lines,
and likewise if the potential of u lies between the potential of v and the potential of the successor
of v. We formalise this as the problem UniqueEOPL (Definition 12), and we define the complexity
class UniqueEOPL to contain all (non-promise) problems that can be reduced in polynomial-time to
UniqueEOPL.

We have that UniqueEOPL ⊆ EOPL by definition, since UniqueEOPL simply adds an extra
type of violation to EndOfPotentialLine. We remark that this new violation makes the problem
substantially different from EndOfPotentialLine. In EndOfPotentialLine only the starts
and ends of lines are solutions, while in UniqueEOPL there are many more solutions whenever there
is more than one line in the instance. As such, we view UniqueEOPL as capturing a distinct subclass
of problems in EOPL, and we view it as the natural class for promise-problems in PPAD∩PLS that
have unique solutions.

UEOPL containment results. We show that USO, P-LCP, and a variant of the Contraction
problem all lie in UniqueEOPL. We define the concept of a promise-preserving reduction, which is a
polynomial-time reduction between two problems A and B, with the property that if A is promised
to have a unique solution, then the instance of B that is produced by the reduction will also have a
unique solution. All of the reductions that we produce in this paper are promise-preserving, which
means that whenever we show that a problem is in UniqueEOPL, we also get that the corresponding
promise problem lies in PromiseUEOPL.

Theorem 1 (cf. Theorem 28). USO is in UniqueEOPL under promise-preserving reductions.
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For the USO problem, our UniqueEOPL containment result substantially advances our knowledge
about the problem. Prior to this work, the problem was only known to lie in TFNP, and Kalai [51,
Problem 6] had posed the challenge to place it in some non-trivial subclass of TFNP. Our result
places USO in UniqueEOPL, EOPL, CLS, PPAD (and hence PPA and PPP), and PLS, and so we
answer Kalai’s challenge by placing the problem in all of the standard subclasses of TFNP.

This result is in some sense surprising. Although every face of a USO has a unique sink, the
orientation itself may contain cycles, and so there is no obvious way to define a potential function
for the problem. Moreover, none of the well-known algorithms for solving USOs [40, 74] have the
line-following nature needed to produce an EndOfLine instance. Nevertheless, our result shows
that one can produce an EndOfLine instance that has potential function for the USO problem.

Theorem 2 (cf. Theorem 38 and Theorem 39). There are two different variants of the P-LCP
problem, both of which lie in UniqueEOPL under promise-preserving reductions.

We actually provide two different promise-preserving reductions from P-LCP to UniqueEOPL.
The issue here is that there are many possible types of violation that one can define for P-LCP. So
far, the standard formulation of P-LCP either asks for a solution, or a non-positive principle minor
of the input matrix. A matrix is a P-matrix if and only if all of its principle minors are positive,
and so this is sufficient to define a total problem.

The reduction from P-LCP to EndOfLine can map the start and end of each line back to
either a solution or a non-positive principle minor. Our problem is that the extra violations in the
UniqueEOPL instance, corresponding to a proof that there are multiple lines, do not easily map
back to non-positive principle minors. They do however map back to other short certificates that
the input matrix is not a P-matrix. For example, a matrix is a P-matrix if and only if it does not
reverse the sign of any non-zero vector [14]. So we can also formulate P-LCP as a total problem
that asks for a solution, or a non-zero vector whose sign is reversed.

We study the following variants of P-LCP. The first variant asks us to either find a solution, or
find a non-positive principle minor, or find a non-zero vector whose sign is reversed. The second
variant asks us to either find a solution, or a non-positive principle minor, or a third type of violation
whose definition is inspired by a violation of the USO property. In all cases, we either solve the
problem, or obtain a short certificate that the input was not a P-matrix, although the format of
these certificates can vary.

It is not clear whether these variants are equivalent under polynomial-time reductions, as one
would need to be able to map one type of violation to the other efficiently. We remark that if one
is only interested in the promise problem, then the choice of violations is irrelevant. Both of our
reductions show that promise P-LCP lies in PromiseUEOPL.

Theorem 3 (cf. Theorem 34). Finding the fixpoint of a piecewise linear contraction map in the ℓp
norm is in UniqueEOPL under promise-preserving reductions, for any p ∈ N ∪ {∞}.

For Contraction, we study contraction maps specified by piecewise linear functions that are
contracting with respect to an ℓp norm. This differs the contraction problem studied previously [17],
where the function is given by an arbitrary arithmetic circuit. To see why this is necessary, note
that although every contraction map has a unique fixpoint, if we allow the function to be specified
by an arbitrary arithmetic circuit, then there is no guarantee that the fixpoint is rational. So it is
not clear whether finding the exact fixpoint of a contraction map even lies in FNP.

Prior work has avoided this issue by instead asking for an approximate fixpoint, and the prob-
lem of finding an approximate fixpoint of a contraction map specified by an arithmetic circuit lies
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in CLS [17]. However, if we look for approximate fixpoints, then we destroy the uniqueness prop-
erty that we are interested in, because there are infinitely many approximate fixpoint solutions
surrounding any exact fixpoint.

So, we study the problem where the function is represented by a LinearFIXP arithmetic cir-
cuit [22], which is a circuit in which the multiplication of two variables is disallowed. This ensures
that, when the function actually is contracting, there is a unique rational fixpoint that we can pro-
duce. We note that this is still an interesting class of contraction maps, since it is powerful enough
to represent simple-stochastic games [22].

We place this problem in UniqueEOPL via a promise-preserving reduction. Our reduction can
produce multiple types of violation. In addition to the standard violation of a pair of points
at which f is not contracting, our reduction sometimes produces a different type of violation (cf.
Definition 32), which while not giving an explicit violation of contraction, still gives a short certificate
that f is not contracting.

Theorem 4. The following problems are in UniqueEOPL

• Solving a parity game.

• Solving a mean-payoff game.

• Solving a discounted game.

• Solving a simple-stochastic game.

• Solving the ARRIVAL problem.

Finally, we observe that our results prove that several other problems lie in UniqueEOPL. The
simple-stochastic game (SSG) problem is known to reduce to Contraction [22] and to P-LCP [39],
and thus our two results give two separate proofs that the SSG problem lies in UniqueEOPL. It is
known that discounted games can be reduced to SSGs [77], mean-payoff games can be reduced to
discounted games [77], and parity games can be reduced to mean-payoff games [65]. So all of these
problems lie in UniqueEOPL too. Finally, Gärtner et al. [35] noted that the ARRIVAL problem [20]
lies in EOPL, and in fact their EndOfPotentialLine instance always contains exactly one line,
and so the problem also lies in UniqueEOPL.

We remark that none of these are promise-problems. Each of them can be formulated so that
they unconditionally have a unique solution. Hence, these problems seem to be easier than the
problems captured by UniqueEOPL, since problems that are complete for UniqueEOPL only have a
unique solution conditioned on the promise that there are no violations.

A UEOPL-complete problem. In addition to our containment results, we also give a UniqueEOPL-
completeness result. Specifically, we show that One-Permutation Discrete Contraction (OPDC) is
complete for UniqueEOPL.

OPDC is a problem that is inspired by both Contraction and USO. Intuitively, it is a discrete
version of Contraction. The inputs to the problem are (a concise representation of) a discrete grid
of points P covering the space [0, 1]d, and a set of direction functions D = Di=1...d, where each
function Di has the form Di : P → {up, down, zero}. To discretize a map f : [0, 1]d → [0, 1]d we
simply define Di so that

• Di(p) = up whenever f(p)i > pi,

• Di(p) = zero whenever f(p)i = pi, and
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• Di(p) = down whenever f(p)i < pi.

So the direction function for dimension i simply points in the direction that f moves in dimension
i. To solve the problem, we seek a point p ∈ P such that Di(p) = zero for all i, which corresponds
to a fixpoint of f .

Why is the problem called One Permutation Discrete Contraction? This is due to some extra
constraints that we place on the problem. An interesting property of a function f that is contracting
with respect to an ℓp norm is that if we restrict the function to a slice, meaning that we fix some of
the coordinates and let others vary, then the resulting function is still contracting. We encode this
property into the OPDC problem, by insisting that slices should also have unique fixpoints when
we ignore the dimensions not in the slice. However, we do not do this for all slices, but only for
i-slices in which the last d− i+1 coordinates have been fixed. In this sense, our definition depends
on the order of the dimensions. If we rearranged the dimensions into a different permutation, then
we would obtain a different problem, so each problem corresponds to some particular permutation
of the dimensions. The name of the problem was chosen to reflect this fact.

We remark that, although the problem was formulated as a discretization of Contraction, it is
also closely related to the USO problem. Specifically, if we take the set of points P to be the {0, 1}n
hypercube, then the direction functions actually specify an orientation of the cube. Moreover, the
condition that every slice should have have unique fixpoint exactly corresponds to the USO property
that every face should have a unique sink. However, since we only insist on this property for i-slices,
OPDC can be viewed as a variant of USO in which only some of the faces have unique sinks.

Theorem 5 (cf. Theorem 21). OPDC lies in UniqueEOPL under promise-preserving reductions.

OPDC actually plays a central role in the paper. We reduce Piecewise-Linear Contraction, USO,
and P-LCP to it, and we then reduce OPDC to UniqueEOPL, as shown in Figure 1. The reduction
from OPDC to UniqueEOPL is by far the most difficult step.

In the case where the promise is satisfied, meaning that the OPDC instance has a unique fixpoint,
the reduction defines a single line that starts at the point p ∈ P with pi = 0 for all i, and ends
at the unique fixpoint. This line walks around the grid, following the direction functions given by
D in a specific manner that ensures that it will find the fixpoint, while also decreasing a potential
function at each step. We need to very carefully define the vertices of this line, to ensure that the
line is unique, and for this we crucially rely on the fact that every i-slice also has a unique fixpoint.

This does not get us all the way to UniqueEOPL though, because the line we describe above
lacks a predecessor circuit. In UniqueEOPL, each vertex has a predecessor, a successor and a
potential, but the line we construct only gives successors and potentials to each vertex. To resolve
this, we apply the pebbling game reversibility argument introduced by Bitansky et al [4], and later
improved by Hubáček and Yogev [45]. Using this technique allows us to produce a predecessor
circuit, as long as there is exactly one line in the instance.

Our reduction also handles violations in the OPDC instance. The key challenge here is that the
pebbling game argument assumes that there is exactly one line, and so far it has only been applied to
promise-problems. We show that the argument can be extended to work with non-promise problems
that may have multiple lines. This can cause the argument to break, specifically when multiple lines
are detected, but we are able to show that these can be mapped back to violations in the OPDC
instance.

Theorem 6 (cf. Theorem 25). OPDC is UniqueEOPL-complete under promise-preserving reduc-
tions, even when the set of points P is a hypercube.
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By definition
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Figure 1: The relationship of UniqueEOPL to
other classes and problems.

We show that OPDC is UniqueEOPL-hard
by giving a polynomial-time promise-preserving
reduction from UniqueEOPL to OPDC. This
means that OPDC is UniqueEOPL-complete,
and the variant of OPDC in which it is promised
that there are no violations is PromiseUEOPL-
complete.

Our reduction produces an OPDC in-
stances where the set of points P is the
boolean hypercube {0, 1}n. In the case where
the UniqueEOPL instance has no violations,
meaning that it contains a single line, the reduc-
tion embeds this line into the hypercube. To do
this, it splits the line in half. The second half is
embedded into a particular sub-cube, while the
first half is embedded into all other sub-cube.
This process is recursive, so each half of the line
is again split in half, and further embedded into
sub-cubes. The reduction ensures that the only
fixpoint of the instance corresponds to the end
of the line. If the UniqueEOPL instance does
have violations, then this embedding may fail.
However, in any instance where the embedding
fails, we are able to produce a violation for the
original UniqueEOPL instance.

We remark that this hardness reduction
makes significant progress towards showing a
hardness result for Contraction and USO. As we have mentioned, OPDC is a discrete variant of
Contraction, and when the set of points is a hypercube, the problem is also very similar to USO.
The key difference is that OPDC insists that only i-slices should have a unique fixpoint, whereas
Contraction and USO insist that all slices should have unique fixpoints. To show a hardness result
for either of those two problems, one would need to produce an OPDC instance with that property.

New algorithms. Our final contributions are algorithmic and arise from the structural insights
provided by our containment results. Using the ideas from our reduction from Piecewise-Linear
Contraction to UniqueEOPL, we obtain the first polynomial-time algorithms for finding fixpoints
of Piecewise-Linear Contraction maps in fixed dimension for any ℓp norm, where previously such
algorithms were only known for ℓ2 and ℓ∞ norms. If this input is not a contraction map, then our
algorithm may instead produce a short certificate that the function is not contracting.

We also show that these results can be extended to the case where the contraction map is given
by a general arithmetic circuit. In this case, we provide polynomial-time algorithm that either finds
an approximate fixpoint, or produces a short certificate that the function is not contracting.

An interesting consequence of our algorithms is that it is now unlikely that ℓp-norm Contraction
in fixed-dimension is CLS-complete. This should be contrasted to the recent result of Daskalakis et
al. [18], who showed the variant of the contraction problem where a metric is given as part of the
input is CLS-complete, even in dimension 3. Our result implies that it is unlikely that this can be
directly extended to ℓp norms, at least not without drastically increasing the number of dimensions
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in the instance.
Finally, as noted in [35], one of our reductions from P-LCP to EndOfPotentialLine allows

a technique of Aldous [2] to be applied, which in turn gives the fastest known randomized algorithm
for P-LCP.

1.2 Related work

CLS. Recent work by Hubáček and Yogev [45] proved lower bounds for CLS. They introduced a
problem known as EndOfMeteredLine which they showed was in CLS, and for which they proved
a query complexity lower bound of Ω(2n/2/

√
n) and hardness under the assumption that there were

one-way permutations and indistinguishability obfuscators for problems in P/poly. Another recent
result showed that the search version of the Colorful Carathéodory Theorem is in PPAD∩PLS, and
left open whether the problem is also in CLS [60].

Until recently, it was not known whether there was a natural CLS-complete problem. In their
original paper, Daskalakis and Papadimitriou suggested two natural candidates for CLS-complete
problems, ContractionMap and P-LCP, which we study in this paper. Recently, two variants
of ContractionMap have been shown to be CLS-complete. Whereas in the original definition of
ContractionMap it is assumed that an ℓp or ℓ∞ norm is fixed, and the contraction property is
measured with respect to the metric induced by this fixed norm, in these two new complete variants,
a metric [18] and meta-metric [24] are given as input to the problem2.

P-LCP. Papadimitriou showed that P-LCP, the problem of solving the LCP or returning a vio-
lation of the P-matrix property, is in PPAD [64] using Lemke’s algorithm. The relationship between
Lemke’s algorithm and PPAD has been studied by Adler and Verma [1]. Later, Daskalakis and Pa-
padimitrou showed that P-LCP is in CLS [17], using the potential reduction method in [53]. Many
algorithms for P-LCP have been studied, e.g., [52,61,62]. However, no polynomial-time algorithms
are known for P-LCP, or for the promise version where one can assume that the input matrix is a
P-matrix.

The best known algorithms for P-LCP are based on a reduction to Unique Sink Orientations
(USOs) of cubes [73]. For an P-matrix LCP of size n, the USO algorithms of [74] apply, and give
a deterministic algorithm that runs in time O(1.61n) and a randomized algorithm with expected
running time O(1.43n). The application of Aldous’ algorithm [2] to the UniqueEOPL instance
that we produce from a P-matrix LCP takes expected time 2n/2 ·poly(n) = O(1.4143n) in the worst
case.

Unique Sink Orientations. In this paper we study USOs of cubes, a problem that was first stud-
ied by Stickney and Watson [73] in the context of P-matrix LCPs. A USO arising from a P-matrix
may be cyclic. Motivating by Linear Programming, acylic, AUSOs have also been studied, both
for cubes and general polytopes [37, 42]. Recently Gärtner and Thomas studied the computational
complexity of recognizing USOs and AUSOs [38]. They found that the problem is coNP-complete
for USOs and PSPACE-complete for AUSOs. A series of papers provide upper and lower bounds
for specific algorithms for solving (A)USOs, including [28, 29, 40, 56, 69, 74, 75]. An AUSOs on a
n-dimensional cube can be solved in subexponential time, by the RANDOM-FACET algorithm,
which is essentially tight for this algorithm [34]. An almost quadratic lower bound on the number of
vertex evaluations needed to solve a general USO is known [68]; unlike for AUSOs, the best running

2 The result for meta-metrics appeared in an unpublished earlier version of this paper [24] that contained only
a small fraction of the results from the current version. This result for meta-metrics is dropped from this current
version given that it has been superseded, and is not important for our main message.
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times known for general USOs, as for P-matrix LCPs, are exponential. To be best of our knowledge,
we are first to study the general problem of solving a USO from a complexity-theoretic point of
view.

Contraction. The problem of computing a fixpoint of a continuous map f : D 7→ D with Lipschitz
constant c has been extensively studied, in both continuous and discrete variants [9, 10, 19]. For
arbitrary maps with c > 1, exponential bounds on the query complexity of computing fixpoints are
known [8, 41]. In [6, 44, 72], algorithms for computing fixpoints for specialized maps such as weakly
(c = 1) or strictly (c < 1) contracting maps are studied. For both cases, algorithms are known
for the case of ℓ2 and ℓ∞ norms, both for absolute approximation (||x − x∗|| ≤ ǫ where x∗ is an
exact fixpoint) and relative approximation (||x − f(x)|| ≤ ǫ). A number of algorithms are known
for the ℓ2 norm handling both types of approximation [43, 63, 71]. There is an exponential lower
bound for absolute approximation with c = 1 [71]. For relative approximation and a domain of
dimension d, an O(d · log 1/ǫ) time algorithm is known [43]. For absolute approximation with c < 1,
an ellipsoid-based algorithm with time complexity O(d · [log(1/ǫ)+log(1/(1−c))]) is known [43]. For
the ℓ∞ norm, [70] gave an algorithm to find an ǫ-relative approximation in time O(log(1/ǫ)d) which
is polynomial for constant d. In summary, for the ℓ2 norm polynomial-time algorithms are known
for strictly contracting maps; for the ℓ∞ norm algorithms that are polynomial time for constant
dimension are known. For arbitrary ℓp norms, to the best of our knowledge, no polynomial-time
algorithms for constant dimension were known before this paper.

Infinite games. Simple Stochastic Games are related to Parity games, which are an extensively
studied class of two-player zero-sum infinite games that capture important problems in formal
verification and logic [21]. There is a sequence of polynomial-time reductions from parity games
to mean-payoff games to discounted games to simple stochastic games [36, 39, 50, 65, 77]. The
complexity of solving these problems is unresolved and has received much attention over many
years (see, for example, [5, 13, 27, 28, 48, 77]). In a recent breakthrough [7], a quasi-polynomial
time algorithm for parity games have been devised, and there are now several algorithms with
this running time [7, 26, 49]. For mean-payoff, discounted, and simple stochastic games, the best-
known algorithms run in randomized subexponential time [55]. The existence of a polynomial time
algorithm for solving any of these games would be a major breakthrough. Simple stochastic games
can also be reduced in polynomial time to Piecewise-Linear Contraction with the ℓ∞ norm [22].

1.3 Future directions

A clear direction for future work is to show that further problems are UniqueEOPL-complete. We
have several conjectures.

Conjecture 1. USO is hard for UniqueEOPL.

We think that, among our three motivating problems, USO is the most likely to be UniqueEOPL-
complete. Our hardness proof for OPDC already goes some way towards proving this, since we
showed that OPDC was hard even when the set of points is a hypercube. The key difference
between OPDC on a hypercube and USO is that OPDC only requires that the faces corresponding
to i-slices should have unique sinks, while USO requires that all faces should have unique sinks.

Conjecture 2. Piecewise-Linear Contraction in an ℓp norm is hard for UniqueEOPL.

Our OPDC hardness result also goes some way towards showing that Piecewise-Linear Contrac-
tion is hard, however there are more barriers to overcome here. In addition to the i-slice vs. all
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slice issue, we would also need to convert the discrete OPDC problem to the continuous contraction
problem. Converting discrete problems to continuous fixpoint problems has been well-studied in
the context of PPAD-hardness reductions [16, 59], but here the additional challenge is to carry out
such a reduction while maintaining the contraction property.

Aside from hardness, we also think that the relationship between Contraction and USO should be
explored further. Our formulation of the OPDC problem exposes significant similarities between the
two problems, which until this point have not been recognised. Can we reduce USO to Contraction
in polynomial time?

Conjecture 3. P-LCP is hard for UniqueEOPL.

Of all of our conjectures, this will be the most difficult to prove. Since P-LCP reduces to USO,
the hardness of USO should be resolved before we attempt to show that P-LCP is hard. One
possible avenue towards showing the hardness of P-LCP might be to reduce from Piecewise-Linear
Contraction. Our UniqueEOPL containment proof for Piecewise-Linear Contraction makes explicit
use of the fact that the problem can be formulated as an LCP, although in that case the resulting
matrix is not a P-matrix. Can we modify the reduction to produce a P-matrix?

Conjecture 4. UniqueEOPL ⊂ EOPL = CLS.

The question of EOPL vs CLS is unresolved, and we actually think it could go either way. One
could show that EOPL = CLS by placing either of the two known CLS-complete Contraction variants
into EOPL [18,24]. If the two classes are actually distinct, then it is interesting to ask which of the
problems in CLS are also in EOPL.

On the other hand, we believe that UniqueEOPL is a strict subset of EOPL. The evidence for
this is that the extra violation in UniqueEOPL that does not appear in EndOfPotentialLine

changes the problem significantly. This new violation will introduce many new solutions whenever
there are multiple lines in the instance, and so it is unlikely, in our view, that one could reduce
EndOfPotentialLine to UniqueEOPL. Of course, there is no hope to unconditionally prove
that UniqueEOPL ⊂ EOPL, but we can ask for further evidence to support the idea. For example,
can oracle separations shed any light on the issue?

Finally, we remark that UniqueEOPL is the closest complexity class to FP, among all the standard
sub-classes of TFNP. However, we still think that further subdivisions of UniqueEOPL will be
needed. Specifically, we do not believe that simple stochastic games, or any of the problems that
can be reduced to them, are UniqueEOPL-complete, since all of these problems have unique solutions
unconditionally. Further research will be needed to classify these problems.

2 Unique End of Potential Line

In this section we define two new complexity classes called EOPL and UniqueEOPL. These two
classes are defined by merging the definitions of PPAD and PLS, so we will begin by recapping those
classes.

The complexity class PPAD contains every problem that can be reduced to EndOfLine [64].

Definition 7 (EndOfLine). Given Boolean circuits S,P : {0, 1}n → {0, 1}n such that P (0n) =
0n 6= S(0n), find one of the following:

(E1) A point x ∈ {0, 1}n such that P (S(x)) 6= x.

(E2) A point x ∈ {0, 1}n such that x 6= 0n and S(P (x)) 6= x.
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Intuitively, the problem defines an exponentially large graph where all vertices vhave in-degree
and out-degree at most one. Each bit-string in {0, 1}n defines a vertex, while the functions S and
P define successor and predecessor functions for each vertex. A directed edge exists from vertex x
and y if and only if S(x) = y and P (y) = x. Any vertex x for which P (S(x)) 6= x has no outgoing
edge, while every vertex y with S(P (x)) 6= x has no incoming edge.

The condition that P (0n) = 0n 6= S(0n) specifies that the vertex 0n has no incoming edge, and
so it is the start of a line. To solve the problem, we must find either a solution of type (E1), which
is a vertex x that is the end of a line, or a solution of type (E2), which is a vertex x other than 0n

that is the start of a line. Since we know that the graph has at least one source, there must at least
exist a solution of type (E1), and so the problem is in TFNP.

The complexity class PLS contains every problem that can be reduced to the SinkOfDag3

Definition 8 (SinkOfDag). Given a Boolean circuit S : {0, 1}n → {0, 1}n such that S(0n) 6= 0n,
and a circuit V : {0, 1}n → {0, 1, . . . , 2m − 1} find:

(S1) A vertex x ∈ {0, 1}n such that S(x) 6= x and either S(S(x)) = x or V (S(x)) ≤ V (x).

Once again, the problem specifies an exponentially large graph on the vertex set {0, 1}n, but
this time the only guarantee is that each vertex has out-degree one. The circuit S gives a successor
function. In this problem, some bit-strings do not correspond to vertices in the graph. Specifically,
if we have S(x) = x for some bit-string x ∈ {0, 1}n, then x does not encode a vertex.

The second circuit V gives a potential to each vertex from the set {0, 1, . . . , 2m − 1}. An edge
exists in the graph if and only if the potential increases along that edge. Specifically, there is an
edge from x to y if and only if S(x) = y and V (x) < V (y). This restriction means that the graph
must be a DAG.

To solve the problem, we must find a sink of the DAG, ie., a vertex that has no outgoing edge.
Since we require that S(0n) 6= 0n, we know that the DAG has at least one vertex, and therefore it
must also have at least one sink. This places the problem in TFNP.

End of potential line. We define a new problem called EndOfPotentialLine, which merges
the two definitions of EndOfLine and SinkOfDag into a single problem.

Definition 9 (EndOfPotentialLine). Given Boolean circuits S,P : {0, 1}n → {0, 1}n such that
P (0n) = 0n 6= S(0n) and a Boolean circuit V : {0, 1}n → {0, 1, . . . , 2m − 1} such that V (0n) = 0
find one of the following:

(R1) A point x ∈ {0, 1}n such that S(P (x)) 6= x 6= 0n or P (S(x)) 6= x.

(R2) A point x ∈ {0, 1}n such that x 6= S(x), P (S(x)) = x, and V (S(x))− V (x) ≤ 0.

This problem defines an exponentially large graph where each vertex has in-degree and out-
degree at most one (as in EndOfLine) that is also a DAG (as in SinkOfDag). An edge exists
from x to y if and only if S(x) = y, P (y) = x, and V (x) < V (y). As in SinkOfDag, only some
bit-string encode vertices, and we adopt the same idea that if S(x) = x for some bit-string x, then
x does not encode a vertex.

So we have a single instance that is simultaneously an instance of EndOfLine and an instance
of SinkOfDag. To solve the problem, it suffices to solve either of these problems. Solutions of
type (R1) consist of vertices x that are either the end of a line, or the start of a line (excluding
the case where x = 0n). Solutions of type (R2) consist of any point x where the potential does not
strictly increase on the edge between x and S(x).

3While this is not the standard definition of PLS, it has been observed that the standard PLS-complete problem
can easily be recast as a SinkOfDag instance [64].
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The complexity class EOPL. We define the complexity class EOPL to consist of all problems
that can be reduced in polynomial time to EndOfPotentialLine. By definition the problem
lies in PPAD ∩ PLS, since one can simply ignore solutions of type (R2) to obtain an EndOfLine

instance, and ignore solutions of type (R1) to obtain a SinkOfDag instance.
In fact we are able to show the stronger result that EOPL ⊆ CLS. To do this, we reduce

EndOfPotentialLine to the problem EndOfMeteredLine, which was defined by Hubáček
and Yogev, who also showed that the problem lies in CLS [45]. The main difference between
the two problems is that EndOfMeteredLine requires that the potential increases by exactly
one along each edge. The reduction from EndOfMeteredLine to EndOfPotentialLine is
straightforward. The other direction is more involved, and requires us to insert new vertices into
the instance. Specifically, if there is an edge between a vertex x and a vertex y, but V (y) 6= V (x)+1,
then we need to insert a new chain of vertices of length V (y) − V (x)− 1 between x and y, so that
we can ensure that the potential always increases by exactly one along each edge. The full details
are given in Appendix A, where the following theorem is proved.

Theorem 10. EndOfMeteredLine and EndOfPotentialLine are polynomial-time equivalent.

As we have mentioned, Hubáček and Yogev have shown that EndOfMeteredLine lies in
CLS [45], so we get the following corollary.

Corollary 11. EOPL ⊆ CLS.

Problems with unique solutions. The problems that we study in this paper all share a specific
set of properties that cause them to produce an interesting subclass of EndOfPotentialLine

instances. Each of the problems that we study have a promise, and if the promise is satisfied the
problem has a unique solution.

For example, in the Contraction problem, we are given a function f : [0, 1]d → [0, 1]d that is
promised to be contracting, meaning that d(f(x), f(y)) ≤ c ·f(x, y) for some positive constant c < 1
and some distance metric d. We cannot efficiently check whether f is actually contracting, but if it is,
then Banach’s fixpoint theorem states that f has a unique fixpoint [3]. If f is not contracting, then
there will exist violations that can be witnessed by short certificates. For Contraction, a violation
is any pair of points x, y such that d(f(x), f(y)) > c · f(x, y).

We can use violations to formulate the problem as a non-promise problem that lies in TFNP.
Specifically, if we ask for either a fixpoint or a violation of contraction, then the contraction problem
is total, because if there is no fixpoint, then the contrapositive of Banach’s theorem implies that
there must exist a violation of contraction.

Unique End of Potential Line. When we place this type of problem in EOPL, we obtain an
instance with extra properties. Specifically, if the original problem has no violations, meaning that
the promise is satisfied, then the EndOfPotentialLine instance will contain a single line that
starts at 0n, and ends at the unique solution of the original problem. This means that, if we ever
find two distinct lines in our EndOfPotentialLine instance, then we immediately know that
original instance fails to satisfy the promise.

We define the following problem, which is intended to capture these properties.

Definition 12 (UniqueEOPL). Given Boolean circuits S,P : {0, 1}n → {0, 1}n such that P (0n) =
0n 6= S(0n) and a Boolean circuit V : {0, 1}n → {0, 1, . . . , 2m − 1} such that V (0n) = 0 find one of
the following:

(U1) A point x ∈ {0, 1}n such that P (S(x)) 6= x.
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(UV1) A point x ∈ {0, 1}n such that x 6= S(x), P (S(x)) = x, and V (S(x))− V (x) ≤ 0.

(UV2) A point x ∈ {0, 1}n such that S(P (x)) 6= x 6= 0n.

(UV3) Two points x, y ∈ {0, 1}n, such that x 6= y, x 6= S(x), y 6= S(y), and either V (x) = V (y) or
V (x) < V (y) < S(x).

0

0n
1 2 3

x
5

S(x)

7

UV1

8

UV2

9

U1

2

UV2

3 4
y

5 7

U1

Figure 2: Example of solutions, including violations, for UniqueEOPL. This figure should be
viewed in color. In this example we have 3 lines. The main line starts at 0n and ends with a UV1
solution, when the successor of the red vertex, which has potential 7, has lower potential, 2. That
successor is thus the start of another line, which is a UV2 solution. There is a final line of length
one to the bottom right, which also has a start, which is another UV2 solution. This line does not
intersect either of the other two lines in terms of the ranges of their potential values, so does not
contribute to UV3 solutions. The main line and top line do intersect in terms of the ranges of their
potential values and they contribute many UV3 solutions. We highlight one on the diagram with
x, S(x), and y, such that V (x) < V (y) < V (S(x)). There are two U1 solutions at the end of the
top and bottom right lines. Finally, we note that if there were no violations, then there must be
one line and a single U1 solution at the end of the main line.

We split the solutions into two types: proper solutions and violations. Solutions of type (U1)
encode the end of any line, which are the proper solutions to the problem. There are three types
of violation solution. Violations of type (UV1) are vertices at which the potential fails to strictly
increase. Violations of type (UV2) ask for the start of any line, other than the vertex 0n. Clearly,
if there are two sources in the graph, then there are two lines.

Violations of type (UV3) give another witness that the instance contains more than one line.
This is encoded by a pair of vertices x and y, with either V (x) = V (y), or with the property that
the potential of y lies between the potential of x and S(x). Since we require the potential to strictly
increase along every edge of a line, this means that y cannot lie on the same line as x, since all
vertices before x in the line have potential strictly less than V (x), while all vertices after S(x) have
potential strictly greater than V (S(x)).

We remark that (UV2) by itself already captures the property “there is a unique line”, since if
a second line cannot start, then it cannot exist. So why do we insist on the extra type of violation
given by (UV3)? Violations of type (UV3) allow us to solve the problem immediately if we ever
detect the existence of multiple lines. Note that this is not the case if we only have solutions of type
(UV2), since we may find two vertices on two different lines, but both of them may be exponentially
many steps away from the start of their respective lines.

By adding (UV3) solutions, we make the problem easier than EndOfPotentialLine (note
that without UV3, the problem is actually the same as EndOfPotentialLine). This means that
problems that can be reduced to UniqueEOPL have the very special property that, if at any point
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you detect the existence of multiple lines, either through the start of a second line, or through a
violation in (UV3), then you immediately get a violation in the original problem without any extra
effort. All of the problems that we study in this paper share this property.

The complexity class UniqueEOPL. We define the complexity class UniqueEOPL to be the class
of problems that can be reduced in polynomial time to UniqueEOPL. We note that UniqueEOPL ⊆
EOPL is trivial, since the problem remains total even if we disallow solutions of type UV3.

For each of our problems, it is also interesting to consider the complexity of the promise variant,
in which it is guaranteed via a promise that no violations exist. We define PromiseUniqueEOPL

to be the promise version of UniqueEOPL in which 0n is the only start of a line (and hence there
are no solutions that are type (UV2) or (UV3)). We define the complexity class PromiseUEOPL to be
the class of promise problems that can be reduced in polynomial time to PromiseUniqueEOPL.

Promise-preserving reductions. The problem UniqueEOPL has the interesting property that,
if it is promised that there are no violation solutions, then there must be a unique solution. All of
the problems that we study in this paper share this property, and indeed when when we reduce them
to UniqueEOPL, the resulting instance will have a unique line whenever the original problem has
no violation solutions.

We formalise this by defining the concept of a promise-preserving reduction. This is a reduction
between two problems A and B, both of which have proper solutions and violation solutions. The
reduction is promise-preserving if, when it is promised that A has no violations, then the resulting
instance of B also has no violations. Hence, if we reduce a problem to UniqueEOPL via a chain
of promise-preserving reductions, and we know that there are no violations in the original problem,
then there is a unique line ending at the unique proper solution in the UniqueEOPL instance.

Note that this is more restrictive than a general reduction. We could in principle produce a
reduction that took an instance of A, where it is promised that there are no violations, and produce
an instance of B that sometimes contains violations. By using promise-preserving reductions, we
are showing that our problems have the natural properties that one would expect for a problem
in UniqueEOPL. Specifically, that the promise version has a unique solution, and that this can be
found by following the unique line in the UniqueEOPL instance.

One added bonus is that, if we show that a problem is in UniqueEOPL via a chain of promise-
preserving reductions, then we automatically get that the promise version of that problem, where it
is promised that there are no violations, lies in PromiseUEOPL. Moreover, if we show that a problem
is UniqueEOPL-complete via a promise-preserving reduction, then this also implies that the promise
version of that problem is PromiseUEOPL-complete.

3 One-Permutation Discrete Contraction

The One-Permutation Discrete Contraction (OPDC) problem will play a crucial role in our results.
We will show that the problem lies in UniqueEOPL, and we will then reduce both PL-Contraction

and Grid-USO to OPDC, thereby showing that those problems also lie in UniqueEOPL. We will
also show that UniqueEOPL can be reduced to OPDC, making this problem the first example of
a non-trivial UniqueEOPL-complete problem.

Direction functions. The OPDC can be seen as a discrete variant of the continuous contraction
problem. Recall that a contraction map is a function f : [0, 1]n → [0, 1]d that is contracting under a
metric d, i.e., d(f(x), f(y)) ≤ c ·f(x, y) for all x, y ∈ [0, 1]d and some constant c satisfying 0 < c < 1.
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Figure 3: Left: A direction function for the up/down dimension. Right: A direction function for
the left/right dimension. This figure should be viewed in color.

We will discretize the space by overlaying a grid of points on the [0, 1]d cube. Let [k] denote the
set {0, 1, . . . , k}. Given a tuple of grid widths (k1, k2, . . . , kd), we define the set

P (k1, k2, . . . , kd) = [k1]× [k2]× · · · × [kd].

We will refer to P (k1, k2, . . . , kd) simply as P when the grid widths are clear from the context. Note
that each point p ∈ P is a tuple (p1, p2, . . . , pd), where pi is an integer between 0 and ki, and this
point maps onto the point (p1/k1, p2/k2, . . . , pd/kd) ∈ [0, 1]d.

Instead of a single function f , in the discrete version of the problem we will use a family
of direction functions over the grid P . For each dimension i ≤ d, we have function Di : P →
{up, down, zero}. Intuitively, the natural reduction from a contraction map f to a family of direction
functions would, for each point p ∈ P and each dimension i ≤ d set:

• Di(p) = up whenever f(p)i > pi,

• Di(p) = down whenever f(p)i < pi, and

• Di(p) = zero whenever f(p)i = pi.

In other words, the function Di simply outputs whether f(p) moves up, down, or not at all in
dimension i. So a point p ∈ P with Di(p) = zero for all i would correspond to the fixpoint of f .
Note, however, that the grid may not actually contain the fixpoint of f , and so there may be no
point p satisfying Di(p) = zero for all i.

A two-dimensional example. To illustrate this definition, consider the two-dimensional instance
given in Figure 3, which we will use as a running example. It shows two direction functions: the
figure on the left shows a direction function for the up-down dimension, which we will call dimension
1 and illustrate using the color blue. The figure on the right shows a direction function for the left-
right dimension, which we will call dimension 2 and illustrate using the color red. Each square in
the figures represents a point in the discretized space, and the value of the direction function is
shown inside the box. Note that there is exactly one point p where D1(p) = D2(p) = zero, which is
the fixpoint that we seek.

Slices. We will frequently refer to subsets of P in which some of the dimensions have been fixed.
A slice will be represented as a tuple (s1, s2, . . . , sd), where each si is either

• a number in [0, 1], which indicates that dimension i should be fixed to si, or
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• the special symbol ∗, which indicates that dimension i is free to vary.

We define Sliced = ([0, 1] ∪ {∗})d to be the set of all possible slices in dimension d. Given a slice
s ∈ Sliced, we define Ps ⊆ P to be the set of points in that slice, ie., Ps contains every point p ∈ P
such that pi = si whenever si 6= ∗. We’ll say that a slice s′ ∈ Sliced is a sub-slice of a slice s ∈ Sliced
if sj 6= ∗ =⇒ s′j = sj for all j ∈ [d].

An i-slice is a slice s for which sj = ∗ for all j ≤ i, and sj 6= ∗ for all j > i. In other words,
all dimensions up to and including dimension i are allowed to vary, while all other dimensions are
fixed.

In our two-dimensional example, there are three types of i-slices. There is one 2-slice: the slice
(∗, ∗) that contains every point. For each x, there is a 1-slice (∗, x), which restricts the left/right
dimension to the value n. For each pair x, y there is a 0-slice (y, x), which contains only the exact
point corresponding to x and y.

Discrete contraction maps. We can now define a one-permutation discrete contraction map.
We say that a point p ∈ Ps in some slice s is a fixpoint of s if Di(p) = zero for all dimensions i where
si = ∗. The following definition captures the promise version of the problem, and we will later give
a non-promise version by formulating appropriate violations.

Definition 13 (One-Permutation Discrete Contraction Map). Let P be a grid of points over [0, 1]d

and let D = (Di)i=1,...,d be a family of direction functions over P . We say that D and P form a
one-permutation discrete contraction map if, for every i-slice s, the following conditions hold.

1. There is a unique fixpoint of s.

2. Let s′ ∈ Sliced be a sub-slice of s where some coordinate i for which si = ∗ has been fixed to
a value, and all other coordinates are unchanged. If q is the unique fixpoint of s, and p is the
unique fixpoint of s′, then

• if pi < qi, then Di(p) = up, and

• if pi > qi, then Di(p) = down.

The first condition specifies that each i-slice must have a unique fixed point. Since the slice
(∗, ∗, . . . , ∗) is an i-slice, this implies that the full problem also has a unique fixpoint.

The second condition is a more technical condition. It tells us that if we have found the unique
fixpoint p of the (i+1)-slice s′, and if this point is not the unique fixpoint of the i-slice s, then the
direction function Di(p) tells us which way to walk to find the unique fixpoint of s. This is a crucial
property that we will use in our reduction from OPDC to UniqueEOPL, and in our algorithms
for contraction maps.

In our two-dimensional example, the first condition requires that every slice (∗, x) has a unique
fixpoint, and this corresponds to saying that for every fixed slice of the left/right dimension, there
is a unique blue point that is zero. The second condition requires that, if we are at some blue zero,
then the red direction function at that point tells us the direction of the overall fixpoint. It can be
seen that our example satisfies both of these requirements.

Note that both properties only consider i-slices. In the continuous contraction map problem with
an Lp norm distance metric, every slice has a unique fixpoint, and so one may expect a discrete
version of contraction to share this property. The problem is that the second property is very
difficult to prove. Indeed, when we reduce PL-Contraction to OPDC in Section 4.2, we must
carefully choose the grid size to ensure that both the first and second properties hold. In fact, our
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choice of grid size for dimension i will depend on the grid size of dimension i+ 1, which is why our
definition only considers i-slices.

The name One-Permutation Discrete Contraction was chosen to emphasize this fact. The i-
slices correspond to restricting dimensions in order, starting with dimension d. Since the order of
the dimensions is arbitrary, we could have chosen any permutation of the dimensions, but we must
choose one of these permutations to define the problem.

The OPDC problem. The OPDC problem is as follows: given a discrete contraction map D =
(Di(p))i=1,...,d, find the unique point p such that Di(p) = zero for all i. Note that we cannot
efficiently verify whether D is actually a one-permutation discrete contraction map.

So, the OPDC problem is a promise problem, and we will formulate a total variant of it that
uses a set of violations to cover the cases where D fails to be a discrete contraction map.

Definition 14 (OPDC). Given a tuple (k1, k2, . . . , kd) and circuits (Di(p))i=1,...,d, where each
circuit Di : P (k1, k2, . . . , kd)→ {up, down, zero}, find one of the following

(O1) A point p ∈ P such that Di(p) = zero for all i.

(OV1) An i-slice s and two points p, q ∈ Ps with p 6= q such that Dj(p) = Dj(q) = zero for all
j ≤ i.

(OV2) An i-slice s and two points p, q ∈ Ps such that

• Dj(p) = Dj(q) = zero for all j < i,

• pi = qi + 1, and

• Di(p) = down and Di(q) = up.

(OV3) An i-slice s and a point p ∈ Ps such that

• Dj(p) = Dj(q) = zero for all j < i, and either

• pi = 0 and Di(p) = down, or

• pi = ki and Di(p) = up.

Solution type (O1) encodes a fixpoint, which is the proper solution of the discrete contraction
map, while solution types (OV1) through (OV3) encode violations of the discrete contraction map
property.

Solution type (OV1) witnesses a violation of the first property of a discrete contraction map,
namely that each i-slice should have a unique fixpoint. A solution of type (OV1) gives two different
points p and q in the same i-slice that are both fixpoints of that slice.

Solutions of type (OV2) witness violations of the first and second properties of a discrete contrac-
tion map. In these solutions we have two points p and q that are both fixpoints of their respective
(i− 1)-slices and are directly adjacent in an i-slice s. If there is a fixpoint r of the slice s, then this
witnesses a violation of the second property of a discrete contraction map, which states that Di(p)
and Di(q) should both point towards r, and clearly one of them does not. On the other hand, if
slice s has no fixpoint, then p and q also witness this fact, since the fixpoint should be in-between
p and q, which is not possible.

Solutions of type (OV3) consist of a point p that is a fixpoint of its (i−1)-slice but Di(p) points
outside the boundary of the grid. These are clear violations of the second property, since Di(p)
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should point towards the fixpoint of the i-slice containing p, but that fixpoint cannot be outside the
grid.

It is perhaps not immediately obvious that OPDC is a total problem. Ultimately we will
prove this fact in the next section by providing a promise-preserving reducing from OPDC to
UniqueEOPL. This will give us a proof of totality, and will also prove that, if the discrete contrac-
tion map has no violations, then it does indeed have a unique solution.

3.1 One-Permutation Discrete Contraction is in UniqueEOPL

In this section, we will show that One-Permutation Discrete Contraction lies in UniqueEOPL under
promise-preserving reductions.

UFEOPL. Our reduction will make use of an intermediate problem that we call unique forward
EOPL, which is a version of UniqueEOPL in which we only have a successor circuit S, meaning
that no predecessor circuit P is given.

Definition 15 (UniqueForwardEOPL). Given a Boolean circuits S : {0, 1}n → {0, 1}n such
that S(0n) 6= 0n and a Boolean circuit V : {0, 1}n → {0, 1, . . . , 2m − 1} such that V (0n) = 0 find
one of the following:

(UF1) A point x ∈ {0, 1}n such that S(x) 6= x and either S(S(x)) = S(x) or V (S(x)) ≤ V (x).

(UFV1) Two points x, y ∈ {0, 1}n, such that x 6= y, x 6= S(x), y 6= S(y), and either V (x) = V (y)
or V (x) < V (y) < V (S(x)).

Without the predecessor circuit, this problem bears more resemblance to SinkOfDag than to
EndOfPotentialLine. As in SinkOfDag, a bit-string x encodes a vertex if and only if S(x) 6= x,
and an edge exists between vertices x and y if and only if S(x) = y and V (x) < V (y). The proper
solution type (UF1) asks us to find a vertex that is a sink of the DAG, just as before.

The difference lies in the violation solution type (UFV1), which is the same as violation type
(UV3) of UniqueEOPL. It asks for two vertices x and y that either have the same potential, or
for which the potential of y lies strictly between the potential of x and the potential of S(x). Note
that this restriction severely constrains a SinkOfDag instance: if there are no violation solutions,
then the DAG must consist of a single line that starts at 0n, and ends at the unique solution of
type (UF1). So in this sense, the problem really does capture instances of UniqueEOPL that lack
a predecessor circuit.

The UniqueForwardEOPL problem will play a crucial role in our reduction. We will reduce
OPDC to it, and we will then reduce it to UniqueEOPL.

An illustration of the reduction. Before we discuss the formal definition of the construction,
we first give some intuition by describing the reduction for the two-dimensional example shown in
Figure 3.

The reduction uses the notion of a surface. On the left side in Figure 4, we have overlaid
the surfaces of the two direction functions from Figure 3. The surface of a direction function Di is
exactly the set of points p ∈ P such that Di(p) = zero. The fixpoint p that we seek has Di(p) = zero

for all dimensions i, and so it lies at the intersection of these surfaces.
To reach the overall fixpoint, we walk along a path starting from the bottom-left corner, which

is shown on the right-hand side of Figure 4. The path begins by walking upwards until it finds the
blue surface. Once it has found the blue surface, it then there are two possibilities: either we have
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Figure 4: Left: The red and blue surfaces. Right: the path that we follow. This figure should be
viewed in color.

found the overall fixpoint, in which case the line ends, or we have not found the overall fixpoint,
and the red direction function tells us that the direction of the overall fixpoint is to the right.

If we have not found the overall fixpoint, then we move one step to the right, go back to the
bottom of the diagram, and start walking upwards again. We keep repeating this until we find the
overall fixpoint. This procedure gives us the line shown on the right-hand side of Figure 4.

The potential. How do we define a potential for this line? Observe that the dimension-two
coordinates of the points on the line are weakly monotone, meaning that the line never moves to the
left. Furthermore, for any dimension-two slice (meaning any slice in which the left/right coordinate
is fixed), the dimension-one coordinate is monotonically increasing. So, if p = (p1, p2) denotes any
point on the line, if k denotes the maximum coordinate in either dimension, then the function

V (p1, p2) = k · p2 + p1

is a function that monotonically increases along the line, which we can use as a potential function.

Uniqueness. To provide a promise-preserving reduction to UFEOPL, we must argue that the
line is unique whenever the OPDC instance has no violations. Here we must carefully define what
exactly a vertex on the line actually is, to ensure that no other line can exist. Specifically, we must
be careful that only points that are to the left of the fixpoint are actually on the line, and that no
“false” line exists to the right of the fixpoint.

Here we rely on the following fact: if the line visits a point with coordinate x in dimension 2,
then it must have visited the point p on the blue surface in the slice defined by x− 1. Moreover, for
that point p we must have D2(p) = up, which means that it is to the left of the overall fixpoint.

Using this fact, each vertex on our line will be a pair (p, q), where p is the current point that we
are visiting, and q is either

• the symbol −, indicating that we are still in the first column of points, and we have never
visited a point on the blue surface, or

• a point q that is on the blue surface, that satisfies q2 = p2 − 1 and D2(q) = up.

Hence the point q is always the last point that we visited on the blue surface, which provides a
witness that we have not yet walked past the overall fixpoint.

When we finish walking up a column of points, and find the point on the blue surface, we
overwrite q with the new point that we have found. This step is the reason why only a successor
circuit can be given for the line, since the value that is overwritten cannot easily be computed by a
predecessor circuit.
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Violations. Our two-dimensional OPDC example does not contain any violations, but our reduc-
tion can still handle all possible violations in the OPDC instance. At a high level, there are two
possible ways in which the reduction can go wrong if there are violations.

1. It is possible, that as we walk upwards in some column, we do not find a fixpoint, and our line
will get stuck. This creates an end of line solution of type (UF1), which must be mapped back
to an OPDC violation. In our two-dimensional example, this case corresponds to a column
of points in which there is no point on the blue surface. However, if there is no point on the
blue surface, then we will either

• find two adjacent points p and q in that column with D1(p) = up and D2(p) = down,
which is a solution of type (OV2), or

• find a point p at the top of the column with D1(p) = up, or a point q at the bottom of
the column with D1(q) = down. Both of these are solutions of type (OV3).

There is also the similar case where we walk all the way to the right without finding an
overall fixpoint, in which case we will find a point p on the right-hand boundary that satisfies
D1(p) = zero and D2(p) = up, which is a solution of type (OV3).

2. The other possibility is that there may be more than one point on the blue surface in some of
the columns. This will inevitably lead to multiple lines, since if q and q′ are both points on
the blue surface in some column, and p is some point in the column to the right of p and q,
then (p, q) and (p, q′) will both be valid vertices on two different lines.

These can show up as violations of type (UFV1), which we map back to solutions of type
(OV1). Specifically, the points p and q, which are given as part of the two vertices, are both
fixpoints of the same slice, which is exactly what (OV1) asks for.

We can argue that our reduction is promise-preserving. This is because violation solutions in the
UFEOPL instance are never mapped back to proper solutions of the OPDC instance. This means
that, if we promise that the OPDC instance has no violations, then the resulting UFEOPL instance
must also contain no violations.

The full reduction. Our reduction from OPDC to UniqueForwardEOPL generalizes the
approach given above to d dimensions. We say that a point p ∈ P is on the i-surface if Dj(p) = zero

for all j ≤ i. In our two-dimensional example we followed a line of points on the one-surface, in
order to find a point on the two-surface. In between any two points on the one-surface, we followed
a line of points on the zero-surface (every point is trivially on the zero-surface).

Our line will visit a sequence of points on the (d − 1)-surface in order to find the point on the
d-surface, which is the fixpoint. Between any two points on the (d − 1)-surface the line visits a
sequence of points on the (d − 2)-surface, between any two points on the (d − 2)-surface the line
visits a sequence of points on the (d− 3)-surface, and so on.

The line will follow the same pattern that we laid out in two dimensions. Every time we find a
point on the i-surface, we remember it, increment our position in dimension i by 1, and reset our
coordinates back to 0 for all dimensions j < i. Hence, a vertex will be a tuple (p0, p1, . . . , pd), where
each pi is either

• the symbol −, indicating that we have not yet encountered a point on the i-surface, or

• the most recent point on the i-surface that we have visited.
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This is a generalization of the witnessing scheme that we saw in two-dimensions.
The potential is likewise generalized so that the potential of a point p is proportional to

∑d
i=1 k

ipi,
where again k is some constant that is larger than the grid size. This means that progress in
dimension i dominates progress in dimension j whenever j < i, which allows the potential to
monotonically increase along the line.

We are also able to deal with all possible violations, using the ideas that we have described
in two-dimensional case. Full details of this construction are given in Appendix B.1, where the
following lemma is proved.

Lemma 16. There is a polynomial-time promise-preserving reduction from OPDC to UniqueFor-

wardEOPL.

From UniqueForwardEOPL to UniqueForwardEOPL+1. The next step of the re-
duction is to slightly modify the UniqueForwardEOPL instance, so that the potential increases
by exactly one in each step. Specifically we define the following problem

Definition 17 (UniqueForwardEOPL+1). Given a Boolean circuits S : {0, 1}n → {0, 1}n such
that S(0n) 6= 0n and a Boolean circuit V : {0, 1}n → {0, 1, . . . , 2m − 1} such that V (0n) = 0 find
one of the following:

(UFP1) A point x ∈ {0, 1}n such that S(x) 6= x and either S(S(x)) = S(x) or V (S(x)) 6= V (x)+1.

(UFPV1) Two points x, y ∈ {0, 1}n, such that x 6= y, x 6= S(x), y 6= S(y), and V (x) = V (y).

There are two differences between this problem and UniqueForwardEOPL. Firstly, an edge
exists between x and y if and only if S(x) = y, and V (y) = V (x) + 1, and this is reflected in the
modified definition of solution type (UFP1). Secondly, solution type (UFPV1) has been modified to
only cover the case where we have two vertices x and y that have the same potential. The case where
V (x) < V (y) < V (S(x)) is not covered, since in this setting this would imply V (S(x)) > V (x) + 1,
which already gives us a solution of type (UFP1).

It is not difficult to reduce UniqueForwardEOPL to UniqueForwardEOPL+1, using the
same techniques that we used in the reduction from EndOfPotentialLine to EndOfMetered-

Line in Theorem 10. This gives us the following lemma, which is proved in Appendix B.2.

Lemma 18. There is a polynomial-time promise-preserving reduction from UniqueForwardEOPL

to UniqueForwardEOPL+1.

UniqueForwardEOPL+1 to UniqueEOPL. The final step of the proof is to reduce Uniq-

ueForwardEOPL to UniqueEOPL. For this, we are able to build upon existing work. The
following problem was introduced by Bitansky et al [4].

Definition 19 (SinkOfVerifiableLine [4]). The input to the problem consists of a starting
vertex xs ∈ {0, 1}n, a target integer T ≤ 2n, and two boolean circuits S : {0, 1}n → {0, 1}n,
W : {0, 1}n × {0, 1}n → {0, 1}. It is promised that, for every vertex x ∈ {0, 1}n, and every integer
i ≤ T , we have W (x, i) = 1 if and only if x = Si−1(xs). The goal is to find the vertex xf ∈ {0, 1}n
such that W (xf , T ) = 1.

SinkOfVerifiableLine is intuitively very similar to UniqueForwardEOPL. In this problem,
a single line is encoded, where as usual the vertices are encoded as bit-strings, and the circuit S
gives the successor of each vertex. The difference in this problem is that the circuit W gives a way
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of verifying how far along the line a given vertex is. Specifically, W (x, i) = 1 if and only if x is the
ith vertex on the line. Note that this is inherently a promise problem, since if W (x, i) = 1 for some
i, we have no way of knowing whether x is actually i steps along the line, without walking all of
those steps ourselves.

It was shown by Hubáček and Yogev [45] that SinkOfVerifiableLine can be reduced in poly-
nomial time to EndOfMeteredLine, and hence also to EndOfPotentialLine (via Theorem 10).
Moreover, the resulting EndOfPotentialLine instance has a unique line, so this reduction also
reduces SinkOfVerifiableLine to UniqueEOPL. It is easy to reduce the promise version of
UniqueForwardEOPL+1 to SinkOfVerifiableLine, since we can implement the circuit W so
that W (x, i) = 1 if and only if V (x) = i.

However, the existing work only deals with the promise problem. Our contribution is to deal
with violations. We show that, if one creates a SinkOfVerifiableLine instance from a Unique-

ForwardEOPL+1 instance, in the way described above, and applies the reduction of Hubáček and
Yogev to produce a UniqueEOPL instance, then any violation can be mapped back to a solution
in the original UniqueForwardEOPL+1 instance. Hence, we show the following lemma, whose
full proof appears in Appendix B.3.

Lemma 20. There is a polynomial-time promise-preserving reduction from UniqueForwardEOPL

to UniqueEOPL.

This completes the chain of promise-preserving reductions from OPDC to UniqueEOPL.
Hence, we have shown the following theorem.

Theorem 21. OPDC is in UniqueEOPL under polynomial-time promise-preserving reductions.

3.2 One-Permutation Discrete Contraction is UniqueEOPL-hard

In this section we will show that One-Permutation Discrete Contraction is UniqueEOPL-complete,
by giving a hardness result. Specifically, we give a reduction from UniqueEOPL to OPDC.

Modifying the line. The first step of the reduction is to slightly alter the UniqueEOPL instance.
Specifically, we would like to ensure the following two properties.

1. Every edge increases the potential by exactly one. That is, V (S(x)) = V (x) + 1 for every
vertex x.

2. The line has length exactly 2n for some integer n. More specifically, we ensure that if x is the
end of any line then we have V (x) = 2n − 1. The start of the line given in the problem has
potential 0, this ensures that the length of that line is exactly 2n, although other lines may
be shorter.

We have already developed a technique for ensuring the first property in the reduction from EOPL
to EOML in Theorem 10, which can be reused here. Specifically, we introduce a chain of dummy
vertices between any pair of vertices x and y with S(x) = y and V (y) > V (x) + 1. The second
property can be ensured by choosing n so that 2n is larger than the longest possible line in the
instance. Then, at every vertex x that is the end of a line, we introduce a chain of dummy vertices

(x, 0)→ (x, 1)→ · · · → (x, 2n − V (x)− 1),

where V (x, i) = V (x) + i. The vertex e = (x, 2n − V (x) − 1) will be the new end of the line, and
note that V (e) = 2n − 1 as required. The full details of this are given in Appendix C.1, where the
following lemma is shown.
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Lemma 22. Given a UniqueEOPL instance L = (S,P, V ), there is a polynomial-time promise-
preserving reduction that produces a UniqueEOPL instance L′ = (S′, P ′, V ′), where

• For every x and y with y = S(x) and x = P (y) we have V (y) = V (x) + 1, and

• There exists an integer n such that, x is a solution of type (U1) if and only if we have
V (x) = 2n − 1.

For the remainder of this section, we will assume that we have a UniqueEOPL instance L =
(S,P, V ) that satisfies that two extra conditions given by Lemma 22. We will use m to denote the
bit-length of a vertex in L.

The set of points. We create an OPDC instance over a boolean hypercube with m·n dimensions,
so our set of points is P = {0, 1}mn. We will interpret each point p ∈ P as a tuple (v1, v2, . . . , vn),
where each vi is a bit-string of length m, meaning that each vi can represent a vertex in L.

To understand the reduction, it helps to consider the case where there is a unique line in L. We
know that this line has length exactly 2n. The reduction repeatedly splits this line into two equal
parts.

• Let L1 denote the first half of L, which contains all vertices v with potential 0 ≤ V (v) ≤
2n−1 − 1.

• Let L2 denote the second half of L, which contains all vertices v with potential 2n−1 ≤ V (v) ≤
2n − 1.

Observe that L1 and L2 both contain exactly 2n−1 vertices.
The idea is to embed L1 and L2 into different sub-cubes of the {0, 1}mn point space. The line

that we embed will be determined by the last element of the tuple. Let v be the vertex satisfying
V (v) = 2n−1, meaning v is the first element of L2.

• We embed L2 into the sub-cube (∗, ∗, . . . , ∗, v).

• We embed a copy of L1 into each sub-cube (∗, ∗, . . . , ∗, u) with u 6= v.

Note that this means that we embed a single copy of L2, but many copies of L1. Specifically, there
are 2m possibilities for the final element of the tuple. One of these corresponds to the sub-cube
containing L2, while 2m − 1 of them contain a copy of L1.

The construction is recursive. So we split L2 into two lines L2,1 and L2,2, each containing half
of the vertices of L2. If w is the vertex satisfying V (w) = 2n−1 + 2n−2, which is the first vertex of
L2,2, then we embed a copy of L2,2 into the sub-cube (∗, ∗, . . . , ∗, w, v), where v is the same vertex
that we used above, and we embed a copy of L2,1 into each sub-cube (∗, ∗, . . . , ∗, u, v), where u 6= w.
Likewise L1 is split into two, and embedded into the sub-cubes of (∗, ∗, . . . , ∗, u) whenever u 6= v.

Given a vertex (v1, v2, . . . , vn), we can view the bit-string vn as choosing either L1 or L2, based
on whether V (vn) = 2n−1. Once that decision has been made, we can then view vn−1 as choosing
one half of the remaining line. Since the original line L has length 2n, and we repeat this process n
times, this means that at the end of the process we will be left with a line containing a single vertex.
So in this way, a point (v1, v2, . . . , vn) is a representation of some vertex in L, specifically the vertex
that is left after we repeatedly split the line according to the choices made by vn through v1.

We can compute the vertex represented by any tuple in polynomial time. Moreover, given a
slice (∗, ∗, . . . , ∗, vi, vi+1, . . . , vn) that fixes elements i through n of the tuple, we can produce, in
polynomial time, a UniqueEOPL instance corresponding to the line that is embedded in that slice.
This is formalised in the following lemma, whose proof is given in Appendix C.2.
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Lemma 23. There are polynomial-time algorithms for computing the following two functions.

• The function decode(v1, v2, . . . , vn) which takes a point in P and returns the corresponding
vertex of L.

• The function subline(vi, vi+1, . . . , vn, L), which takes bit-strings vi through vn, representing
the slice, (∗, ∗, . . . , ∗, vi, vi+1, . . . , vn), and the instance L = (S,P, V ), and returns a new
UniqueEOPL instance L′ = (S′, P ′, V ′) which represents the instance that is to be embedded
into this slice.

Although we have described this construction in terms of a single line, the two polynomial
time algorithms given by Lemma 23 are capable of working with instances that contain multiple
lines. In the case where there are multiple lines, there may be two or more bit-strings x and y
with V (x) = V (y) = 2n−1. In that case, we will embed second-half instances into (∗, ∗, . . . , x) and
(∗, ∗, . . . , y). This is not a problem for the functions decode and subline, although this may lead to
violations in the resulting OPDC instance that we will need to deal with.

The direction functions. The direction functions will carry out the embedding of the lines.
Since our space is {0, 1}mn, we will need to define m · n direction functions D1 through Dmn.

The direction functions Dm(n−1)+1 through Dmn correspond to the bits used to define vn in a
point (v1, v2, . . . , vn). These direction functions are used to implement the transition between the
first and second half of the line. For each point p = (v1, v2, . . . , vn) we define these functions using
the following algorithm.

1. In the case where V (vn) 6= 2n−1, meaning that decode(p) is a vertex in the first half of the
line, then there are two possibilities.

(a) If V (decode(p)) = 2n−1 − 1, meaning that p is the last vertex on the first half of the
line, then we orient the direction function of dimensions (n − 1) ·m through m towards
the bit-string given by S(decode(p)). This captures the idea that once we reach the end
of the first half of the line, we should then move to the second half, and we do this
by moving towards the sub-cube (∗, ∗, . . . , ∗, S(decode(p)). So for each i in the range
m(n− 1) + 1 ≤ i ≤ mn we define

Di(p) =











up if pi = 0 and S(decode(p))i = 1,

down if pi = 1 and S(decode(p))i = 0,

zero otherwise.

(b) If the rule above does not apply, then we orient everything towards 0. Specifically, we
set

Di(p) =

{

down if pi = 1,

zero if pi = 0.

This is an arbitrary choice: our reduction would work with any valid direction rules in
this case.

2. If V (vn) = 2n−1, then we are in the second half of the line. In this case we set Di(p) = zero

for all dimensions i in the range (n − 1) ·m ≤ i ≤ m. This captures the idea that, once we
have entered the second half of the line, we should never leave it again.
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We use the same idea recursively to define direction functions for all dimensions i ≤ m(n− 1). This
gives us a family of polynomial-time computable direction functions D = (Di)i=1,...,mn. The full
details can be found in Appendix C.3.

The proof. We have now defined P and D, so we have an OPDC instance. We must now argue
that the reduction is correct. The intuitive idea is as follows. If we are at some point p ∈ P , and
decode(p) = v is a vertex that is not the end of a line, then there is some direction function Di such
that Di(p) 6= zero. We can see this directly for the case where V (decode(p)) = 2n−1 − 1, since the
direction functions on dimensions m(n−1)+1 through mn will be oriented towards S(V (decode(p)),
and so p will not be a solution.

As we show in the proof, the same property holds for all other vertices in the middle of the line.
The end of the line will be a solution, because it will be encoded by the point p = (v1, v2, . . . , vn),
where each vi is the first vertex on the second half of the line embedded in the sub-cube. Our
direction functions ensure that Dj(p) = zero for all j for this point.

Our reduction must also deal with violations. Violations of type (OV3) are impossible by
construction. In violations of type (OV1) and (OV2) we have two points p and q that are in the
same i-slice. Here we specifically use the fact that violations can only occur within i-slices. Note
that an i-slice will fix the last mn− i bits of the tuple (v1, v2, . . . , vn), which means that there will
be an index j such that all vl with l > j are fixed. This allows us to associate the slice with the
line L′ = subline(vj+1, vj+2, . . . , vn), and we know that both p and q encode vertices of L′. In both
cases, we are able to recover two vertices in L′ that have the same potential, and these vertices also
have the same potential in L. So we get a solution of type (UV3). The details are rather involved,
and we defer the proof to Appendix C.4, where the following lemma is proved.

Lemma 24. There is a polynomial-time promise-preserving reduction from UniqueEOPL to OPDC.

Thus, we have shown the following theorem.

Theorem 25. OPDC is UniqueEOPL-complete under promise-preserving reductions, even when
the set of points P is a hypercube.

Since we have shown bidirectional promise-preserving reductions between OPDC and UniqueEOPL,
we also get that the promise version of OPDC is complete for PromiseUEOPL.

4 UniqueEOPL containment results

4.1 Unique Sink Orientations

Unique sink orientations. Let C = {0, 1}n be an n-dimensional hypercube. An orientation
of C gives a direction to each edge of C. We formalise this as a function Ψ : C → {0, 1}n, that
assigns a bit-string to each vertex of C, with the interpretation that the i-th bit of the string gives
an orientation of the edge in dimension i. More precisely, for each vertex v ∈ C and each dimension
i, let u be the vertex that is adjacent to v in dimension i.

• If Ψ(v)i = 0 then the edge between v and u is oriented towards v.

• If Ψ(v)i = 1 then the edge between v and u is oriented towards u.

Note that this definition does not insist that v and u agree on the orientation of the edge between
them, meaning that Ψ(v)i and Ψ(u)i may orient the edge in opposite directions. However, this will
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be a violation in our set up, and a proper orientation should be thought of as always assigning a
consistent direction to each edge.

A face is a subset of C in which some coordinates have been fixed. This can be defined using
the same notation that we used for slices in OPDC. So a face f = (f1, f2, . . . , fn), where each fi
is either 0, 1, or ∗, and the sub-cube defined by f contains every vertex v ∈ C such that vi = fi
whenever fi 6= ∗.

A vertex v ∈ C is a sink if all of the edges of v are directed towards v, meaning that Ψ(v)i = 0
for all i. Given a face f , a vertex v is a sink of f if it is the sink of the sub-cube defined by f ,
meaning that Ψ(v)i = 0 whenever fi = ∗.

A unique sink orientation (USO) is an orientation in which every face has a unique sink. Since
f = (∗, ∗, . . . , ∗) is a face, this also implies that the whole cube has a unique sink, and the USO
problem is to find the unique sink.

Placing the problem in TFNP. The USO property is quite restrictive, and there are many
orientations that are not USOs. Indeed, the overall cube may not have a sink at all, or it may have
multiple sinks, and this may also be the case for the other faces of the cube. Fortunately, Szabó
and Welzl have pointed out that if an orientation is not a USO, then there is a succinct witness of
this fact [74].

Let v, u ∈ C be two distinct vertices. We have that Ψ is a USO if and only if there exists some
dimension i such that vi 6= ui and Ψ(v)i 6= Ψ(u)i. Put another way, this means that if we restrict
the orientation only to the sub-cube defined by any two vertices v and u, then the orientations of
v and u must be different on that sub-cube. If one uses ⊕ to denote the XOR operation on binary
strings, and ∩ to denote the bit-wise and-operation, then this condition can be written concisely as

(v ⊕ u) ∩ (Ψ(v)⊕Ψ(u)) 6= 0n.

Note that this condition also ensures that the orientation is consistent, since if v and u differ in only
a single dimension, then the conditions states that they must agree on the orientation of the edge
between them.

We use this condition to formulate the USO problem as a problem in TFNP.

Definition 26 (Unique-Sink-Orientation). Given an orientation function Ψ : {0, 1}n → {0, 1}n∪
{−} find one of the following.

(US1) A point v ∈ {0, 1}n such that Ψ(v)i = 0 for all i.

(USV1) A point v ∈ {0, 1}n such that Ψ(v) = −.

(USV2) Two points v, u ∈ {0, 1}n such that v 6= u and (v ⊕ u) ∩ (Ψ(v)⊕Ψ(u)) = 0n.

Note that this formulation of the problem allows the orientation function to decline to give an
orientation for some vertices, and this is indicated by setting Ψ(v) = −. Any such vertex is a
violation of type (USV1). While this adds nothing interesting to the USO problem, we will use this
in Section 4.3 when we reduce P-LCP to USO, since in some cases the reduction may not be able
to produce an orientation at a particular vertex.

Assuming that there are no violations of type (USV1), it is easy to see that the problem is total.
This is because every USO has a sink, giving a solution of type (US1), while every orientation that
is not a USO has a violation of type (USV2).
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Placing the problem in UniqueEOPL. We show that the problem lies in UniqueEOPL by pro-
viding a promise-preserving reduction from Unique-Sink-Orientation to OPDC. The reduction
is actually not too difficult, because when the point set for the OPDC instance is a hypercube, the
OPDC problem can be viewed as a less restrictive variant of USO. Specifically, USO demands that
every face has a unique sink, while OPDC only requires that the i-slices should have unique sinks.

The reduction creates an OPDC instances on the same set of points, meaning that P = C. The
direction functions simply follow the orientation given by Ψ. Specifically, for each v ∈ P and each
dimension i we define

Di(v) =











zero if Ψ(v)i = 0,

up if Ψ(v)i = 1 and vi = 0,

down if Ψ(v)i = 1 and vi = 1.

If Ψ(v) = −, then we instead set Di(v) = zero for all i.
To prove that this is correct, we show that every solution of the OPDC instance can be mapped

back to a solution of the USO instance. Any fixpoint of the OPDC instance satisfies Di(v) = zero

for all i, which can only occur if v is a sink, or if Ψ(v) = −. The violation solutions of OPDC can
be used to generate a pair of vertices that constitute a (USV2) violation. We defer the details to
Appendix D, where the following lemma is proved.

Lemma 27. There is a polynomial-time promise-preserving reduction from Unique-Sink-Orientation

to OPDC.

Thus we have shown the following theorem.

Theorem 28. Unique-Sink-Orientation is in UniqueEOPL under promise-preserving reductions.

This proves the following new facts about the complexity of finding the sink of a USO.

Corollary 29. Unique-Sink-Orientation is in PPAD, PLS, and CLS.

4.2 Piecewise Linear Contraction Maps

In this section, we show that finding a fixpoint of a piecewise linear contraction map lies in
UniqueEOPL. Specifically, we study contraction maps where the function f is given as a LinearFIXP

circuit, which is an arithmetic circuit comprised of max,min,+,−, and ×ζ (multiplication by a
constant) gates [22]. Hence, a LinearFIXP circuit defines a piecewise linear function.

Violations. Not every function f is contracting, and the most obvious way to prove that f is not
contracting is to give a pair of points x and y that satisfy ‖f(x) − f(y)‖p > c · ‖x − y‖p, which
directly witness the fact that f is not contracting.

However, when we discretize Contraction in order to to reduce it to OPDC, there are certain
situations in which we have a convincing proof that f is not contracting, but no apparent way to
actually produce a violation of contraction. In fact, the discretization itself is non-trivial, so we will
explain that first, and then define the type of violations that we will use.

The reduction. We are given a function f : [0, 1]n → [0, 1]n, that is purported to be contracting
with contraction factor c in the ℓp norm. We will produce an OPDC instance by constructing the
point set P , and a family of direction functions D.

The most complex step of the reduction is to produce an appropriate set of points P for the
OPDC instance. This means we need to choose integers k1, k2, through kd in order to define the
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point set P (k1, k2, . . . , kd), where we recall that this defines a grid of integers, where each dimension i
can take values between 0 and ki. We will describe the method for picking k1 through kd after we
have specified the rest of the reduction.

The direction functions will simply follow the directions given by f . Specifically, for every point
p ∈ P (k1, k2, . . . , kd), let p′ be the corresponding point in [0, 1]n, meaning that p′i = pi/ki for all i.
For and every dimension i we define the direction function Di so that

• if f(p′)i > p′i then Di(p) = up,

• if f(p′)i < p′i then Di(p) = down, and

• if f(p′)i = p′i then Di(p) = zero.

In other words, the function Di simply checks whether f(p′) moves up, down, or not at all in
dimension i. This completes the specification of the family of direction functions D.

We must carefully choose k1 through kd to ensure that the fixpoint of f is contained within the
grid. In fact, we need a stronger property: for every i-slice of the grid, if f has a fixpoint in that
i-slice, then it should also appear in the grid. Recall that p ∈ P is a fixpoint of some slice s if
Di(p) = zero for every i for which si = ∗. We can extend this definition to the continuous function
f as follows: a point x ∈ [0, 1]d is a fixpoint of s if (x− f(x))i = 0 for all i for which si = ∗, where
we now interpret s as specifying that xi = si/ki whenever si 6= ∗. We are able to show the following
lemma, whose proof appears in Appendix F.1.

Lemma 30. There exists integers (k1, k2, . . . , kd) such that for every i-slice s we have that if x ∈
[0, 1]d is a fixpoint of s according to f , then there exists a point p ∈ P (k1, k2, . . . , kd) such that

• p is a fixpoint of D, and

• pi = ki · xi for all i where si = ∗.
Moreover, the number of bits needed to write down each ki is polynomial in the number of bits needed
to write down f .

This lemma states that we can pick the grid size to be fine enough so that all fixpoints of f
in all i-slices are contained within the grid. The proof of this is actually quite involved, and relies
crucially on the fact that we have access to a LinearFIXP representation of f . From this, we can
compute upper bounds on the bit-length of any point that is a fixpoint of f . We also rely on the
fact that we only need to consider i-slices, because our proof fixes the grid-widths one dimension at
a time, starting with dimension d and working backwards.

The extra violation. The specification of our reduction is now complete, but we have still not
fully defined the original problem, because we need to add an extra violation. The issue arises with
solutions of type (OV2), where we have an i-slice s and two points p, q in s such that

• Dj(p) = Dj(q) = zero for all j < i,

• pi = qi + 1, and

• Di(p) = down and Di(q) = up.

This means that p and q are both fixpoints of their respective slices (i − 1)-slices, and are directly
adjacent to each other in dimension i. We are able to show, in this situation, that if f is contracting,
then f has a fixpoint for the slice s, and it must lie between p and q. The following lemma is shown
in Appendix F.2.
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Lemma 31. If f is contracting, and we have two points p and q that are a violation of type (OV2),
then there exists a point x ∈ [0, 1]n in the slice s that satisfies all of the following.

• (x− f(x))j = 0 for all j ≤ i, meaning that x is a fixpoint of the slice s, and

• qi < ki · xi < pi, meaning that x lies between p and q in dimension i.

So if we have an (OV2) violation, and if f is contracting, then Lemma 31 implies that there is a
fixpoint x of the slice s that lies strictly between p and q in dimension i. However, Lemma 30 says
that all fixpoints of s lie in the grid, and since p and q are directly adjacent adjacent in the grid in
dimension i, there is no room for x, so it cannot exist. The only way that this contradiction can be
resolved is if f not actually contracting.

Hence, (OV2) violations give us a concise witness that f is not contracting. But the points p and
q themselves may satisfy the contraction property. While we know that there must be a violation of
contraction somewhere, we are not necessarily able to compute such a violation in polynomial time.
To resolve this, we add the analogue of an (OV2) violation to the contraction problem.

Definition 32 (PL-Contraction). Given a LinearFIXP circuit computing f : [0, 1]d → [0, 1]d, a
constant c ∈ (0, 1), and a p ∈ N ∪ {∞}, find one of the following.

(CM1) A point x ∈ [0, 1]d such that f(x) = x.

(CMV1) Two points x, y ∈ [0, 1]d such that ‖f(x)− f(y)‖p > c · ‖x− y‖p.

(CMV2) A point x ∈ [0, 1]d such that f(x) 6∈ [0, 1]d.

(CMV3) An i-slice s and two points x, y ∈ [0, 1]d in s such that

• (f(x)− x)j = (f(y)− y)j = 0 for all j < i,

• ki · xi = ki · yi + 1, where ki is the integer given by Lemma 30 for the LinearFIXP circuit
that computes f , and

• f(x)i < xi and f(y)i > yi.

Solution type (CM1) asks us to find a fixpoint of the map f , and there are two types of violation.
Violation type (CMV1) asks us to find two points x and y that prove that f is not contracting with
respect to the ℓp norm. Violation type (CMV2) asks us to find a point that f does not map to
[0, 1]d. Note that this second type of violation is necessary to make the problem total, because it is
possible that f is a contraction map, but the unique fixpoint of f does not lie in [0, 1]d.

Violations of type (CMV3) are the direct translation of (OV2) violations to contraction. Note
that if f actually is contracting, and has a fixpoint in [0, 1]n, then no violations can exist. For
(CMV3) violations, this fact is a consequence of Lemmas 30 and 31.

Correctness of the reduction. To prove that the reduction is correct, we must show that all
solutions of the OPDC instance given by P and D can be mapped back to solutions of the original
instance. Solutions of type (O1) give us a point p such that Di(p) = zero for all i, which by definition
means that the point corresponding to p is a fixpoint of f . Violations of type (OV1) give us two
points that are both fixpoints of the same slice s, which also means that they are both fixpoints of
the slice s according to f , and it is not difficult to show that these two points violate contraction
in an ℓp norm. Violations of type (OV3) are points that attempt to leave the [0, 1]d, and so give us
a solution of type (CMV2). Violations of type (OV2) map directly to violations of type (CMV3),
as we have discussed. So we have the following lemma, which is proved in Appendix F.3.
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Lemma 33. There is a polynomial-time promise-preserving reduction from PL-Contraction to
OPDC.

Theorem 34. PL-Contraction is in UniqueEOPL under promise-preserving reductions.

4.3 The P-Matrix Linear Complementarity Problem

In this section, we reduce P-LCP to Unique-Sink-Orientation and, separately, P-LCP to
UniqueEOPL. Given that we show that Unique-Sink-Orientation reduces to UniqueEOPL

(via OPDC) and is thus in UniqueEOPL, our direct reduction from P-LCP to UniqueEOPL is
not needed to show that P-LCP is contained in UniqueEOPL. However, by reducing directly we
can produce a UniqueEOPL instance with size linear in the size of our P-LCP instance, which is
needed to obtain the algorithmic result in Section 5.2.

The direct reduction to UniqueEOPL relies heavily on the application of Lemke’s algorithm
to P-matrix LCPs, and our reduction to Unique-Sink-Orientation relies on the computation of
principal pivot transformations of LCPs. Next we introduce the required concepts. Let [d] denote
the set {1, . . . , d}.

Definition 35 (LCP (M, q)). Given a matrix M ∈ Rd×d and vector q ∈ Rd×1, find a y ∈ Rd×1

s.t.:
w = My + q ≥ 0; y ≥ 0; yi · wi = 0, ∀i ∈ [d]. (1)

In general, deciding whether an LCP has a solution is NP-complete [12], but if M is a P-matrix,
as defined next, then the LCP (M, q) has a unique solution for all q ∈ Rd×1.

The problem of checking if a matrix is a P-matrix is coNP-complete [15], so we cannot expect to
be able to verify that an LCP instance (M, q) is actually defined by a P-matrix M . Instead, we use
succinct witnesses that M is not a P-matrix as a violation solution, which allows us to define total
variants of the P-LCP problem that lie in TFNP, as first done by Megiddo [57, 58]. This approach
has previously used to place the P-matrix problem in PPAD and CLS [17, 64].

Our paper is about problems with unique solutions. It is well known that a matrix M is a
P-matrix if and only if for all q ∈ Rd×1, the LCP (M, q) has a unique solution [14]. However,
this characterization of a P-matrix is not directly useful for defining succinct violations: while two
distinct solutions would be a succinct violation, there is no corresponding succinct witness for the
case of no solutions. Next we introduce the three well-known succinct witnesses for M not being a
P-matrix that we will use.

First, we introduce some further required notation. Restating (1), the LCP problem (M, q)
seeks a pair of non-negative vectors (y,w) such that:

Iw −My = q and ∀i ∈ [d] we have yi ·wi = 0. (2)

If q ≥ 0, then (y,w) = (0, q) is a trivial solution. We identify a solution (y,w) with the set of
components of y that are positive: let α = {i | yi > 0, i ∈ [d]} denote such a set of “basic variables”.
Going the other way, to check if there is a solution that corresponds to a particular α ⊆ [d], we
try to perform a principal pivot transformation, re-writing the LCP by writing certain variables yi

as wi, and checking if in this re-written LCP there exists the trivial solution (y′,w′) = (0, q′). To
that end, we construct an d× d matrix Aα, where the ith column of Aα is defined as follows. Let ei
denote the ith unit column vector in dimension d, and let M·i denote the ith column of the matrix
M .

(Aα)·i :=

{

−M·i if i ∈ α,

ei if i /∈ α.
(3)
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Then α corresponds to an LCP solution if Aα is non-singular and, the “new q” i.e., (A−1
α q), is non-

negative. For a given α ⊆ [n], we define out(α) := − if det(Aα) = 0; note that this will not happen
if M is really a P-matrix, but our general treatment here is made to deal with the non-promise
problem, in which case a zero determinant will correspond to a violation4. If det(Aα) 6= 0, we define
out(α) as a bit-string in {0, 1}d as follows:

(out(α))i =

{

1 if (A−1
α q)i < 0,

0 if (A−1
α q)i ≥ 0.

(4)

With this notation, a subset α ⊆ [d] corresponds to a solution of the LCP if out(α) = 0d. We will use
out(α) both to define a succinct violation of the P-matrix property, and in our promise-preserving
reduction from P-LCP to Unique-Sink-Orientation.

Next, we introduce three types of succinct violations that prove that a matrix M is not a P-
matrix. Let char(v) for v ⊆ [d] denote the characteristic vector of v, i.e., (char(v))i = 1 if i ∈ v and
0 otherwise. As in the section on USOs, when we write ⊕ and ∩, here we mean the bit-wise XOR
and bit-wise and-operations on bit-strings.

Definition 36 (P-LCP violations). For a given LCP (M, q) in dimension d, each of the following
provides a polynomial-size witness that M is not a P-matrix:

(PV1) A set α ⊆ [d] such that the corresponding principal minor is non-positive, i.e., det(Mαα) ≤ 0.

(PV2) A vector x 6= 0 whose sign is reversed by M , that is, for all i ∈ [d] we have xi(Mx)i ≤ 0.

(PV3) Two distinct sets α, β ⊂ [d], with (char(α) ⊕ char(β)) ∩ (out(α)⊕ out(β)) = 0d.

The violation PV1 corresponds to the standard definition of a P-matrix as having all positive
principal minors. Megiddo [57, 58] used this violation to place to place the P-LCP problem in
TFNP. The same violation was then used by Papadimitriou to put P-LCP in PPAD, because
Lemke’s algorithm is a PPAD-type complementary pivoting algorithm, which inspired PPAD, and
it will return a non-positive principal minor if it fails to find an LCP solution.

The characterization of P-matrices as those that do not reverse the sign of any non-zero vector,
as used for violation PV2, was first discovered by Gale and Nikaido [31]. The final violation, PV3,
follows from the work of Stickney and Watson [73], who showed that P-matrix LCPs give rise to
USOs, and from the work of Tzabo and Welzl [74, Lemma 2.3], who showed that this condition
characterizes that “outmap” of USOs, as discussed in Section 4.1, hence the name of the function
being “out”.

Several other characterizations of P-matrices are known, some of which would provide alterna-
tive succinct violations [14, 46]. We have given the violations PV1–PV3 above, since we use the
three for our promise preserving reductions from P-LCP to UniqueEOPL and to Unique-Sink-

Orientation. In particular, for our reduction from P-LCP to Unique-Sink-Orientation we
need violations of types PV1 and PV3, and for our reduction from P-LCP directly to UniqueEOPL

we need violations of types PV1 and PV2. It is not immediately apparent how to convert viola-
tions of one type to another in polynomial time, and it is conceivable that allowing different sets
of violations changes the complexity of the problem. We leave it as further work to further explore
this.

4We could also define out(α) := − if det(Aα) < 0, since then we also get a P-matrix violation, however we choose
to still perform a principal pivot transformation in this case since, ceteris paribus, it seems reasonable to prefer an
LCP solution to a P-matrix violation when we reduce P-LCP to USO.
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Definition 37 (P-LCP). Given an LCP (M, q), find either:

(Q1) y ∈ Rd×1 that satisfies (1).

(Q2) one of the violations (PV1)–(PV3).

In the promise version, we are promised that M is a P-matrix and seek a solution of type (Q1).

Reduction from P-LCP to Unique-Sink-Orientation. We are now ready to present our
reduction to USO. The reduction is simple, and we present it in full detail here. For the LCP
instance I = (M, q) in dimension d, we produce an instance U of Unique-Sink-Orientation also
in dimension d.

We first need to deal with the possibility that q is degenerate. A P-matrix LCP has a degener-
ate q if A−1

α ·q has a zero entry for some α ⊆ [d]. To ensure that this does not present a problem for
our reduction, we use a standard technique known as lexicographic perturbation [14, Section 4.2]:
In the reduction that follows we assume that we are using such a degeneracy resolution scheme.

The reduction associates each vertex v of the resulting USO with a set a α(v) of basic variables
for the LCP, and then uses out(α) as the outmap at v. In detail, for a vertex v ∈ {0, 1}d of U , we
define α(v) = {i | v(i) = 1}, and set Ψ(v) = out(α(v)). It immediately follows that:

• A solution of type (US1) in U is a solution of type (Q1) in I.

• A solution of type (USV1) in U is a solution of type (PV1) in I.

• A solution of type (USV2) in U is a solution of type (PV3) in I.

If M is actually a P-matrix then U will have exactly one solution of type (US1), and no violation
solutions [73]. Thus our reduction is promise preserving, and we obtain the following.

Theorem 38. There is a polynomial-time promise-preserving reduction from P-LCP with violations
of type (PV1) and (PV3) to Unique-Sink-Orientation.

Overview of reductions from P-LCP to EndOfPotentialLine and UniqueEOPL.

Comparing UniqueEOPL and EndOfPotentialLine we see that: (U1) and (UV2) correspond
to (R1), and (UV1) corresponds to (R2), so the only difference is that UniqueEOPL has the extra
violation solution (UV3). Thus there is some extra work to do for our reduction to UniqueEOPL,
to map (UV3) solutions back to a P-LCP solution.

Our reduction from P-LCP to the two problems produces the same instance. The reduction
in both cases is based on Lemke’s algorithm, which we describe in detail in Appendix G.1. For
EndOfPotentialLine, we only need to use (PV1) violations. For UniqueEOPL, we only need
to use (PV2) violations. Next we give a high-level description of the reduction, where for simplicity
we just refer to a resulting EndOfPotentialLine instance. Full details of both reductions appear
in Appendix G.

Lemke’s algorithm introduces to the LCP an extra variable z and an extra positive vector c,
called a covering vector. It follows a path along edges of the new LCP polyhedron based on a
complementary pivot rule that maintains an almost-complementary solution. In Figure 5, we give
an example with c = (2, 1)⊤; in our reduction we take c to be the all ones vector 1. Geometrically,
solving an LCP is equivalent to finding a complementary cone, corresponding to a subset of columns
of M and the complementary unit vectors, that contains −q. This is depicted on the left in Figure 5,
which also shows Lemke’s algorithm as inverting a piecewise linear map along the line from −c to
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Figure 5: Left: geometric view of Lemke’s algorithm as inverting a piecewise linear map. Right:
construction of S and P for EndOfPotentialLine instance from the Lemke path, where the
arrows on its edges indicate whether z increases or decreases along the edge. This figure should be
viewed in color.

−q. The algorithm pivots between the brown vertices at the intersections of complementary cones
and terminates at −q. The extra variable z can be normalized and then describes how far along
the line from c to −q we are. P-matrix LCPs are exactly those where the complementary cones
cover the whole space with no overlap, and then z decreases monotonically as Lemke’s algorithm
proceeds.

Each vertex along the Lemke path corresponds to a subset of [d] of basic variables, and a possibly
a unique duplicate label. A label l ∈ [d] is said to be duplicate if yl = 0 as well as wl = 0. The
vertices without a duplicate label has z = 0 and correspond to a solution of the LCP. To encode these
subsets and the duplicate label, we consider bit strings of length n = 2d that represent vertices in the
EndOfPotentialLine instance. The first d bits encode the subset, and bits (d + 1, . . . , 2d) bits
encode the duplicate label, where bit (d+ l) is one if l is the duplicate label. Thus, “valid” vertices in
EndOfPotentialLine instance can have at most one bit set to one among bits (d+1) through 2d.
We ensure that “invalid” bit configurations form self-loops in the EndOfPotentialLine instance,
and hence do not give rise to any solutions.

We use the following key properties of Lemke’s algorithm as applied to a P-matrix:

1. If Lemke’s algorithm does not terminate with a LCP solution (Q1), it provides a (Q2) solution.

2. For a P-matrix M , the extra variable z strictly decreases in each step of the algorithm.

3. Given a subset of [d] and duplicate label l, we can efficiently decide if it corresponds to a
vertex on a Lemke path.

4. By a result of Todd [76, Section 5], the Lemke path can be efficiently locally oriented.

Recall that LCP (1) has a trivial solution, namely y = 0, if q ≥ 0. Therefore, wlog assume that
mini∈[d] qi < 0. The starting vertex of the Lemke path is the vertex x

0 = (y0,w0, z0) with y0 = 0,
z0 = |mini∈[d] qi|, and w = q+ z01. So 0n is a start of line in the EndOfPotentialLine instance,
we point the successor of 0n to the bit configuration corresponding to x

0. We then follow the line of
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bit configurations corresponding to the vertices traversed by Lemke’s algorithm, updating z in each
step. We use (z0−z+1) as the potential function – (z0−z) to ensure increasing potential along the
line, and +1 to ensure that only 0n has zero potential. If we start with a P-LCP instance where M
is actually a P-matrix then this reduction will produce a single line from x

0 to the solution of the
P-LCP, and z will monotonically decrease along this line. The main difficulty of the reduction is
dealing with the case where M is not a P-matrix. This may cause Lemke’s algorithm to terminate
without an LCP solution. Another issue is that, even when Lemke’s algorithm does find a solution, z
may not decrease monotonically along the line.

In the former case, the first property above gives us a (Q2) solution for the P-LCP problem.
In the latter case, we define any point on the line where z increases to be a self-loop, breaking the
line at these points. Figure 5 shows an example, where the two vertices at which z increases are
turned into self loops, thereby introducing two new solutions before and after the break. Both of
these solutions give us a (Q2) solution for the P-LCP instance. The full details of the reduction are
involved and appear in Appendix G. It is worth noting that, in the case where the input is actually
a P-matrix, the resulting EndOfPotentialLine instance has a unique line, so our reduction
in promise preserving. Moreover, our EndOfPotentialLine instance is a valid UniqueEOPL

instance, and we can map back all violations so as to obtain the following.

Theorem 39. There are a polynomial-time promise-preserving reduction from P-LCP with viola-
tions of type (PV1) to EndOfPotentialLine, and from P-LCP with violations of type (PV2) to
UniqueEOPL, and thereby also to EndOfPotentialLine. Both reductions only incur a linear
blowup in the size of the instance.

5 Algorithms

5.1 Algorithms for Contraction Maps

An algorithm for PL-Contraction. The properties that we observed in our reduction from
PL-Contraction to EndOfPotentialLine can also be used to give polynomial time algorithms
for the case where the number of dimensions is constant. In our two-dimensional example, we relied
on the fact that each dimension-two slice has a unique point on the blue surface, and that the
direction function at this point tells us the direction of the overall fixpoint.

This suggests that a nested binary search approach can be used to find the fixpoint. The outer
binary search will work on dimension-two coordinates, and the inner binary search will work on
dimension-one coordinates. For each fixed dimension-two coordinate y, we can apply the inner
binary search to find the unique point (x, y) that is on the blue surface. Once we have done so,
D2(x, y) tells us how to update the outer binary search to find a new candidate coordinate y′.

This can be generalized to d-dimensional instances, by running d nested instances of binary
search. Moreover, our algorithm can detect violations in the course of performing the binary search
and is able to produce witnesses to the given function not being a contraction map. Thus, our
algorithm solves the non-promise problem PL-Contraction, giving the following theorem, whose
proof appears in Appendix H.3.

Theorem 40. Given a LinearFIXP circuit C purporting to encode a contraction map f : [0, 1]d →
[0, 1]d with respect to any ℓp norm, there is an algorithm to find a fixpoint of f or return a pair
of points witnessing that f is not a contraction map in time that is polynomial in size(C) and
exponential in d.
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An algorithm for Contraction. We are also able to generalize this to the more general
Contraction problem, where the input is given as an arbitrary (non-linear) arithmetic circuit.
Here the key issue is that the fixpoint may not be rational, and so we must find a suitably accurate
approximate fixpoint. Our nested binary search approach can be adapted to do this.

Since we now deal with approximate fixpoints, we must cut off each of our nested binary search
instances at an appropriate accuracy. Specifically, we must ensure that the solution is accurate
enough so that we can correctly update the outer binary search. Choosing these cutoff points turns
out to be quite involved, as we must choose different cutoff points depending on both the norm and
the level of recursion, and moreover the ℓ1 case requires a separate proof.

Again, the algorithm is able to detect violations of contraction during the course of the binary
search, and thus solves the more general problem of either finding a fixpoint when the circuit defines
a contraction map, or returning a pair of points that are not contracting. The details of this are
deferred to Appendix H.4, where the following theorem is shown.

Theorem 41. For a contraction map f : [0, 1]d → [0, 1]d under ‖·‖p for 2 ≤ p < ∞, there is an

algorithm to compute a point v ∈ [0, 1]d such that ‖f(v)− v‖p < ε or return a pair of points (x, y)

such that ‖f(x)− f(y)‖p > c ‖x− y‖p in time O(pd
2
logd(1/ε) logd(p)).

Actually, our algorithm treats the function as a black-box, and so it can be applied to any
contraction map, with Theorem 41 giving the number of queries that need to be made.

5.2 Aldous’ algorithm for PLCP

Aldous [2] analysed a simple randomized algorithm for solving local search problems. The algorithm
randomly samples a large number of candidate solutions and then performs a local search from the
best sampled solution. Aldous’ algorithm can solve any problem in PLS and thus any problem in
UniqueEOPL. In [35] it was noted that, because our reduction from our reduction from P-LCP

to UniqueEOPL only incurs a linear blowup, that is, from an LCP in dimension n we produce
an UniqueEOPL instance with O(2n) vertices, when we apply Aldous’ algorithm to the resulting
instance, the expected time is 2n/2 ·poly(n) in the worst case, which gives the fastest known running
time for a randomized algorithm for P-LCP. Thus, we get the following corollary of Theorem 39.

Corollary 42. There is a randomized algorithm for P-LCP that runs in expected time O(1.4143n).
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A Proofs for Section 2: Equivalence of EOPL and EOML

First we recall the definition of EndOfMeteredLine, which was first defined in [45]. It is close
in spirit to the problem EndOfLine that is used to define PPAD [64].

Definition 43 (EndOfMeteredLine [45]). Given circuits S,P : {0, 1}n → {0, 1}n, and V :
{0, 1}n → {0, . . . , 2n} such that P (0n) = 0n 6= S(0n) and V (0n) = 1, find a string x ∈ {0, 1}n
satisfying one of the following

(T1) either S(P (x)) 6= x 6= 0n or P (S(x)) 6= x,

(T2) x 6= 0n, V (x) = 1,

(T3) either V (x) > 0 and V (S(x))− V (x) 6= 1, or V (x) > 1 and V (x)− V (P (x)) 6= 1.

EndOfMeteredLine is actually quite similar to EndOfPotentialLine. The main difference
is that in EndOfMeteredLine, each edge must increase the potential by exactly 1, which is
enforced by solution type T3.

A.1 EndOfMeteredLine to EndOfPotentialLine

Given an instance I of EndOfMeteredLine defined by circuits S,P and V on vertex set {0, 1}n
we are going to create an instance I ′ of EndOfPotentialLine with circuits S′, P ′, and V ′ on
vertex set {0, 1}(n+1), i.e., we introduce one extra bit. This extra bit is essentially to take care of
the difference in the value of potential at the starting point in EndOfMeteredLine and EndOf-

PotentialLine, namely 1 and 0 respectively.
Let k = n + 1, then we create a potential function V ′ : {0, 1}k → {0, . . . , 2k − 1}. The idea is

to make 0k the starting point with potential zero as required, and to make all other vertices with
first bit 0 be dummy vertices with self loops. The real graph will be embedded in vertices with first
bit 1, i.e., of type (1,u). Here by (b,u) ∈ {0, 1}k , where b ∈ {0, 1} and u ∈ {0, 1}n, we mean a k
length bit string with first bit set to b and for each i ∈ [2 : k] bit i set to bit ui.

Procedure V ′(b,u): If b = 0 then Return 0, otherwise Return V (u).

Procedure S′(b,u):

1. If (b,u) = 0k then Return (1, 0n)

2. If b = 0 and u 6= 0n then Return (b,u) (creating self loop for dummy vertices)

3. If b = 1 and V (u) = 0 then Return (b,u) (vertices with zero potentials have self loops)

4. If b = 1 and V (u) > 0 then Return (b, S(u)) (the rest follows S)

Procedure P ′(b,u):

1. If (b,u) = 0k then Return (b,u) (initial vertex points to itself in P ′).

2. If b = 0 and u 6= 0n then Return (b,u) (creating self loop for dummy vertices)

3. If b = 1 and u = 0n then Return 0k (to make (0, 0n)→ (1, 0n) edge consistent)

4. If b = 1 and V (u) = 0 then Return (b,u) (vertices with zero potentials have self loops)

5. If b = 1 and V (u) > 0 and u 6= 0n then Return (b, P (u)) (the rest follows P )
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Valid solutions of EndOfMeteredLine of type T2 and T3 requires the potential to be strictly
greater than zero, while solutions of EndOfPotentialLine may have zero potential. However,
a solution of EndOfPotentialLine can not be a self loop, so we’ve added self-loops around
vertices with zero potential in the EndOfPotentialLine instance. By construction, the next
lemma follows:

Lemma 44. S′, P ′, V ′ are well defined and polynomial in the sizes of S, P , V respectively.

Our main theorem in this section is a consequence of the following three lemmas.

Lemma 45. For any x = (b,u) ∈ {0, 1}k, P ′(x) = S′(x) = x (self loop) iff x 6= 0k, and b = 0 or
V (u) = 0.

Proof. This follows by the construction of V ′, the second condition in S′ and P ′, and third and
fourth conditions in S′ and P ′ respectively.

Lemma 46. Let x = (b,u) ∈ {0, 1}k be such that S′(P ′(x)) 6= x 6= 0k or P ′(S′(x)) 6= x (an (R1)
type solution of EndOfPotentialLine instance I ′), then u is a solution of EndOfMeteredLine

instance I.
Proof. The proof requires a careful case analysis. By the first conditions in the descriptions of
S′, P ′ and V ′, we have x 6= 0k. Further, since x is not a self loop, Lemma 45 implies b = 1 and
V ′(1,u) = V (u) > 0.

Case I. If S′(P ′(x)) 6= x 6= 0k then we will show that either u is a genuine start of a line other than
0n giving a T1 type solution of EndOfMeteredLine instance I, or there is some issue with the
potential at u giving either a T2 or T3 type solution of I. Since S′(P ′(1, 0n)) = (1, 0n), u 6= 0n.
Thus if S(P (u)) 6= u then we get a T1 type solution of I and proof follows. If V (u) = 1 then we
get a T2 solution of I and proof follows.

Otherwise, we have S(P (u)) = u and V (u) > 1. Now since also b = 1 (1,u) is not a self loop
(Lemma 45). Then it must be the case that P ′(1,u) = (1, P (u)). However, S′(1, P (u)) 6= (1,u)
even though S(P (u)) = u. This happens only when P (u) is a self loop because of V (P (u)) = 0
(third condition of P ′). Therefore, we have V (u) − V (P (u)) > 1 implying that u is a T3 type
solution of I.
Case II. Similarly, if P ′(S′(x)) 6= x, then either u is a genuine end of a line of I , or there is
some issue with the potential at u. If P (S(u)) 6= u then we get T1 solution of I. Otherwise,
P (S(u)) = u and V (u) > 0. Now as (b,u) is not a self loop and V (u) > 0, it must be the case that
S′(b,u) = (1, S(u)). However, P ′(1, S(u)) 6= (b,u) even though P (S(u)) = u. This happens only
when S(u) is a self loop because of V (S(u)) = 0. Therefore, we get V (S(u))− V (u) < 0, i.e., u is
a type T3 solution of I .

Lemma 47. Let x = (b,u) ∈ {0, 1}k be an (R2) type solution of the constructed EndOfPoten-

tialLine instance I ′, then u is a type T3 solution of EndOfMeteredLine instance I.
Proof. Clearly, x 6= 0k. Let y = (b′,u′) = S′(x) 6= x, and observe that P (y) = x. This also implies
that y is not a self loop, and hence b = b′ = 1 and V (u) > 0 (Lemma 45). Further, y = S′(1,u) =
(1, S(u)), hence u

′ = S(u). Also, V ′(x) = V ′(1,u) = V (u) and V ′(y) = V ′(1,u′) = V (u′).
Since V ′(y)−V ′(x) ≤ 0 we get V (u′)−V (u) ≤ 0⇒ V (S(u))−V (u) ≤ 0⇒ V (S(u))−V (u) 6= 1.

Given that V (u) > 0, u gives a type T3 solution of EndOfMeteredLine.

Theorem 48. An instance of EndOfMeteredLine can be reduced to an instance of EndOfPo-

tentialLine in linear time such that a solution of the former can be constructed in a linear time
from the solution of the latter.
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A.2 EndOfPotentialLine to EndOfMeteredLine

In this section we give a linear time reduction from an instance I of EndOfPotentialLine to an
instance I ′ of EndOfMeteredLine. Let the given EndOfPotentialLine instance I be defined
on vertex set {0, 1}n and with procedures S,P and V , where V : {0, 1}n → {0, . . . , 2m − 1}.
Valid Edge. We call an edge u→ v valid if v = S(u) and u = P (v).

We construct an EndOfMeteredLine instance I ′ on {0, 1}k vertices where k = n +m. Let
S′, P ′ and V ′ denotes the procedures for I ′ instance. The idea is to capture value V (x) of the
potential in the m least significant bits of vertex description itself, so that it can be gradually
increased or decreased on valid edges. For vertices with irrelevant values of these least m significant
bits we will create self loops. Invalid edges will also become self loops, e.g., if y = S(x) but P (y) 6= x

then set S′(x, .) = (x, .). We will see how these can not introduce new solutions.
In order to ensure V ′(0k) = 1, the V (S(0n)) = 1 case needs to be discarded. For this, we first do

some initial checks to see if the given instance I is not trivial. If the input EndOfPotentialLine

instance is trivial, in the sense that either 0n or S(0n) is a solution, then we can just return it.

Lemma 49. If 0n or S(0n) are not solutions of EndOfPotentialLine instance I then 0n →
S(0n)→ S(S(0n)) are valid edges, and V (S(S(0n)) ≥ 2.

Proof. Since both 0n and S(0n) are not solutions, we have V (0n) < V (S(0n)) < V (S(S(0n))),
P (S(0n)) = 0n, and for u = S(0n), S(P (u)) = u and P (S(u)) = u. In other words, 0n → S(0n)→
S(S(0n)) are valid edges, and since V (0n) = 0, we have V (S(S(0n)) ≥ 2.

Let us assume now on that 0n and S(0n) are not solutions of I, and then by Lemma 49, we
have 0n → S(0n)→ S(S(0n)) are valid edges, and V (S(S(0n)) ≥ 2. We can avoid the need to check
whether V (S(0)) is one all together, by making 0n point directly to S(S(0n)) and make S(0n) a
dummy vertex.

We first construct S′ and P ′, and then construct V ′ which will give value zero to all self loops,
and use the least significant m bits to give a value to all other vertices. Before describing S′ and
P ′ formally, we first describe the underlying principles. Recall that in I vertex set is {0, 1}n and
possible potential values are {0, . . . , 2m − 1}, while in I ′ vertex set is {0, 1}k where k = m+ n. We
will denote a vertex of I ′ by a tuple (u, π), where u ∈ {0, 1}n and π ∈ {0, . . . , 2m − 1}. Here when
we say that we introduce an edge x→ y we mean that we introduce a valid edge from x to y, i.e.,
y = S′(x) and x = P (y).

• Vertices of the form (S(0n), π) for any π ∈ {0, 1}m and the vertex (0n, 1) are dummies and
hence have self loops.

• If V (S(S(0n)) = 2 then we introduce an edge (0n, 0)→ (S(S(0n)), 2), otherwise

– for p = V (S(S(0n)), we introduce the edges (0n, 0) → (0n, 2) → (0n, 3) . . . (0n, p − 1) →
(S(S(0n)), p).

• If u→ u
′ valid edge in I then let p = V (u) and p′ = V (u′)

– If p = p′ then we introduce the edge (u, p)→ (u′, p′).

– If p < p′ then we introduce the edges (u, p)→ (u, p + 1)→ . . .→ (u, p′ − 1)→ (u′, p′).

– If p > p′ then we introduce the edges (u, p)→ (u, p − 1)→ . . .→ (u, p′ + 1)→ (u′, p′).

• If u 6= 0n is the start of a path, i.e., S(P (u)) 6= u, then make (u, V (u)) start of a path by
ensuring P ′(u, V (u)) = (u, V (u)).
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• If u is the end of a path, i.e., P (S(u)) 6= u, then make (u, V (u)) end of a path by ensuring
S′(u, V (u)) = (u, V (u)).

Last two bullets above remove singleton solutions from the system by making them self loops.
However, this can not kill all the solutions since there is a path starting at 0n, which has to end
somewhere. Further, note that this entire process ensures that no new start or end of a paths are
introduced.

Procedure S′(u, π).

1. If (u = 0n and π = 1) or u = S(0n) then Return (u, π).

2. If (u, π) = 0k, then let u
′ = S(S(0n)) and p′ = V (u′).

(a) If p′ = 2 then Return (u′, 2) else Return (0n, 2).

3. If u = 0n then

(a) If 2 ≤ π < p′ − 1 then Return (0n, π + 1).

(b) If π = p′ − 1 then Return (S(S(0n)), p′).

(c) If π ≥ p′ then Return (u, π).

4. Let u
′ = S(u), p′ = V (u′), and p = V (u).

5. If P (u′) 6= u or u
′ = u then Return (u, π)

6. If π = p = p′ or (π = p and p′ = p+ 1) or (π = p and p′ = p− 1) then Return (u′, p′).

7. If π < p ≤ p′ or p ≤ p′ ≤ π or π > p ≥ p′ or p ≥ p′ ≥ π then Return (u, π)

8. If p < p′, then if p ≤ π < p′ − 1 then Return (u, π + 1). If π = p′ − 1 then Return (u′, p′).

9. If p > p′, then if p ≥ π > p′ + 1 then Return (u, π − 1). If π = p′ + 1 then Return (u′, p′).

Procedure P ′(u, π).

1. If (u = 0n and π = 1) or u = S(0n) then Return (u, π).

2. If u = 0n, then

(a) If π = 0 then Return 0k.

(b) If π < V (S(S(0n))) and π /∈ {1, 2} then Return (0n, π − 1).

(c) If π < V (S(S(0n))) and π = 2 then Return 0k.

3. If u = S(S(0n)) and π = V (S(S(0n)) then

(a) If π = 2 then Return (0n, 0), else Return (0n, π − 1).

4. If π = V (u) then

(a) Let u
′ = P (u), p′ = V (u′), and p = V (u).

(b) If S(u′) 6= u or u
′ = u then Return (u, π)

(c) If p = p′ then Return (u′, p′)
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(d) If p′ < p then Return (u′, p− 1) else Return (u′, p + 1)

5. Else % when π 6= V (u)

(a) Let u
′ = S(u), p′ = V (u′), and p = V (u)

(b) If P (u′) 6= u or u
′ = u then Return (u, π)

(c) If p′ = p or π < p < p′ or p < p′ ≤ π or π > p > p′ or p > p′ ≥ π then Return (u, π)

(d) If p < p′, then If p < π ≤ p′ − 1 then Return (u, π − 1).

(e) If p > p′, then if p > π ≥ p′ + 1 then Return (u, π + 1).

As mentioned before, the intuition for the potential function procedure V ′ is to return zero for
self loops, return 1 for 0k, and return the number specified by the lowest m bits for the rest.

Procedure V ′(u, π). Let x = (u, π) for notational convenience.

1. If x = 0k, then Return 1.

2. If S′(x) = x and P ′(x) = x then Return 0.

3. If S′(x) 6= x or P ′(x) 6= x then Return π.

The fact that procedures S′, P ′ and V ′ give a valid EndOfMeteredLine instance follows from
construction.

Lemma 50. Procedures S′, P ′ and V ′ gives a valid EndOfMeteredLine instance on vertex set
{0, 1}k, where k = m+ n and V ′ : {0, 1}k → {0, . . . , 2k − 1}.

The next three lemmas shows how to construct a solution of EndOfPotentialLine instance
I from a type T1, T2, or T3 solution of constructed EndOfMeteredLine instance I ′. The basic
idea for next lemma, which handles type T1 solutions, is that we never create spurious end or start
of a path.

Lemma 51. Let x = (u, π) be a type T1 solution of constructed EndOfMeteredLine instance
I ′. Then u is a type (R1) solution of the given EndOfPotentialLine instance I.

Proof. Let ∆ = 2m − 1. In I ′, clearly (0n, π) for any π ∈ 1, . . . ,∆ is not a start or end of a path,
and (0n, 0) is not an end of a path. Therefore, u 6= 0n. Since (S(0n), π),∀π ∈ {0, . . . ,∆} are self
loops, u 6= S(0n).

If to the contrary, S(P (u)) = u and P (S(u)) = u. If S(u) = u = P (u) then (u, π), ∀π ∈
{0, . . . ,∆} are self loops, a contradiction.

For the remaining cases, let P ′(S′(x)) 6= x, and let u
′ = S(u). . There is a valid edge from u

to u
′ in I. Then we will create valid edges from (u, V (u)) to (S(u), V (S(u)) with appropriately

changing second coordinates. The rest of (u, .) are self loops, a contradiction.
Similar argument follows for the case when S′(P ′(x)) 6= x.

The basic idea behind the next lemma is that a T2 type solution in I ′ has potential 1. Therefore,
it is surely not a self loop. Then it is either an end of a path or near an end of a path, or else near
a potential violation.

Lemma 52. Let x = (u, π) be a type T2 solution of I ′. Either u 6= 0n is start of a path in I (type
(R1) solution), or P (u) is an (R1) or (R2) type solution in I, or P (P (u)) is an (R2) type solution
in I.
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Proof. Clearly u 6= 0n, and x is not a self loop, i.e., it is not a dummy vertex with irrelevant value
of π. Further, π = 1. If u is a start or end of a path in I then done.

Otherwise, if V (P (u)) > π then we have V (u) ≤ π and hence V (u) − V (P (u)) ≤ 0 giving
P (u) as an (R2) type solution of I. If V (P (u)) < π = 1 then V (P (u)) = 0. Since potential can
not go below zero, either P (u) is an end of a path, or for u

′′ = P (P (u)) and u
′ = P (u) we have

u
′ = S(u′′) and V (u′)− V (u′′) ≤ 0, giving u

′′ as a type (R2) solution of I.

At a type T3 solution of I ′ potential is strictly positive, hence these solutions are not self loops.
If they correspond to potential violation in I then we get a type (R2) solution. But this may not
be the case, if we made S′ or P ′ self pointing due to end or start of a path respectively. In that
case, we get a type (R1) solution. The next lemma formalizes this intuition.

Lemma 53. Let x = (u, π) be a type T3 solution of I ′. If x is a start or end of a path in I ′ then
u gives a type (R1) solution in I. Otherwise u gives a type (R2) solution of I.

Proof. Since V ′(x) > 0, it is not a self loop and hence is not dummy, and u 6= 0n. If u is start or
end of a path then u is a type (R1) solution of I. Otherwise, there are valid incoming and outgoing
edges at u, therefore so at x.

If V ((S(x))− V (x) 6= 1, then since potential either remains the same or increases or decreases
exactly by one on edges of I ′, it must be the case that V (S(x)) − V (x) ≤ 0. This is possible only
when V (S(u)) ≤ V (u). Since u is not an end of a path we do have S(u) 6= u and P (S(u)) = u.
Thus, u is a type T2 solution of I.

If V ((x) − V (P (x)) 6= 1, then by the same argument we get that for (u′′, π′′) = P (u), u′′ is a
type (R2) solution of I.

Our main theorem follows using Lemmas 50, 51, 52, and 53.

Theorem 54. An instance of EndOfPotentialLine can be reduced to an instance of EndOfMe-

teredLine in polynomial time such that a solution of the former can be constructed in a linear
time from the solution of the latter.

B Proofs for Section 3.1: OPDC to UEOPL

B.1 Proof of Lemma 16

Throughout this proof, we will fixD = (Di)i=1,...,d to be the direction functions, and P = P (k1, k2, . . . , kd)
to be the set of points used in the OPDC instance. We will produce a UniqueForwardEOPL

instance L = (S, V ).

The circuit S. A vertex of the line is a tuple (p0, p1, p2, . . . , pd), where each pi ∈ P∪{−} is either a
point or a special symbol, −, that is used to indicate an unused element. We use vert = (P ∪{−})d+1

to denote the set of possible vertices. Only some of the tuples are valid encodings for a vertex. To
be valid, a vertex (p0, p1, p2, . . . , pd) must obey the following rules:

1. If pi 6= −, then Dj(pi) = zero for all j ≤ i. This means that if pi is a point, then it must be a
point on the i-surface.

2. If pi 6= −, then we must have Di+1(pi) 6= down.

3. If pi 6= − and pj = − and i < j, then we must have (pi)j+1 = 0.
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4. If pi 6= − and pj 6= − and i < j, then we must have (pi)j+1 = (pj)j+1 + 1.

We define the function IsVertex : vert→ {true, false} that determines whether a given v ∈ vert is
a valid encoding of a vertex, by following the rules laid out above. This can clearly be computed in
polynomial time.

The initial vertex, which will be mapped to the bit-string 0n, will be (pinit,−, . . . ,−), where
pinit = (0, 0, . . . , 0) is the all zeros point in P .

Given a vertex encoding v = (p0, p1, p2, . . . , pd) ∈ vert, the circuit S carries out the following
operations. If IsVertex(v) is false, then S(v) = v, indicating that v is indeed not a vertex. Other-
wise, we use the following set of rules to determine the successor of v. Let i be the smallest index
such that pi 6= −.

1. If i = d then our vertex has the form v = (−, . . . ,−, pd), and pd is on the d-surface, meaning
that it is a solution to the discrete contraction map. So we set S(v) = v to ensure that this
is a solution.

2. If Di+1(pi) = zero, then we define S(v) = v′ where

v′j =











− if j < i+ 1,

pi if j = i+ 1,

pj if j > i+ 1.

This operation overwrites the point in position i + 1 with pi, and sets position i to −. All
other components of v are unchanged.

3. If Di+1(pi) 6= zero and i > 0 then let q be the point such that

(q)j =











0 if j < i+ 1,

(pi)i+1 + 1 if j = i+ 1,

(pi)j if j > i+ 1.

(a) If q is a point in P , then we define S(v) = (q, p1, p2, . . . , pd).

(b) Otherwise, we must have that (pi)i+1 = ki+1, meaning that pi is the last point of the grid.
This means that we have a solution of type (OV3), since the fact that IsVertex(v) = true

implies that Di+1(pi) = up. So we set S(v) = v.

4. If Di+1(pi) 6= zero and i = 0 then let q be the point such that (q)j = (p0)j for all j > 1, and
(q)1 = (p0)1 + 1.

(a) If q is in the point set P , then we define S(v) = (q, p1, p2, . . . , pd).

(b) If q is not in P , then we again have a solution of type (OV3), since (p0)1 = k1, and
D1(p0) = up from the fact that IsVertex(v) = true. So we set S(v) = v.

The potential function. To define the potential function, we first define an intuitive potential
that uses a tuple of values ordered lexicographically, and then translate this into a circuit V that
produces integers. We’ll call the tuple of values the lexicographic potential associated with a vertex v,
and denote it using LexPot(v). To define the lexicographic potential, we’ll need to introduce an
auxiliary function Potential : (P ∪ {−})× {0, . . . , d+ 1} → Z given by
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Potential(p, i) =

{

(p)i+1 + 1 if p 6= −,

0 otherwise.

The lexicographic potential of v = (p0, p1, . . . , pd) ∈ vert is the following:

LexPot(v) = (Potential(p0, 0),Potential(p1, 1), . . . ,Potential(pd−1, d− 1)) .

Note that the LexPot(v) ∈ Zd, since the definition ignores pd.
Let ≺d be the ordering on tuples from Zd where they are compared lexicographically from right

to left, so that (0, 0) ≺2 (1, 0) ≺2 (0, 1) ≺2 (1, 1), for example. Our potential function will be defined
by the tuples given by LexPot and the order ≺d+1. We omit the subscript from ≺ whenever it is
clear from the context.

Given a vertex v = (p0, p1, . . . , pd) ∈ vert, let LexPot(v) = (l0, . . . , ld−1). To translate from
lexicographically ordered tuples to integers in a way that preserves the ordering, we pick some
integer k such that k > ki for all i, meaning that k is larger than the grid-width used in every
dimension, which implies that lj < k for all j. We now take a weighted sum of the coordinates of
LexPot(v) where the weight for coordinate i is ki, so that the ith coordinate dominates coordinates
0 through i− 1. The final potential value V : vert→ Z is then given by

V (v) =
d−1
∑

i=0

kili,

which can be easily computed in polynomial time. This completes the definition of the Unique-

ForwardEOPL problem (S, V ).

Lemma 55. Every solution of the UniqueForwardEOPL instance (S, V ) can be used to find a
solution of the OPDC instance given by D and P . Furthermore, solutions of type (O1) are only
ever mapped onto solutions of type (UF1).

Proof. We begin by considering solutions of type (UF1). Let x = (p0, p1, . . . , pd) and let y = S(x),
and suppose that x is a (UF1) solution. This means that S(x) 6= x and either S(y) = y or V (y) ≤
V (x). We first suppose that S(y) = y, and note that in this case we must have IsVertex(x) = true

while IsVertex(y) = false. We have the following cases based on the rule used to determine S(x).

1. If S(x) is determined by the first rule in the definition of S, then this means that pd 6= −.
Since IsVertex(x) = true, this means that Di(pd) = zero for all i, which means that pd is a
solution of type (O1).

2. If S(x) is determined by the second rule in the definition of S, then there are two cases. Let
i be the smallest index such that pi 6= −.

(a) If Di+2(pi) = down then we have a solution of type (OV2) or (OV3).

i. If pi+2 6= − then pi and pi+2 are solution of type (OV2). Specifically, this holds
because Di+2(pi+2) = up while Di+2(pi) = down, and (pi)i+2 = (pi+2)i+2 + 1 holds
because IsVertex(x) = true. Moreover, Dj(pi) = Dj(pi+2) = zero, for all j < i+ 2,
where in particular the fact that Di+1(pi) = zero is given by the fact that we are in
the second case of the definition of S.

ii. If pi+2 = − then this means that (pi)i+2 = 0. Since Di+2(pi) = down this gives us a
solution of type (OV3).
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(b) If Di+2(pi) 6= down, then we argue that this case is impossible. Specifically, we will show
that IsVertex(y) = true, meaning that S(y) 6= y. To do this, we will prove that the four
conditions of IsVertex hold for y. Note that y differs from x only in positions i and i+1,
and that position i of y is −. So we only need to consider the conditions imposed by
IsVertex when the point pi is placed in position i+ 1.

i. The first condition of IsVertex is that pi should be on the (i + 1)-surface, which is
true because the second rule of S explicitly checks that Di+1(pi) = zero, while the
fact that IsVertex(x) = true guarantees that Dj(pi) = zero for all j < i+ 1.

ii. The second condition requires that Di+2(pi) 6= down, which is true by assumption.

iii. Every constraint imposed by the third and fourth conditions also holds for pi in x,
and so the fact that IsVertex(x) = true implies that these conditions hold for y.

3. If S(x) is determined by the third rule defining S, then we have two cases. Since the third
rule was used, we know that y = (q, p1, p2, . . . , pd), with the definition of q being given in the
third rule.

(a) If q is not in P , then we have a solution of type (OV3), as described in the algorithm
for S.

(b) If q ∈ P and D1(q) = down, then we have a solution of type (OV3), since q1 = 0 by
definition.

(c) If q ∈ P and D1(q) 6= down and q ∈ P , then we argue that the case is impossible,
and we prove this by showing that IsVertex(y) = true. Note that y differs from x
only in the position occupied by q, and so this is the only point for which we need to
prove the conditions, since all the other points satisfy the conditions by the fact that
IsVertex(x) = true.

i. The first requirement of IsVertex(y) holds trivially, since the only new requirement
is that q is on the 0-surface, and every point is on the 0-surface by definition.

ii. The second requirement is that D1(q) 6= down, which is true by assumption.

iii. The third and fourth conditions place constraints on certain coordinates of q. For co-
ordinates j < i, the third condition requires that qj = 0, which is true by definition,
while the fourth condition is inapplicable. For coordinates j ≥ i, the constraints im-
posed by the third and fourth conditions hold because qj = (pi)j in these coordinates,
and pi also satisfies these constraints.

4. If S(x) is determined by the fourth rule, then we have two cases. Let y = (q, p1, p2, . . . , pd) be
the value of y produced by the fourth rule, where the definition of q is given in that rule.

(a) If q is not in P , then we have a solution of type (OV3), as described in the algorithm
for S.

(b) If q ∈ P and D1(q) = down then we have a solution of type (OV2). Specifically, the
points p0 and q provide the violation since (q)1 = (p0)1 + 1, while D1(p0) = up and
D1(q) = down. The fact that both q and p0 belong to the same 1-slice is guaranteed by
the definition of q.

(c) If q ∈ P and D1(q) 6= down then we again argue that IsVertex(y) = true, making this
case impossible. The reasoning is the same as the reasoning used in case 3b.
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We now proceed to the case where we have a solution x = (p0, p1, . . . , pd) of type (UF1) and the
vertex y = S(x) satisfies S(y) 6= y. In this case, we must have V (y) ≤ V (x). We argue that this is
impossible, and again we will do a case analysis based on the rule used to determine the output of
the circuit S.

1. If S(x) is determined by the first rule then we have IsVertex(y) = false, which is not possible
in this case.

2. If S(x) is determined by the second rule, then we can prove that V (y) > V (x). This is because
y differs from x only in positions i and i+1, and because (pi)i+1 = (pi+1)i+1+1 by the fourth
rule of IsVertex(x). Hence

ki ·Potential(−, i)+ki+1 ·Potential(pi, i+1) > ki ·Potential(pi, i)+ki+1 ·Potential(pi+1, i+1),

where we are using the fact that ki+1 > ki · Potential(pi, i). Thus, V (y) > V (x).

3. If S(x) is determined by the third rule, then note that we must have q ∈ P . We again argue
that V (y) > V (x). Specifically, observe that V (y) = V (x) + Potential(q, 0) = V (x) + 1.

4. If S(x) is determined by the fourth rule, then note that we must have q ∈ P , and we also have
V (y) > V (x). Specifically

V (y) = V (x)− Potential(p0, 0) + Potential(q, 0)

= V (x)− (p0)1 + q1

= V (x) + 1.

Finally, we move to the case where we have a solution of type (UFV1). In this case we have two
vertices x = (p0, p1, . . . , pd) and y = (q0, q1, . . . , qd) for which IsVertex(x) = IsVertex(y) = true,
and for which V (x) ≤ V (y) < V (S(x)). We will once again perform a case analysis over the possible
cases of S.

1. S(x) cannot be determined by the first case in the definition of S, because that case only
applies when IsVertex(y) = false.

2. If S(x) is determined by the second case in the definition of S, then we observe that we have
LexPot(x) = (0, . . . , 0, vi, vi+1, . . . , vd) and LexPot(S(x)) = (0, . . . , 0, 0, vi+1 + 1, vi+2 . . . , vd),
ie., the ith element of LexPot(x) is replaced by 0, and the (i + 1)th element is replaced by
vi+1+1. Note also that elements i+2 through d of LexPot(S(x)) agree with the corresponding
elements of LexPot(x).

Since we have V (x) ≤ V (y) < V (S(x)) this means that LexPot(x) ≺ LexPot(y) ≺ LexPot(S(x)).
Hence, LexPot(y) must have the form (v′0, v

′
1, . . . , v

′
i, vi+1, vi+2, . . . , vd), meaning that it agrees

with LexPot(x) and LexPot(S(x)) on elements i + 1 through d. Furthermore, we must have
v′i ≥ vi.

Let j be the largest index satisfying j ≤ i and v′j 6= vj . Note that such a j must exist, since
otherwise we would have x = y, which would contradict the fact that x 6= y in any solution of
type UFV1. We claim that pj and qj form a solution of type (OV1).

Let s be the j-slice that satisfies sl = ∗ for all l ≤ j and sl = (pj)l for all l > j. The point pj
lies in the slice s by definition. We claim that qj also lies in this slice, which follows from the
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fact that vl = v′l for all l > j, combined with the third and fourth properties of IsVertex(x)
and IsVertex(y). Note also that (pj)j 6= (qj)j , and hence pj 6= qj.

Finally, the first property of IsVertex(x) and IsVertex(y) imply that Dl(pj) = zero and
Dl(qj) = zero for all l ≤ j. So pj and qj are two distinct fixpoint of the j-slice s, mean-
ing that we have a solution of type (OV1).

3. We claim that S(x) cannot be determined by the third rule in the definition of S. In this
case we have LexPot(x) = (0, v1, v2, . . . , vd), since the case is only applicable when p0 = −.
Observe that LexPot(S(x)) = (1, v1, v2, . . . , vd), and that there is no possible tuple t that
satisfies LexPot(x) ≺ t ≺ LexPot(S(x)). This means that we must have V (y) = V (x), but
this is only possible if y = x, due to the constraints placed by the third and fourth properties
of IsVertex. Hence this case is not possible, since y = x is specifically ruled out in a solution
of type UVF1.

4. For similar reasons, we claim that S(x) cannot be determined by the fourth rule. In this case
we have LexPot(x) = (v0, v1, v2, . . . , vd), and LexPot(S(x)) = (v0 + 1, v1, v2, . . . , vd), which
again means that there cannot be a tuple t satisfying LexPot(x) ≺ t ≺ LexPot(S(x)). Hence
we would have V (x) = V (y) and x = y as in the previous case, which is impossible.

To complete the proof, we note that solutions of type (O1) are only ever mapped onto solutions of
type (UF1).

This proves that our reduction from OPDC to UniqueForwardEOPL is correct. The fact
that the reduction is promise-preserving follows from the fact that all solutions of type (O1) are
mapped onto solutions of type (UF1). Hence, if we promise that there are no violations in the
OPDC instance, then the resulting UFEOPL instance can only have solutions of type (UF1). This
completes the proof of Lemma 16.

B.2 Proof of Lemma 18

We provide a polynomial-time promise-preserving reduction from UniqueForwardEOPL to Uniq-

ueForwardEOPL+1. This reduction uses essentially the same idea as the reduction from End-

OfPotentialLine to EndOfMeteredLine given in Theorem 10.
Let L = (S, V ) be an instance of UniqueForwardEOPL, and let n be the bit-length of the

strings used to represent vertices in L. If x is a vertex in L such that V (S(x)) > V (x) + 1, then we
introduce new vertices between x and S(x), each of which increases in potential by 1.

Formally, our UniqueForwardEOPL+1 instance will be denoted as L′ = (S′, V ′). Each vertex
in this instance will be a pair (v, i), where v is a vertex from L, and i is an integer between 0 and 2n.
The circuit S′ is defined in the following way. For each vertex (v, i) we use the following algorithm.

1. If S(v) = v, then S′(v, i) = (v, i), meaning that if v is not a vertex in L, then (v, i) is not a
vertex in L′ for all i.

2. If S(v) 6= v and V (S(v)) > V (v) + i+ 1, then S′(v, i) = (v, i + 1).

3. If S(v) 6= v and V (S(v)) = V (v) + i+ 1, then S′(v, i) = (S(v), 0).

4. If S(v) 6= v and V (S(v)) < V (v) + i+ 1, then S′(v, i) = (v, i).
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The last three conditions add a new sequence of vertices between any edge (x, y) where V (y) >
V (y) + 1. Specifically, this sequence is

(x, 0)→ (x, 1)→ · · · → (x, V (y)− V (x)− 1)→ (y, 0).

Any pair (v, i) that is not used in such a sequence has S′(v, i) = (v, i), meaning that it is not a
vertex.

The potential function is defined as follows. For each vertex (v, i), we use the following algorithm.

1. If S(v, i) = (v, i), then the potential of (v, i) is irrelevant.

2. Otherwise, we set V ′(v, i) = V (v) + i.

This completes the specification of the reduction.
Clearly the reduction can be carried out in polynomial time. We now prove that this is a

promise-preserving reduction.

Lemma 56. Every solution of L′ can be mapped to a solution of L. Furthermore, solutions of type
(UF1) of L are only ever mapped onto solutions of type (UFP1) in L′.

Proof. We start by considering solutions of type (UFP1). Let x = (v, i) be a vertex, and let
y = (u, j) be the vertex with y = S(x). In a solution of type (UFP1) we have that S′(x) 6= x and
either S′(y) = y or V ′(y) 6= V ′(x) + 1. Hence, there are two cases to consider.

1. If S′(y) = y then we must have that u = S(v) and j = 0, since if (v, i) is a vertex, then S′

will always either give (v, i + 1) or (S(v), 0), and it suffices to note that if S′(v, i) = (v, i + 1)
then S′(v, i + 1) 6= (v, i + 1).

So, we have y = (S(v), 0), and S′(y) = y. This can only occur in the case where either
S(S(v)) = S(v), or V (S(S(v))) < V (S(v)). Both of these cases yield a solution of type (UF1)
for L.

2. We claim that the case V ′(y) 6= V ′(x) + 1 is not possible. Since we have already dealt with
the case where S′(y) = y, we can assume that y is a vertex. Note that S′(x) cannot be
determined by cases 1 or 4 of the algorithm, since in those cases x would not be a vertex.
If S′(x) is determined by case 2 of the algorithm, then we have that V ′(y) = V ′(x) + 1 by
definition. If S′(x) is determined by case 3 of the algorithm, then we have

V ′(x) = V (v) + (V (u)− V (v) − 1) = V ′(y)− 1

Hence, this case is impossible by construction.

Thus, we have dealt with all possible solutions of type (UFP1).
We now consider a violation of type (UFPV1). In this case we have two vertices x = (v, i) and

y = (u, j) such that x 6= y, x 6= S′(x), y 6= S′(y), and V ′(x) = V ′(y). We claim that this gives us a
solution of type (UFV1). If i = j then V (v) = V (u), and so we have a solution of type (UFV1) in
L. Assume, without loss of generality, that i ≤ j. We have

V (v) + i = V ′(v, i) = V ′(u, j) = V (u) + j,

which implies that V (u) ≤ V (v). Furthermore, we have that

V (S(u)) > V (u) + j ≥ V (v) + i ≥ V (v),

where the first inequality arises from the fact that (u, j) is a valid vertex in L′. Hence, we have
shown that V (u) ≤ V (v) < V (S(u)), which is exactly a solution of type (UFV1) in L.
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The lemma implies that our reduction is correct. The fact that it is promise-preserving follows
from the fact that solutions of type (UF1) are only ever mapped onto solutions of type (UFP1).
Hence, if it is promised that L only has (UF1) solutions, then L′ must only have (UFP1) solutions.
This completes the proof of Lemma 18.

B.3 Proof of Lemma 20

The reduction of Hubáček and Yogev [45] relies on the pebbling game technique that was first applied
by Bitansky et al [4]. Let L = (S,W, xs, T ) be an SinkOfVerifiableLine instance. The pebbling
game is played by placing pebbles on the vertices of this instance according to the following rules.

• A pebble may be placed or removed from the starting vertex xs at any time.

• A pebble may be placed or removed on a vertex x 6= xs if and only if there is a pebble on a
vertex y with S(y) = x.

Given n pebbles, how far can we move along the line by following these rules? The answer is
that we can place a pebble on vertex 2n−1 by applying the following optimal strategy. The strategy
is recursive. In the base case, we can place a pebble on vertex 21 − 1 = 1 by placing our single
pebble on the successor of xs. In the recursive step, where we have n pebbles, we use the following
approach:

1. Follow the optimal strategy for n− 1 pebbles, in order to place a pebble on vertex 2n−1 − 1.

2. Place pebble n on the vertex 2n−1.

3. Follow the optimal strategy for n − 1 pebbles backwards in order to reclaim the first n − 1
pebbles.

4. Follow the optimal strategy for n − 1 pebbles forwards, but starting from the vertex 2n−1.
This ends by placing a pebble on vertex 2n−1 + 2n−1 − 1 = 2n − 1.

Step 3 above relies on the fact that the pebbling game is reversible, meaning that we can execute
any sequence of moves backwards as well as forwards. At the beginning of Step 4, we have a single
pebble on vertex 2n−1, and we follow the optimal strategy again, but using 2n−1 as the starting
point.

The reduction from UniqueForwardEOPL to UniqueEOPL. To reduce UniqueFor-

wardEOPL to UniqueEOPL, we play the optimal strategy for the pebbling game. Note that,
since that since every step of the pebbling game is reversible, this gives us a predecessor circuit.
We will closely follow the reduction given by Bitansky et al [4] from SinkOfVerifiableLine to
EndOfLine. Specifically, we will reduce an instance L = (S, V ) of UniqueForwardEOPL to an
instance L′ = (S′, P ′, V ′) of UniqueEOPL.

A vertex in L′ will be a tuple of pairs ((v1, a1), (v2, a2), . . . , (vn, an)) describing the state of the
pebbling game. Each vi is a bit-string, while each ai is either

• the special symbol −, implying that pebble i is not used and that the bit-string vi should be
disregarded, or

• an integer such that ai = V (vi), meaning that pebble i is placed on the vertex vi.
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Bitansky et al [4] have produced circuits S′ and P ′ that implement the optimal strategy of the
pebbling game for pebbles encoded in this way. The only slight difference is that they reduce from
SinkOfVerifiableLine, but we can apply their construction by creating the circuit W so that
W (v, a) = 1 if and only if V (v) = a. We refer the reader to their work for the full definition of these
two circuits.

Hubáček and Yogev [45] built upon this reduction by showing that it is possible to give a potential
function V ′ for the resulting instance. Specifically, their potential encodes how much progress we
have made along the optimal strategy, which it turns out, can be computed purely from the current
configuration of the pebbles. Their construction also guarantees that the potential at each vertex
always increases by 1, meaning that we have V (S(x)) = V (x) + 1 whenever S(x) and x are both
vertices. We refer the reader to their work for the full definition of the circuit V ′.

Violations. So far, we have a reduction from the promise version of UniqueForwardEOPL to
UniqueEOPL, which entirely utilizes prior work. Specifically, every solution of type (U1) in L′

will map back to a solution of type (UFP1) in L.
Our contribution is to handle the violations, thereby giving a promise-preserving reduction from

the non-promise version of UniqueForwardEOPL to the non-promise version of UniqueEOPL.

Lemma 57. Every violation in L′ can be mapped back to a violation of L.

Proof. There are three types of violation in L′.

1. Violations of type (UV1), which are edges where the potential decreases, are not possible,
since the reduction of Hubáček and Yogev ensures that V ′(S′(x)) = V ′(x)+1 whenever x and
S′(x) are both vertices.

2. In violations of type (UV2) we have a vertex ((v1, a1), (v2, a2), . . . , (vn, an)) that is the start
of a second line. This means that, for some reason, we are not able to execute the optimal
strategy backwards from this vertex. There are two possibilities

(a) The optimal strategy needs to place a pebble on the successor of some vertex vi, but
it cannot because vi is the end of a line. This means that either S(vi) = vi or that
V (S(vi)) 6= V (vi) + 1, and in either case we have a solution of type (UFP1) for L.

(b) The optimal strategy needs to remove the pebble vi, but it cannot, because it does not
have a pebble on a vertex u with S(u) = u. By construction, there will be some pebble
vj with aj = ai − 1, but in this case we have S(vj) 6= vi. This means that we have two
lines, and specifically we have that vi and S(vj) are two vertices with the same potential,
since V (vj) = aj and V (S(vj)) = V (vj) + 1. This gives us a solution of type (UFPV1).

3. In violations of type (UV3) we have two distinct vertices x = ((v1, a1), (v2, a2), . . . , (vn, an))
and y = ((u1, b1), (u2, b2), . . . , (un, bn)) with V ′(x) ≤ V ′(y) < V ′(S′(x)). Since the reduction
ensures that V ′(S′(x)) = V ′(x) + 1 this means that x and y have the same potential. The
reduction of Hubáček and Yogev ensures that, if two vertices have the same potential, then
they refer to the same step of the optimal strategy, meaning that ai = bi for all i. This means
that any pair of vertices vi and ui with ai 6= − is a pair of vertices with V (vi) = V (ui), and
so a solution of type (UFPV1). To see that such a pair must exist, it suffices to note that
the only vertex with ai = − for all i is the start of the line, and there cannot be two distinct
vertices with this property.
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The lemma above proves that the reduction is correct, but it does not directly prove that it is
promise-preserving. Specifically, in case 2a of the proof we show that some violations of (UV2) are
mapped back to solutions of type (UFP1). This, however, is not a problem, because we can argue
that case 2a of the proof can only occur if there is more than one line in L′.

Specifically, if we are at some vertex x = ((v1, a1), (v2, a2), . . . , (vn, an)) and P (x) needs to place
a pebble on S(vi), then vi cannot be the furthest point in the pebble configuration, meaning that
there is some vj with aj 6= − and aj > ai. This can be verified by inspecting the recursive definition
of the optimal strategy. But note that if vi is the end of a line, and vj is a vertex with V (vj) > V (vi),
then L′ must contain more than one line.

This allows us to argue that the reduction is promise-preserving, since if L is promised to have
no violations, then it must contain exactly one line, and if L contains exactly one line, then all
proper solutions of L are mapped onto proper solutions of L′. Thus L′ will contain no violations.
This completes the proof of Lemma 20.

C Proofs for Section 3.2: UniqueEOPL to OPDC

C.1 Proof of Lemma 22

This construction is very similar to the one used in the proof of Lemma 18 given in Appendix B.2,
although here we must deal with the predecessor circuit, and ensure that the end of each line has the
correct potential. Let L = (S,P, V ) be an instance of UniqueEOPL, and let k be the bit-length
of the vertices used in L.

We will create an instance L′ = (S′, P ′, V ′) in the following way. Each vertex in L′ will be a
pair (v, i), where v is a vertex in L, and i is an integer satisfying i ≤ 2n, where n = k+1. Hence, a
vertex in L′ can be represented by a bit-string of length n+ k.

The circuit S′ is defined as follows. Given a vertex (v, i), we execute the following algorithm.

1. If S(v) = v, then S′(v, i) = (v, i), meaning that if v is not a vertex in L, then (v, i) is not a
vertex in L′ for all i.

2. If v 6= P (S(v)) and V (v) + i > 2n − 1, then S′(v, i) = S′(v, i), meaning that (v, i) is not a
vertex in the instance.

3. If v 6= P (S(v)) and V (v) + i = 2n − 1, then S′(v, i) = 0k, which makes (v, i) an end of line
solution.

4. If v 6= P (S(v)) and V (v) + i < 2n − 1, then S′(v, i) = (v, i + 1).

5. If S(v) 6= v = P (S(v)) and V (S(v)) > V (v) + i+ 1, then S′(v, i) = (v, i + 1).

6. If S(v) 6= v = P (S(v)) and V (S(v)) = V (v) + i+ 1, then S′(v, i) = (S(v), 0).

7. If S(v) 6= v = P (S(v)) and V (S(v)) < V (v) + i+ 1, then S′(v, i) = (v, i), meaning that (v, i)
is not a vertex.

The last three conditions add a new sequence of vertices between any edge (x, y) where V (y) >
V (y) + 1. Specifically, this sequence is

(x, 0)→ (x, 1)→ · · · → (x, V (y)− V (x)− 1)→ (y, 0).
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Conditions 2 through 4 introduce a new line starting at (x, 0), whenever x is the end of a line in
the original instance. This line has the form

(x, 0)→ (x, 1)→ · · · → (x, 2n − V (x)− 1).

where (x, 2n − V (x) − 1) is the new end of line. Observe that this line is always non-empty, since
2n − 1 = 2k+1 − 1 > 2k ≥ V (x).

The predecessor circuit P ′ walks the line backwards, which is easy to construct, since we can
either follow the predecessor circuit of L, or we can walk backwards along any of the lines that we
have introduced. Specifically, given a vertex (v, i), we use the following algorithm to implement P ′.

1. If S(v) = v, then the value returned by P ′(v, i) is irrelevant, since (v, i) is not a vertex.

2. If v 6= P (S(v)) and V (v) + i > 2n− 1, then again the value of P ′(v, i) is irrelevant, since (v, i)
not a vertex.

3. If v 6= P (S(v)) and V (v) < V (v) + i ≤ 2n − 1, then P ′(v, i) = (v, i − 1), meaning that if we
are on the new line at a solution, then we walk the line backwards.

4. If v 6= P (S(v)) and V (v) + i = V (v), then P ′(v, i) = (P (v), V (v)− V (P (v))), meaning that if
we are at (v, 0), then we move to the end of the line between (P (v), 0) and (v, 0).

5. If S(v) 6= v = P (S(v)) and i = 0, then P ′(v, i) = (P (v), V (v) − V (P (v))).

6. If S(v) 6= v = P (S(v)) and V (S(v)) < V (v) + i + 1, then the value returned by P ′(v, i) is
irrelevant, since (v, i) is not a vertex.

7. If S(v) 6= v = P (S(v)) and cases 5 and 6 do not apply, then P ′(v, i) = (v, i − 1).

Cases 2 through 4 deal with the new line introduced at the end of each line. while cases 5 through
7 deal with the new lines introduced between the vertices (x, 0) and (S(x), 0).

The potential function V ′ is defined so that V ′(v, i) = V (v) + i.
The two properties that we need to satisfy hold by construction for L′. Every edge is constructed

so that V ′(S(x)) = V ′(x) + 1, whenever x is a vertex, and the new lines starting at vertices (v, 0),
where v is the end of a line in L, ensure that V ′(x) = 2n − 1 if and only if x is the end of a line in
L′. The following lemma shows that the reduction is correct.

Lemma 58. Every solution of L′ can be mapped back to a solution of L.

Proof. We enumerate the types of solutions in UniqueEOPL.

1. A solution of type (U1) in L′ is a vertex x = (v, i) such that P ′(S′(x)) 6= x. By construction
this can only occur if P (S(v)) 6= v, so this gives us a solution of type (U1) for L.

2. A solution of type (UV1) gives us a vertex x = (v, i) where P ′(S′(x)) = x and V ′(S′(x)) ≤
V ′(x). By construction, this can only occur if V (S(v)) ≤ V (v), so we have a solution of type
(UV1) for L.

3. A solution of type (UV2) gives us a vertex x = (v, i) where S′(P ′(x)) 6= x. By construction,
this can only happen if S(P (x)) 6= p and i = 0. This gives us a solution of type (UV2) for L.
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4. A solution of type (UV3) gives us a pair of vertices x = (v, i) and y = (u, j) such that x 6= y,
and either V (x) = V (y), or V (x) < V (y) < V (S(x)). Note that the latter case is impossible
here, since by construction we have V (S(x)) = V (x) + 1 whenever x is a vertex, so we must
have V (x) = V (y).

If i = j, then V (v) = V (u), and so v and u form a solution of type (UV3) for L. Otherwise,
we will suppose, without loss of generality, that i > j, which means that V (v) < V (u).
Moreover, we have V (S(v)) > V (v) + i = V (u) + j ≥ V (u). Hence we have shown that
V (v) < V (u) < V (S(v)), and so we have that v and u form a solution of type (UV3) for L.

The lemma above implies that the reduction is correct. To see that it is promise-preserving,
it suffices to note that proper solutions of L are only ever mapped onto proper solutions of L′.
Therefore, if it is promised that L has no violations, then L′ will also have no violations. This
completes the proof of Lemma 22.

C.2 Proof of Lemma 23

The proof requires us to define two polynomial-time algorithms.

Splitting lines around a vertex. We begin by defining the subline function. We will use two
sub-functions that split an instance in two based on a particular vertex. Let L = (S,P, V ) be a
UniqueEOPL instance, and v be some vertex of L.

1. We define the function FirstHalf(v, L) to return an UniqueEOPL instance (S′, P ′, V ′) by
removing every vertex with potential greater than or equal to V (v). Specifically, the S′ and
P ′ circuits will check whether V (x) ≥ 2n−1 for each vertex x, and if so, then they will set
S′(x) = P ′(x) = x, which ensures that x is not on the line. For any vertex x with V (x) < 2n−1,
we set S′(x) = S(x), P ′(x) = P (x) and V ′(x) = V (x). Note that S′, P ′, and V ′ can all be
produced in polynomial time if we are given (S,P, V ).

2. We define the function SecondHalf(v, L) to return a UniqueEOPL instance (S′, P ′, V ′) by
removing every vertex with potential strictly less than V (v). For the circuits S′ and P ′, this
is done in the same way as the previous case, but this time the circuits will check whether
V (x) < 2n−1. The function V ′ is defined so that V ′(x) = V (x)− 2n−1, thereby ensuring that
the potentials are in the range [0, 2n−1). Finally, the string 0n is remapped to represent the
vertex v, which is the start of the second half of the line. In this case, we are able to compute
S′, P ′, and V ′ in polynomial time if we are given (S,P, V ) and the bit-string v.

We remark that, although we view these functions as intuitively splitting a line, the definitions still
work if L happens to contain multiple lines. Each line in the instance will be split based on the
potential of v.

The subline function. The subline function is defined recursively, based on the number of bit-
strings that are given to the function. In the base case we are given a line L and zero bit-strings,
in which case subline(L) = L.

For the recursive step, assume that we are given bit-strings vi through vn. Let L′ = (S′, P ′, V ′) =
subline(vi+1, vi+2, . . . , vn, L).

57



• If V ′(vi) 6= 2i−1 then we set subline(vi, vi+1, . . . , vn, L) = FirstHalf(L′).

• If V ′(vi) = 2i−1 then we set subline(vi, vi+1, . . . , vn, L) = SecondHalf(L′).

Note that since FirstHalf and SecondHalf can be computed out in polynomial time, this means that
subline can also be computed in polynomial time.

An important property of the reduction is that the output of subline(vi, vi+1, . . . , vn) is a
UniqueEOPL instance in which the longest possible line has length 2i−1. This can be proved
by induction. For the base case note that subline(L) allows potentials between 0 and 2n − 1. Each
step of the recursion cuts this in half, meaning that subline(vi, vi+1, . . . , vn, L) allows potentials
between 0 and 2i − 1. Since each edge in a line must always strictly increase the potential, this
means that the longest possible line in subline(vi, vi+1, . . . , vn, L) has length 2i−1. This holds even
if the instance has multiple lines.

The decode function. Given a point (v1, v2, . . . , vn), let L′ = subline(v1, v2, . . . , vn, L). As we
have argued above, we know that L′ is an instance in which the longest possible line has length
21−1 = 1. Hence, the starting vertex of L′, which is by definition v1, is the end of a line. So we
set decode(v1, v2, . . . , vn) = v1. Since subline can be computed in polynomial time, this means that
decode can also be computed in polynomial time. This completes the proof of Lemma 23.

C.3 The formal definition of the direction functions.

We will extend the approach given in the main body to all dimensions. Let p = (v1, v2, . . . , vn) be
a point. For the dimensions j in the range m(i − 1) + 1 ≤ j ≤ mi we use the following procedure
to determine Dj . Let L′ = (S′, P ′, V ′) = subline(vi+1, vi+2, . . . , vn, L).

1. In the case where V ′(vi) 6= 2i−1, meaning that decode(p) is a vertex in the first half of L′,
then there are two possibilities.

(a) If V ′(decode(p)) = 2i−1 − 1, meaning that p is the last vertex on the first half L′, then
we orient the direction function towards the bit-string given by S(decode(p)). So we set

Dj(p) =











up if pj = 0 and S(decode(p)) = 1,

down if pj = 1 and S(decode(p)) = 0,

zero otherwise.

(b) If the rule above does not apply, then we orient everything towards 0 by setting

Di(p) =

{

down if pj = 1,

zero if pj = 0.

2. If V ′(vi) = 2i−1, then we are in the second half of the line. In this case we set Di(p) = zero.

Observe that this definition simply extends the idea presented in the main body to all dimensions,
using exactly the same idea.
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C.4 Proof of Lemma 24

To prove this lemma, we must map every solution of the OPDC instance given by P and D to
a solution of the UniqueEOPL instance L = (S,P, V ). We do this by enumerating the solution
types for OPDC.

1. In solutions of type (O1) we have a point p = (v1, v2, . . . , vn) such that Di(p) = zero for all
i. Since the dimensions corresponding to vn are all zero, we know that decode(p) is in the
second half of the line, and since the dimensions corresponding to vn−1 are all zero, we know
that decode(p) is in the last quarter of the line. Applying this reasoning for all dimensions
allows us to conclude that V (decode(p)) = 2n − 1. Lemma 22 implies that this can be true if
and only if decode(p) is the end of a line, which is a solution of type (U1).

2. In solutions of type (OV1) we have two fixed points of a single i-slice. More specifically, we
have an i-slice s and two points p = (v1, v2, . . . , vn) and q = (u1, u2, . . . , un) in the slice s with
p 6= q such that Dj(p) = Dj(q) = zero for all j ≤ i. Let vj be the bit-string that uses dimension
i, and let L′ = (S′, P ′, V ′) = subline(vj+1, vj+2, . . . , vn, L). Since p and q both lie in s, we
know that vl = ul for all l > j. Observe that, since Dl(p) = Dl(q) = zero for all l ≤ j, we can
use the same reasoning as we did in case 1 to argue that v1 through vj−1 encode a vertex that
is at the end of the sub-line embedded into (∗, ∗, . . . , vj , vj+1, . . . , vn), and u1 through uj−1

encode a vertex that is at the end of the sub-line embedded into (∗, ∗, . . . , uj , vj+1, . . . , vn).
There are multiple cases to consider.

(a) If vj = uj, then we have that subline(vj , vj+1, . . . , vn, L) = subline(uj , uj+1, . . . , un, L).
Since p 6= q, there must be some pair of vertices vl and ul such that vl 6= ul, and note
that since p and q both at the end of their respective sub-lines, we have V ′(vl) = V ′(ul),
which also implies that V (vl) = V (ul), which is a solution of type UV3.

(b) If vj 6= uj , and Dl(p) = zero for all l in the range m(i − 1) + 1 ≤ l ≤ mi, then
subline(vj, vj+1, . . . , vn, L) is the second half of L′, while subline(uj , uj+1, . . . , un, L) is
the first half. Since q represents a vertex at the end of the corresponding line, we
have that S(decode(q)) is the first vertex on the next half of the L′, meaning that
V ′(S(decode(q))) = 2j−1. Moreover since p is on the second-half of the line, we have
that V ′(vj) = 2j−1, so we have V (S(decode(q))) = V (vj). This is a solution of type
(UV3) so long as S(decode(q)) 6= vj .

To prove that this is the case, recall that the direction functions for q in the dimensions
corresponding to uj always point towards S(decode(q)). Since uj 6= vj, and since uj and
vj lie in the same slice s, we know that they disagree on some dimension l ≤ i. But we
also have that Dl(q) = zero for all l ≤ i, which can only occur if S(decode(q)) disagrees
with vj in some dimension. Hence we have shown that S(decode(q)) 6= vj .

(c) If vj 6= uj , and Dl(q) = zero, for all l in the range m(i − 1) + 1 ≤ l ≤ mi, then this is
entirely symmetric to the previous case.

(d) In the last case, we have vj 6= uj , an index l1 in the range m(i− 1) + 1 ≤ l1 ≤ mi with
Dl1(p) 6= zero, and an index l2 in the range m(i − 1) + 1 ≤ l2 ≤ mi with Dl2(p) 6= zero.
Thus subline(vj , vj+1, . . . , vn, L) = subline(uj , uj+1, . . . , un, L), meaning that both points
lie at the end of the first half of L′. Thus the direction functions at p point towards
S(decode(p)), while the direction functions at q point towards S(decode(q)). Moreover
we have V ′(S(decode(p))) = V ′(S(decode(q)), so to obtain a solution of type (UV3), we
need to prove that S(decode(p))) 6= S(decode(q).
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This follows from the fact that vj 6= vu, and vj and vu’s membership in the slice s. This
means that they disagree on some dimension l < i, but since Da(p) = Da(q) = zero for
all a < i, we must have S(decode(p))) 6= S(decode(q).

3. For solutions of type (OV2), we have two points p = (v1, v2, . . . , vn) and q = (u1, u2, . . . , un)
that lie in an i-slice s with the following properties.

• Dj(p) = Dj(q) = zero for all j < i,

• pi = qi + 1, and

• Di(p) = down and Di(q) = up.

As with case 2, let vj be the bit-string that uses dimension i, and let L′ = subline(vj+1, vj+2, . . . , vn) =
subline(uj+1, uj+2, . . . , un). Since Di(p) 6= zero and Di(q) 6= zero, we must have that p and q
are both points on the first half of L′. Furthermore, decode(p) and decode(q) must both be
at the end of the first half, since Dl(p) = Dl(q) = zero for all l < i. Hence, V ′(decode(p)) =
V ′(decode(q)) = 2i−1−1, which also implies that V (decode(p)) = V (decode(q)). So to obtain
a solution of type (UV3), we just need to prove that decode(p) 6= decode(q).

To prove this, we observe that the direction function in dimension i should be oriented towards
S(decode(p)) for the point p, and S(decode(q)) for the point q. However, since Di(p) and Di(q)
both point away from their points, and since pi 6= qi, this must mean that S(decode(p)) 6=
S(decode(q)), which also implies that decode(p) 6= decode(q).

4. We claim that solutions of type (OV3) are impossible. A solution of type (OV3) requires that
we have a point p with either pi = 0 and Di(pi) = down, or pi = 1 and Di(pi) = up. Our
construction never sets Di(pi) = down when pi = 0, and it never sets Di(pi) = up when pi = 1.
So solutions of type (OV3) cannot occur.

To see that the reduction is promise preserving, it suffices to note that we only ever map solutions
of type (U1) onto solutions of type (O1). Thus, if the original instance has only solutions of type
(U1), then the resulting OPDC instance will have solutions of type (O1).

D Proofs for Section 4.1: USO to OPDC

D.1 Proof of Lemma 27

Every solution of the OPDC instance can be mapped back to a solution of the USO instance. We
prove this by enumerating all possible types of solution.

1. In solutions of type (O1) we are given a point p ∈ P such that Di(p) = zero for all i. If
Ψ(p) 6= −, then this means that p is a sink, and so it is solution of type (US1). If Ψ(p) = −,
then this means that p is a solution of type (USV1).

2. In solutions of type (OV1), we have an i-slice s and two points p, q ∈ Ps with p 6= q such that
Dj(p) = Dj(q) = zero for all j ≤ i. If Ψ(p) = − or Ψ(q) = −, then we have a solution of
type (USV1). Otherwise, this means that p and q are both sinks of the face corresponding to
s, and specifically this means that they have the same out-map on this face. So this gives us
a solution of type (USV2).

3. In solutions of type (OV2) we have an i-slice s and two points p, q ∈ Ps such that
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• Dj(p) = Dj(q) = zero for all j < i,

• pi = qi + 1, and

• Di(p) = down and Di(q) = up.

Note that in this case we must have Ψ(p) 6= − and Ψ(q) 6= −. If we restrict the cube to the
face defined by s, note that Ψ(p)j = Ψ(q)j = 0 for all dimensions j 6= i, and Ψ(p)i = Ψ(q)i = 1.
Hence p and q have the same out-map on the face defined by s, which gives us a solution of
type (USV2).

4. Solutions of type (OV3) are impossible for the instance produced by our reduction. In these
solutions we have a point p with pi = 0 and Di(p) = down, or a point q with qj = 1 and
Dj(q) = up. Since our reduction never does this, solutions of type (OV3) cannot occur.

To see that the reduction is promise-preserving, it suffices to note that solutions of type (US1)
are only ever mapped onto solutions of type (O1). Thus, if the USO instance has no violations,
then the resulting OPDC instance also has no violations. This completes the proof of Lemma 27.

E Prerequisites for Appendix F and H

E.1 Slice Restrictions of Contraction Maps

Our algorithms will make heavy use of the concept of a slice restriction of a contraction map,
which we describe here. We define the set of fixed coordinates of a slice s ∈ Sliced, fixed(s) =
{i ∈ [d] | si 6= ∗} and the set of free coordinates, free(s) = [d] \ fixed(s). Thus, an i-slice is a slice
s ∈ Sliced for which free(s) = [i]. We’ll say that a slice is a k-dimensional slice if |free(s)| = k.

We can define the slice restriction of a function f : [0, 1]d → [0, 1]d with respect to a slice
s ∈ Sliced, denoted f|s , to be the function obtained by fixing the coordinates fixed(s) according to
s, and keeping the coordinates of free(s) as arguments. To simplify usage of f|s we’ll formally treat
f|s as a function with d arguments, where the coordinates in fixed(s) are ignored. Thus, we define

f|s : [0, 1]d → [0, 1]d by

f|s (x) = f(y) where yi =

{

si if i ∈ fixed(s)

xi if i ∈ free(s).

Let free(s) = {i1, . . . , ik}. We’ll also introduce a variant of f|s when we want to consider the

slice restriction as a lower-dimensional function, f̃|s : [0, 1]d → [0, 1]|free(s)| defined by

f̃|s (x) =
(

(

f|s (x)
)

i1
, . . . ,

(

f|s (x)
)

ik

)

.

We can also define slice restrictions for vectors in the natural way:

(

x|s
)

i
=

{

si if si 6= ∗
xi otherwise.

Finally, we’ll use x̃|s to denote projection of x onto the coordinates in free(s):

x̃|s = (xi1 , . . . , xik) .
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We now extend the definition of a contraction map to a slice restriction of a function in the
obvious way. We say that f̃|s is a contraction map with respect to a norm ‖·‖ with Lipschitz

constant c if for any x, y ∈ [0, 1]d we have

∥

∥

∥
f̃|s (x)− f̃|s (y)

∥

∥

∥
≤ c

∥

∥x̃|s − ỹ|s
∥

∥ .

We’ll also introduce some notation to remove clutter. We’ll define

∆i(p) , f(p)i − pi ∀i ∈ [d]

and use this notation when the function f is clear from the context. Note that we’ll only use ∆i(p)
when considering the free coordinates of a slice restriction, so that ∆i(p) doesn’t depend on whether
the most recent context has us considering f|s or f .

Slice restrictions will prove immensely useful through the following observations:

Lemma 59. Let f : [0, 1]d → [0, 1]d be a contraction map with respect to ‖·‖p with Lipschitz constant
c ∈ (0, 1). Then for any slice s ∈ Sliced, f|s is also a contraction map with respect to ‖·‖p with
Lipschitz constant c.

Proof. For any two vectors x, y ∈ [0, 1]d we have

∥

∥

∥
f̃|s (x)− f̃|s (y)

∥

∥

∥

p
≤
∥

∥f(x|s )− f(y|s )
∥

∥

p

≤ c
∥

∥x|s − y|s
∥

∥

p

= c
∥

∥x̃|s − ỹ|s
∥

∥

p

Since slice restrictions of contraction maps are themselves contraction maps in the sense defined
above, they have unique fixpoints, up to the coordinates of the argument which are fixed by the slice
and thus ignored. We’ll nevertheless refer to the unique fixpoint of a slice restriction of a contraction
map, which is the unique point x ∈ [0, 1]d such that

f̃|s (x) = x̃|s and x = x|s .

Lemma 60. Let f : [0, 1]d → [0, 1]d be a contraction map with respect to ‖·‖p with Lipschitz constant
c ∈ (0, 1). Let s, s′ ∈ Sliced be such that fixed(s′) = fixed(s) ∪ {i} and sj = s′j for all j ∈ fixed(s).

Let x, y ∈ [0, 1]d be the unique fixpoints of f̃|s and f̃|s′ , respectively. Then (xi − yi)∆i(y) > 0.

Proof. We’ll prove this by contradiction. Without loss of generality, assume towards a contradiction
that xi ≤ yi and that f(y)i > yi. Then we have

‖f(y)− f(x)‖pp = ‖(f(y)1, . . . , f(y)d)− (f(x)1, . . . , f(x)d)‖pp
=

∑

i∈fixed(s)

|si − si|p +
∑

j∈free(s′)

|yj − xj |p + |f(y)i − xi|p

>
∑

i∈fixed(s)

|si − si|p +
∑

j∈free(s′)

|yj − xj |p + |yi − xi|p

= ‖y − x‖pp
which contradicts the fact that f is a contraction map. The lemma follows.
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E.2 Approximate Fixpoint Lemmas

In this section we state and prove the key lemmas that will be used both in our reduction of
Contraction to EndOfPotentialLine and our algorithms for finding approximate fixpoints.
The lemmas reflect the intuition that sufficiently good approximate fixpoints on (k−1)-dimensional
slices can be used to obtain slightly worse approximate fixpoints for k-dimensional slices for a notion
of approximation to be formalized shortly. By choosing our approximation guarantees at each level
appropriately we can ensure that we end up with a approximate fixpoint for the original function.

To formalize this intuition we define an approximate fixpoint of a given dimension with respect
to some ℓp-norm and a slice. For any fixed ℓp-norm, i-slice s, and dimension parameter k ≤ i we’ll
say that a point x ∈ s is a (s, ℓp, k)-approximate fixpoint if

|∆j(x)| ≤ εj(p, d), ∀j ∈ [k]

where (εj)
k
j=1 is a constant depending only on the ℓp norm and the dimension d. To make the

dependence on p and d explicit, we’ll write εj(p, d) instead of εj .
We’ll define an ε-approximate fixpoint of a contraction map f w.r.t. an ℓp-norm to be a point

x ∈ [0, 1]d such that ‖f(x)− x‖p ≤ ε.
For each different ℓp norm and dimension d of our contraction map, we will choose a different

sequence (εi(p, d))
d
i=1 such that if a point x on a (k − 1)-slice satisfies |∆j(x)| ≤ εj(p, d)j for all

j < k, either |∆k(x)| ≤ εk(p, d) or the sign of ∆k(x) indicates the direction of the unique fixpoint
of that slice. There are two distinct cases to consider for (εi(p, d))

d
i=1:

• For p = 1, we choose εi(1, d)
(1)
i , ε/22(d+1−i).

• For 2 ≤ p <∞, we choose εi(p, d) , εp
(d+1−i)

(dp)−2
∑d+1−i

j=0 pj .

The key property satisfied by the choices of ε is captured in the following:

Lemma 61. For any p ∈ N, and any d ∈ N, k ∈ N with k ≤ d,

k−1
∑

i=1

pεi(p, d) ≤ εk(p, d)
p.

Proof. There are two cases to consider. For p = 1,

k−1
∑

i=1

εi(1, d) =

k−1
∑

i=1

ε2−2(d+1−i) < ε2−2(d+1−k) = εk(1, d).
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The interesting case is where p ≥ 2. Here we observe that

k−1
∑

i=1

pεi(p, d) =
k−1
∑

i=1

p
εp

d+1−i

(dp)2p
0+2p1+···+2pd+1−i

<

k−1
∑

i=1

p
εp

d+1−(k−1)

(dp)2p
0+2p1+···+2pd+1−(k−1)

< dp
εp

d+1−(k−1)

(dp)2p
0+2p1+···+2pd+1−(k−1)

=
εp

d+1−(k−1)

(dp)2p
1+2p2+···+2pd+1−(k−1)+1

=

(

εp
d+1−k

(dp)2p
0+2p1+···+2pd+1−k

)p

/ (dp)

= (εk(p, d)) / (dp)

< εk(p, d).

We now prove lemmas showing that these choices of (εi(p, d))
d
i=1 ensure that k − 1-dimensional

fixpoints can be used to find k-dimensional fixpoints.

Lemma 62 (Approximate Fixpoints Give Directions). Let s ∈ Sliced be a k-slice, for some k ≤ d.
Let f : [0, 1]d → [0, 1]d be a contraction map with respect to ‖·‖p. Let x∗ be the unique fixpoint of f̃|s .

Given any (s, ℓp, k−1)-approximate fixpoint v ∈ [0, 1]d, either |∆k(v)| ≤ εk(p, d) or ∆k(v)(x
∗
k−vk) >

0.

Proof. By definition, v satisfies |∆i(v)| ≤ εi for all i ≤ k − 1. Assume that |∆k(v)| > εk. Without
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loss of generality, let ∆k(v) > εk. Assume towards a contradiction that x∗k ≤ vk. Then

∥

∥

∥
f̃|s (v)− x̃∗|s

∥

∥

∥

p

p
=

k
∑

j=1

∣

∣f(v)j − x∗j
∣

∣

p
(5)

> εpk + |vk − x∗k|p +
k−1
∑

j=1

∣

∣f(v)j − x∗j
∣

∣

p
(6)

≥ εpk + |vk − x∗k|p +
k−1
∑

j=1

(
∣

∣vj − x∗j
∣

∣− εj
)p

(7)

= εpk +

k−1
∑

j=1

|vk − x∗k|p −
k−1
∑

j=1

[∣

∣vj − x∗j
∣

∣

p −
(∣

∣vj − x∗j
∣

∣− εj
)p]

(8)

=
∥

∥ṽ|s − x̃∗|s
∥

∥

p

p
+ εpk −

k−1
∑

j=1

[∣

∣vj − x∗j
∣

∣

p −
(∣

∣vj − x∗j
∣

∣− εj
)p]

(9)

≥
∥

∥ṽ|s − x̃∗|s
∥

∥

p

p
+ εpk −

k−1
∑

j=1

pεj (10)

>
∥

∥ṽ|s − x̃∗|s
∥

∥

p

p
. (11)

(12)

Line 10 uses the fact that ap − (a− b)p ≤ 1− (1− b)p ≤ pb for p > 1, a, b ∈ (0, 1). Line 11 follows

directly from Lemma 61. Again we have a contradiction since
∥

∥

∥
f̃|s (v)− x̃∗|s

∥

∥

∥

1
≥
∥

∥ṽ|s − x̃∗|s
∥

∥

1
and

f̃|s is a contraction map. The lemma follows.

In order for our algorithms and reductions to produce approximate fixpoints we’ll need to ensure
that we can find an approximate fixpoint somewhere in our discretization of the unit hypercube.
We’ll first establish that if we don’t have an approximate fixpoint, we have witnesses to our function
not being a contraction map.

Lemma 63 (Two Nearby Opposing Pivots Give Violations). Let s ∈ Sliced be a k-slice, for some k ≤
d. Let v(ℓ), v(h) ∈ [0, 1]d be (s, ℓp, k− 1)-approximate fixpoints of f such that v

(h)
k − v

(ℓ)
k < εk(p, d)/2

and both ∆k(v
(h)) ≥ εk(p, d) and ∆k(v

(ℓ)) ≤ −εk(p, d). Then
∥

∥f(v(h))− f(v(ℓ)
∥

∥

p
≥
∥

∥v(h) − v(ℓ)
∥

∥

p
,

and v(h), v(ℓ) witness that f is not a contraction map.
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Proof. Under the assumptions of the lemma, we have

∥

∥

∥
f̃|s

(

v(h)
)

− f̃|s

(

v(ℓ)
)∥

∥

∥

p

p
−
∥

∥

∥

˜v(h)|s − ˜v(ℓ)|s

∥

∥

∥

p

p
=

k−1
∑

j=1

[
∣

∣

∣

∣

f
(

v(h)
)

j
− f

(

v(ℓ)
)

j

∣

∣

∣

∣

p

−
∣

∣

∣
v
(h)
j − v

(ℓ)
j

∣

∣

∣

p
]

(13)

=
[
∣

∣

∣
f
(

v(h)
)

k
− f

(

v(ℓ)
)

k

∣

∣

∣

p
−
∣

∣

∣
v
(h)
k − v

(ℓ)
k

∣

∣

∣

p]

(14)

+
k−1
∑

j=1

[
∣

∣

∣

∣

f
(

v(h)
)

j
− f

(

v(ℓ)
)

j

∣

∣

∣

∣

p

−
∣

∣

∣
v
(h)
j − v

(ℓ)
j

∣

∣

∣

p
]

≥
[∣

∣

∣
f
(

v(h)
)

k
− f

(

v(ℓ)
)

k

∣

∣

∣
−
∣

∣

∣
v
(h)
k − v

(ℓ)
k

∣

∣

∣

]p
(15)

+

d
∑

j=k+1

[(
∣

∣

∣
v
(h)
j − v

(ℓ)
j

∣

∣

∣
− 2εj(p, d)

)p
−
∣

∣

∣
v
(h)
j − v

(ℓ)
j

∣

∣

∣

p]

≥ (3εk(p, d)/2)
p −

d
∑

j=k+1

2pεj(p, d) (16)

> 0. (17)

Here, line 16 mirrors line 10 from Lemma 62 (which holds for εi(p, d) < 1/2, which is the case here).
Line 17 follows from Lemma 61 when p ≥ 2 (since (3/2)p > 2 in that case) and from the observation
that 3

2εk(1, d) ≥ 2
∑k−1

j=1 εj(1, d) for p = 1.
Observing that

∥

∥

∥
f
(

v(h)
)

− f
(

v(ℓ)
)
∥

∥

∥

p
≥
∥

∥

∥
f̃|s

(

v(h)
)

− f̃|s

(

v(ℓ)
)
∥

∥

∥

p

completes the proof.

The following lemma establishes that when we have two (s, ℓp, k − 1)-approximate fixpoints on
the same k-slice sandwiching the true k-dimensional fixpoint in a sufficiently small interval, one of
the two (s, ℓp, k − 1)-approximate fixpoints must be an (s, ℓp, k)-approximate fixpoint.

Lemma 64 (One of Two Adjacent Pivots is a Fixpoint). Let s ∈ Sliced be a k-slice, for some
k ≤ d. Let f be a contraction map with respect to ‖·‖p. Let x∗ be the unique fixpoint of f̃|s and

let v(ℓ), v(h) ∈ [0, 1]d be (s, ℓp, k − 1)-approximate fixpoints such that v
(h)
k − v

(ℓ)
k < εk(p, d)/2 and the

unique fixpoint x∗ of f̃|s satisfies

v
(ℓ)
k < x∗k < v

(h)
k .

Then either v(h) or v(ℓ) is an (s, ℓp, k)-approximate fixpoint of f .

Proof. By the contrapositive of Lemma 62, ∆k

(

v(h)
)

< εk(p, d) and ∆k

(

v(ℓ)
)

> −εk(p, d). If either

∆k

(

v(h)
)

> −εk(p, d) or ∆k

(

v(ℓ)
)

< εk(p, d) we’re done since v(h) or v(ℓ) is an (s, ℓp, k)-approximate

fixpoint, respectively. The only way we can fail to have a fixpoint is if both ∆k

(

v(h)
)

≤ −εk(p, d)
and ∆k

(

v(ℓ)
)

≥ εk(p, d). By Lemma 63, this cannot happen when f is a contraction map, and so
one of the two points must be an (s, ℓp, k)-approximate fixpoint.

Finally, by choosing εk(p, d) as above, an (s, ℓp, d)-approximate fixpoint is an ε-approximate
fixpoint:

Lemma 65. Any (s, ℓp, d)-approximate fixpoint x is an ε-approximate fixpoint.
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Proof. When p = 1

‖f(v)− v‖ =
d
∑

i=1

|∆i(v)|

≤
d
∑

i=1

εi(p, d)

=

d
∑

i=1

ε/22(d+1−i)

=

d
∑

i=1

ε/22i

< ε.

When p ≥ 2

‖f(v)− v‖pp =
d
∑

i=1

|∆i(v)|p

≤
d
∑

i=1

εpi (p, d)

=
d
∑

i=1

εp
(d+1−i)

(dp)−2
∑d+1−i

j=0 pj

=

d
∑

i=1

εp
i

(dp)−2
∑i

j=0 p
j

< εp.

F Proofs for Section 4.2: PL-Contraction to OPDC

F.1 Proof of Lemma 30

We’ll define the bit-length of an integer n ∈ Z, denoted b(n), by b(n) , ⌈log2 n⌉. We’ll extend
the definition to the rationals by defining the bit-length for x ∈ Q as the minimum number of
bits needed to represent the numberator and denominator of some representation of x as a ratio of
integers:

b(x) , min
p,q∈Z
x=p/q

(b(p) + b(q)) .

We’ll extend this notion of bit-length to matrices by defining the bit-length b(M) of a matrix
M ∈ Qm×n by b(M) , maxi,j b(Mij) and to vectors by defining b(v) , maxi b(vi) for v ∈ Qn.

LinearFIXP circuits and LCPs. The goal of this proof is to find a tuple (k1, k2, . . . , kd) such that
the lemma holds. We utilize a lemma from [59] which asserts that every LinearFIXP circuit can be
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transformed in polynomial time into an LCP with bounded bit-length, such that solutions to the
LCP capture exactly the fixpoints of the circuit.

For any LinearFIXP circuit C : [0, 1]d → [0, 1]d with gates g1, . . . , gm and constants ζ1, . . . , ζq,
we’ll define the size of C by

size(C) , d+m+

q
∑

i=1

b(ζi).

Lemma 66 ( [59]). Let C : [0, 1]d → [0, 1]d be a LinearFIXP circuit. We can produce in polynomial
time an LCP defined by an n × n matrix MC and n-dimensional vector qC for some n with d ≤
n ≤ size(C) such that there is a bijection between solutions of the LCP (MC , qC) and fixpoints of
C. Moreover, to obtain a fixpoint x of C from a solution y to the LCP (MC , qC), we can just set
x = (y1, . . . ,yd). Furthermore, b(MC) and b(qC) are both at most O(n× size(C)).

Crucially the construction interacts nicely with fixing inputs; if C ′ denotes a circuit where one
of the inputs of C is fixed to be some number x, we can bound the bit-length of MC′ and qC′ in
terms of the bit-lengths of MC , qC , and x.

Observation 67. b(MC′) ≤ b(MC).

Observation 68. b(qC′) ≤ max {b(qC), b(MC) + b(x)}+ 1.

In other words, the bit-length of MC′ does not depend on x, and is in fact at most the bit-length
of MC , and the bit-length of qC′ is bounded by the worse of the bit-lengths of qC or the sum of the
bit-lengths of MC and x plus an additional bit.

Bounding the bit-length of a solution of an LCP. We now prove two technical lemmas
about the bit-length of any solution to an LCP. We begin with the following lemma regarding the
bit-length of a matrix inverse.

Lemma 69. Let A ∈ Zn×n be a square matrix of full rank, and let B = maxij |Aij | be the largest
absolute value of an entry of A. Then b(A−1) ≤ 2n logB + n log n.

Proof. We have A−1 = 1
det(A) adj(A). Each entry of adj(A) is a cofactor of A, each of which is a

(possibly negated) determinant of an (n− 1)× (n− 1) submatrix of A. It is a well-known corollary
of Hadamard’s inequality that |det(A)| ≤ Bnnn/2. The same bound obtains for each submatrix.
We can write entry A−1

ij as p/q where p = adj(A)ij and q = det(A) are both integers. We have
b(p), b(q) ≤ n logB + (n/2) log n. The lemma follows immediately.

We now use this to prove the following bound on the bit-length of a solution of an LCP.

Lemma 70. Let M ∈ Qn×n and q ∈ Qn. Let y be a solution to the LCP (M, q). Then

b(y) ≤ (5n + 2) log n+ (4n + 1)b(M) + n+ b(q).

Proof. We first note that if an LCP has a solution, then it has a vertex solution. Let (y,w) be such
a vertex solution of the LCP and, as in Section 4.3, let α = {i | yi > 0}, and let A = Aα be defined
according to (3). We have that A is guaranteed to be invertible, and we have that Ax = q, with
yi = xi for i ∈ α and yi = 0 for i /∈ α, so we have b(y) ≤ b(x). Also note that we have b(A) ≤ b(M),
since the entries in columns that take the value of ei have constant bit-length.

We must transform A into an integer matrix in order to apply Lemma 69. Let ℓ denote the
least common multiple of the denominators of the entries in A. Note that ℓ ≤ n22b(A) and hence
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b(ℓ) ≤ b(A) + 2 log(n). Our matrix equation above can be rewritten as ℓAx = ℓq, where (ℓA) is an
integer matrix. Hence we have x = (ℓA)−1(ℓq).

If B denotes the maximum entry of ℓA, then B ≤ ℓ2b(A). So by Lemma 69 every entry of (ℓA)−1

can be represented with integer numerators and denominators bounded by

Bnnn/2 ≤ (ℓ2b(A))nnn/2 ≤ (n222b(A))nnn/2.

From this bound we obtain

b((ℓA)−1) ≤ 2 log
(

(n222b(A))nnn/2
)

= 2 (n (2 log n+ 2b(A)) + (n/2) log n)

≤ 5n log n+ 4nb(A).

Each entry of y consists of the sum of n entries of (ℓA)−1 each of which is multiplied by an entry
of q, followed at the end with a multiplication by ℓ. We get the following bound on the bit-length
of y.

b(y) ≤ b((ℓA)−1) + b(q) + n+ b(ℓ)

≤ 5n log n+ 4nb(A) + n+ b(A) + 2 log n

≤ (5n + 2) log n+ (4n + 1)b(A) + n+ b(q)

Fixing the grid size. We shall fix the grid size iteratively, starting with kd, and working down-
wards. At each step, we will have a space that is partially continuous and partially discrete. Specif-
ically, after the iteration in which we fix ki, the dimensions j < i will allow any number in [0, 1],
while the dimensions j ≥ i will only allow the points with denominator kj . If Ik denotes the set of
all rationals with denominator at most k, then we will denote this as

P (ki, ki+1, . . . , kd) = [0, 1]i−1 × Iki × Iki+1
× · · · × Ikd .

Moreover, after fixing ki, we will have that the property required by Lemma 30 holds for all j-
slices s with j ≥ i. Specifically, that if x is a fixpoint of s according to f , then there exists a
p ∈ P (ki, ki+1, . . . , kd) that is a fixpoint of s according to D.

We’ll start by bounding the bit-length of a solution to the PL-Contraction problem computed
one coordinate at a time. Given a PL-circuit C, we use Lemma 66 to produce an LCP defined by
M ∈ Qn×n and q ∈ Qn. Now let x1, . . . , xn be formal variables representing the inputs to our circuit
C. We want to determine parameters κ1, . . . , κd such that such that if we fix variables xi+1, ..., xd
to values with bit-lengths b(xi+1), . . . , b(xd) where b(xj) ≤ κj for each j ∈ {i+ 1, . . . , d}, then any
fixpoints of C with respect to the free variables x1, . . . , xi will have bit-lengths b(x1), . . . , b(xi) with
b(xj) ≤ κj for j ∈ [i].

We’ll set
κi , (d− i+ 1)((5n + 2) log n+ n+ (4n + 2)b(M) + 1) + b(q).

Note that κ1 ≥ κ2 ≥ · · · ≥ κd.
To prove that these bounds suffice, we’ll use induction on i, starting from i = d. First, we

observe that by Lemma 70, we have b(y) ≤ (5n+ 2) log n+ (4n+ 1)b(M) + b(q) = κd − 1 ≤ κd for
any solution y to the LCP (M, q). Moreover each fixpoint x of C corresponds to a solution y to
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the LCP by Lemma 66, so we have b(x1), . . . , b(xd) ≤ κd which implies the weaker claim that all
fixpoints can be found by choosing b(xi) ≤ κi for all i ∈ [d], since κi ≥ κd for all i ∈ [d].

Now we’ll handle the inductive case. For i = 1, . . . , d, let M (i), q(i) be the pair defining the LCP
after xi+1 through xd are fixed to values with bit-lengths bounded by κi+1, . . . , κd, respectively.
This pair will of course depend on the values xi+1, . . . , xd, but since the bit-length of M (i) and q

(i)

depend only on the bit-lengths of the fixed values, we can ignore the values of xi+1, . . . , xd as long
as we have bounds on their bit-lengths and as long as we restrict our attention to the bit-lengths of
M (i) and q

(i) and not the values themselves.
Using Lemma 70 we know that the solution to the LCP has b(xi) ≤ (5n + 2) log n + (4n +

1)b(M (i)) + b(q(i)). Moreover, we obtained M (i) by repeatedly fixing inputs to C, so the repeated
application of Observation 67 implies that b(M (i)) ≤ b(M (i+1)) ≤ b(M). Moreover, Observation 68
gives us

b(q(i)) ≤ max
{

b(q(i+1)), b(M (i+1)) + b(xi+1)
}

+ 1.

By a simple argument, we can also show that κi+1 ≥ b(q(i+1)) so that the above bound can be
simplified to

b(q(i)) ≤ b(M (i)) + b(xi+1) + 1

at which point we can use our observation and the bound b(xi+1) ≤ κi+1 to obtain

b(q(i)) ≤ b(M) + κi+1 + 1.

Now we use the bound from Lemma 70 again to obtain

b(xi) ≤ (5n + 2) log n+ (4n+ 1)b(M (i)) + b(q(i))

≤ (5n + 2) log n+ (4n+ 1)b(M) + b(M) + κi+1 + 1

and we now use the definition of κi+1 to conclude

b(xi) ≤ (5n+ 2) log n+ (4n+ 1)b(M) + b(M)

+ (d− (i+ 1) + 1)((5n + 2) log n+ n+ (4n + 2)b(M) + 1) + b(q) + 1

= (d− i+ 1)((5n + 2) log n+ (4n+ 2)b(M) + 1) + b(q)

= κi.

We conclude that all solutions to the LCP (M (i), q(i)) have free coordinates with bit-length at
most κi, and similarly for the fixpoints of C. Thus, every fixpoint of C with respect to the free
variables can be found by choosing x1, . . . , xi to have bit-lengths at most κ1, . . . , κi, respectively,
when the bit-lengths of xi+1, . . . , xd are chosen to have bit-lengths at most κi+1, . . . , κd.

To conclude the proof of Lemma 30, we need to choose k1, . . . , kd so that every i-slice with
fixed coordinates in P (k1, . . . , kd) has a fixpoint also on P (k1, . . . , kd) when we map points x ∈
P (k1, . . . , kd) to [0, 1]d by

x 7→ (x1/k1, . . . , xd/kd).

We set ki , 2κi . Now a point x ∈ P (k1, . . . , kd) corresponds to a point y ∈ [0, 1]d with b(yi) ≤ 2κi
for all i ∈ [d] and any i-slice where the fixed coordinates satisfy the bit-length bounds will have
fixpoints for the remaining variables with all coordinates satisfying the bit-length bounds.

Finally, we observe that for each i ∈ [d], b(ki) = κi ≤ κ1 = O(poly(size(C))), so each of the ki
can be represented using polynomially many bits in the size of the circuit C.
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F.2 Proof of Lemma 31

The proof of this lemma will make use of Lemmas 59 and 60, which are proved in Appendix E.1.
The statement of the proof says that we can assume that f is contracting with respect to some

ℓp norm, and that we have an i-slice s and two points p, q in s satisfying the following conditions.

• Dj(p) = Dj(q) = zero for all j < i,

• pi = qi + 1, and

• Di(p) = down and Di(q) = up.

To translate p and q from the grid to the [0, 1]n space, we must divide each component by the grid
length in that dimension. Specifically, we define the point a ∈ [0, 1]n so that ai = pi/ki for all i,
and the point b ∈ [0, 1]n such that bi = qi/ki for all i.

Lemma 59 states that if f is contracting with respect to an ℓp norm, then the restriction of f
to the slice s is also contracting in that ℓp norm. Hence, f must have a fixpoint in the slice s. Let
x ∈ [0, 1]n denote this fixpoint.

By definition we have that (f(x) − x)j = 0 for all j ≤ i, and we also have (f(a) − a)j = 0 for
all j < i from the fact that p is a fixpoint of its i-slice. So we can apply Lemma 60 to x and a, and
from this we get that (xi − ai) · (f(a)i − ai) > 0. Since Di(p) = down, we have that f(a)i < ai, and
hence (f(a)i − ai) < 0. Therefore, we can conclude that (xi − ai) < 0, which implies that xi < ai.

By the same reasoning we can apply Lemma 60 to x and b, and this gives us that (xi−bi)·(f(b)i−
bi) > 0. This time we have Di(q) = up, which implies that f(b)i > bi, and hence (f(b)i − bi) > 0.
So we can conclude that (xi − bi) > 0, meaning that xi > bi.

Hence we have shown that bi < xi < ai, and so the point x satisfies the conditions of the lemma.
This completes the proof of Lemma 31.

F.3 Proof of Lemma 33

We must map every possible solution of the OPDC instance back to a solution of the PL-Contraction

instance. We will enumerate all solution types for OPDC.

• In solutions of type (O1), we have a point p ∈ P such that Di(p) = zero for all i. This means
that the point x, where xi = pi/ki for all i, satisfies f(x) − x = 0. Hence x is a solution of
type (CM1).

• In solutions of type (OV1) we have i-slice s and two points p, q ∈ Ps with p 6= q such that
Dj(p) = Dj(q) = zero for all j ≤ i. Let a and b be the two corresponding points in [0, 1]n,
meaning that ai = pi/ki for all i, and bi = qi/ki for all i.

We first first consider the contraction property in the [0, 1]i space defined by the slice s. Let
‖a− b‖ip denote the distance between a and b according to the ℓp norm restricted to the [0, 1]i

space, and likewise let ‖f(a) − f(b)‖ip be the distance between f(a) and f(b) in that space.
Since Dj(p) = Dj(q) = zero for all j ≤ i, this means that we have ‖f(a)− f(b)‖ip = ‖a− b‖ip,
which is a clear violation of contraction in the space [0, 1]i.

To see that a and b also violate contraction in [0, 1]d, observe that ‖a − b‖ip = ‖a − b‖p,
because a and b lie in the same i-slice, meaning that aj = bj for all j > i. Furthermore, we
have ‖f(a)− f(b)‖p ≥ ‖f(a)− f(b)‖ip, since adding in extra dimensions can only increase the
distance in an ℓp norm. Hence we have ‖f(a) − f(b)‖p ≥ ‖a − b‖p, which is a violation of
contraction, giving us a solution of type (CMV1).
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• Violations of type (OV2) map directly to violations of type (CMV3), as discussed in the main
body.

• Violations of type (OV3) give us a point p such that pi = 0 and Di(p) = down, or pi = ki and
Di(p) = up. In both cases this means that f(p) 6∈ [0, 1]d, and so we have a violation of type
(CMV2).

To see that the reduction is promise-preserving, it suffices to note that solutions of type (CM1)
are only ever mapped on to solutions of type (O1). Hence, if the input problem is a contraction
map, the resulting OPDC instance only has solutions of type (CM1).

G Proofs for Section 4.3: PLCP to EOPL and UEOPL

G.1 Background on Lemke’s algorithm

The explanation of Lemke’s algorithm in this section is taken from [32]. Recall the LCP problem
from Definition 35, where given a d × d matrix M and d-dimensional vector q, we want to find y

satisfying (1). That is (w is a place-holder variable),

w = My+ q, y ≥ 0, w ≥ 0 and yiwi = 0, ∀i ∈ [d].

The problem is interesting only when q 6≥ 0, since otherwise y = 0 is a trivial solution. Let
Q be the polyhedron in 2d dimensional space defined by the first three conditions; we will assume
that Q is non-degenerate (just for simplicity of exposition; this will not matter for our reduction).
Under this condition, any solution to (1) will be a vertex of Q, since it must satisfy 2d equalities.
Note that the set of solutions may be disconnected. The ingenious idea of Lemke was to introduce
a new variable and consider the system:

w = My + q + z1, y ≥ 0, w ≥ 0, z ≥ 0 and yiwi = 0, ∀i ∈ [d]. (18)

The next lemma follows by construction of (18).

Lemma 71. Given (M, q), (y,w, z) satisfies (18) with z = 0 iff y satisfies (1).

Let P be the polyhedron in 2d+1 dimensional space defined by the first four conditions of (18),
i.e.,

P = {(y,w, z) | w = My + q + z1, y ≥ 0, w ≥ 0, z ≥ 0}; (19)

for now, we will assume that P is non-degenerate.
Since any solution to (18) must still satisfy 2d equalities in P , the set of solutions, say S, will

be a subset of the one-skeleton of P , i.e., it will consist of edges and vertices of P . Any solution to
the original system (1) must satisfy the additional condition z = 0 and hence will be a vertex of P .

Now S turns out to have some nice properties. Any point of S is fully labeled in the sense that
for each i, yi = 0 or wi = 0. We will say that a point of S has duplicate label i if yi = 0 and wi = 0
are both satisfied at this point. Clearly, such a point will be a vertex of P and it will have only one
duplicate label. Since there are exactly two ways of relaxing this duplicate label, this vertex must
have exactly two edges of S incident at it. Clearly, a solution to the original system (i.e., satisfying
z = 0) will be a vertex of P that does not have a duplicate label. On relaxing z = 0, we get the
unique edge of S incident at this vertex.

As a result of these observations, we can conclude that every vertex of S with z > 0 has degree
two within S, while a vertex with z = 0 has degree one. Thus, S consists of paths and cycles.
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Of these paths, Lemke’s algorithm explores a special one. An unbounded edge of S such that the
vertex of P it is incident on has z > 0 is called a ray. Among the rays, one is special – the one on
which y = 0. This is called the primary ray and the rest are called secondary rays. Now Lemke’s
algorithm explores, via pivoting, the path starting with the primary ray. This path must end either
in a vertex satisfying z = 0, i.e., a solution to the original system, or a secondary ray. In the latter
case, the algorithm is unsuccessful in finding a solution to the original system; in particular, the
original system may not have a solution. We give the full pseudo-code for Lemke’s algorithm in
Table 1.

Table 1: Lemke’s Complementary Pivot Algorithm
If q ≥ 0 then Return y← 0

y← 0, z ← |mini∈[d] qi|,w = q + z1

i← duplicate label at vertex (y,w, z) in P . flag ← 1
While z > 0 do

If flag = 1 then set (y′,w′, z′)← vertex obtained by relaxing yi = 0 at (y,w, z) in P
Else set (y′,w′, z′)← vertex obtained by relaxing wi = 0 at (y,w, z) in P
If z > 0 then

i← duplicate label at (y′,w′, z′)
If vi > 0 and v′i = 0 then flag ← 1. Else flag ← 0
(y,w, z)← (y′,w′, z′)

End While

Return y
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G.2 Reduction from P-LCP with (PV1) violations to EndOfPotentialLine

It is well known that if matrix M is a P-matrix (P-LCP), then z strictly decreases on the path traced
by Lemke’s algorithm [14]. Furthermore, by a result of Todd [76, Section 5], paths traced by comple-
mentary pivot rule can be locally oriented. Based on these two facts, we derive a polynomial-time
reduction from P-LCP to EndOfPotentialLine first, and then from P-LCP to UniqueEOPL.

Let I = (M, q) be a given P-LCP instance, and let L be the length of the bit representation of
M and q. We will reduce I to an EndOfPotentialLine instance E in time poly(L). According
to Definition 9, the instance E is defined by its vertex set vert, and procedures S (successor), P
(predecessor) and V (potential). Next we define each of these.

As discussed in Section G.1 the linear constraints of (18) on which Lemke’s algorithm operates
forms a polyhedron P given in (19). We assume that P is non-degenerate. This is without loss of
generality since, a typical way to ensure this is by perturbing q so that configurations of solution
vertices remain unchanged [14], and since M is unchanged if I was a P-LCP instance then it
remains so.

Lemke’s algorithm traces a path on feasible points of (18) which is on 1-skeleton of P starting
at (y0,w0, z0), where:

y0 = 0, z0 = |min
i∈[d]

qi|, w0 = q + z01 (20)

We want to capture vertex solutions of (18) as vertices in EndOfPotentialLine instance E . To
differentiate we will sometimes call the latter, configurations. Vertex solutions of (18) are exactly
the vertices of polyhedron P with either yi = 0 or wi = 0 for each i ∈ [d]. Vertices of (18) with
z = 0 are our final solutions (Lemma 71). While each of its non-solution vertex has a duplicate label.
Thus, a vertex of this path can be uniquely identified by which of yi = 0 and wi = 0 hold for each
i and its duplicate label. This gives us a representation for vertices in the EndOfPotentialLine

instance E .
EndOfPotentialLine Instance E.

• Vertex set vert = {0, 1}n where n = 2d.

• Procedures S and P as defined in Tables 4 and 6 respectively

• Potential function V : vert→ {0, 1, . . . , 2m − 1} defined in Table 5 for m = ⌈ln(2∆3)⌉, where

∆ = (n! · I2d+1
max ) + 1

and Imax = max{maxi,j∈[d]M(i, j), maxi∈[d] |qi|}.

For any vertex u ∈ vert, the first d bits of u represent which of the two inequalities, namely
yi ≥ 0 and wi ≥ 0, is tight for each i ∈ [d].

∀i ∈ [d], ui = 0⇒ yi = 0, and ui = 1⇒ wi = 0

A valid setting of the second set of d bits, namely ud+1 through u2d, will have at most one
non-zero bit – if none is one then z = 0, otherwise the location of one bit indicates the duplicate
label. Thus, there are many invalid configurations, namely those with more than one non-zero bit
in the second set of d bits. These are dummies that we will handle separately, and we define a
procedure IsValid to identify non-dummy vertices in Table 2. To go between “valid” vertices of E
and corresponding vertices of the Lemke polytope P of LCP I, we define procedures EtoI and ItoE
in Table 3.

By construction of IsValid, EtoI and ItoE, the next lemma follows.
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Table 2: Procedure IsValid(u)

If u = 0n then Return 1
Else let τ = (u(d+1) + · · · + u2d)

If τ > 1 then Return 0
Let S ← ∅. % set of tight inequalities.
If τ = 0 then S = S ∪ {z = 0}.
Else

Set l← index of the non-zero coordinate in vector (u(d+1), . . . , u2d).

Set S = {yl = 0, wl = 0}.
For each i from 1 to d do

If ui = 0 then S = S ∪ {yi = 0}, Else S = S ∪ {wi = 0}
Let A be a matrix formed by l.h.s. of equalities My −w + 1z = −q and that of set S
Let b be the corresponding r.h.s., namely b = [−q;0(d+1)×1].

Let (y′,w′, z′)← b ∗A−1

If (y′,w′, z′) ∈ P then Return 1, Else Return 0

Table 3: Procedures ItoE(u) and EtoI(y,w, z)

ItoE(y,w, z)

If ∃i ∈ [d] s.t. yi ∗ wi 6= 0 then Return (0(2d−2)×1; 1; 1) % Invalid

Set u← 02d×1. Let DL = {i ∈ [d] | yi = 0 and wi = 0}.
If |DL| > 1 then Return (0(2d−2)×1; 1; 1) %Invalid

If |DL| = 1 then for i ∈ DL, set ud+i ← 1
For each i ∈ [d] If wi = 0 then set ui ← 1
Return u

EtoI(u)

If u = 0n then Return (0d×1, q + (z0 + 1)1, z0 + 1) % This case will never happen
If IsValid(u)=0 then Return 0(2d+1)×1

Let τ = (u(d+1) + · · ·+ u2d)

Let S ← ∅. % set of tight inequalities.
If τ = 0 then S = S ∪ {z = 0}.
Else

Set l← index of non-zero coordinate in vector (u(d+1), . . . , u2d).

Set S = {yl = 0, wl = 0}.
For each i from 1 to d do

If ui = 0 then S = S ∪ {yi = 0}, Else S = S ∪ {wi = 0}
Let A be a matrix formed by lhs of equalities My −w + 1z = −q and that of set S
Let b be the corresponding rhs, namely b = [−q;0(d+1)×1].

Return b ∗ A−1

Lemma 72. If IsValid(u) = 1 then u = ItoE(EtoI(u)), and the corresponding vertex (y,w, z) =
EtoI(u) of P is feasible in (18). If (y,w, z) is a feasible vertex of (18) then u = ItoE(y,w, z) is a
valid configuration, i.e., IsValid(u) = 1.

Proof. The only thing that can go wrong is that the matrix A generated in IsValid and EtoI
procedures are singular, or the set of double labels DL generated in ItoE has more than one elements.
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Table 4: Successor Procedure S(u)

If IsValid(u) = 0 then Return u

If u = 0n then Return ItoE(y0,w0, z0)
x = (y,w, z) ← EtoI(u)
If z = 0 then

x
1 ← vertex obtained by relaxing z = 0 at x in P.

If Todd [76] prescribes edge from x to x
1

then set x
′ ← x

1. Else Return u

Else set l← duplicate label at x

x
1 ← vertex obtained by relaxing yl = 0 at x in P

x
2 ← vertex obtained by relaxing wl = 0 at x in P

If Todd [76] prescribes edge from x to x
1

then x
′ = x

1

Else x
′ = x

2

Let x
′ be (y′,w′, z′).

If z > z′ then Return ItoE(x′). Else Return u.

Table 5: Potential
Value V (u)

If IsValid(u) = 0
then Return 0

If u = 0n

then Return 0
(y,w, z) ← EtoI(u)
Return ⌊∆2 ∗ (∆− z)⌋

The main idea behind procedures S and P , given in Tables 4 and 6 respectively, is the following
(also see Figure 5): Make dummy configurations in vert to point to themselves with cycles of length
one, so that they can never be solutions or violations. The starting vertex 0n ∈ vert points to the
configuration that corresponds to the first vertex of the Lemke path, namely u

0 = ItoE(y0,w0, z0).
Precisely, S(0n) = u

0, P (u0) = 0n and P (0n) = 0n (start of a path).
For the remaining cases, let u ∈ vert have corresponding representation x = (y,w, z) ∈ P,

and suppose x has a duplicate label. As one traverses a Lemke path for a P-LCP, the value of z
monotonically decreases []. So, for S(u) we compute the adjacent vertex x

′ = (y′,w′, z′) of x on
Lemke path such that the edge goes from x to x

′, and if the z′ < z, as expected, then we point S(u)
to configuration of x′ namely ItoE(x′). Otherwise, we let S(u) = u. Similarly, for P (u), we find x

′

such that edge is from x
′ to x, and then we let P (u) be ItoE(x′) if z′ > z as expected, otherwise

P (u) = u.
For the case when x does not have a duplicate label, then we have z = 0. This is handled

separately since such a vertex has exactly one incident edge on the Lemke path, namely the one
obtained by relaxing z = 0. According to the direction of this edge, we do similar process as before.
For example, if the edge goes from x to x

′, then, if z′ < z, we set S(u) = ItoE(x′) else S(u) = u,
and we always set P (u) = u. In case the edge goes from x

′ to x, we always set S(u) = u, and we
set P (u) depending on whether or not z′ > z.

The potential function V , formally defined in Table 5, gives a value of zero to dummy vertices
and the starting vertex 0n. To all other vertices, essentially it is ((z0− z) ∗∆2)+1. Since value of z
starts at z0 and keeps decreasing on the Lemke path this value will keep increasing starting from zero
at the starting vertex 0n. Multiplication by ∆2 will ensure that if z1 > z2 then the corresponding
potential values will differ by at least one. This is because, since z1 and z2 are coordinates of two
vertices of polytope P , their maximum value is ∆ and their denominator is also bounded above
by ∆. Hence z1 − z2 ≤ 1/∆2 (Lemma 74).

To show correctness of the reduction we need to show two things: (i) All the procedures are
well-defined and polynomial time. (ii) We can construct a solution of I from a solution of E in
polynomial time.
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Table 6: Predecessor Procedure P (u)

If IsValid(u) = 0 then Return u

If u = 0n then Return u

(y,w, z) ← EtoI(u)
If (y,w, z) = (y0,w0, z0) then Return 0n

If z = 0 then

x
1 ← vertex obtained by relaxing z = 0 at x in P.

If Todd [76] prescribes edge from x
1 to x then set x

′ ← x
1. Else Return u

Else

l← duplicate label at x

x
1 ← vertex obtained by relaxing yl = 0 at x in P

x
2 ← vertex obtained by relaxing wl = 0 at x in P

If Todd [76] prescribes edge from x
1 to x then x

′ = x
1 Else x

′ = x
2

Let x
′ be (y′,w′, z′). If z < z′ then Return ItoE(x′). Else Return u.

Lemma 73. Functions P , S and V of instance E are well defined, making E a valid EndOfPo-

tentialLine instance.

Proof. Since all three procedures are polynomial-time in L, they can be defined by poly(L)-sized
Boolean circuits. Furthermore, for any u ∈ vert, we have that S(u), P (u) ∈ vert. For V , since the
value of z ∈ [0, ∆− 1], we have 0 ≤ ∆2(∆− z) ≤ ∆3. Therefore, V (u) is an integer that is at most
2 ·∆3 and hence is in set {0, . . . , 2m − 1}.

There are two possible types of solutions of an EndOfPotentialLine instance (see Defini-
tion 9). One indicates the beginning or end of a line (R1), and the other is a vertex with locally
optimal potential (R2). First we show that (R2) never arises. For this, we need the next lemma,
which shows that potential differences in two adjacent configurations adheres to differences in the
value of z at corresponding vertices.

Lemma 74. Let u 6= u
′ be two valid configurations, i.e., IsValid(u) = IsValid(u′) = 1, and let

(y,w, z) and (y′,w′, z′) be the corresponding vertices in P. Then the following holds:

(i) V (u) = V (u′) iff z = z′.

(ii) V (u) > V (u′) iff z < z′.

Proof. Among the valid configurations all except 0 has positive V value. Therefore, wlog let u,u′ 6=
0. For these we have V (u) = ⌊∆2 · (∆− z)⌋, and V (u′) = ⌊∆2 · (∆− z′)⌋.

Note that since both z and z′ are coordinates of vertices of P, whose description has highest
coefficient of max{maxi,j∈[d]M(i, j),maxi∈[d] |qi|}, and therefore their numerator and denominator
both are bounded above by ∆. Therefore, if z < z′ then we have

z′ − z ≥ 1

∆2
⇒ ((∆ − z)− (∆− z′)) ·∆2 ≥ 1⇒ V (u)− V (u′) ≥ 1.

For (i), if z = z′ then clearly V (u) = V (u′), and from the above argument it also follows that
if V (u) = V (u′) then it can not be the case that z 6= z′. Similarly for (ii), if V (u) > V (u′) then
clearly, z′ > z, and from the above argument it follows that if z′ > z then it can not be the case
that V (u′) ≥ V (u).
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Using the above lemma, we will next show that instance E has no local maximizer.

Lemma 75. Let u,v ∈ vert s.t. u 6= v, v = S(u), and u = P (v). Then V (u) < V (v).

Proof. Let x = (y,w, z) and x
′ = (y′,w′, z′) be the vertices in polyhedron P corresponding to u

and v respectively. From the construction of v = S(u) implies that z′ < z. Therefore, using Lemma
74 it follows that V (v) < V (u).

Due to Lemma 75 the only type of solutions available in E is (R1) where S(P (u)) 6= u and
P (S(u)) 6= u. Next two lemmas shows how to construct solution of P-LCP instance I or a (PV1)
type violation (non-positive principle minor of matrix M) from these.

Lemma 76. Let u ∈ vert, u 6= 0n. If P (S(u)) 6= u or S(P (u)) 6= u, then IsValid(u) = 1.
Futhermore, for (y,w, z) = EtoI(u) if z = 0, then y is a (Q1) type solution of P-LCP instance
I = (M, q).

Proof. By construction, if IsValid(u) = 0, then S(P (u)) = u and P (S(u)) = u, therefore IsValid(u) =
0 when u has a predecessor or successor different from u. Given this, from Lemma 72 we know that
(y,w, z) is a feasible vertex in (18). Therefore, if z = 0, then by Lemma 71 we have a solution of
the LCP (1), i.e., a type (Q1) solution of our P-LCP instance I = (M, q).

Lemma 77. Let u ∈ vert, u 6= 0n such that P (S(u)) 6= u or S(P (u)) 6= u, and let x = (y,w, z) =
EtoI(u). If z 6= 0 then x has a duplicate label, say l. And for directions σ1 and σ2 obtained by
relaxing yl = 0 and wl = 0 respectively at x, we have σ1(z) ·σ2(z) ≥ 0, where σi(z) is the coordinate
corresponding to z.

Proof. From Lemma 76 we know that IsValid(u) = 1, and therefore from Lemma 72, x is a feasible
vertex in (18). From the last line of Tables 4 and 6 observe that S(u) points to the configuration of
vertex next to x on Lemke’s path only if it has lower z value otherwise it gives back u, and similarly
P (u) points to the previous only if value of z increases.

First consider the case when P (S(u)) 6= u. Let v = S(u) and corresponding vertex in P be
(y′,w′, z′) = EtoI(v). If v 6= u, then from the above observation we know that z′ > z, and in that
case again by construction of P we will have P (v) = u, contradicting P (S(u)) 6= u. Therefore, it
must be the case that v = u. Since z 6= 0 this happens only when the next vertex on Lemke path
after x has higher value of z (by above observation). As a consequence of v = u, we also have
P (u) 6= u. By construction of P this implies for (y′′,w′′, z′′) = EtoI(P (u)), z′′ > z. Putting both
together we get increase in z when we relax yl = 0 as well as when we relax wl = 0 at x.

For the second case S(P (u)) 6= u similar argument gives that value of z decreases when we relax
yl = 0 as well as when we relax wl = 0 at x. The proof follows.

Finally, we are ready to prove our main result of this section using Lemmas 75, 76 and 77.
Together with Lemma 77, we will use the fact that on Lemke path z monotonically decreases if M
is a P-matrix or else we get a (PV1) type witness that M is not a P-matrix [14].

Theorem 78. There is a polynomial-time promise-preserving reduction from P-LCP with (PV1)
violations to EndOfPotentialLine.

Proof. Given an instance of I = (M, q) of P-LCP, where M ∈ Rd×d and q ∈ Rd×1 reduce it to
an instance E of EndOfPotentialLine as described above with vertex set vert = {0, 1}2d and
procedures S, P and V as given in Table 4, 6, and 5 respectively.

Among solutions of EndOfPotentialLine instance E , there is no local potential maximizer,
i.e., u 6= v such that v = S(u), u = P (v) and V (u) > V (v) due to Lemma 75. We get a solution
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u 6= 0 such that either S(P (u)) 6= u or P (S(u)) 6= u, then by Lemma 76 it is valid configuration
and has a corresponding vertex x = (y,w, z) in P . Again by Lemma 76 if z = 0 then y is a (Q1)
type solution of our P-LCP instance I. On the other hand, if z > 0 then from Lemma 77 we get
that on both the two adjacent edges to x on Lemke path the value of z either increases or deceases.
This gives us a minor of M which is non-positive [14], i.e., a (Q2) type solution of the P-LCP

instance I with (PV1) violation.
The reduction is promise preserving because if the LCP instance is promised to be P-LCP then

z monotonically decreases along the Lemke’s path, and all feasible complementary vertices are on
this path. Therefore, the corresponding EndOfPotentialLine instance will have exactly one
path ending in a solution where the corresponding vertex x = (y,w, z) of the LCP has z = 0
mapping to the P-LCP solution.

G.3 Reduction from P-LCP with (PV2) violations to UniqueEOPL

Next we show that the above construction also implies P-LCP with (PV2) violations is in UniqueEOPL,
and thereby also in EndOfPotentialLine. We start with a simple well-known lemma that turns
two solutions of an LCP (M, q) into a non-zero sign-reversing vector for M , i.e. a (PV2) violation.

Lemma 79. [14, Theorem 3.3.7] If for some d-dimensional vector q
′, LCP (M, q′) has more than

one solution then there exists a sign-reversing vector x w.r.t. M , i.e., xi(Mx)i ≤ 0, ∀i ∈ [d].

Proof. Let (y′,w′) and (y∗,w∗) be two distinct solutions of the LCP defined by (M, q′). That is
y′ 6= y∗. Then,

w∗ = My∗ + q
′ and w′ = My′ + q

′ ⇒ (w∗ −w′) = M(y∗ − y′)

Furthermore, for each i ∈ [d] we have w∗
i y

∗
i = 0, w′

iy
′
i = 0, w∗

i y
′
i ≥ 0 and w′

iy
∗
i ≥ 0. This together

with (w∗ −w′)i = (M(y∗ − y′))i gives,

∀i ∈ [d], (y∗ − y′)i(w
∗ −w′)i ≤ 0 ⇒ (y∗ − y′)i(M(y∗ − y′))i ≤ 0

Thus, x = y∗ − y′ is our desired vector. Note that x 6= 0 since y′ 6= y∗.

UniqueEOPL has four types of solutions. Out of these, (UV1) is ruled out by Lemma 75. Next
we show that any “extra” end of lines as well as (UV3) type solutions map to a (PV2) violation.

Lemma 80. Given either of the following, we can construct two distinct solutions of LCP (M, q′)
for some q

′:

(a) u ∈ vert is a (U1) or (UV2) type solution of instance E such that corresponding vertex x =
(y,w, z) = EtoI(u) has z∗ > 0.

(b) u,v ∈ vert forms a (UV3) type solution of instance E.

Proof. The common idea to go from (a) or (b) to two solutions of some LCP with matrix M is to
create two (or more) solutions of (18) with same z value. Suppose (y∗,w∗, a) and (y′,w′, a) with
y 6= y′ are feasible in (18) for some a ∈ R, then clearly for q

′ = q + a, (y∗,w∗) and (y′,w′) are
solutions of LCP (1) with matrix M and vector q

′.
For (a), let x

∗ = (y∗,w∗, z∗) = EtoI(u) with z∗ > 0, and let l be the duplicate label at vertex
x
∗ in (Q1). Then from Lemma 77 we know that for directions σ1 and σ2 obtained by relaxing

yl = 0 and wl = 0 respectively at x
∗, we have σ1(z) ∗ σ2(z) ≥ 0, where σi(z) is the coordinate

corresponding to z. Suppose σ1(z), σ2(z) < 0, and for i = 1, 2, let zi be the value of z at the vertex
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adjacent to x
∗ in direction of σi; set zi = −∞ if no vertex encountered in direction σi. Let ǫ > 0

be small enough so that ǫ < (z∗ − zi), i = 1, 2, and consider the points x
i = (x∗ + ǫ

|σi(z)|
σi) on the

edge corresponding to σi adjacent to x
∗. It is easy to check that by choice of ǫ, both x

1 and x
2 are

feasible. We will next show that these are solutions of an LCP defined by (M, q′) for some q
′.

Note that by construction the z coordinate at both x
1 and x

2 is (z∗ − ǫ), giving us desired two
solutions of (18) with the same z value. Similar, argument holds when σ1(z), σ2(z) > 0 where the
corresponding z value is (z∗ + ǫ). If either σ1(z) or σ2(z) is zero, then z remains unchanged on the
entire corresponding edge.

For (b), x
∗ = (y∗,w∗, z∗) = EtoI(u) and x

′ = (y′,w′, z′) = EtoI(v). If V (u) = V (v), then
clearly z∗ = z′ (Lemma 74) and we get the desired two points feasible in (18) with the same z value.
If V (u) < V (v) < V (S(u)), then there exists a point on the edge joining x

∗ with EtoI(S(x∗)) with
the same z value as z′.

Now we are ready to show our main result of P-LCP with PV2 in UniqueEOPL using Lemmas
75, 76, 79 and 80

Theorem 81. There is a polynomial-time promise-preserving reduction from P-LCP with (PV2)
violations to UniqueEOPL, and thereby also to EndOfPotentialLine.

Proof. Given an instance of I = (M, q) of P-LCP, where M ∈ Rd×d and q ∈ Rd×1 reduce it to an
instance E of UniqueEOPL as described above with vertex set vert = {0, 1}2d and procedures S,
P and V as given in Table 4, 6, and 5 respectively.

Lemma 75 rules out UV1 violation in E . If we get U1 solution or UV2 violation u of E , then
corresponding vertex x = (y,w, z) is feasible in (18) by Lemma 76. Furthermore, if z = 0 then y

is a (Q1) type solution of our P-LCP instance I. On the other hand if z > 0, then by Lemmas 80
and 79 we can construct a PV2 violation of our P-LCP instance I. Similarly, Lemmas 80 and 79
also map any UV3 violation of UniqueEOPL instance E to a PV2 violation of I.

By construction, if I is a promise P-LCP instance, then instance E of UniqueEOPL will have
exactly one U1 solution corresponding to the unique solution of the I .

H Proofs for Section 5.1: Algorithms for Contraction Maps

In this section, we provide an exact algorithm for solving PL-Contraction, i.e., we either return
a rational fixpoint of polynomial bit-length or a pair of points that prove (indirectly) that the given
function is not a contraction map. which is guaranteed to have a rational fixpoint of polynomial
bit-length or two points that prove (indirectly) that the given function is not contracting. Then we
extend this algorithm to find an approximate fixpoint of general contraction maps for which there
may not be an exact solution of polynomial bit length. In both cases, the problems solved by our
algorithm are not promise problems and we always return either a solution or a violation. Our
algorithms work for any ℓp norm with p ∈ N, and are polynomial for constant dimension d. These
are the first such algorithms for p 6= 2. Such algorithms were so far only known for the ℓ2 and ℓ∞
norms [43, 70, 71]5

H.1 Overview: algorithm to find a fixed-point of PL-Contraction

The algorithm does a nested binary search using Lemmas 59 and 60 to find fixpoints of slices with
increasing numbers of free coordinates. We illustrate the algorithm in two dimensions in Figure 6.

5Our approach does not cover the ℓ∞ norm, as that would require more work and not give a new result.
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The algorithm is recursive. To find the eventual fixpoint in d dimensions we fix a single coordinate
s1, find the unique (d − 1)-dimensional fixpoint of f|s , the (d − 1)-dimensional contraction map
obtained by fixing the first coordinate of the input to f to be s1. Let x the unique fixpoint of f|s
where x1 = s1. If f(x1) > s1, then the d-dimensional fixpoint x∗ of f has x∗1 > s1, and if f(x1) < s1,
then x∗1 < s1 (Lemma 60). We can thus do a binary search for the value of x∗1. Once we’ve found
x∗1, we can recursively find the (d − 1)-dimensional fixpoint of f|s where s1 = x1. The resulting
solution will be the d-dimensional fixpoint. At each step in the recursive procedure, we do a binary
search for the value of one coordinate of the fixpoint at the slice determined by all the coordinates
already fixed. For piecewise-linear functions, we know that all fixpoints are rational with bounded
bit-length (as discussed in Section F.1), so we can find each coordinate exactly.

If at any step in recursion our binary search finds two k− 1 dimensional fixpoints on slices that
are adjacent, differing only in the kth coordinate and by a small enough amount , we can return
these points, which witness the failure of f to be a contraction map. These points correspond to a
solution of type (CMV3) to the PL-Contraction problem. The proof that f is not a contraction is
indirect, and uses the fact that the discretized grid implicitly searched by the algorithm will contain
every fixpoint of f . Since we maintain the invariant that our two pivots bound the coordinate we’re
searching over from above and below when f is a contraction map, such a pair of points gives proof
that f is not contracting.

x∗ = f(x∗)

1
2

3
4

5
8

Figure 6: An illustration of the algorithm to find a fixpoint of a piecewise-linear contraction map
in two dimensions. The algorithm begins by finding a fixpoint along the slice with x1 = 1/2.
The fixpoint along that slice points to the right, so we next find a fixpoint along the slice with
x1 = 3/4. The fixpoint along that slice points to the left, so we find the fixpoint along x1 = 5/8.
We successively find fixpoints of one-dimensional slices, and then use those to do a binary search for
the two-dimensional fixpoint. The red regions are the successive regions considered by the binary
search, where each successive step in the binary search results in a darker region.

Using this algorithm we obtain the following theorem.

Theorem 82. Given a LinearFIXP circuit C purporting to encode a contraction map f : [0, 1]d →
[0, 1]d with respect to any ℓp norm, there is an algorithm to find a fixpoint of f or return a pair
of points witnessing that f is not a contraction map in time that is polynomial in size(C) and
exponential in d.
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The full details of the algorithm can be found in Appendix H.3.

H.2 Overview: algorithm to find an approximate fixed-point of Contraction

Here we generalize our algorithm to find an approximate fixpoint of an arbitrary function given
by an arithmetic circuit, i.e., our algorithm solves Contraction, which is specified by a circuit f
that represents the contraction map,6 a p-norm, and ε. Again, let d denote the dimension of the
problem, i.e. the number of inputs (and outputs) of f . Let x∗ denote the unique exact fixpoint for
the contraction map f . We seek an approximate fixpoint, i.e., a point for which ‖f(x)− x‖p ≤ ε.

We do the same recursive binary search as in the algorithm above, but at each step of the
algorithm instead of finding an exact fixpoint, we will only find an approximate fixpoint of f|s .
The difficulty in this case will come from the fact that Lemma 60 does not apply to approximate
fixpoints. Consider the example illustrated in Figure 7. In this example, y is the unique fixpoint
of the slice restriction along the gray dashed line. By Lemma 60, (f(y)1 − y1)(x

∗
1 − y1) ≥ 0 so if

we find y, we can observe that f(y)1 > y1 and recurse on the right side of the figure, in the region
labeled R. If we try to use the same algorithm but where we only find approximate fixopints at
each step, we’ll run into trouble. In this case, if we found z instead of y, we would observe that
f(z)1 < z1 and conclude that x∗1 < z1, which is incorrect. As a result, we would limit our search to
the region labeled L, and wouldn’t be able to find x∗.

L R

f(z)

f(y)

x∗ = f(x∗)

y

z

s

Figure 7: A step in the recursive binary search. Here, x∗ is the fixpoint for the original function,
y is the fixpoint for the slice restriction f|s along the dashed gray line, and z is an approximate
fixpoint to the slice restriction.

When looking for an approximate fixpoint, we’ll have to choose a different precision εi for each
level of the recursion so that either the point x returned by the ith recursive call to our algorithm
satisfies |f(x)i − xi| > εi and we can rely on it for pivoting in the binary search, or |f(x)i − xi| ≤ εi
and we can return x as an approximate fixpoint to the recursive call one level up. Each different ℓp
norm will require a different choice of (εi)

d
i=1.

Using this idea we are able to obtain the following results:

Theorem 83. For a contraction map f : [0, 1]d → [0, 1]d with respect to the ℓ1 norm, there is an
algorithm to compute a point v ∈ [0, 1]d such that ‖f(v)− v‖1 < ε or report a violation of contraction
in time O(dd log(1/ε)).

6The algorithm works even if f is given as an arbitrary black-box, as long as it is guaranteed to be a contraction
map.
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Theorem 84. For a contraction map f : [0, 1]d → [0, 1]d under ‖·‖p for 2 ≤ p < ∞, there is an

algorithm to compute a point v ∈ [0, 1]d such that ‖f(v)− v‖p < ε or report a violation of contraction

in time O(pd
2
logd(1/ε) logd(pd)).

The full details of the algorithms can be found in Appendix H.4.

H.3 Details: finding a fixed-point of PL-Contraction

Suppose f is piecewise-linear; it follows that the coordinates of the unique fixpoints of f|s will be
rational numbers with bounded denominators. Consider the values of κi’s computed in Section
F.1. The analysis in the section tells us that if we consider an i-slice s where sj is a rational with
bit-length at most κj for j ∈ {i+ 1, . . . , d}, the unique fixed-point of f|s will have coordinates with
bit-lengths of at most κ1, . . . , κd Furthermore, κ1 is the largest among all κi’s and is bounded by
polynomial in the size of the circuit C representing the given PL-Contraction instance.

Let Sliced(2
κ) be the set of slices with fixed coordinates having denominators at most 2κi in the

ith coordinate:

Sliced(2
κ) ⇐⇒ s ∈ Sliced and si ∈ {0/2κi , 1/ki, . . . , 2

κi/2κi} , ∀i ∈ fixed(s).

We will design an algorithm assuming an upper bound of 2κi on the ith coordinate denominators
of fixpoints for any slice restriction f|s where s ∈ Sliced(2

κ).

Analysis. Given a k < d and a k-slice s ∈ Sliced(2
κ), we know from Lemma 59 that the restricted

function f|s is also contracting. We will show that FindFP, the function given in Algorithm 1,
computes a fixpoint of f|s . Since the algorithm is recursive, we will prove its correctness by induction.
The next lemma establishes the base case of induction and follows by design of the algorithm. It is
equivalent to finding a fixpoint of a one dimensional function.

Lemma 85. For any 1-slice s, FindFP(s) returns the unique fixpoint of f|s if it doesn’t throw an
error.

Now for the inductive step, assuming FindFP can compute a fixpoint of any k-slice restriction
of a contraction map, we will show that it can compute one for any (k + 1)-slice of the contraction
map.

Lemma 86. Fix any k-slice s ∈ Sliced(2
κ) and let t = (∗, . . . , ∗, tk, sk+1, . . . , sd) for some tk ∈

{0/2κk , 1/2κk , . . . , 2κk/2κk}. If FindFP(t) returns the unique fixpoint of the restricted function f|t ,
then FindFP(s) returns the unique fixpoint of the function f|s if it doesn’t throw an error.

Proof. Since f is a contraction map, so is f|s due to Lemma 59. Let v = FindFP(t) be the value
returned by the algorithm when input the slice t. Now, if tk = 0 then f(v)k ≥ 0 = tk = vk and if
tk = 1 then f(v)k ≤ 1 = tk = vk. If either is an equality then v is the unique fixpoint of f|s as well
and the lemma follows.

Otherwise, we know that the kth coordinate of the unique fixpoint of f|s , which we’ll call t∗k, is

between t
(ℓ)
k = 0 and t

(h)
k = 1. Note that when tk is set to t∗k, the vector v = FindFP(t) which is

the unique fixpoint of f|t will also be the unique fixpoint of f|s . Thus, it suffices to show that tk
will eventually be set to t∗k during the execution of the algorithm.

The while loop of Algorithm 1 does a binary search between t
(h)
k and t

(ℓ)
k to find t∗k, while

keeping track of the fixpoints of f|t . We first observe that after line 17 of each execution of the loop
in Algorithm 1, v is the unique fixpoint of f|t . Therefore, whenever f(v)k = tk is satisfied, we will
return the unique fixpoint of f|s and the lemma follows.
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Algorithm 1 Algorithm for PL-Contraction

1: Input: A k-slice s ∈ Sliced(2
κ) for some k ≤ d.

2: Output: The unique fixpoint of s, i.e., a point y such that f|s (y) = y|s and y = y|s .
3: function FindFP(s)
4: Let k = |free(s)|.
5: if k = 0 then return s
6: end if

7: Set k ← k − 1. Set t(ℓ) ← s, t(h) ← s.

8: Set t
(ℓ)
k ← 0, t

(h)
k ← 1.

9: Set v(ℓ) ← FindFP(t(ℓ)), and v(h) ← FindFP(t(h)).

10: if f(v(ℓ))k = t
(ℓ)
k then return v(ℓ).

11: end if

12: if f(v(h))k = t
(h)
k then return v(h).

13: end if

14: Set t← s
15: while t

(h)
k − t

(ℓ)
k > 1

2(κk−1) do

16: Set tk ← (t
(h)
k

+t
(ℓ)
k

)

2 .
17: Set v ← FindFP(t).
18: if f(v)k = tk then return v.
19: end if

20: if f(v)k > tk then Set t
(ℓ)
k ← tk

21: else Set t
(h)
k ← tk.

22: end if

23: end while

24: Set tk ← the unique number in (t
(ℓ)
k , t

(h)
k ) with denominator at most 2κk .

25: Set v∗ ← FindFP(t).
26: if f(v∗)k − v∗k = 0 then return FindFP(t).
27: else throw error: “The pair

(

v(ℓ), v(h)
)

is a solution of type (CMV3).”
28: end if

29: end function

The binary search maintains the invariant that if we let v(ℓ) = FindFP(t(ℓ)) and v(h) =

FindFP(t(h)) we have f(v(ℓ))k > v
(ℓ)
k , and f(v(h))k < v

(h)
k . By Lemma 60, this invariant ensures

that t∗k satisfies

t
(ℓ)
k < t∗k < t

(h)
k

at all times. Therefore, at some point in the binary search either one of the endpoints is t∗k and

we return the desired fixpoint or we end the binary search with t
(ℓ)
k and t

(h)
k such that (t

(h)
k −

t
(ℓ)
k ) ≤ 1/2κk−1 and t∗k ∈ [t

(ℓ)
k , t

(h)
k ]. By the assumption we know that t∗k is a rational number with

denominator at most 2κk . Since there can be at most one such number in (t
(ℓ)
k , t

(h)
k ), t∗k can be

uniquely identified. Let t∗ denote the slice t after setting tk ← t∗k. The second to last line of
Algorithm 1 will then return the unique fixpoint of f|t∗ , which will be the unique fixpoint of f|s is
a contraction map. The only way this can fail to happen is if the point returned by FindFP(t∗) is
not actually a k-dimensional fixpoint, in which case the algorithm will throw an error.

We now address the case where the algorithm returns an error:
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Lemma 87. If FindFP(t) returns an error for k-slice s ∈ Sliced(2
κ1 , 2κ2 , . . . , 2κd), the pair of

points (v(ℓ), v(h)) indicated by the error witness that f is not a contraction map.

Proof. The algorithm only returns an error when t
h(ℓ)
k − t

(ℓ)
k ≤ 1

2κk−1 and the point v∗ returned by
FindFP(t∗) is not a k-dimensional fixpoint, where t∗ is the slice obtained by setting tk ← t∗ in
line 24. By induction we know that v∗ must be a (k − 1)-fixpoint, since the recursive call to the
algorithm didn’t throw an error. If f is a contraction map, then the fact that v(ℓ) and v(h) are

(k−1)-dimensional fixpoints of f|s with f|s (v
(ℓ))k−v

(ℓ)
k > 0 and f|s (v

(h))k−v
(h)
k < 0 together imply

that the kth coordinate of the true fixpoint f|s will lie in (v
(ℓ)
k , v

(h)
k ) by Lemma 60. By Lemma 30,

we know that any k-dimensional fixpoint of f has kth coordinate with bit-length at most κk. Thus,
there is a unique value which the kth coordinate of the unique fixpoint of f|s can have, namely t∗k.
But v∗ is not a fixpoint of f|s and so we must conclude that f|s is not a contraction map, which

implies that f is not a contraction map. Thus, the pair (v(ℓ), v(h)) together witness that f is not a
contraction map.

Using Lemma 87 and applying induction using Lemma 85 as a base-case and Lemma 86 as an
inductive step, the next theorem follows.

Theorem 88. FindFP(∗, ∗, . . . , ∗) returns the unique fixpoint of f , or a pair of points proving that
f isn’t a contraction map in time O(Ld) where L = maxk Lk is polynomial in the size of the input
instance.

H.4 Details: finding an approximate fixed-point of Contraction

We now proceed to prove the correctness of our algorithm.

Analysis.

We will show that for any contraction map f with respect to an ℓp norm, and any ε > 0, if
Algorithm 2 doesn’t throw an error, then it returns an approximate fixpoint of f , i.e. a point
v ∈ [0, 1]d such that ‖f(v)− v‖ ≤ ε. To do this, we’ll show that for any k < d and k-slice s ∈ Sliced
ApproxFindFP(s) will return a (s, ℓp, k)-approximate fixpoint (when it doesn’t throw an error).
Since Algorithm 2 is recursive, our proof will be by induction. The next lemma establishes the base
case of the induction and follows by design of the algorithm.

Lemma 89. For any 1-slice s, ApproxFindFP(s) returns a (s, ℓp, 1)-approximate fixpoint when
it doesn’t throw an error.

For the inductive step, we show that we can go from approximate fixpoints of (k − 1)-slices to
approximate fixpoints of k-slices.

Lemma 90. Fix some k-slice s ∈ Sliced and let t = (∗, . . . , ∗, tk, sk+1, . . . , sd) for some tk ∈ [0, 1]. If
ApproxFindFP(t) returns a (t, ℓp, k−1)-approximate fixpoint v, then ApproxFindFP(s) returns
an (s, ℓp, k)-approximate fixpoint when it doesn’t throw an error.

Proof. We observe that f|s is a contraction map by Lemma 59. We assume that v = ApproxFindFP(t)
is a (t, ℓp, k − 1)-approximate fixpoint of f|t for any value of tk ∈ [0, 1].

We first observe that after the first recursive invocations of ApproxFindFP, as ApproxFindFP(t(ℓ))

and ApproxFindFP(t(h)), if
∣

∣

∣
f(v(h))k − v

(h)
k

∣

∣

∣
≤ εk(p, d) or

∣

∣

∣
f(v(ℓ))k − v

(ℓ)
k

∣

∣

∣
≤ εk(p, d), we return

v(h) or v(ℓ), respectively, so the output of ApproxFindFP(s) satisfies the requirements of the
lemma.
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Moreover, in every subsequent call to ApproxFindFP(t), if the output v satisfies |f(v)k − vk| ≤
εk, we return v, so we’ll assume in what follows that the point v∗ returned by the algorithm is from
line 33.

We observe that v∗ was the output of a call to ApproxFindFP with a (k − 1)-slice t, so it is
a (t, ℓp, k − 1)-approximate fixpoint and in order to get to the final line, we must have |∆k(v

∗)| ≤
εk(p, d). Thus, we have that v∗ is a (t, ℓp, k)-approximate fixpoint.

Applying induction using Lemma 89 as a base-case and Lemma 90 as an inductive step, we
obtain the following lemma:

Lemma 91. For a contraction map with respect to an ℓp norm for p < ∞, and the trivial slice
s = (∗, ∗, . . . , ∗), ApproxFindFP(s) returns a (s, ℓp, d)-approximate fixpoint when it doesn’t throw
an error.

Lemma 92. If Algorithm 2 throws an error, the pair (x, y) indicated by the error witnesses f not
being a contraction map.

Proof. Assume that the error was thrown in a call to ApproxFindFP(s) where s is a k-slice for
some k ≤ d. Then by inspection we can see that x and y satisfy xk < yk and yk − xk < εk(p, d)/2.
Moreover, x and y were returned by calls to ApproxFindFP with (k−1)-slices that we’ll denote t(x)

and t(y), respectively. It follows from the inductive argument above that x and y are (t(x), ℓp, k− 1)
and (t(y), ℓp, k − 1)-approximate fixpoints, respectively. Furthermore, to get to the line in which
the error is thrown, we must have ∆k(x) ≥ εk(p, d) and ∆k(y) ≤ −εk(p, d). By Lemma 63, we
immediately obtain the desired conclusion.

Now applying Lemma 65 and analyzing the runtime of our algorithm, we obtain our final results.

Theorem 93. For a contraction map with respect to the ℓ1 norm, ApproxFindFP(∗, ∗, . . . , ∗)
returns a point v ∈ [0, 1]d such that ‖f(v)− v‖1 < ε or reports a violation of contraction in time
O(dd log(1/ε)).

Proof. In the worst case, the ith recursive call to ApproxFindFP will terminate with t
(h)
i − t

(ℓ)
i <

εi = ε/4i so will require at most O(log(1/ε)i) iterations. The total runtime will thus be bounded
by O(dd logd(1/ε)).

Theorem 94. For a contraction map under ‖·‖p for 2 ≤ p < ∞, ApproxFindFP(∗, ∗, . . . , ∗)
returns a point v ∈ [0, 1]d such that ‖f(v)− v‖p < ε or reports a violation of contraction in time

O(pd
2
logd(1/ε) logd(dp)).

Proof. In the worst case, the ith recursive call to ApproxFindFP will terminate with t
(h)
i − t

(ℓ)
i <

εi = εp
i
(dp)−2

∑i
j=0 p

j

so will require O(pi log(1/ε) log(dp)) iterations. The total runtime will thus
be bounded by O(pd

2
logd(1/ε) logd(dp)).
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Algorithm 2 Algorithm for Contraction, for a given f , ε, ℓp
1: Input: A k-slice s ∈ Sliced for some k ≤ d.
2: Output: An (s, ℓp, k)-approximate fixpoint of f|s .
3: function ApproxFindFP(s)
4: Let k = |free(s)|.
5: if k = d then return s
6: end if

7: Set k ← k − 1. Set t(ℓ) ← s, t(h) ← s.

8: Set t
(ℓ)
k ← 0, t

(h)
k ← 1.

9: Set v(ℓ) ← ApproxFindFP(t(ℓ)), and v(h) ← ApproxFindFP(t(h)).
10: if

∣

∣∆k

(

v(ℓ)
)∣

∣ ≤ εk(p, d) then return v(ℓ).
11: end if

12: if
∣

∣∆k

(

v(h)
)∣

∣ ≤ εk(p, d) then return v(h).
13: end if

14: Set t← s
15: while t

(h)
k − t

(ℓ)
k > εk(p, d) do

16: Set tk ← (t
(h)
k

+t
(ℓ)
k

)
2 .

17: Set v ← ApproxFindFP(t).
18: if |∆k(v)| ≤ εk(p, d) then return v.
19: end if

20: if f(v)k > tk then Set t
(ℓ)
k ← tk

21: else Set t
(h)
k ← tk.

22: end if

23: end while

24: Set tk ← (t
(h)
k

+t
(ℓ)
k

)
2 .

25: Set v∗ ← ApproxFindFP(t)
26: if |∆k(v

∗)| > εk(p, d) then

27: if ∆k(v
∗) > εk(p, d) then

28: throw error: “The pair
(

v∗, v(h)
)

witnesses f not being a contraction map.”
29: else

30: throw error: “The pair
(

v(ℓ), v∗
)

witnesses f not being a contraction map.”
31: end if

32: end if

33: return v∗.
34: end function
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