12 research outputs found

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    Sticky Brownian rounding and its applications to constraint satisfaction problems

    Get PDF
    Semidefinite programming is a powerful tool in the design and analysis of approximation algorithms for combinatorial optimization problems. In particular, the random hyperplane rounding method of Goemans and Williamson [23] has been extensively studied for more than two decades, resulting in various extensions to the original technique and beautiful algorithms for a wide range of applications. Despite the fact that this approach yields tight approximation guarantees for some problems, e.g., Max-Cut, for many others, e.g., Max-SAT and Max-DiCut, the tight approximation ratio is still unknown. One of the main reasons for this is the fact that very few techniques for rounding semidefinite relaxations are known. In this work, we present a new general and simple method for rounding semi-definite programs, based on Brownian motion. Our approach is inspired by recent results in algorithmic discrepancy theory. We develop and present tools for analyzing our new rounding algorithms, utilizing mathematical machinery from the theory of Brownian motion, complex analysis, and partial differential equations. Focusing on constraint satisfaction problems, we apply our method to several classical problems, including Max-Cut, Max-2SAT, and Max-DiCut, and derive new algorithms that are competitive with the best known results. To illustrate the versatility and general applicability of our approach, we give new approximation algorithms for the Max-Cut problem with side constraints that crucially utilizes measure concentration results for the Sticky Brownian Motion, a feature missing from hyperplane rounding and its generalizations

    Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder

    Get PDF
    Assuming the Unique Games Conjecture, we show that existing approximation algorithms for some Boolean Max-2-CSPs with cardinality constraints are optimal. In particular, we prove that Max-Cut with cardinality constraints is UG-hard to approximate within ~~0.858, and that Max-2-Sat with cardinality constraints is UG-hard to approximate within ~~0.929. In both cases, the previous best hardness results were the same as the hardness of the corresponding unconstrained Max-2-CSP (~~0.878 for Max-Cut, and ~~0.940 for Max-2-Sat). The hardness for Max-2-Sat applies to monotone Max-2-Sat instances, meaning that we also obtain tight inapproximability for the Max-k-Vertex-Cover problem

    Local Search Approximation Algorithms for Clustering Problems

    Get PDF
    In this research we study the use of local search in the design of approximation algorithms for NP-hard optimization problems. For our study we have selected several well-known clustering problems: k-facility location problem, minimum mutliway cut problem, and constrained maximum k-cut problem. We show that by careful use of the local optimality property of the solutions produced by local search algorithms it is possible to bound the ratio between solutions produced by local search approximation algorithms and optimum solutions. This ratio is known as the locality gap. The locality gap of our algorithm for the k-uncapacitated facility location problem is 2+sqrt(3) +epsilon for any constant epsilon \u3e0. This matches the approximation ratio of the best known algorithm for the problem, proposed by Zhang but our algorithm is simpler. For the minimum multiway cut problem our algorithm has locality gap 2-2/k, which matches the approximation ratio of the isolation heuristic of Dahlhaus et al; however, our experimental results show that in practice our local search algorithm greatly outperforms the isolation heuristic, and furthermore it has comparable performance as that of the three currently best algorithms for the minimum multiway cut problem. For the constrained maximum k-cut problem on hypergraphs we proposed a local search based approximation algorithm with locality gap 1-1/k for a variety of constraints imposed on the k-cuts. The locality gap of our algorithm matches the approximation ratio of the best known algorithm for the max k-cut problem on graphs designed by Vazirani, but our algorithm is more general

    Sticky Brownian Rounding and its Applications to Constraint Satisfaction Problems

    Get PDF
    Semidefinite programming is a powerful tool in the design and analysis of approximation algorithms for combinatorial optimization problems. In particular, the random hyperplane rounding method of Goemans and Williamson has been extensively studied for more than two decades, resulting in various extensions to the original technique and beautiful algorithms for a wide range of applications. Despite the fact that this approach yields tight approximation guarantees for some problems, e.g., Max-Cut, for many others, e.g., Max-SAT and Max-DiCut, the tight approximation ratio is still unknown. One of the main reasons for this is the fact that very few techniques for rounding semidefinite relaxations are known. In this work, we present a new general and simple method for rounding semi-definite programs, based on Brownian motion. Our approach is inspired by recent results in algorithmic discrepancy theory. We develop and present tools for analyzing our new rounding algorithms, utilizing mathematical machinery from the theory of Brownian motion, complex analysis, and partial differential equations. Focusing on constraint satisfaction problems, we apply our method to several classical problems, including Max-Cut, Max-2SAT, and MaxDiCut, and derive new algorithms that are competitive with the best known results. To illustrate the versatility and general applicability of our approach, we give new approximation algorithms for the Max-Cut problem with side constraints that crucially utilizes measure concentration results for the Sticky Brownian Motion, a feature missing from hyperplane rounding and its generalization

    Dispersion for Data-Driven Algorithm Design, Online Learning, and Private Optimization

    Full text link
    Data-driven algorithm design, that is, choosing the best algorithm for a specific application, is a crucial problem in modern data science. Practitioners often optimize over a parameterized algorithm family, tuning parameters based on problems from their domain. These procedures have historically come with no guarantees, though a recent line of work studies algorithm selection from a theoretical perspective. We advance the foundations of this field in several directions: we analyze online algorithm selection, where problems arrive one-by-one and the goal is to minimize regret, and private algorithm selection, where the goal is to find good parameters over a set of problems without revealing sensitive information contained therein. We study important algorithm families, including SDP-rounding schemes for problems formulated as integer quadratic programs, and greedy techniques for canonical subset selection problems. In these cases, the algorithm's performance is a volatile and piecewise Lipschitz function of its parameters, since tweaking the parameters can completely change the algorithm's behavior. We give a sufficient and general condition, dispersion, defining a family of piecewise Lipschitz functions that can be optimized online and privately, which includes the functions measuring the performance of the algorithms we study. Intuitively, a set of piecewise Lipschitz functions is dispersed if no small region contains many of the functions' discontinuities. We present general techniques for online and private optimization of the sum of dispersed piecewise Lipschitz functions. We improve over the best-known regret bounds for a variety of problems, prove regret bounds for problems not previously studied, and give matching lower bounds. We also give matching upper and lower bounds on the utility loss due to privacy. Moreover, we uncover dispersion in auction design and pricing problems
    corecore