14 research outputs found

    The Prouhet-Tarry-Escott problem

    Get PDF
    Given natural numbers n and k, with n>k, the Prouhet-Tarry-Escott (PTE) problem asks for distinct subsets of Z, say X={x_1,...,x_n} and Y={y_1,...,y_n}, such that x_1^i+...+x_n^i=y_1^i+...+y_n^i\] for i=1,...,k. Many partial solutions to this problem were found in the late 19th century and early 20th century. When k=n-1, we call a solution X=(n-1)Y ideal. This is considered to be the most interesting case. Ideal solutions have been found using elementary methods, elliptic curves, and computational techniques. This thesis focuses on the ideal case. We extend the framework of the problem to number fields, and prove generalizations of results from the literature. This information is used along with computational techniques to find ideal solutions to the PTE problem in the Gaussian integers. We also extend a computation from the literature and find new lower bounds for the constant C_n associated to ideal PTE solutions. Further, we present a new algorithm that determines whether an ideal PTE solution with a particular constant exists. This algorithm improves the upper bounds for C_n and in fact, completely determines the value of C_6. We also examine the connection between elliptic curves and ideal PTE solutions. We use quadratic twists of curves that appear in the literature to find ideal PTE solutions over number fields

    Numeration Systems: a Link between Number Theory and Formal Language Theory

    Full text link
    We survey facts mostly emerging from the seminal results of Alan Cobham obtained in the late sixties and early seventies. We do not attempt to be exhaustive but try instead to give some personal interpretations and some research directions. We discuss the notion of numeration systems, recognizable sets of integers and automatic sequences. We briefly sketch some results about transcendence related to the representation of real numbers. We conclude with some applications to combinatorial game theory and verification of infinite-state systems and present a list of open problems.Comment: 21 pages, 3 figures, invited talk DLT'201

    Représentation d'un polynôme par un circuit arithmétique et chaînes additives

    Full text link
    Un circuit arithmétique dont les entrées sont des entiers ou une variable x et dont les portes calculent la somme ou le produit représente un polynôme univarié. On assimile la complexité de représentation d'un polynôme par un circuit arithmétique au nombre de portes multiplicatives minimal requis pour cette modélisation. Et l'on cherche à obtenir une borne inférieure à cette complexité, et cela en fonction du degré d du polynôme. A une chaîne additive pour d, correspond un circuit arithmétique pour le monôme de degré d. La conjecture de Strassen prétend que le nombre minimal de portes multiplicatives requis pour représenter un polynôme de degré d est au moins la longueur minimale d'une chaîne additive pour d. La conjecture de Strassen généralisée correspondrait à la même proposition lorsque les portes du circuit arithmétique ont degré entrant g au lieu de 2. Le mémoire consiste d'une part en une généralisation du concept de chaînes additives, et une étude approfondie de leur construction. On s'y intéresse d'autre part aux polynômes qui peuvent être représentés avec très peu de portes multiplicatives (les d-gems). On combine enfin les deux études en lien avec la conjecture de Strassen. On obtient en particulier de nouveaux cas de circuits vérifiant la conjecture.An arithmetic circuit with inputs among x and the integers which has product gates and addition gates represents a univariate polynomial. We define the complexity of the representation of a polynomial by an arithmetic circuit as the minimal number of product gates required for this modelization. And we seek a lower bound to this complexity, with respect to the degree d of the polynomial. An addition chain for d corresponds to an arithmetic circuit computing the monomial of degree d. Strassen's conjecture states that the minimal number of product gates required to represent a polynomial of degree d is at least the minimal length of an addition chain for d. The generalized Strassen conjecture corresponds to the same statement where the indegree of the gates of the arithmetic circuit is g instead of 2. The thesis consists, on the one hand, of the generalization of the concept of addition chains, and a study of the subject. On the other hand, it is concerned with polynomials which can be represented with very few product gates (d-gems). Both studies related to Strassen's conjecture are combined. In particular, we get new classes of circuits verifying the conjecture
    corecore