27,744 research outputs found

    How to make process model matching work better? An analysis of current similarity measures

    Get PDF
    Process model matching techniques aim at automatically identifying activity correspondences between two process models that represent the same or similar behavior. By doing so, they provide essential input for many advanced process model analysis techniques such as process model search. Despite their importance, the performance of process model matching techniques is not yet convincing and several attempts to improve the performance have not been successful. This raises the question of whether it is really not possible to further improve the performance of process model matching techniques. In this paper, we aim to answer this question by conducting two consecutive analyses. First, we review existing process model matching techniques and give an overview of the specific technologies they use to identify similar activities. Second, we analyze the correspondences of the Process Model Matching Contest 2015 and reflect on the suitability of the identified technologies to identify the missing correspondences. As a result of these analyses, we present a list of three specific recommendations to improve the performance of process model matching techniques in the future.</p

    Probabilistic evaluation of process model matching techniques

    Get PDF
    Process model matching refers to the automatic identification of corresponding activities between two process models. It represents the basis for many advanced process model analysis techniques such as the identification of similar process parts or process model search. A central problem is how to evaluate the performance of process model matching techniques. Often, not even humans can agree on a set of correct correspondences. Current evaluation methods, however, require a binary gold standard, which clearly defines which correspondences are correct. The disadvantage of this evaluation method is that it does not take the true complexity of the matching problem into account and does not fairly assess the capabilities of a matching technique. In this paper, we propose a novel evaluation method for process model matching techniques. In particular, we build on the assessment of multiple annotators to define probabilistic notions of precision and recall. We use the dataset and the results of the Process Model Matching Contest 2015 to assess and compare our evaluation method. We found that our probabilistic evaluation method assigns different ranks to the matching techniques from the contest and allows to gain more detailed insights into their performance

    A probabilistic evaluation procedure for process model matching techniques

    Full text link
    Process model matching refers to the automatic identification of corresponding activities between two process models. It represents the basis for many advanced process model analysis techniques such as the identification of similar process parts or process model search. A central problem is how to evaluate the performance of process model matching techniques. Current evaluation methods require a binary gold standard that clearly defines which correspondences are correct. The problem is that often not even humans can agree on a set of correct correspondences. Hence, evaluating the performance of matching techniques based on a binary gold standard does not take the true complexity of the matching problem into account and does not fairly assess the capabilities of a matching technique. In this paper, we propose a novel evaluation procedure for process model matching techniques. In particular, we build on the assessments of multiple annotators to define the notion of a non-binary gold standard. In this way, we avoid the problem of agreeing on a single set of correct correspondences. Based on this non-binary gold standard, we introduce probabilistic versions of precision, recall, and F-measure as well as a distance-based performance measure. We use a dataset from the Process Model Matching Contest 2015 and a total of 16 matching systems to assess and compare the insights that can be obtained by using our evaluation procedure. We find that our probabilistic evaluation procedure allows us to gain more detailed insights into the performance of matching systems than a traditional evaluation based on a binary gold standard

    Comprehensive comparison of in silico MS/MS fragmentation tools of the CASMI contest: database boosting is needed to achieve 93% accuracy.

    Get PDF
    In mass spectrometry-based untargeted metabolomics, rarely more than 30% of the compounds are identified. Without the true identity of these molecules it is impossible to draw conclusions about the biological mechanisms, pathway relationships and provenance of compounds. The only way at present to address this discrepancy is to use in silico fragmentation software to identify unknown compounds by comparing and ranking theoretical MS/MS fragmentations from target structures to experimental tandem mass spectra (MS/MS). We compared the performance of four publicly available in silico fragmentation algorithms (MetFragCL, CFM-ID, MAGMa+ and MS-FINDER) that participated in the 2016 CASMI challenge. We found that optimizing the use of metadata, weighting factors and the manner of combining different tools eventually defined the ultimate outcomes of each method. We comprehensively analysed how outcomes of different tools could be combined and reached a final success rate of 93% for the training data, and 87% for the challenge data, using a combination of MAGMa+, CFM-ID and compound importance information along with MS/MS matching. Matching MS/MS spectra against the MS/MS libraries without using any in silico tool yielded 60% correct hits, showing that the use of in silico methods is still important

    Employment and Working Conditions of Selected Types of Platform Work

    Get PDF
    Platform work is a form of employment that uses an online platform to match the supply of and demand for paid labour. In Europe, platform work is still small in scale but is rapidly developing. The types of work offered through platforms are ever-increasing, as are the challenges for existing regulatory frameworks. This report explores the working and employment conditions of three of the most common types of platform work in Europe. For each of these types, Eurofound assesses the physical and social environment, autonomy, employment status and access to social protection, and earnings and taxation based on interviews with platform workers. A comparative analysis of the regulatory frameworks applying to platform work in 18 EU Member States accompanies this review. This looks into workers’ employment status, the formal relationships between clients, workers and platforms, and the organisation and representation of workers and platforms

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    A data-driven game theoretic strategy for developers in software crowdsourcing: a case study

    Get PDF
    Crowdsourcing has the advantages of being cost-effective and saving time, which is a typical embodiment of collective wisdom and community workers&#8217; collaborative development. However, this development paradigm of software crowdsourcing has not been used widely. A very important reason is that requesters have limited knowledge about crowd workers&#8217; professional skills and qualities. Another reason is that the crowd workers in the competition cannot get the appropriate reward, which affects their motivation. To solve this problem, this paper proposes a method of maximizing reward based on the crowdsourcing ability of workers, they can choose tasks according to their own abilities to obtain appropriate bonuses. Our method includes two steps: Firstly, it puts forward a method to evaluate the crowd workers&#8217; ability, then it analyzes the intensity of competition for tasks at Topcoder.com&#8212;an open community crowdsourcing platform&#8212;on the basis of the workers&#8217; crowdsourcing ability; secondly, it follows dynamic programming ideas and builds game models under complete information in different cases, offering a strategy of reward maximization for workers by solving a mixed-strategy Nash equilibrium. This paper employs crowdsourcing data from Topcoder.com to carry out experiments. The experimental results show that the distribution of workers&#8217; crowdsourcing ability is uneven, and to some extent it can show the activity degree of crowdsourcing tasks. Meanwhile, according to the strategy of reward maximization, a crowd worker can get the theoretically maximum reward
    corecore