3,527 research outputs found

    The Price of Stability in Selfish Scheduling Games

    Get PDF
    10.3233/WIA-2009-0171Web Intelligence and Agent Systems74321-33

    The Price of Stability in Selfish Scheduling Games

    Get PDF
    Singapore Management Universit

    Bottleneck Routing Games with Low Price of Anarchy

    Full text link
    We study {\em bottleneck routing games} where the social cost is determined by the worst congestion on any edge in the network. In the literature, bottleneck games assume player utility costs determined by the worst congested edge in their paths. However, the Nash equilibria of such games are inefficient since the price of anarchy can be very high and proportional to the size of the network. In order to obtain smaller price of anarchy we introduce {\em exponential bottleneck games} where the utility costs of the players are exponential functions of their congestions. We find that exponential bottleneck games are very efficient and give a poly-log bound on the price of anarchy: O(logLlogE)O(\log L \cdot \log |E|), where LL is the largest path length in the players' strategy sets and EE is the set of edges in the graph. By adjusting the exponential utility costs with a logarithm we obtain games whose player costs are almost identical to those in regular bottleneck games, and at the same time have the good price of anarchy of exponential games.Comment: 12 page

    Efficiency analysis of load balancing games with and without activation costs

    Get PDF
    In this paper, we study two models of resource allocation games: the classical load-balancing game and its new variant involving resource activation costs. The resources we consider are identical and the social costs of the games are utilitarian, which are the average of all individual players' costs. Using the social costs we assess the quality of pure Nash equilibria in terms of the price of anarchy (PoA) and the price of stability (PoS). For each game problem, we identify suitable problem parameters and provide a parametric bound on the PoA and the PoS. In the case of the load-balancing game, the parametric bounds we provide are sharp and asymptotically tight

    Enforcing efficient equilibria in network design games via subsidies

    Full text link
    The efficient design of networks has been an important engineering task that involves challenging combinatorial optimization problems. Typically, a network designer has to select among several alternatives which links to establish so that the resulting network satisfies a given set of connectivity requirements and the cost of establishing the network links is as low as possible. The Minimum Spanning Tree problem, which is well-understood, is a nice example. In this paper, we consider the natural scenario in which the connectivity requirements are posed by selfish users who have agreed to share the cost of the network to be established according to a well-defined rule. The design proposed by the network designer should now be consistent not only with the connectivity requirements but also with the selfishness of the users. Essentially, the users are players in a so-called network design game and the network designer has to propose a design that is an equilibrium for this game. As it is usually the case when selfishness comes into play, such equilibria may be suboptimal. In this paper, we consider the following question: can the network designer enforce particular designs as equilibria or guarantee that efficient designs are consistent with users' selfishness by appropriately subsidizing some of the network links? In an attempt to understand this question, we formulate corresponding optimization problems and present positive and negative results.Comment: 30 pages, 7 figure

    Resource allocation games of various social objectives

    Get PDF
    In this paper, we study resource allocation games of two different cost components for individual game players and various social costs. The total cost of each individual player consists of the congestion cost, which is the same for all players sharing the same resource, and resource activation cost, which is proportional to the individual usage of the resource. The social costs we consider are, respectively, the total of costs of all players and the maximum congestion cost plus total resource activation cost. Using the social costs we assess the quality of Nash equilibria in terms of the price of anarchy (PoA) and the price of stability (PoS). For each problem, we identify one or two problem parameters and provide parametric bounds on the PoA and PoS. We show that they are unbounded in general if the parameter involved are not restricted

    Selfishness Level of Strategic Games

    Get PDF
    We introduce a new measure of the discrepancy in strategic games between the social welfare in a Nash equilibrium and in a social optimum, that we call selfishness level. It is the smallest fraction of the social welfare that needs to be offered to each player to achieve that a social optimum is realized in a pure Nash equilibrium. The selfishness level is unrelated to the price of stability and the price of anarchy and is invariant under positive linear transformations of the payoff functions. Also, it naturally applies to other solution concepts and other forms of games. We study the selfishness level of several well-known strategic games. This allows us to quantify the implicit tension within a game between players' individual interests and the impact of their decisions on the society as a whole. Our analyses reveal that the selfishness level often provides a deeper understanding of the characteristics of the underlying game that influence the players' willingness to cooperate. In particular, the selfishness level of finite ordinal potential games is finite, while that of weakly acyclic games can be infinite. We derive explicit bounds on the selfishness level of fair cost sharing games and linear congestion games, which depend on specific parameters of the underlying game but are independent of the number of players. Further, we show that the selfishness level of the nn-players Prisoner's Dilemma is c/(b(n1)c)c/(b(n-1)-c), where bb and cc are the benefit and cost for cooperation, respectively, that of the nn-players public goods game is (1cn)/(c1)(1-\frac{c}{n})/(c-1), where cc is the public good multiplier, and that of the Traveler's Dilemma game is 12(b1)\frac{1}{2}(b-1), where bb is the bonus. Finally, the selfishness level of Cournot competition (an example of an infinite ordinal potential game, Tragedy of the Commons, and Bertrand competition is infinite.Comment: 34 page
    corecore