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Abstract. Game theory has gained popularity as an approach to analysing and understanding distributed systems with self-
interested agents. Central to game theory is the concept of Nash equilibrium as a stable state (solution) of the system, which
comes with a price − the loss in efficiency. The quantification of the efficiency loss is one of the main research concerns. In this
paper, we study the quality and computational characteristics of the best Nash equilibrium in two selfish scheduling models: the
congestion model and the sequencing model. In particular, we present the following results: (1) In the congestion model: first, the
best Nash equilibrium is socially optimum and consequently, computing the best Nash is NP-hard; second, any ε-approximation
algorithm for finding the optimum can be transformed into an ε-approximation algorithm for the best Nash. (2) In sequencing
model: for identical machines, we show that the best Nash is no better than the worst Nash and it is easy to compute; for related
machines, we show that there is a gap between the worst and the best Nash equilibrium, and leave the analytical bound of this
gap for future work.

Keywords: Price of stability, Scheduling games

1. Introduction

Increasingly, business decision-making has evolved
from consideration of optimal performance within an
organization to the ability to coordinate/contend with
external agencies while maintaining a self-interested
optimal position within bounded rationality. We ob-
serve scenarios of such emerging behavior in supply
chain systems for example. As firms start exploring in-
novative collaboration strategies in effort to improve
their supply chain efficiency, getting multiple firms to
agree on joint decisions has been identified as one of
the major research problems.

Game theory has become a key area in AI research.
It has gained popularity as an approach to analyz-
ing and understanding distributed systems with self-
interested agents. Central to game theory is the concept

*Corresponding author.

of Nash equilibrium as a stable state (solution) of the
system, which comes with a price − a possible loss in
efficiency. The problem of finding Nash equilibrium is
the Şmost fundamental computational problem whose
complexity is wide open" [16].

In this paper, we consider decentralized scheduling
systems with independent, rational, and self-interested
job agents, where the overall system behavior and per-
formance is a result of the interactions and actions of
these agents. One scenario is autonomous job agents
competing for resources, where resources can be band-
width (e.g. in a network) or processing power (e.g.
in a Grid computing environment). The role of the
central planner is to design and propose a mecha-
nism/protocol mediating the interactions among the
agents. An agent can choose to follow or to defect
from the proposed protocol. Hence, it is an interest-
ing problem (especially from the planner’s standpoint)
to analyze what system performance one can expect
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when selfish agents interact according to a proposed
protocol, and how a stable solution that is mutually
agreeable among agents may be constructed. Put in
game-theoretic terms, the game designer is interested
to know how to solve the scheduling game and what
the efficiency of the game would be, and such informa-
tion allows him to assess/estimate the performance of
the proposed mechanism.

This paper focuses on models with complete infor-
mation where all information are assumed to be avail-
able to all the agents and the central authority. This
allows both the central authority and the agents to
compute a Nash equilibrium. A Nash equilibrium is a
state of the system where no agent has the incentive
to singly defect away from it. Among all Nash equi-
libria, we are interested to find the best one, where
best means one that maximizes the social welfare. Our
study of the quality of best Nash equilibrium (termed
the price of stability or POS) [2], which is measured by
the ratio of the best Nash equilibrium to the optimum,
stands in contrast with the broader line of work on the
price of anarchy which measures the ratio of the Nash
equilibrium to the optimum in the worst-case.

The price of stability is an important notion in cases
where players may be guided to play at the best Nash
equilibrium. This happens for instance in most net-
working applications where agents are neither cen-
trally controlled nor completely unregulated; rather,
they interact with an underlying protocol that essen-
tially proposes a collective solution to all participants,
who can each either accept or defect from it. As a re-
sult, it is in the interest of the protocol designer to seek
the best Nash; this can naturally be viewed as the opti-
mum subject to the constraint that the solution be sta-
ble, with no agent having an incentive to unilaterally
defect once it is offered. Indeed, one can view the ac-
tivity of the protocol designer seeking the best Nash
as being aligned with the general goal of mechanism
design to produce a game that yields good outcomes
when players act in their own self-interest.

The objective of our work is to deepen the under-
standing of scheduling models involving selfish job
agents. Whereas much of the game-theory literature in
this domain (see below) has focussed on analyzing its
worst-case behavior, in this paper we are concerned
with the computational complexity of computing the
best equilibrium, as well as the quality guarantee of
such a solution. We believe such a study is valuable in
characterizing the limitation of what can be achieved
in practice, when one is concerned with the design of a
system with competing agents (e.g. [7]). We consider

only pure Nash equilibria and seek to quantify the gap
between the best and the worst Nash equilibrium. We
obtain the following results on two different models:

1. In the congestion model: the price of stability is
1 (i.e. no loss of efficiency), and thus the gap is
exactly the price of anarchy.

2. In the sequencing model: (a) For identical ma-
chines, the price of stability is equal to the price
of anarchy. Hence there is no gap between the
worst and the best Nash equilibrium. (b) For re-
lated machines, we identify a gap between the
worst and the best Nash equilibrium although the
analytical bound on the gap is left as future work.

2. Notation and Definitions

We consider scheduling games that consist of: (1)
a set of machines indexed by M = {1, 2, ...,m}, and
(2) a set of jobs indexed by J = {1, 2, ..., n}, where
each job j ∈ J has a length (processing time) of lj .
Each job is viewed as an agent whose decision is to
choose the machine on which the job is to be processed
(the term job and agent will be used interchangeably
henceforth). Let xj ∈ M be the strategy (decision) of
job j, and let x = (x1, x2, ..., xn) denotes a strategy
profile (schedule) of the jobs. We assume that jobs are
processed non-preemptively by the machines. We con-
sider 2 types of machines as follows:

– identical machines: all machines have the same
speed, and the processing time of a job j on ma-
chine i is just lj .

– related machines: the machines can have different
speeds. The processing time of a job j on machine
i is lj/si, where si is the speed of the machine.

The social objective of the central authority is to de-
rive a schedule that minimizes the overall makespan,
for example in related machines, it is to minimize the
cost function:

F (x) = max
i∈M

1
si

∑
j:xj=i

lj .

Given a schedule x, a critical machine in x is a ma-
chine with the maximum total processing time. Note
that there can be more than one critical machine in a
given schedule.

Each agent is self-interested and wants to minimize
its own completion time (the time when the job is com-
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pleted and released by the machine). We consider the
following two popular models in the literature with dif-
ferent agent utility functions:

1. Congestion model. This model assumes that a
job is released by a machine after all the jobs in
that machine have been processed. In this case,
the utility function of a job j in related machines
is:

uj(i, x−j) = − 1
si

∑
k:xk=i

lk,

which is also the negative of machine i’s total
processing time. Note that all the agents in the
same machine have the same utility.

2. Sequencing model. This model assumes that a
job is released immediately after it is processed.
For this model, a sequencing policy is needed for
each of the machine. Two examples of such pol-
icy are: SPT (shortest processing time first) and
LPT (longest processing time first). In this case,
the utility function of a job j in related machines
is:

uj(i, x−j) = − 1
si

∑
k:xk=i∧k�ij

lk,

where �i defines an ordering on the set J and its
definition depends on the sequencing policy used
by machine i. In this work, we assume that in
a sequencing model, all the machines adopt the
same sequencing policy, and � is used to denote
the ordering.

A Nash equilibrium (or simply Nash) solution is a
strategy profile x′ = (x′

1, x
′
2, ..., x

′
n) such that for ev-

ery job j we have:

uj(x′
j, x

′
−j) ≥ uj(xj , x

′
−j) ∀xj ∈ M.

Given a Nash solution, no agent has the incentive
to defect from it assuming all the other agents follow
the solution. The best Nash solution in this case is one
that minimizes the objective function F (x). One can
thus view the problem of finding the best Nash solution
as an optimization problem, i.e. find x that minimizes
F (x) with a constraint that x must be a Nash equilib-
rium. Given a game, let N be the set of all the Nash
solutions and x∗ be the optimum solution, the price of

stability (POS) of the game is given by:

min
x′∈N

F (x′)
F (x∗)

while the price of anarchy (POA) is one that maxi-
mizes the expression.

A best response Rj(x−j) is the set of strategies
which produces the most utility for the job j, given
the other job strategies x−j , i.e. x′

j ∈ Rj(x−j) iff
uj(x′

j , x−j) ≥ uj(xj, x−j) for all xj ∈ M . We can re-
define a Nash solution using best response as follows:
A strategy profile x′ is a Nash solution iff ∀j ∈ J , x′

j ∈
Rj(x′

−j). Given a strategy profile (xj, x−j), a selfish
move by a job j changes the profile to (x′

j, x−j) such
that uj(x′

j, x−j) > uj(xj, x−j) and x′
j ∈ Rj(x−j).

Note that the definition requires a selfish move to be
strictly increasing the job’s utility.

3. Related Work

In this section, we present known results on the price
of anarchy for different types of scheduling models.
For a more comprehensive survey, refer to [14]. The
price of anarchy for congestion models is:

– 2 − 1/m for m identical machines [1].

– Θ
(

log m

log log m

)
for m related (restricted) ma-

chines [8,12].

The price of anarchy for sequencing models when SPT
policy is used is:

– 2 − 2/(m + 1) for m identical machines [19].
– Θ(log m) for m related (restricted) machines

[14].
– at most m for m unrelated machines [14].

And the price of anarchy when LPT policy is used is:

– 4/3 − 1/(3m) for m identical machines [6].
– at most 2 − 2/m for m related machines [14].
– Θ(log m) for m restricted machines [3,14].

The price of stability in network design game with
fair cost allocation is studied by [2] and is at most 1 +
1
2

+ ... + 1
n

, with n number of players.
On complexity of finding a Nash equilibrium the

following results are known. Computing mixed Nash
equilibrium in 2, 3 and 4-player general normal form
game is PPAD-complete [5,10,9]. For computing pure
Nash equilibrium, the results are known for a class
of games called ordinal (generalized) potential game
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which is in PLS. And computing a pure Nash equilib-
rium in potential games which is a subset of ordinal po-
tential games is PLS-Complete [11]. Recent algorith-
mic attempts to find a Nash equilibrium from AI com-
munity includes using mixed-integer programming
[18], search methods [17] and continuation method
[4].

4. Congestion Model

In this section, we present the result on congestion
model first specifically to scheduling games and then
its generalization to potential games.

4.1. Congestion Model for Scheduling Games

We present the result on congestion model in
scheduling games, starting with m = 2 machines. For
simplicity, the proof for the following result assumes
identical machines, but it holds for related machines as
well.

Proposition 1. The optimum solution for congestion
model with 2 machines is a Nash solution.

Proof. Let L1 and L2 be the total processing time of
the first and second machine respectively given the op-
timum solution x∗. If L1 = L2 then x∗ is a Nash solu-
tion because no job can improve its utility by changing
its strategy. Now, w.l.o.g. assume that L1 > L2 and
let δ = L1 − L2. If x∗ is not a Nash solution, then
there exists a job j that can change its strategy and ob-
tains a better utility. This can happen iff j is in ma-
chine 1 and lj < δ. If job j is moved to machine 2,
then we obtained a new schedule x′ with cost F (x′) =
max(L1 − lj , L2 + lj ). Since L2 + lj < L2 + δ = L1,
we have F (x′) < L1 = F (x∗), thus contradicting the
optimality of x∗. Therefore, x∗ is a Nash solution.

This also implies that the best Nash solution is an
optimum solution, and there is no loss of efficiency if
the best Nash solution can be achieved, i.e. the POS is
1. For more than 2 machines, the optimum solution is
not always a Nash solution, but the best Nash solution
is still an optimum solution. The following sequence
of results are derived for m > 2 machines.

Lemma 2. In congestion model, the cost of the new
schedule x′ resulting from a selfish move on an initial
schedule x is at most the cost of the initial schedule,
i.e. F (x′) ≤ F (x).

Proof. From proposition 1, we know that if a self-
ish move is made by a job from any machine i,
with total processing time Li, to any machine k
with total processing time Lk , the result of the move
is a new schedule with total processing time L′

i

and L′
k for machine i and k respectively such that

max(L′
i, L

′
k) < max(Li, Lk). Since the cost of the

schedule x is F (x) = max(L1 , ..., Lm), if i is the
only critical machine in x then we have F (x′) =
max(L1 , ..., L

′
i, ..., L

′
k, ..., Lm) < max(L1 , ..., Lm) =

F (x), otherwise F (x′) = F (x).

Note that in congestion model, although a selfish
move affects the utility of other agents, it does not re-
duce the overall quality of the schedule; And for 2 ma-
chines, a selfish move even strictly reduces the cost of
the schedule. The next result shows that any arbitrary
schedule can be turned into a Nash solution by repeti-
tive application of selfish moves. Again for simplicity,
we assume identical machines in the argument of the
proof.

Lemma 3. In congestion model with m machines, the
number of selfish moves needed to change an arbitrary
schedule to a Nash solution is at most O(mn), where
n is the number of jobs.

Proof. We first give a looser bound by allowing the
sequence of best responses to be made by arbitrary
jobs, and strengthen it later by giving a procedure
for choosing the next job for selfish move. Given an
arbitrary schedule x, let Li be the total processing
time of machine i, i.e. Li =

∑
j:xj=i lj and let δ =

maxiLi−miniLi be the difference of the longest pro-
cessing time to the shortest processing time. Observe
that every best response by a job j always moves j
to the machine with the shortest processing time, and
there are at most m machines with the shortest pro-
cessing time. Thus, after at most m selfish moves the
value miniLi will increase by at least l′ where l′ is the
length of the shortest job, which also means the value
of δ will decrease by at least l′. When δ is reduced to
less than l′, no more best responses can be made and a
Nash solution is reached. Let N be the number of best
responses needed to reduce δ to less than l′, we have:

δ − N

m
× l′ < l′ ⇒ N > m(δ − l′)/l′.

Hence, the number of best responses needed to change
x into a Nash solution is at most the smallest N that
satisfies the above inequality which is O(mL) when
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δ = L and l′ � L. Now to strengthen the bound,
instead of using an arbitrary job for the next best re-
sponse, pick one from one of the critical machines.
Note that after the move, the machine considered may
no longer be a critical machine. Repeat this process for
resulting new schedule and so on until no more best
responses are possible for the jobs in a critical ma-
chine. This critical machine together with the jobs in it
can then be removed from consideration. The process
is then continued until all the machines are removed.
Now consider all the removed machines with the jobs,
the resulting schedule is a Nash solution and the num-
ber of selfish moves made is at most m× n.

The constructive proof of Lemma 3 gives us a poly-
nomial time algorithm for constructing a Nash solution
from an arbitrary schedule by using only selfish moves
until convergence. The proof also shows why the pro-
cedure converges: every selfish move reduces the value
of δ and since δ cannot be reduced beyond 0, the pro-
cedure converges. This procedure is sometimes called
Nashification, e.g. in [12]. Using the 2 lemmas from
above, we have the following:

Theorem 4. In congestion model with m machines,
the best Nash solution is an optimum solution.

Proof. Starting with an optimum solution x ∗, by
Lemma 3 we can turn this into a Nash solution x′ by
repeated application of selfish moves, and by Lemma
2 we have F (x′) ≤ F (x∗) since only selfish moves are
used which means x′ is also an optimum solution.

As a consequence, because the best Nash solution
is optimal, any algorithm that computes the best Nash
can be used directly for computing the optimum. And
since finding the optimum solution for identical ma-
chine scheduling is NP-hard even for m = 2 [13], we
arrive at the following.

Corollary 5. Computing the best Nash solution for
congestion model in a m-identical machine scheduling
game is NP-hard, even for m = 2.

Another consequence is the following approxima-
tion result.

Corollary 6. Any polynomial time ε-approximation
algorithm for a given machine scheduling problem can
be transformed into a polynomial time ε-approximation
algorithm for computing the best Nash in the corre-
sponding scheduling game.

Since the best Nash and the optimum solution have
the same cost, any polynomial time algorithm that ap-
proximate the optimum with ratio ε can also be used to
approximate the best Nash solution with the same ratio
by appending the Nashification procedure described
above into the algorithm. Since the Nashification pro-
cedure requires polynomial number of steps and does
not increase the cost of the initial schedule, the same
ratio ε holds.

4.2. Generalization to Potential Games

The scheduling games we have considered thus far
belong to a larger class of games called the potential
games [15]. A potential game is a game that exhibits
a potential function φ(x) on the set of strategy pro-
files such that, if x′ is a profile obtained by changing
the strategy of one player j in x then uj(x′) > uj(x)
implies φ(x′) > φ(x). The existence of this function
is typically used to show the existence of pure Nash
equilibrium.

Interestingly, although the result in the previous sec-
tion are derived for scheduling games, it also applies to
the larger class of potential game, thus can be used to
characterize the behavior of the best Nash equilibrium
in this class. We define congestion model in poten-
tial games such that given a strategy profile, a utility-
improving move on this profile does not reduce the
overall quality of the profile. More precisely, the gener-
alized congestion model is a game consisting of a cost
function F (x) and a potential function φ(x), such that
if x′ is a strategy profile obtained from x by one step
utility-improving move on player j (u j(x′) > uj(x)),
then:

1. F (x′) ≤ F (x), and
2. φ(x′) > φ(x).

The following lemma is known for potential games:

Lemma 7. [15] Every finite potential game has the
finite improvement property, and every maximal im-
provement path terminate in a Nash equilibrium.

An improvement path is a sequence (x0, x1, ...) of
strategy profiles such that for every k > 0 there is a
utility-improving move made by one job from x k−1

to xk . A game has the finite improvement property if
every improvement path is finite. We can then state the
following:

Theorem 8. In a potential game with congestion
model, the best Nash solution is an optimum solution.
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Proof. Similar to the proof of theorem 4, let the opti-
mum solution x∗ be the initial point of a maximal im-
provement path. By Lemma 7, this maximal improve-
ment path is finite and terminates in a Nash equilib-
rium. Each step in the path is a utility improvement
move by one player and by definition, this move does
not increase the cost of the overall profile. Thus the
Nash equilibrium is also optimal.

A point of clarification may be needed. Lemma 7
merely establishes that potential games have finite im-
provement property. Generally, the number of steps re-
quired by the maximal improvement move to termi-
nate can be very large. Hence to prove NP-hardness for
scheduling games under congestion model (Corollary
5), one still needs to show that there is a polynomial
reduction from optimum to the best Nash, and we did
this in Lemma 3 (rather than directly using Lemma 7).
Similarly, the polynomial reduction is also necessary
to establish Corollary 6.

5. Sequencing Model

In contrast with the congestion model discussed
above, in a sequencing model, a job is released by a
machine immediately after it has been processed. This
means that a sequencing policy is needed for a machine
to determine the order of processing a given set of jobs
on that machine. Examples of commonly used policies
are: SPT policy (to process the jobs in order of nonde-
creasing processing time) and LPT policy (to process
the jobs in order of nonincreasing processing time). A
job j is said to precede a job k (denoted j � k) iff job
j will always be processed before or at the same time
as job k. Assuming that all the machines have the same
policy (e.g. all SPT or all LPT), then there is a total or-
dering on the jobs to be processed across all machines
no matter whether the machines are identical or related
(ties broken arbitrarily). Hence, we will use an order-
ing � on the set J to represent the sequencing policy
used.

5.1. Sequencing Model in Identical Machines

We will start first by considering identical machines.
Recall that the utility of a job j given a strategy profile
x in identical machines is given by:

uj(i, x−j) = −
∑

k:xk=i,k�j

lk.

The expression above shows that the utility of a job j
will only depend on the decisions of the jobs that pre-
cede j. For the first job in the ordering, its utility does
not depend on the decisions of the other jobs because
no matter what the decisions of the other jobs are, it
will always be processed first and its completion time
depends only on the machine it chooses. For the sec-
ond job, its utility depends only on the decision of the
first job and so on. Since each job wants to maximize
its own utility, the set of strategies that the job will take
is exactly its best response. By definition, the best re-
sponse of a job j is the following:

Rj(x−j) =
arg min

i∈M

⎛
⎝lj +

∑
k:k �=j,x′

k=i,k�j

lk

⎞
⎠ .

Like its utility, the best response of a job j depends
only on the decisions of the jobs that precedes j. The
following result states that under sequencing model
with identical machines, all the Nash solutions have
the same cost.

Theorem 9. The Nash equilibriumsolutions for schedul-
ing games with identical machines using a sequencing
policy � have a unique cost.

Proof. Let πk denotes the kth job in the ordering given
by �, we can then construct the best responses of the
jobs sequentially by assuming that each jobs will only
choose the strategy from its best response and show
that: each job’s utility is uniquely determined and is
independent of which of the best response strategies
are chosen by the job and the previous jobs. This is
shown by using strong induction as follows:

1. (base step) The best response of the first job in
the ordering is Rπ1 = M since all the machines
have the same speed. And this is the only best re-
sponse of the first job no matter what the strate-
gies of the other jobs are, its utility by choosing
from its best response is −lπ1 .

2. (base step) The best response of the second job
is M\{xπ1} if |M | > 1. Generally, for 1 <
k ≤ |M |, Rπk = M\{xπ1, ..., xπk−1} if all the
jobs π1, .., πk−1 choose the strategy from their
respective best response, i.e. the job will always
choose the available empty machine. The utility
achieved by job πk by playing its best response
is thus −lπk . This is true no matter which of the
best response strategies are chosen by this job
and the previous jobs.



Agussurja and Lau / 7

3. (induction step) For k > |M |, by definition, the
best response of job πk is:

Rπk(xπ1 , ..., xπk−1) =
arg min

i∈M

∑
j:1≤j≤k−1,xπj

=i

lπj ,

i.e. its best response Rπk is the set of machines
with the minimum total processing time with all
the previous jobs scheduled. ∀i ∈ Rπk , let ji

be the latest job being processed by i in the cur-
rent state (before πk chooses its strategy). All
these jobs have the same completion time thus
the same utility. The utility of job π k by choosing
any strategy i ∈ Rπk is uπk = (uji − lπk ). Since
ji � πk, by induction hypothesis uji is uniquely
determined, thus uπk is also uniquely determined
and is independent of the best response strategies
chosen so far. This ends the induction step.

Since the jobs choose their strategy only from their re-
spective best response, by definition, the set of possible
resulting schedules (after the last job chooses its strat-
egy) is exactly the set of Nash solutions. The cost of
the Nash solution is the latest completion time among
all jobs. Since this value is uniquely determined and is
independent of the best response strategies chosen, the
cost of the Nash solutions is uniquely determined.

As a consequence of Theorem 9, the best Nash so-
lution is no better than the worst Nash solution under
sequencing model with identical machines, and hence
the price of stability is exactly the price of anarchy.
The proof of the theorem also shows how to compute
the Nash solutions. Note that although the characteris-
tic of the Nash solution derived from above does not
depend on a particular sequencing policy used, the ex-
act bound on the POS does. With Theorem 9, we ob-
tain the following two POS results directly via the re-
sults on POA for identical machines, due respectively
to [1] and [6]:

Corollary 10. The price of stability in scheduling
games with m identical machines using SPT sequenc-
ing policy is 2 − 1/m.

Corollary 11. The price of stability in scheduling
games with m identical machines using LPT sequenc-
ing policy is 4/3− 1/(3m).

Note that the POS of Theorem 10 is different from
the one stated in [14] which is 2 − 2/(m + 1). The
result in [14] is derived from the bound for the classi-
cal Ibarra-Kim algorithm which produces a locally op-

timum solution for the scheduling problem [19]. We
like to point out that tere is a subtle but important dif-
ference between a locally optimal solution and a Nash
solution. Consider the following example: 3 jobs with
length l1, l2 and l3 are to be scheduled on m = 2 iden-
tical machines with SPT sequencing policy. Let’s as-
sume that l1 = l2 = l3/2, and that on the same ma-
chine, l1 will be processed first before l2. The optimal
schedule in this case is to have job 1 and 2 in one ma-
chine and job 3 in the other, with optimal cost of l 3.
The unique Nash solution has job 1 and 2 scheduled
on different machines, and job 3 can be in either ma-
chines, for example we put job 3 on top of job 2. The
Nash solution has the cost of l3/2 + l3 = (3/2)l3. The
loss of efficiency in term of ratio is (3/2)l3/l3 = 3/2,
which is greater than 2− 2/(m + 1) = 4/3. The Nash
solution however is not locally optimal because job 2
can move to the other machine and improve the qual-
ity of the schedule. While a Nash solution is reached
when no job can move and improve its own utility, a
locally optimal solution is reached when no job can
move and improve the overall quality of the schedule.
In this case, as shown by the example, they do not im-
ply each other.

5.2. Sequencing Model in Related Machines

For related machines, the result presented above
does not follow because the argument in the proof of
Theorem 9, that all job utilities can be uniquely deter-
mined regardless of the best response strategies cho-
sen, does not hold. As a counter example consider the
following game: 3 jobs with length l 1 = 10, l2 = 20
and l3 = 30 are to be scheduled on two machines with
speed s1 = 6 and s2 = 4 using SPT sequencing policy.
The best response for each of the jobs can be derived
as follows:

1. Job 1’s utility does not depend on the strategies
of the other 2 jobs, and its best response is R1 =
{1} since s1 > s2. Its completion time is 5/3
and is uniquely determined.

2. Job 2’s utility depends only on job 1’s strat-
egy. If job 1 plays its best response, job 2’s
best response is R2(x1 = 1) = {1, 2} since
both machines give the same completion time:
(10 + 20)/6 = 20/4 = 5 and is uniquely deter-
mined.

3. Job 3’s utility depends on both job 1 and 2’s
strategies. Since job 2 can play either strategy
from its best response, the best responses for job
3 are:
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(a) R3(x1 = 1, x2 = 1) = {2}, with comple-
tion time 30/4 = 7.5 which is smaller than
(10 + 20 + 30)/6 = 10, its completion time
if machine 1 is chosen.

(b) R3(x1 = 1, x2 = 2) = {1}, with comple-
tion time (10+30)/6 = 6.67 which is smaller
than (20 + 30)/4 = 12.5 if machine 2 is cho-
sen.

Thus the completion time for job 3 is not unique and
depends on which strategy is played by job 2 from
its best response. Consequently, the only 2 Nash solu-
tions: (1, 1, 2) and (1, 2, 1) have different costs of 7.5
and 6.67 respectively and the gap between the best and
the worst Nash solution in this example is 9/8. This
example also tells us that the gap between the best and
the worst Nash in sequencing model with 2 related ma-
chines is at least 9/8. One future direction for this work
is to bound the gap between the best and the worst
Nash solution and generalize it to m related machines.
In the following, we investigate the quality gap be-
tween best and worst Nash on 2 related machines un-
der the SPT policy.

Let the speeds of the 2 machines be s1 and s2. When
s1 = s2, the cost of the best Nash is equal to the cost of
the worst Nash (previous result). So consider s1 	= s2

and w.l.o.g. assume that s1 > s2. There are n num-
ber of jobs indexed by J = {1, ..., n}, where each job
j ∈ J has a length lj . Let the jobs be ordered by the or-
dering defined for SPT, such that for any jobs i, k ∈ J ,
if i < k, then li ≤ lk . By SPT we have i < k iff job
i will always be processed before k if they are placed
on the same machine.

Let a schedule be denoted by x = (x1, ..., xn) ∈
{1, 2}n and denote the sub-schedule (x1, ..., xk) as
x[k] for 0 < k < n. The completion time of a job j
given a schedule x is:

cj(x[j]) =
1

sxj

∑
0<k<j:xk=xj

lk.

Note that because of SPT, the completion time of a
job only depends on its own decision and the deci-
sion of jobs that precede it. Denote an instance of
the 2-SPT game by G = 〈s1, s2; {l1, l2, ..., ln}〉. And
let G[j] (0 < j < n) denotes the game obtained
from G by reducing the number of jobs, i.e. G[j] =
〈s1 , s2; {l1, ..., lj}〉. G[j] is called the sub-game of G.

Given the schedule x[j], the total processing time of
machine m ∈ {1, 2} is given by:

φm(x[j]) =
1

sm

∑
0<k≤j:xk=m

lk.

And the cost of a schedule x[j] for the sub-game G[j]
is:

F (x[j]) = max{φ1(x[j]), φ2(x[j])},

which is the makespan.

Given an instance of the game, a Nash equilibrium is a
schedule x′ such that for all j ∈ J , cj(x′

j , x
′[j− 1]) ≤

cj(xj, x
′[j − 1]) for any xj ∈ {1, 2}. The best Nash

is the Nash equilibrium with the minimum cost while
the worst Nash is the Nash equilibrium with the max-
imum cost. Given the decision of the other jobs x−j ,
the best response of the job j is Rj(x[j − 1]) where
m ∈ Rj(x[j−1]) iff cj(m, x[j−1]) ≤ cj(m′, x[j−1])
for any m′ ∈ {1, 2}. Note that similar to its completion
time, the best response of a job depends only on the de-
cision of the jobs that precede it. And a schedule x′ is a
Nash equilibrium iff for all j ∈ J , x ′

j ∈ Rj(x′[j − 1]).

Over all instances of 2-SPT game, we want to know
what is the maximum gap (ratio) of the worst Nash to
the best Nash. We start with the following assertion
which tells us that the set of all the Nash equilibrium
can be constructed sequentially:

Proposition 12. If a schedule x′[j] = (x′
1, ..., x

′
j) is

an equilibrium for a 2-SPT game G[j], then for 0 <
k < j, x′[k] = (x′

1, ..., x
′
k) is an equilibrium for the

sub-game G[k].

Since an equilibrium x′[j] for the sub-game G[j] re-
quires x′[j − 1] to be an equilibrium for the sub-game
G[j − 1], we can construct the set of all the equilib-
rium for G[j] by first finding the set of all the equilib-
rium for G[j−1] and for each equilibrium x ′[j −1] of
G[j− 1], compute job j’s best response Rj(x′[j− 1]),
then for each m ∈ Rj(x′[j − 1]), (x′[j − 1], m) is an
equilibrium for G[j]. The base case for this sequen-
tial construction is the equilibrium for G[1], which is 1
since l1/s1 < l1/s2.

The next proposition give us the idea on how the equi-
librium x′[j] can be constructed from an equilibrium
x′[j−1]. This proposition states that the cost of a Nash
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equilibrium x′[j] is the same as the completion time of
the last job j.

Proposition 13. If x′[j] is an equilibrium for the sub-
game G[j] then F (x′[j]) = cj(x′[j]).

Proof. To show this, we will assume otherwise and de-
rive the contradiction. If F (x ′[j]) 	= cj(x′[j]) then
there exists k (0 < k < j) such that ck(x′[j]) =
F (x′[j]) and thus cj(x′[j]) < ck(x′[j]). Case 1: If k
and j is in the same machine then k will always be pro-
cessed first before j since k < j and thus cj(x′[j]) >
ck(x′[j]) (contradiction). Case 2: If k and j is in dif-
ferent machines then the job k can be moved to the
other machine, where j is, and we obtain a new sched-
ule x′′[j]. The new completion time of job k is at least
cj(x′[j]) since lk ≤ lj and k will will be processed be-
fore j. Hence ck(x′′[j]) ≤ cj(x′[j]) < ck(x′[j]) which
implies that x′[j] is not in equilibrium (contradiction).
Thus F (x′[j]) = cj(x′[j]).

Proposition 13 tells us that given the equilibriumx ′[j−
1] for G[j − 1], we can look at the decision of the
last job in that equilibrium x ′

j−1 and know what is the
possible decisions of the next job x ′

j that would make
(x′[j−1], x′

j) an equilibrium for G[j]. When x′
j−1 = 2

we know from proposition 13 that φ 2(x′[j − 1]) ≥
φ1(x′[j − 1]). Hence cj(1, x′[j − 1]) will always be
less than cj(2, x′[j − 1]) since s1 > s2 and the best
response of job j is always {1}. When x′

j−1 = 1 then
φ1(x′[j − 1]) ≥ φ2(x′[j− 1]) and we have the follow-
ing three cases:

Rj(x′[j − 1]) =

⎧⎨
⎩

{1} when lj > δ(x′[j − 1])
{2} when lj < δ(x′[j − 1])
{1, 2} when lj = δ(x′[j − 1])

where δ(x′[j−1]) = s1s2
(s1−s2)

(φ1(x′[j−1])−φ2(x′[j−
1])).

Hence depending on the difference in processing time
of the machines and the length of job j, the best re-
sponse of job j can be either {1}, {2}, or {1, 2}. Given
an instance of 2-SPT game, we can construct an equi-
librium tree for that instance where every path in the
tree from the root to one of the leaves corresponds to
an equilibrium of the game and there is a one-to-one
correspondence between the paths and all the equilib-
rium. Each node in the tree at level k corresponds to
the decision of job k and each sequence of decision
from the root to a leaf is an equilibrium. At level 1 (the
root of the three) there is only a single node labeled 1

since the only best response for job 1 is {1}. Figure 1
shows a complete equilibrium tree for n = 5. Every
node labeled 1 can be expanded to two nodes labeled
1 and 2 in the next level while every node labeled 2
can only be expanded to a node labeled 1. A sub-tree
of the complete equilibrium tree is a tree with the same
height but with less or equal number of leaves (paths).
The following proposition can be easily verified from
the discussion above:

Proposition 14. An equilibrium tree for any instance
of 2-SPT game with n jobs is a sub-tree of the complete
equilibrium tree with height n.

Fig. 1. A complete equilibrium tree for 5 jobs.

The cost of a path (by path we always mean the se-
quence of node from the root to a leaf) is the cost of the
equilibrium it corresponds to. We use the same nota-
tion for a path as for a schedule. We classify the paths
in an equilibrium tree in the following way:

1. The path x that ends in a node labeled 1. The
cost of this path is F (x) = cn(x) = φ1(x).
The set of all these paths in the tree is denoted
as P (1). The maximum cost that a path in P (1)

can have is C1
max = 1

s1

∑n
k=1 lk and the mini-

mum cost that a path in P (1) can have is C1
min =

1
s1

(l1 +
∑	n−2

2 

k=0 ln−2k). We denote by x1

max the
path whose cost is C1

max and by x1
min the path

whose cost is C1
min. For example in Figure 1,

x1
max is the left most path and x1

min is the right
most path. In general, x1

max and x1
min might not

exist in an equilibrium tree.
2. The path x that ends in a node labeled 2. The cost

of this path is F (x) = cn(x) = φ2(x). The set
of all these paths in the tree is denoted by P (2).
The maximum cost that a path in P (2) can have

is C2
max = 1

s2

∑	n−2
2 


k=0 ln−2k and the minimum
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cost that a path in P (2) can have is C2
min = 1

s1
ln.

Similar to 1, we define x2
max and x2

min. In Figure
1, x2

max is the forth path from the right and x2
min

is the second path from the left.

An arbitrary equilibrium tree with 5 jobs has at most 5
paths in P (1) and at most 3 paths in P (2) (see Figure
1). In the following, we state some properties of the set
P (1) and P (2) which will help us in deriving the bound
on the ratio of the worst Nash to the best. The proof of
the following lemma is long but mechanical.

Lemma 15. Given the sets P (1) and P (2) of an equi-
librium tree, the following are true:

1. ∀x ∈ P (1), C1
min = F (x1

min) ≤ F (x) ≤
C1

max = F (x1
max).

2. ∀x ∈ P (2), C2
min = F (x2

min) ≤ F (x) ≤
C2

max = F (x2
max).

3. ∀x ∈ P (1) such that x 	= x1
min, F (x) ≤ C2

max.
4. ∀x ∈ P (2) such that x 	= x2

max, C1
min ≤ F (x).

5. When x1
min and x2

max are the only paths, then
F (x1

min) = C1
min < F (x2

max) = C2
max.

We proceed to derive the bound on the ratio of the
worst Nash to the best which is s1/s2. The idea is to
show that given any arbitrary equilibrium tree corre-
sponding to an instance of 2-SPT game, the ratio of the
maximum cost path to the minimum is at most s1/s2.

Theorem 16. The ratio of the worst Nash equilibrium
to the best Nash equilibrium in 2-SPT games is at most
s1/s2 where s1 is the speed of the faster machine and
s2 is the speed of the slower machine.

Proof. Given an arbitrary equilibrium tree correspond-
ing to an instance of 2-SPT game, let P (1) and P (2)

be the sets of the paths. Let xmax be the path with the
maximum cost and xmin be the path with the mini-
mum cost. Consider the following cases:

1. When xmax, xmin ∈ P (1). If xmax = x1
min

then F (xmax)/F (xmin) = 1 since C1
min ≤

F (xmin) ≤ F (xmax) = C1
min. Else xmax 	=

x1
min, we have F (xmax) ≤ C2

max (lemma 15-
3) and F (xmin) ≥ C1

min (lemma 15-1) and thus
C1

min ≤ F (xmin) ≤ F (xmax) ≤ C2
max. Hence:

F (xmax)
F (xmin)

≤ C2
max

C1
min

=
1
s2

∑	n−2
2 


k=0 ln−2k

1
s1

(l1 +
∑	 n−2

2 

k=0 ln−2k)

<
s1

s2
.

2. When xmax, xmin ∈ P (2). If xmin = x2
max

then C2
max = F (xmin) ≤ F (xmax) ≤ C2

max

and F (xmax)/F (xmin) = 1. Else xmin 	=
x2

max, we have F (xmin) ≥ C1
min (lemma 15-

4), F (xmax) ≤ C2
max (lemma 15-2) and thus

C1
min ≤ F (xmin) ≤ F (xmax) ≤ C2

max. Hence
similar to case 1, F (xmax)/F (xmin) < s1/s2.

3. When xmax ∈ P (2) and xmin ∈ P (1). By
lemma 15-1 and 15-2 we have C1

min ≤ Fxmin ≤
F (xmax) ≤ C2

max and similar to case 1 and 2
we have F (xmax)/F (xmin) < s1/s2.

4. When xmax ∈ P (1) and xmin ∈ P (2). For this
case, consider the following possibilities:

(1) If xmax 	= x1
min and xmin 	= x2

max .
By lemma 15-3 and 15-4 we have C1

min ≤
F (xmin) ≤ F (xmax) ≤ C2

max and similar to
the above cases F (xmax)/F (xmin) < s1/s2.

(2) If xmax 	= x1
min and xmin = x2

max. By
lemma 15-3 we have F (xmax) ≤ C2

max and
thus C2

max = F (xmin) ≤ F (xmax) ≤ C2
max.

Hence F (xmax)/F (xmin) = 1.
(3) If xmax = x1

min and xmin 	= x2
max .

Similarly by lemma 15-4 we have C1
min ≤

F (xmin) ≤ F (xmax) = C1
min and thus

F (xmax)/F (xmin) = 1.
(4) If xmax = x1

min and xmin = x2
max then

xmax is the only path in P (1) and xmin is the
only path in P (2) and by lemma 15-5 we have
F (xmax) < F (xmin) (contradiction). Hence
this case is not possible.

Thus over all the cases above, F (xmax)/F (xmin) is
bounded by s1/s2.

Empirical results show that the actual ratio is much
lower than s1/s2, for example as shown in Figure 2
and 3. For each randomly generated game, the ratio
F (xmax)/F (xmin) is measured and plotted against
the number of jobs. The figures also show that when
s1/s2 increases from 2 to 3, the ratio decreases instead
of increases with s1/s2. A better conjectured bound
is given by the following: that F (xmax)/F (xmin) ≤
r2/(r2 − r + 1) where r = s1/s2. By taking the first
derivative of right hand expression we get the value
r = 2 that maximizes the expression. Consequently,
by substituting it back, we have the following tight
bound F (xmax)/F (xmin) ≤ 4/3.
The figure above shows the behavior of the function
r2/(r2 − r + 1) as r (the difference in speed between
the 2 machines) increases. It shows that as the differ-
ence in speed increases, the ratio approaches 1 and the
difference in quality between the worst and the best
Nash approaches 0. The ratio is at its maximum when
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Fig. 2. F (xmax)/F (xmin) with s1
s2
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Fig. 3. F (xmax)/F (xmin) with s1
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one machine is exactly twice as fast as the other. While
the result provided here is for 2 machines, we conjec-
ture that the same general rule holds for multiple ma-
chines, i.e., as the difference in speed between the ma-
chines increases, the worst and the best Nash will tend
to converge.

6. Conclusion and Future Work

In this paper we studied a class of scheduling games
from the computational perspective. We provided re-
sults on the complexity for computing the best Nash
equilibrium, as well as the quality guarantee (price of
stability) for such a solution. While we have closed the

problem on the congestion model, we only managed to
obtain results for identical machines on the sequencing
model. When extended to related machines, we only
managed to show a gap between the worst and the best
Nash equilibrium for related machines, the bound on
this gap is still open and left as future work. It is also
interesting to extend our investigation on a more gen-
eral class of congestion (potential) games.
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