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Efficiency Analysis of Load Balancing Games

With and Without Activation Costs∗

Bo Chen† Sinan Gürel
ORMS/DIMAP, University of Warwick

July 2011

Abstract

In this paper, we study two models of resource allocation games: the classical
load balancing game and its new variant involving resource activation costs.
The resources we consider are identical and the social costs of the games are
utilitarian, which are the average of all individual players’ costs.

Using the social costs we assess the quality of pure Nash equilibria in terms
of the price of anarchy (PoA) and the price of stability (PoS). For each game
problem, we identify suitable problem parameters and provide a parametric
bound on the PoA and the PoS. In the case of the load balancing game, the
parametric bounds we provide are sharp and asymptotically tight.

Keywords: resource allocation game, congestion cost, load balancing, cost
sharing, price of anarchy, price of stability

1 Introduction

Problems of resource allocation often involve decentralized decision making. A typ-
ical example is, in terms of machine scheduling, allocation of machines to jobs (or
assignment of jobs to machines) in which selfish agents, representing individual jobs,
select machines for processing their own jobs. In the long run, decisions of the agents,
motivated by individual interests, usually result in a Nash equilibrium (NE) at which
no individual agent will benefit from any unilateral deviation for the current resource
allocation. In terms of a given social objective, such an equilibrium is not necessar-
ily, indeed can often be far from, optimal. It is important, therefore, to analyze the
quality of NE solutions in terms of social optimality.

The resource allocation games we consider in this paper are as follows. Given a
set of n jobs, each of which has a positive length and is controlled by a selfish agent.
Each agent decides on which of the identical machines available to assign his job
to. We consider two game models: the load balancing model and the cost sharing
model.

∗To Appear in: Journal of Scheduling (DOI: 10.1007/s10951-011-0247-8)
†Corresponding author: Warwick Business School, University of Warwick, Coventry, CV4 7AL,

United Kingdom. b.chen@warwick.ac.uk
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In the load balancing game, a fixed number m of machines are given and the
cost of each player is caused by a congestion, which is defined as the load of the
machine, i.e., the sum of lengths of the jobs assigned to it. This is the classical load
balancing game as surveyed in [23] and has been studied extensively. In our second
game model there are unlimited number of identical machines available, but usage of
each machine comes with an additional set-up or activation cost, which is shared in
proportion to the job lengths by all agents who assign their jobs to the machine. This
model is recently introduced and studied in [10]. As shown respectively in [23] and
[10], any instance of the games in the two models admits a pure Nash equilibrium,
which can be computed efficiently. We are concerned in this paper with the quality
of pure Nash equilibria.

In assessing the quality of a resource allocation, most of the studies in the
literature, including [23] and [10] mentioned above, use as social cost the maximum
(or `∞ metric) of all individual players’ costs. In this study, we consider a utilitarian
social objective, which is defined as the average (or `1 metric) of all individual
players’ costs. Such a social objective is also used in a number of other similar
studies (such as [4, 15, 12] and [21], in which infinitely many jobs are considered)
and is a standard assumption in the multi-agent system literature (e.g., [7, 18, 22]).
As shown by Berenbrink et al. [4], Nash equilibria behave very differently under `1
metric than `∞ metric.

As in many other games, the social cost of an NE solution in the resource alloca-
tion games is often not minimum, whose corresponding solutions are called optimal.
In this paper, we use the commonly accepted notions of the price of anarchy (PoA)
and the price of stability (PoS) to analyze the quality of NE solutions. As introduced
by Koutsoupias and Papadimitriou in [16, 19], the PoA (respectively, PoS) is defined
as the ratio of the social cost of the worst (respectively, best) NE solution and the
corresponding optimal social cost. For the load balancing game with social objective
of `∞ metric, Koutsoupias and Papadimitriou [16] prove initial bounds on the PoA,
and Czumaj and Vöcking [6] are the first to provide (asymptotically) tight bounds
on the PoA for a general case where the resources are not necessarily identical but
related, i.e., the machines have different speeds (known as uniform-machine environ-
ment). For more detailed coverage of related research on games of social costs with
`∞ metric, the reader is referred to, e.g., articles of survey nature [5, 23, 14] and the
references therein.

In the load balancing game, the utilitarian social cost has been considered in
several studies in the literature. Berenbrink et al. [4] consider pure strategies in
the uniform machine environment and show that, if all job lengths are at least 1,
then PoA ≤ 4pmax, where pmax is the maximum job length, and if additionally all
machines are identical, then PoS ≥ √pmax/5. Therefore, it is variability of job
lengths, as opposed to machine speeds, that may lead to a big PoS and PoA. We
explore this issue in further depth in this paper by providing asymptotically tight
(indeed, sharp) bounds on the PoS and the PoA in terms of average normalized job
length under the identical-machine environment but without any restriction on job
lengths.

Hoefer and Souza [15] study the utilitarian social objective for a routing game
of n players and m parallel links where each link has a different speed. They as-
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sume players can freely set individual message lengths. Gairing et al. [12] consider
inter alia the utilitarian social objective in the routing game on identical links with
incomplete information.

Resource allocation games or more generally weighted singleton congestion games
of social costs similar to ours have been studied extensively in the literature. Most
notable is the social cost of total latency, which is defined as the weighed total of all
individual players’ costs, where the weights are particularly the job lengths in our
resource allocation games. Research on equilibrium quality in such games can be
found, for example, in [3, 1, 13, 11, 17, 20].

All the studies we have mentioned above are on games in which the cost functions
of players are of the nature of negative congestion effect, that is, an individual cost
incurred by using a resource is a non-decreasing function of its load. However,
positive congestion effect also happens in situations where a resource user wishes
to share the resource with as many additional users as possible to minimize his
individual cost of using the resource, which is a non-increasing function of its load.
Such games are considered in [9, 2, 8] for studies of fair cost sharing in network
routing and design. The second game model considered in this paper, which takes
both congestion effects into account has been recently proposed by Feldman and
Tamir [10]. With an egalitarian social objective (`∞ metric), they show that the
PoA is unbounded but the PoS is bounded by a tight bound of 5/4. In this paper,
we use the utilitarian social objective (`1 metric) to study the performance of NE
solutions in the game. We provide a tight parametric bound on the PoA, which
is unbounded in general (as in the case of egalitarian social objective considered
in [10]). Furthermore, we give a parametric lower bound on the PoS, which is
unbounded in general, in contrast with the boundedness of the egalitarian social
objective.

2 Model descriptions and main results

A set of jobs J = {1, 2, . . . , n} is to be assigned to a number of identical parallel
machines. Each job j ∈ J has a length of pj > 0. For a given job assignment A, we
denote the set (respectively, number) of jobs assigned to machine i by JA[i] (respec-
tively, nAi ). The load of machine i under assignment A is then LAi =

∑
j∈JA[i] pj .

If the assignment A is optimal (w.r.t. the given utilitarian social objective), we use
J∗[i], n∗i and L∗i to denote the above quantities, respectively.

In the load balancing model, we assume that there are a fixed number m of
identical machines. In this model, the cost to a job is the load of the machine the
job is assigned to. The social cost of a given overall job assignment A is:

C1(A) =
m∑
i=1

nAi L
A
i ,

which is the sum of all individual job costs. Note that as far as the PoA and PoS
are concerned, this (and the following) definition of the social cost is equivalent to
the one with “sum” or “total” replaced by “average” (over all jobs).
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In the cost-sharing model, let B denote the cost of activating each machine.
Given an overall job assignment A, if job j of length pj is assigned to machine i of
load LAi , then the cost of the job is

LAi +
pj

LAi
B,

where the first term is its resource usage cost and the second represents its share of
the cost of activating machine i, which is in proportion to its length with respect to
the total load of the machine. In this model, we define the social cost as follows:

C2(A) =

mA∑
i=1

nAi L
A
i +mAB,

where mA is the number of activated machines in the given job assignment A. As
can be seen easily, the cost C2(A) is the total of individual job costs.

In each π of the two game problems defined above (π = 1, 2), we will use Ceπ
and C∗π to denote the social cost of an NE and an optimal solution, respectively.
Let P =

∑
j∈J pj and denote the minimum, average and maximum job lengths,

respectively, by pmin = minj∈J pj , pavg = P/n and pmax = maxj∈J pj . Let{
ρ1 = pavg/pmin,
ρ2 = B/pmin.

(1)

We shall use ρ1 and ρ2 as parameters in bounding the PoA and PoS in the respective
two game models we study. In load balancing game, parameter ρ1 represents the
average job length normalized by pmin. Note that, as we pointed earlier, in providing
the upper bound of 4pmax on the PoA, Berenbrink et al. [4] assume that all job
lengths are at least 1. This assumption has implicitly hidden the possibility of the
unboundedness of the PoA when pmin → 0, which is indeed the case as we shall
show. We take this issue into account by normalizing all job lengths with pmin in
assessing the PoA and PoS. On the other hand, the sharpness of our parametric
bounds in terms of ρ1 demonstrates that it is the average (instead of maximum)
job length that is more accurate and hence suitable in bounding the PoA and PoS.
In the cost sharing game, as we shall see, parameter ρ2 adequately represents a
maximum number of jobs that can be assigned to a machine in any NE solution. In
the next two sections, we will establish the following two sets of main results for the
load balancing and cost sharing models with utilitarian social objectives C1 and C2,
respectively:

ρ1 − 1 ≤ PoS ≤ PoA ≤ ρ1 + 1 (Thm 3.1: load balancing model)
1
4(
√
ρ2 + 2) ≤ PoS ≤ PoA ≤ 1

2(ρ2 + 1) (Thm 4.1 & Cor 4.2: cost sharing model)

For the load balancing model, the two bounds together show that they are very
sharp and both asymptotically tight, in other words, the PoS and PoA are nearly the
same. For the cost sharing model, the bounds show that the PoS and PoA can be
unbounded if the parameter ρ2 is not restricted. The upper bound is derived from
a tight bound but of two parameters presented in Theorem 4.1. Further discussions
on the tightness of the lower and upper bounds are provided in the final section.
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3 Load balancing model

We start with a direct observation of a simple property of NE assignments. For
notational simplicity we omit from now on the indication of any assignment A from
the notation unless there is a confusion.

Observation 3.1. Given any NE assignment, machine loads satisfy the following
inequalities:

Li ≤ Lk + pj , ∀j ∈ J [i], 1 ≤ i, k ≤ m.

Observation 3.1 simply means that, in any NE assignment, no job can reduce its
cost by unilaterally changing its machine. Using Observation 3.1 we next prove an
upper bound on Ce1 .

Lemma 3.2. Given any NE assignment, its total cost Ce1 satisfies the following:

Ce1 =

m∑
i=1

niLi ≤
( n
m

+ 1
)
P.

Proof. For any fixed i (1 ≤ i ≤ m), we choose k and j in Observation 3.1 such that

Lk = min
1≤k′≤m

Lk′ ≤
P

m
; and pj = min

j′∈J [i]
pj′ ≤

Li
ni
.

The two inequalities above are evident. Therefore, we obtain

Li ≤
P

m
+
Li
ni
, i = 1, . . . ,m,

which leads directly to our conclusion.

The upper bound on Ce1 in Lemma 3.2 depends on the total length of the jobs,
the number of jobs and the number of machines. The following lemma is a direct
conclusion from the convexity of function f(x) = x2.

Lemma 3.3. For any real values x1, . . . , xm, we have

m∑
i=1

x2i ≥
1

m

(
m∑
i=1

xi

)2

.

With Lemmas 3.2 and 3.3, we can establish our first upper bound on the PoA.

Theorem 3.1. Let ρ1 be defined as in (1). Then

ρ1 − 1 ≤ PoS ≤ PoA ≤ ρ1 + 1.

Proof. Fix any NE and optimal assignments. From Lemma 3.2 and the fact that
P =

∑
i L
∗
i ≤ C∗1 , we have

Ce1
C∗1
≤ 1 +

n

m

P∑m
i=1 n

∗
iL
∗
i

.
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With the following inequality
L∗i ≥ n∗i pmin,

and Lemma 3.3 and noticing that
∑m

i=1 n
∗
i = n, we get

Ce1
C∗1
≤ 1 +

n

m

P

pmin
∑m

i=1(n
∗
i )

2
≤ ρ1 + 1.

The following example provides the lower bound for the PoS.

Example 3.4. Consider an instance of m machines, m− 1 large jobs of unit length
and n small jobs of length 1/n. Assume that n > m and let n be a multiple of
m(m− 1). Consider the assignment in which all large jobs are assigned to a single
machine and all small jobs are evenly assigned to the remaining machines. The
social cost of this assignment is an upper bound on the optimum:

C∗1 ≤ (m− 1)2 +
n

m− 1
.

Now consider the NE assignment A in which one large job is assigned to each of
(m − 1) machines and all small jobs are assigned to the last machine. The social
cost of the assignment is

Ce1(A) = (n+m− 1).

Then we get
Ce1(A)

C∗1
≥ (n+m− 1)(m− 1)

(m− 1)3 + n
,

which approaches m− 1 as n → +∞. There are no NE assignments other than A.
Note that

ρ1 =
m/(n+m− 1)

1/n
,

which approaches m as n→∞. Therefore, the PoS is bounded from below by ρ1−1.

Remark. A special case of Proposition 4.2 in [12] would lead to a slightly
improved upper bound in Lemma 3.2 with n replaced by n− 1, which would in turn
contribute to a reduction of the upper bound in Theorem 3.1 to ρ1 + (n − 1)/n.
However, this does not help as the number n of jobs can be arbitrarily large. We
have decided to use Lemma 3.2 as its proof is much simpler.

4 Cost sharing model

Recall that in the cost sharing model, there are unlimited number of machines
available, but usage of each machine incurs an additional activation cost of B. As
we shall see, it is convenient to divide the jobs into two categories, large and small:
Jl = {j ∈ J : pj > B} and Js = {j ∈ J : pj ≤ B}, and the problem becomes
trivial if all jobs are large: Js = ∅. For notational convenience and without loss of
generality, we will assume B = 1 in the remainder of this section, as we can achieve
this by dividing all job lengths with the activation cost B.

It is easy to observe the following property of NE assignments for large jobs.
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Lemma 4.1. Any large job will be assigned to a dedicated machine in any NE
assignment.

Proof. Consider a large job with a length p > 1. Suppose that there exists an NE in
which the large job shares a machine with some other jobs that have a total length
of q. Then the individual cost of the large job is

p+ q +
p

p+ q

which is greater than p + 1, its individual cost on a dedicated machine. This is
because

p+ q +
p

p+ q
− p− 1 = q − q

p+ q
> 0

since 1/(p+ q) < 1. Then in an NE assignment a large job has to be on a dedicated
machine.

Similarly, the following lemma characterizes optimal assignments.

Lemma 4.2. In any optimal assignment, if L∗i > 1, then n∗i = 1.

Proof. Suppose that L∗i > 1 and n∗i ≥ 2. Let j ∈ J∗[i]. Then moving job j from
machine i to a dedicated machine will result in a new assignment with a reduced
objective value C ′2:

C ′2 − C∗2 = (1 + (n∗i − 1)(L∗i − pj) + 1 + pj)− (1 + n∗iL
∗
i )

= 1− L∗i − (n∗i − 2)pj < 0,

which contradicts the optimality of the original schedule.

Lemma 4.2 implies that an optimal assignment assigns all large jobs to dedicated
machines. On NE assignments of small jobs only, we have

Lemma 4.3. For machines of small jobs, Li ≤ 1 holds in any NE assignment.

Proof. Suppose that Li > 1 holds for machine i. Consider job j on machine i. The
cost of job j is

Li +
pj
Li
.

If job j activates a new machine, its cost will be 1 + pj . Then the cost change is

∆ = 1 + pj − Li −
pj
Li

= (1− Li) + pj
Li − 1

Li

=
1− Li
Li

(Li − pj) < 0.

Lemma 4.3 implies that in an NE assignment, no machines other than dedicated
ones can have a load greater than 1. Given Lemmas 4.1 and 4.3, let A =

∑
j∈Jl pj +

|Jl| and denote ns = |Js| and Ps =
∑

j∈Js pj , we have the following result:
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Lemma 4.4. Any NE assignment has a social cost Ce2 that is bounded from above
as follows:

Ce2 ≤ ns + Ps +A = n+ P.

The bound is tight if Li = 1 for all i.

Proof. Suppose that there are m activated machines in the NE assignment. Ac-
cording to Lemma 4.1, we assume that all small jobs are assigned to the first ms

machines. Then Li ≤ 1 for i = 1, . . . ,ms. We have

Ce2 =

ms∑
i=1

(niLi + 1) +A

=

ms∑
i=1

((ni − 1)Li + 1) + Ps +A

≤ ns + Ps +A.

The statement on tightness is easy to verify.

On the other hand, let us provide a lower bound on C∗2 . Note that Lemmas 4.1
and 4.2 together imply that, if Js = ∅, then any NE assignment is optimal and vice
versa. Therefore, without loss of generality, we assume Js 6= ∅ and define

τ =
B

max{pj : j ∈ Js}
=

1

max{pj : j ∈ Js}
. (2)

Lemma 4.5. Any optimal assignment has a social cost C∗2 such that

C∗2 ≥ 2Ps
√
τ +A.

Proof. Since n∗i ≥ τL∗i , we have

C∗2 =

m∗s∑
i=1

n∗iL
∗
i +m∗s +A ≥

m∗s∑
i=1

τL∗i
2 +m∗s +A.

Since
∑m∗s

i=1 L
∗
i = Ps, from Lemma 3.3 we have

∑m∗s
i=1 L

∗
i
2 ≥ P 2

s /m
∗
s. Then,

C∗2 ≥ τ
P 2
s

m∗s
+m∗s +A.

The fact that the right-hand side of the above inequality is at its minimum when
m∗s = Ps

√
τ implies

C∗2 ≥ 2Ps
√
τ +A.

With the above lemma, we are now able to establish our second main result.
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Theorem 4.1. Let ρ2 be defined as in (1) and τ be defined as in (2). Then the PoS
and PoA are bounded as follows:

1

4
(
√
ρ2 + 2) ≤ PoS ≤ PoA ≤ ρ2 + 1

2
√
τ
.

Furthermore, the upper bound is tight.

Since τ ≥ 1, we immediately have the following:

Corollary 4.2. The upper bound on the PoA in Theorem 4.1 can be simplified to
contain only one parameter:

PoA ≤ ρ2 + 1

2
.

Proof of Theorem 4.1. Given the upper bound on Ce2 and the lower bound on
C∗2 in Lemmas 4.4 and 4.5, respectively, noticing that ns ≤ ρ2Ps, we obtain

Ce2
C∗2
≤ ns + Ps +A

2Ps
√
τ +A

≤ ρ2 + 1

2
√
τ
.

Since the above inequality holds for any instance, the upper bound in the theorem
is established. The tightness of the upper bound and validity of the lower bound
are shown in the following two examples, respectively.

Example 4.6. Consider an instance of a2k jobs, each having a length of 1/a2k,
where a, k > 1 are fixed integers. An NE assignment is that all jobs are on a single
machine, which has the following social cost:

Ce2 = a2k + 1.

It is easy to see that an optimal solution distributes all these identical jobs evenly
on all activated machines, i.e., |n∗u − n∗v| ≤ 1 for any two activated machines u, v.
Suppose that m machines are activated in a solution and there are equal numbers
of jobs on all these machines. Then the social cost of such a solution is

C2 = m+
a2k

m

1

a2k
a2k = m+

a2k

m
,

which is minimized if m∗ = ak. Hence, there exists an optimal (also NE) solution
with ak machines activated and of the following social cost:

C∗2 = 2ak.

Therefore, we conclude that

Ce2
C∗2

=
a2k + 1

2ak
=
ρ2 + 1

2
√
τ
,

which equals the upper bound in Theorem 4.1.
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Example 4.7. Consider an instance of n+ 1 jobs (n ≥ 2) with machine activation
cost B = 1. The job lengths are pj = 1/n2 for j = 1, . . . , n and pn+1 = 1− 1/n− ε
with 0 < ε < 1/n2. Let S be the assignment in which all jobs are assigned to the
same machine, say machine 1. Then L1 = 1− ε, giving a social cost

C2 = C2(S) = n1L1 + 1 = (n+ 1)(1− ε) + 1 = n+ 2− (n+ 1)ε.

Proposition 1. S is the unique NE assignment.

Proof. Assignment S is an NE assignment since L1 = 1 − ε, no job can reduce its
cost by activating a new machine. We show that S is the unique NE assignment.
We shall often use the fact that real function

fr(x) = x+
r2

x
, x > 0 (r > 0 fixed)

is convex and strictly decreasing over (0, r] and strictly increasing over [r,+∞).

Claim 1. In any NE assignment with at least two machines activated, job n + 1
cannot have a dedicated machine.

Suppose that job n+ 1 is on a dedicated machine, say, machine 1. Then the cost
of job n + 1 is pn+1 + 1. On the other hand, there is another machine i of load Li
(i 6= 1) such that

1

n2
≤ Li ≤

1

n
. (3)

Then job n+ 1 would benefit by deviating from machine 1 to machine i since

Li + pn+1 +
pn+1

Li + pn+1
< pn+1 + 1, (4)

which can be easily verified by noticing that pn+1 < 1 − 1/n and the fact that the
left-hand side of inequality (4) is convex in Li and hence maximized at the endpoints
(in fact, the right endpoint) of interval (3).

Claim 2. In any NE assignment with at least two machines activated, no job will
share the same machine with job n+ 1.

Suppose to the contrary that such NE assignment exists and a (nonempty) subset
of jobs from 1, . . . , n are on machine 1, which also contains job n + 1. Then, the
individual cost of any job on machine 1 other than job n+ 1 is

Γ1(L1) ≡ L1 +
1/n2

L1
, where L1 ≥ 1− 1

n
− ε+

1

n2
> 1− 1

n
≡ λ1.

This cost is strictly increasing in L1 and thus is more than Γ1(λ1).
Consider moving a job on machine 1 other than job n + 1 to another activated

machine i. Then the individual cost of the moving job will become

Γ2(Li) ≡ Li +
1

n2
+

1/n2

Li + 1/n2
, where λ2 ≡

1

n2
≤ Li ≤

1

n
− 1

n2
,
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which is strictly decreasing in Li and thus achieves its maximum at Li = λ2. Since

Γ1(λ1) = 1− n− 2

n(n− 1)
and Γ2(λ2) =

1

2
+

2

n2

it is easily checked that Γ1(λ1) ≥ Γ2(λ2), which implies that the moving job will
benefit from such a unilateral deviation, contradicting that the original assignment
is an NE.

Claims 1 and 2 together imply that no NE assignment will activate more than
one machine, which proves our proposition.

Let S∗ be the assignment in which machine 1 is dedicated to job n + 1 and
machine 2 accommodates all other jobs 1, ..., n. The social cost of S∗ is

C2(S∗) =
∑
i=1,2

niLi + 2 = 4− 1

n
− ε.

Proposition 2. S∗ is an optimal assignment.

Proof. An assignment with at least three machines activated will have a social cost
more than 3 + 1− 1/n− ε.

Consequently, with Propositions 1 and 2, the lower bound on the PoS in Theo-
rem 4.1 is implied by the fact that, as ε→ 0, we have

C2(S)

C2(S∗)
=
n+ 2− (n+ 1)ε

4− 1
n − ε

→ n+ 2

4− 1
n

>
n+ 2

4
=

1

4
(
√
ρ2 + 2).

Therefore, for ε sufficiently small, the bound is valid.

5 Concluding remarks and further research

A natural measure for the quality of NE solutions is the utilitarian social objectives.
In this paper, we have considered such social objectives for two models, the classical
load balancing game and the cost sharing game that is the same as the load balancing
except that there are unlimited number of resources available but each comes with
a set-up cost, which is proportionally shared by all users of the resource. The
latter model is an extension of the former in the sense that both types of individual
congestion costs are taken into account: positive and negative congestion effects, as
we discussed at the end of the introduction section.

For the load balancing game, we have identified a problem parameter and with
this parameter we have provided sharp bounds for the PoS and PoA, which are
asymptotically tight. Our work fills a gap in the literature on the well-studied load
balancing game.

For the cost sharing game, we have used another problem parameter to provide a
lower bound on the PoS and an upper bound on the PoA, which show that both the
PoS and PoA are unbounded in general. Unfortunately, our results have left a gap:
the two parametric bounds are not necessarily asymptotically tight. It is interesting
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to note that such a gap is very much similar (asymptotically) to the gap left in [4]
for the load balancing game as given in the introduction section, though our gap is
much smaller.

An interesting question arises from the cost sharing model. We have used a
natural way of distributing an activation cost among the resource users with each
user having a proportional share. An easy alternative is equal cost distribution
among all the resource users, which we call congestion sharing. However, it is easy
to see that the lower bound on the PoA demonstrated in Example 4.6 is still valid for
any seemingly fair cost-sharing mechanism that charges the activation cost only to
the users of that resource. In other words, no such fair mechanism can improve the
game efficiency in terms of the PoA. However, improvement of equilibrium behavior
could be achieved if we allow more freedom in distributing activation costs or even
allow introduction of tolling mechanism. More specifically, as we have observed
that inefficient equilibria are resulted in by infinitesimal jobs gathering on the same
machine. A tolling mechanism to discourage such a behavior would reduce the PoA.

Another direction for further research is to investigate whether the two games
we have considered are smooth as defined in Roughgarden [20], so that our results
on the PoA can be extended to alternative classes of equilibria.
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