6 research outputs found

    Scaling Empirical Game-Theoretic Analysis.

    Full text link
    To analyze the incentive structure of strategic multi-agent interactions, such scenarios are often cast as games, where players optimize their payoffs by selecting a strategy in anticipation of the strategic decisions of other players. When our modeling needs are too complex to address analytically, empirical game models, game models in which observations of simulated play are used to estimate payoffs of agents, can be employed to facilitate game-theoretic analysis. This dissertation focuses on extending the capability of the empirical game-theoretic analysis (EGTA) framework for modeling and analyzing large games. My contributions are in three distinct areas: increasing the scale of game simulation through software infrastructure, improving performance of common analytic tasks by bringing them closer to the data, and reducing sampling requirements for statistically confident analysis through sequential sampling algorithms. With the advent of EGTAOnline, an experiment management system for distributed game simulation that I developed, EGTA practitioners no longer limit their studies to what can be conducted on a single computer. Over one billion payoff observations have been added to EGTAOnline's database to date, corresponding to hundreds of distinct experiments. To reduce the cost of analyzing this data, I explored conducting analysis in the database. I found that translating data to an in-memory object representation was a dominant cost for game-theoretic analysis software. By avoiding that cost, conducting analysis in the database improves performance. A further way to improve scalability is to ensure we only gather as much data as is necessary to support analysis. I developed algorithms that interweave sampling and evaluations of statistical confidence, improving on existing ad hoc sampling methods by providing a measure of statistical confidence for analysis and reducing the number of observations taken. In addition to these software and methodological contributions, I present two applications: a strategic analysis of selecting a wireless access point for your traffic, and an investigation of mapping an analytical pricing model to a large simulated stock market.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110315/1/bcassell_1.pd

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Strategic Voting and Social Networks

    Get PDF
    With the ever increasing ubiquity of social networks in our everyday lives, comes an increasing urgency for us to understand their impact on human behavior. Social networks quantify the ways in which we communicate with each other, and therefore shape the flow of information through the community. It is this same flow of information that we utilize to make sound, strategic decisions. This thesis focuses on one particular type of decisions: voting. When a community engages in voting, it is soliciting the opinions of its members, who present it in the form of a ballot. The community may then choose a course of action based on the submitted ballots. Individual voters, however, are under no obligation to submit sincere ballots that accurately reflects their opinions; they may instead submit a strategic ballot in hopes of affecting the election's outcome to their advantage. This thesis examines the interplay between social network structure and strategic voting behavior. In particular, we will explore how social network structure affects the flow of information through a population, and thereby affect the strategic behavior of voters, and ultimately, the outcomes of elections. We will begin by considering how network structure affects information propagation. This work builds upon the rich body of literature called opinion dynamics by proposing a model for skeptical agents --- agents that distrust other agents for holding opinions that differ too wildly from their own. We show that network structure is one of several factors that affects the degree of penetration that radical opinions can achieve through the community. Next, we propose a model for strategic voting in social networks, where voters are self-interested and rational, but may only use the limited information available through their social network contacts to formulate strategic ballots. In particular, we study the ``Echo Chamber Effect'', the tendency for humans to favor connections with similar people, and show that it leads to the election of less suitable candidates. We also extend this voter model by using boundedly-rational heuristics to scale up our simulations to larger populations. We propose a general framework for voting agents embedded in social networks, and show that our heuristic models can demonstrate a variation of the ``Micromega Law'' which relates the popularity of smaller parties to the size of the population. Finally, we examine another avenue for strategic behavior: choosing when to cast your vote. We propose a type of voting mechanism called ``Sticker Voting'', where voters cast ballots by placing stickers on their favored alternatives, thereby publicly and irrevocably declaring their support. We present a complete analysis of several simple instances of the Sticker Voting game and discuss how our results reflect human voting behavior

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance
    corecore