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Abstract

With the ever increasing ubiquity of social networks in our everyday lives, comes an
increasing urgency for us to understand their impact on human behavior. Social networks
quantify the ways in which we communicate with each other, and therefore shape the �ow
of information through the community. It is this same �ow of information that we utilize
to make sound, strategic decisions. This thesis focuses on one particular type of decisions:
voting. When a community engages in voting, it is soliciting the opinions of its members,
who present it in the form of a ballot. The community may then choose a course of action
based on the submitted ballots. Individual voters, however, are under no obligation to
submit sincere ballots that accurately re�ects their opinions; they may instead submit a
strategic ballot in hopes of a�ecting the election's outcome to their advantage. This thesis
examines the interplay between social network structure and strategic voting behavior. In
particular, we will explore how social network structure a�ects the �ow of information
through a population, and thereby a�ects the strategic behavior of voters, and ultimately,
the outcomes of elections.

We will begin by considering how network structure a�ects information propagation.
This work builds upon the rich body of literature called opinion dynamics by proposing a
model for skeptical agents � agents that distrust other agents for holding opinions that
di�er too wildly from their own. We show that network structure is one of several factors
that a�ects the degree of penetration that radical opinions can achieve through the com-
munity. Next, we propose a model for strategic voting in social networks, where voters are
self-interested and rational, but may only use the limited information available through
their social network contacts to formulate strategic ballots. In particular, we study the
�Echo Chamber E�ect�, the tendency for humans to favor connections with similar people,
and show that it leads to the election of less suitable candidates. We also extend this
voter model by using boundedly-rational heuristics to scale up our simulations to larger
populations. We propose a general framework for voting agents embedded in social net-
works, and show that our heuristic models can demonstrate a variation of the �Micromega
Law� which relates the popularity of smaller parties to the size of the population. Finally,
we examine another avenue for strategic behavior: choosing when to cast your vote. We
propose a type of voting mechanism called �Sticker Voting�, where voters cast ballots by
placing stickers on their favored alternatives, thereby publicly and irrevocably declaring
their support. We present a complete analysis of several simple instances of the Sticker
Voting game and discuss how our results re�ect human voting behavior.
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Chapter 1

Introduction

As social media becomes increasingly ubiquitous in recent years, the in�uences of social
networks become increasingly subtle and far reaching. They range from the innocuous �
for instance, marketing of new products, and spread of rumors or viral content � to the
monumental � propagation of news and information, mobilization of political activism,
and even in�uence over outcomes of major governmental decisions.

These networks represent complex webs of interactions between both individuals and
institutions. They capture relationships and social structures that de�ne communities
both niche and vast. The relationships within these communities hold the key to how
information �ows within the network, and ultimately, how individuals' actions may be
in�uenced by each other and by the institutions whom they respect.

The last decade has seen tremendous growth in the popularity of social networks in both
popular media and research communities. The availability of �big data� gives scientists
and researchers detailed information on how these networks and their members evolve and
change over time. In this thesis, we focus our attention on studying how the structure of
social networks shapes the �ow of information within a community, and thereby impacts
the actions of the individuals and the choices of the community as a whole. This thesis
builds upon the intersection of two major concepts: voting theory, which studies how
communities make collective decisions informed by its members; and social networks,
which mediate the �ow and availability of information within the community.
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1.1 Voting Theory and Strategic Voting

Many early developments in voting theory came about as a result of the French revolu-
tion. Nicolas de Condorcet was a mathematician who would become intimately involved
in the revolution, and would be responsible for the new state education system, as well as
authoring a draft for the new constitution.

But his interest in voting and democratic processes predates the revolution. In his 1785
essay, Condorcet describes (amongst many other important ideas) what would become
known as Condorcet's Jury Theorem [37]. He presents a scenario where a jury is tasked
with the decision to convict or acquit a defendant. Given this binary decision, he states
that if each juror has at least a better than random chance of arriving at the correct
conclusion, then increasing the number of juror increases the probability that a majority
vote amongst the jurors will yield the correct outcome. As the number of jurors increases,
it becomes almost certain that the jury will produce the correct decision.

The Jury Theorem describes a simpli�ed case for general voting problems. In essence,
a voting process (i.e. an election) is about taking the preferences of a community of agents,
and aggregating them to produce a �nal decision that is somehow representative of all the
agents' preferences. The agents could be humans that are part of a community, or they
could be virtual agents representing a sensor network or robotic swarm. The agents may
be co-operative with similar goals and an objectively �correct� solution, or they could be
self-interested or adversarial, each with their own preferred outcomes, possibly seeking to
manipulate the result to their own advantage.

We are primarily interested in the second scenario, where individual voters are self-
interested, have di�erent subjective preferences, and are only concerned with voting in
such a way to best sway the outcome of the election in their favor. As before, the voting
process is used to elicit the private opinions from members of the community, so that the
group as a whole may choose the most appropriate alternative. However, individual voters
are under no obligation to submit a sincere ballot that re�ects their true preferences. For
instance, voters often face a decision between casting a sincere ballot for their favorite
candidate, or casting a strategic ballot for a less preferred candidate with more promising
prospects. In fact, the Gibbard-Satterthwaite theorem states that any such voting system
with at least 3 candidates is either dictatorial1 or is susceptible to this form of strategic
voting [65, 118], so strategic voting may be seen as an intrinsic and unavoidable aspect of
the voting process that demands closer analyses.

1i.e There exists some voter whose favorite candidate is always the winning candidate

2



1.2 Social Networks

Social networks have gained tremendous popularity in both research communities and
popular media in the last decade. These networks capture the relationships and social
structures that de�ne communities both large and small. While early research into social
networks produced theories on how information �ows through such a network [35, 122], and
how in�uence is exerted by the popular and powerful [77], recent years have demonstrated
the power of social networks, with social media playing a major role in the formation and
execution of political revolutions[54].

The notion that the web of relationships and interactions one participates in, can be
captured and analyzed can trace its roots back to theories of social groups of Durkheim
and Tönnies from the 1890s [49, 125]. But it was in Jacob Moreno's sociograms from
the 1930s that see a strong resemblance to the modern concept of the social network [96].
Sociograms represent social interactions using tools from graph theory, with individuals
being represented as a set of vertices V , and an edge (x, y) ∈ E connects two vertices
x, y ∈ V if the two individuals share in some sort of social interaction. Edges may also be
directed to represent asymmetric power or in�uence relationships.

Modern social network research continues to use a similar terminology, but frequently
expands the criteria necessary to qualify for a social interaction. This follows from the
�weak ties� theory, which depicts the strength of seemingly tenuous connections between
mere acquaintances, and emphasizes their in�uence in processes of information gathering,
decision making and innovation[66]. The explosion of data made available through the
Internet, and online social media platforms in particular, has also greatly expanded the
size of social networks available for study. The size and density of modern social networks
make computational methods indispensable for studying human behavior in these systems.
Modeling the evolution of and behaviors on these networks is an important and evolving
area of research.

1.3 The Intersection

Social networks describe how information and opinions �ow within a community; Voting
theory discusses how information and opinions might be aggregated from a community. It
seems only natural, then, to examine both topics in conjunction with each other: How does
the exchange of ideas within a social network a�ect the aggregation of those thoughts?

Voting theory is part of the wider �eld of social choice, and while this latter body of

3



literature o�ers a vast array of tools and mechanism to choose from, relatively little atten-
tion has been paid on understanding exactly how presence in, and in�uence within these
networks a�ect how people vote. While several researchers [10, 63] have examined social
choice problems where friends in�uence one's votes in abstract ways, few have speci�cally
incorporated the structure of the social network into the analysis [10].

The main research question I wish to consider is the impact of social networks on
the behavior of strategic voters. In order for voters to strategize, they must have some
knowledge of the relative competitiveness of the candidates; i.e. they must possess the
information to judge when their favorite candidate has become a �lost cause� and direct
their ballot in support of their second-choice candidates. In this thesis, we will use the
user's social network to represent the sources of information from which they may poll
this information. While a casual de�nition of social network may include only friends and
relatives, our de�nition also includes knowledgeable acquaintances, valued advisors, and
trusted media institutions. Voters in the network adjust their outlook over time based on
their observations, and may revise their ballots accordingly. In the next few chapters, we
will explore several aspects of the interactions between social networks and strategic voting
behavior in order to ful�ll the following thesis statement:

Thesis Statement. This thesis intends to advance our understanding of the interacti-
ons between social network structure and strategic voter behavior, by examining the question
of how di�erent network structures alter the �ow of information through a network, and
thereby alter the aggregate outcomes of independent and strategic voters over time.

These insights will help re�ne explanatory and predictive models both within the social
choice community and further abroad in substantive domains. In particular, they will help
explain the causes of social phenomena, as well as gauge the potential success of social
choice strategies, and the ultimate success of various candidates.

In Chapter 4, we answer the question of how network structure may a�ect the spread
of information across a community of skeptical agents by drawing upon and extending
existing models in opinion dynamics. In Chapter 5, we propose a model of strategic voting
behavior in social networks, and show that we can replicate the �Echo Chamber E�ect� by
tweaking structural parameters of networks. In Chapter 6, we extend our voter model by
incorporating e�cient heuristics to allow our simulations to scale up to larger populations;
we also propose a general framework for voting agents embedded in social networks. Finally,
in Chapter 7, we isolate the temporal component of our model and examine how voters
may strategize by controlling when they commit their ballots in a �Sticker Voting� election.

4



1.4 Statement of Contributions

This section lists the technical contributions of each chapter. We begin with Chapter 4
where we examine models of opinion dynamics and extend them to re�ect skepticism
between agents of di�ering opinions:

• We propose a model of opinion dynamics incorporating skepticism.

• We analyze the convergence behavior in social networks using random graph models,
in the presence of extremists.

• We identify that voter empathy and network structure (network type, connectivity
and homophily) are key factors in determining the in�uence of extremists.

• We analyze the conditions that allow for opinion strati�cation.

In Chapter 5, we propose and analyze a model for how strategic voting occurs in social
networks:

• We propose a model of strategic voting based on incomplete information in social
networks.

• We analyze strategic voting behavior in social networks using random graph models.

• We show that strategic behavior always improves social welfare.

• We show that strategic behavior diminished in networks with homophily, due to
inability to observe opportunities, and that this leads to lower social welfare.

• We show that Duverger's Law holds in many graphs, but not in sparse networks.

In Chapter 6, we extend that model of strategic voting by proposing and analyzing
heuristic models that allow simulations to scale up to larger elections:

• We propose a set of desiderata for voter models in social networks.

• We propose heuristic models for strategic voters in social networks that allow our
model to scale up to larger populations and more candidates.

5



• We analyze these heuristic models based on desiderata, and show two heuristic models
o�er the best combination of desiderata: TieH and Poisson

• We demonstrate our heuristics by examining the Micromega Rule in elections with
varying number of voters.

Finally, in Chapter 7, we examine the issue of how voters choose when to cast their
ballots by proposing and analyzing the Sticker Voting model:

• We propose the Sticker Voting Mechanism and introduce the concept of strategic
timing.

• We analyze the equilibrium behavior in sticker voting using simple scenarios of com-
plete and incomplete information.

• We discussion of the applicability of our results to human voters and proposed further
extensions.

Chapters 4, 5 and 7 are based on published works coauthored with my thesis advisor
Kate Larson [128, 129, 130]. Chapter 6 is based on a paper that is currently under review,
coauthored with Kate Larson and Amirali Salehi-Abari. The Max-M voter heuristic model
proposed in this chapter was an idea originated from Amirali Salehi-Abari. This thesis
contains text borrowed from those original publications, but were written by me.
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Chapter 2

Background

This chapter provides the background on voting and social networks necessary for under-
standing the remainder of this thesis. We begin with a review of several basic game theory
concepts, which allows us to formally de�ne a voting process as a voting game. We will
de�ne and elaborate on di�erent solution concepts (equilibria) useful for discussing strate-
gic behavior for players (voters) in these voting games. Next, we will de�ne basic concepts
from graph theory and discuss how we use them to model social networks. In particular,
we focus on a number of models of randomly generated graphs that we use in several parts
of the thesis.

2.1 Game Theory

Economic game theory models complex decision making scenarios between multiple parties
as games. A game begins with a set of players. Each player is faced with a choice between
a number of possible actions, and the combination of actions selected by all players forms
an outcome for this game. The outcome, in turn, determines the payo�s of the game to
each individual player.

Formally, let V = {1, 2, . . . n} denote the set of players. Each player i ∈ V simul-
taneously plays a strategy by selecting an action bi from a set of available actions. The
available actions form the action space B. For simplicity, we may assume this action space
is the same across all players. Let the vector b = (b1, b2, . . . bn) denote the collective actions
chosen by the players; b ∈ Bn represents the outcome of this particular game. Each player
i has a utility function ui : Bn → R that maps each outcome to a real number, representing
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Column Player
Cooperate Defect

Row Player
Cooperate (-1,-1) (-10,0)
Defect (0,-10) (-8,-8)

Table 2.1: Prisoner's Dilemma Payo� Matrix

the payo� to agent i. Note that ui is not generally shared across agents; i.e. agents may
have di�erent preferences over the possible outcomes. The payo� can be thought of as a
numerical measurement of satisfaction that an agent gains from a particular outcome. By
way of analogy, it is sometimes compared to a monetary payo� (or cost) to the agents. The
game is thus de�ned as G = 〈V,Bn, u〉. Agents take actions to maximize their personal
payo�s from the �nal outcome.

This basic setup for games captures many interesting scenarios. For instance, the
classic Prisoner's Dilemma is constructed as a 2-player game, where two criminals have
been arrested by the police and interrogated separately. Each player has two actions
available to her: B = {C,D}, corresponding to Cooperate (remaining silent) and Defect
(ratting the other person out). This leads to four possible outcomes of the game, with
four corresponding payo�s outline in Table 2.1, typically measured as �months in prison�.
For this scenario, we may assume the payo�s are symmetric between the players; i.e.
u1(b1, b2) = u2(b2, b1). From the �rst player's perspective, the ideal scenario is (D,C)
where she rats out her accomplice, who remains silent and is fully implicated: player one
walks away free (u1(D,C) = 0), while player two serves the full sentence (u2(D,C) = −10);
conversely, this is the least ideal outcome for player two. If both players Cooperate, they
are released with a slap on the wrist (u1(C,C) = −1). If both players Defect, they are
both convicted and charged a nearly full length sentence (u1(D,D) = −8).

A natural question to ask is, what would actual players do in such a game? Are
there some outcomes that are more reasonable than others? We begin with the game
theory concept of a Nash Equilibrium, named after its pioneer John Nash [101]. In its
simplest form, an outcome is a Nash Equilibrium if no agent has any incentive to change
her strategy; that is, no agent will derive a higher payo� by playing a di�erent strategy
(assuming everyone else plays the same strategy). Formally, an outcome b = (b1, b2, . . . bn)
is a Nash Equilibrium if for every player i, ui(b) ≥ ui(b

∗), where b∗ is obtained from b by
altering i's strategy from bi to another strategy b′ 6= bi.

In the Prisoner's Dilemma outlined above, one can verify that the outcome (D,D) is
a Nash Equilibrium outcome. That is, neither player pro�ts by altering their strategy to
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C. We may also repeat this process to verify that no other outcome is a Nash Equilibrium
outcome. A more expedient method of verifying this fact is through the iterated elimination
of dominated strategies. We say player i's strategy b dominates an alternative strategy b′

when i derives more utility by playing b than b′, regardless of how others players play.
Formally, let b−i denote the strategies played by all players other than i. Moreover, we
write (b−i, bi) to indicate the outcome derived from b−i where i plays bi. Then, for player
i, we say b dominates an alternative strategy b′ 6= b, if ui(b−i, b) ≥ ui(b−i, b

′), for all b−i.
We say the dominance is strong if the inequality is strict. A dominated strategy is, in this
sense, an unreasonable strategy for an agent to consider playing, and therefore may safely
eliminate it from consideration. By repeatedly eliminating dominated strategies, we may
reduce the action space to only a single outcome remains. If that is the case, the remaining
outcome is a Nash Equilibrium. If we eliminated only strongly dominated strategies, it is
a unique Nash Equilibrium.

In this basic de�nition of a game, we allow players to select a single action as their stra-
tegy to play. This is called a pure strategy. We may allow players to play a mixed strategy,
which is a distribution over the action space. For instance, in the Prisoner's Dilemma, a
player may choose to Cooperate with some probability p and Defect with probability 1−p.
This allows us to distinguish Nash Equilibria between Pure Nash Equilibria (where play-
ers play only pure strategies) and Mixed Nash Equilibria (where players may play mixed
strategies). While this does not change the results of the Prisoner's Dilemma analysis (i.e.
(D,D) in the unique Mixed Nash Equilibrium), it is likely to change the solutions of games
in general.

We may also extend the game by allowing the agents to take actions one after anot-
her rather than simultaneously. In these Sequential Games, agents that act later in the
sequence can observe the actions of preceding agents (i.e. the history of play), and select
strategies using that information. The sequence of actions can be represented as a rooted
tree, with branches corresponding to the di�erent actions taken by each agent. The no-
des of the tree represent distinct states of the game. The game begins at the root node.
Non-terminal nodes (which includes the root node, unless the game is trivial) are labelled
with the active player; i.e. the player who must now make a move by playing an action.
Taking the action moves the game into an appropriate child node. Terminal nodes signal
the end of the game and are labelled with the payo�s for each player. This tree based
representation of the game is also called the Extensive Form Game.

Figure 2.1 shows an example of a Sequential Game inspired by the political situation
during the Cuban Missile Crisis in 1962. This tense situation was precipitated by the U.S.
discovery that the U.S.S.R. had supplied Cuba with nuclear weapons. President Kennedy
responded by ordering a naval blockade of the island to prevent additional supplies and
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Figure 2.1: Cuban Missile Crisis Game.

Kennedy
Fold Nuke

Khrushchev
Retreat (-1,1) (-1,1)
Arm (10,-10) (-100,-100)

Table 2.2: Cuban Missile Crisis Game Payo� Matrix

missiles from reaching the island. Soviet leader Khrushchev then ordered the nuclear
missiles be armed and launched if the U.S. forces invaded the island. President Kennedy
was then faced with a di�cult decision � to withdraw the blockade and allow the Soviet
supplies to reach Cuba (i.e. to �fold�), or to invade the island nation and possibly start
a nuclear exchange (i.e. to �nuke�). Figure 2.1 illustrates the sequential nature of this
situation � �rst Khrushchev decides whether to supply arms to Cuba, then Kennedy
decides on a response.

Table 2.2 shows the payo�s for the players (left entry representing Khrushchev; right
entry, Kennedy). Notice there are two Nash Equilibria in this game: (Retreat,Nuke) and
(Arm,Fold). However, upon examining the game tree, the (Retreat,Nuke) equilibrium
seems unsatisfactory because of the sequence of play. Kennedy's threat to Nuke is a
non-credible threat because once Khrushchev commits to the Arm action, Kennedy's best
course of action is to Fold.

In general, applying Nash Equilibria as a solution concept to Sequential Games leads
to numerous unsatisfactory equilibria of this sort. Therefore, we re�ne our concept of
equilibria for Sequential Games to consider the sequence of play, in the form of the Subgame
Perfect Equilibrium (SPE). SPE views each subtree of the game tree as its own �subgame�,
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and SPE requires that player strategies form a Nash Equilibrium for every single subgame.
More formally, given an Extensive Form Game G, let us de�ne a subgame G′ rooted at
node h of G as the game represented by the subtree of G rooted at h. A strategy pro�le
s is a Subgame Perfect Equilibrium of G if s forms a Nash Equilibrium for every subgame
G′ rooted at every node h in G.

Applying this new concept to our Cuban Missile Crisis scenario, we see the the Nash
Equilibrium (Retreat,Nuke) is not a Subgame Perfect Equilibrium. Kennedy's threat to
Nuke is non-credible if we reach the subgame where he must act. (Arm,Fold) is the only
SPE.1

Alternatively, games may be extended to contain elements of uncertainty. Uncertainty
may arise from two factors � uncertainty as to the priorities of other players, and uncer-
tainty from the environment itself. The latter is easiest to model: we simply designate a
special player as Nature (also called the Chance player in some literature). Chance players
do not take actions to maximize their utility; rather they take actions based on a sim-
ple probability distribution, comparable to rolling dice. This may be treated as a mixed
strategy played by the Chance player, and expected utilities for each player may then be
calculated in the usual way.

To account for the former type of uncertainty, we turn to the Bayesian Game, an
extension of the simultaneous (i.e. non-sequential) game. In a Bayesian game, the priorities
of the players (i.e. their utility functions) are based on their types, which are randomly
assigned at the beginning of the game. A player knows their own type, but the types of
other players are unknown. The player maintains some belief over the likely types of the
other players, and uses that belief to formulate a strategy based on the expected outcomes.

Formally, in addition to the set of players V and set of actions B, each player also has
a type ti from a set of types Ti. The game begins with a draw ω from the set of possible
states of the world Ω. Each player i acquires a type ti = τi(ω) based on a mapping function
τi : Ω→ Ti. Let Ci ⊆ B × Ti be the subset of actions available to player i due to its type
ti. The utility function ui : Ω × Bn → R of player i is modi�ed to map the player's type
and the action pro�le to the payo� received by the player. Finally, each player i also has a
belief pi, a probability distribution representing how likely other players are to be of each
type.

A pure strategy si maps player i's type to an admissible action from Ci. The set Si of
1It is interesting to note that the outcome of the actual Cuban Missile Crisis resulted in a prolonged

stando� between the two nuclear superpowers during which Kennedy maintained the Cuban blockade.
After a tense seven days, Krushchev decided to withdraw Soviet supply ships from Cuban waters, ending
the potentially disasterous situation.
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pure strategies is thus de�ned as,

Si = {si : Ti → B | (si(ti), ti) ∈ Ci,∀ti} .

For an action pro�le b = (b1, b2, . . . bn), the expected payo� for player i is calculated
as,

ui(s) = Eω∼pi ui(ω, s1(τ1(ω)), s2(τ2(ω)), . . . sn(τn(ω))) .

A strategy pro�le of this Bayesian Game G =

〈
V,Ω,B, 〈Ti, Ci, ui, pi, τi〉i∈V

〉
is a Bayes-

Nash Equilibrium (BNE) if it is a pure or mixed Nash Equilibrium in the game G̃ = 〈V, Ã =
S1 × S2 × . . .× SN , u〉.

Analogous to the abundance of unsatisfactory Nash Equilibria in Sequential Games,
there may be many �implausible� Bayes-Nash Equilibria in a sequential Bayesian Game.
One solution to this issue is a re�nement called Perfect Bayesian Equilibria (PBE) that
extends Bayes-Nash Equilibria to the sequential setting. Instead of beliefs being placed on
the distribution of types, the beliefs are updated throughout the game, and each player
seeks to maximize their expected utility according to the updated beliefs at each step of
the game.

Recall in the Sequential Game, each node is labeled with the active player. We further
partition the nodes of each active player into information sets. The nodes of each informa-
tion set are indistinguishable from each other, from the active player's perspective. The
players know the game has arrived in a particular information set, but do not know which
node of the information set the game is currently in. The player's belief system assigns
probabilities to each node in the game tree where they are the active player, such that the
probabilities of nodes of each information set sum up to 1. The belief system is consistent
if the probabilities assigned to each node re�ect the probability that we reach that node
through the game tree (i.e. it is updated via Bayes' Rule).

Moreover, we say a strategy pro�le is sequentially rational at a particular information
set if the active player's chosen strategy maximizes her utility with respect to the strategies
of other players (in expectation), given her belief system. The strategy pro�le is sequentially
rational if it is sequentially rational at all information sets.

Finally, we say that a strategy pro�le and belief system is a Perfect Bayesian Equi-
librium (PBE) if (1) the strategy pro�le is sequentially rational given the belief system,
and (2) the belief system is consistent given the strategy pro�le (wherever possible). This
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�nal �wherever possible� caveat is an important one. Information sets that are unreachable
given the strategy pro�le cannot have probabilities computed via Bayes' Rule. They are
considered situations that are �unrealistic� and are said to be o� the equilibrium path, and
may be assigned arbitrary beliefs.

2.2 Social Choice and Voting

Social choice theory is the study of group decision making scenarios where a community of
individuals must collectively agree upon a single decision2. These scenarios may include the
fair division of resources between members of the community, the matching of individuals
needs to talents or resources, and the aggregation of the collective preferences of many
diverse individuals about a number of alternatives. We are concerned with the last scenario,
particularly when we are interested in �nding the top ranking alternative according to the
opinions of the community. This scenario is otherwise known as voting.

Voting may be objective or subjective in nature. In an objective setting, voters act
cooperatively as noisy sensors to reveal some hidden, underlying ground truth. For in-
stance, a panel of football judges may vote on whether or not the ball has crossed a
particular line. There is an objective �best� answer, and it is in the best interest of the
voters to select it. However, this thesis is primarily concerned with subjective voting, where
voters have di�ering, and frequently competing, interests in the outcome of the election.
Voter preferences are subjective, and voters will not necessarily vote sincerely. They may
reveal preferences that are di�erent from their true preferences in an e�ort to manipulate
the �nal outcome of the election. This is called tactical or strategic voting, and its e�ects
on the outcome of the election may be unpredictable and far-ranging. It is this strategic
voting behavior that is one of the two focal points of this thesis.

Strategic voting may be formulated as a game. Our n players V = {1, 2, . . . n} will
be our set of voters (or agents). They will be voting over a set of m alternatives (or
candidates), C = {c1, c2, . . . cm}. The action space for each voter is denoted by the set of
admissible ballots B, which depends on the voting system. The voting system will also
prescribe a social choice function F : B → 2|C| that maps the set of submitted ballots
b = {b1, b2, . . . bn} to a non-empty set of winners W . The winner set W is the outcome
of the voting game, and each voter i derives utility ui(W ) based on their utility function,
which is typically private information known only to the voter herself.

2We may further specify that we operate within the �eld of computational social choice, where we apply
techniques and concepts from computational theory and multiagent systems to the social choice domain.
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While utility functions may be de�ned arbitrarily over the outcomes, throughout the
thesis, we use a speci�c form of single peaked preferences. Each candidate cj advocates
a position p(cj) drawn uniformly and independently at random from some domain D.
Similarly, each voter i has a type pi drawn uniformly and independently at random from
D. The utility i derives from the election of candidate cj is de�ned as the following
function on the di�erence between the voter's preference and the winner's position: ui(cj) =
ui(pi, p(cj)) = −|pi − p(cj)|2. This particular quadratic formulation is frequently used by
social choice researchers, such as Myerson and Weber [100].

For brevity, we write ui to imply ui(pi, p̂) where the position of the candidate ci and the
position favored by the agent is clear from the context. Throughout this thesis, we will refer
to the social welfare of the elected outcome. If p̂ is the position of the elected candidate,
the social welfare SW (V ) is the sum of the utilities for all voters for that outcome:

SW (V ) =
∑
i

ui(pi, p̂) .

While voting systems vary greatly, we consider only resolute social choice functions,
which always chooses a single winner w ∈ C. Any non-resolute social choice function may
be made resolute by imposing a tie-breaking scheme, typically selecting a winner from
the set uniformly at random, or lexicographically. While some of our models extend to
other voting systems, we will focus on the plurality voting rule and its variations, both
because of its widespread use and for the sake of tractability. In the plurality voting
system, also known as �rst-past-the-post, each voter is invited to declare their support for
one candidate, and the candidate with the most support is the winner. In our terminology,
the set of admissible ballots is the set of candidates (B = C), and the resolute plurality
social choice function F = arg maxc |{bi : bi = c}|, breaking ties either lexicographically or
randomly.

Under lexicographic tie-breaking, we �x some strict linear order on the candidates.
Without loss of generality, we may assume the order to be (c1, c2, . . . cn). If multiple
candidates ci1 , ci2 , . . . cik are co-winners (i.e. tying each other for having the most number
of votes), then the winner returned by F is cmin(i1,i2,...ik). Under random tie breaking, F
returns ciz with probability 1

k
instead.
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2.3 Graph Theory

A graph is a mathematical way of describing relationships between objects. A graph
G = (V,E) is comprised of a set of n nodes (or equivalently, vertices) V = {1, 2, . . . n}, and
a set of edges E. We denote the existence of a relationship between distinct nodes i, j ∈ V
by the edge (i, j); the set E contains all such relevant edges. In an undirected graph, the
edges are unordered pairs (i.e. (i, j) ∈ E implies (j, i) ∈ E); in a directed graph, the
directed edges are ordered ((i, j) and (j, i) are distinct entities). Unless stated otherwise,
we forbid self edges. We use the terms graph and network interchangeably.

In an undirected graph, i and j are neighbors if they share an edge (i, j) ∈ E; we
may refer to all neighbors of i as Ni = {x ∈ V : (i, x) ∈ E}. The number of neighbors of a
node i denotes its degree, di = |Ni|. Analogously, in a directed graph, i has out-neighbors
←−
N i = {x ∈ V : (i, x) ∈ E} and in-neighbors

−→
N i = {x ∈ V : (x, i) ∈ E}, which di�er

via the orientation of edges. Note that these two sets need not be disjoint. We de�ne
out-degree dout and in-degree din analogously. We adopt the convention that the direction
of edges mark the direction of admiration; that is, the out-neighbors of i are exactly those
nodes that have in�uence over i. In sections utilizing both directed and undirected graphs,
we simplify notation by de�ning Ni as exactly those nodes who have in�uence over i, and
therefore refer to the neighbors in an undirected graph, and the out-neighbors in a directed
graph.

Social networks describe relationships between individuals within a community, and
can be represented as graphs. The nodes V represent entities in the social network. This
includes people, and may also include more abstract entities such as organization and
media outlets. An edge (i, j) ∈ E denotes a relationship between these two entities that
allows for an exchange of information. This edge may be directed (implying a hierarchical,
one-directional �ow of information) or undirected. The choice of notation of V for both
the set of vertices, and the set of voters is purposeful, as they represent the same entities
in scenarios where we consider voters operating within a social network.

2.4 Social Networks

Social networks are mathematical descriptions of how individuals interact in a community.
They capture how information from factual sources and subjective evaluations are trans-
mitted between people, and what social structures are present in di�erent communities.
As the Internet matures as a technology, more and more information about these social
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networks are captured as �big data�. At the same time, these online social structures wield
ever increasing in�uence over our lives at all scales � from the minutiae of our day-to-
day moods [79], to turnout at congressional elections [25]. It is therefore of paramount
importance that we understand the mechanisms by which social networks a�ect decision
making.

2.4.1 Opinion Dynamics

One major application of social networks is in modeling how individuals in�uence each
others' opinions. This �eld has been variously called opinion dynamics, di�usion of inno-
vations, and information cascades in networks, depending on the emphasis of the particular
mechanisms. In general, the �eld of opinion dynamics captures the idea that humans are
fundamentally social creatures that seek to exchange information and in�uence each ot-
hers' opinions through repeated interaction. A simple model of this process may represent
opinions by a simple value x as a real number from the interval [0, 100]. Each agent i has
such an opinion xi with some initial value. An interaction between i and j will cause their
respective opinions to shift closer together, xi ← f(xi, xj) for some function f . We defer
the discussion of related works in opinion dynamics to Chapter 4.

2.4.2 Knowledge Graphs

Many voting models that we will examine in Section 3.1 assume that the submitted bal-
lots are public knowledge. However, this is an unrealistic assumption for large elections.
Instead, we may consider that voters may only observe the actions of their neighbors in
their social network. This idea was �rst formalized by Pacuit, and Parikh as the Know-
ledge Graph model [104], and applied to computational social choice in a follow-up paper by
Chopra, Pacuit and Parikh [32]. In the latter paper, the authors propose a general frame-
work for limiting voting knowledge, restricting each voters' observations to their neighbors
in the knowledge graph. However, they do not de�ne any response behavior for individual
voters, nor explore the aggregate behavior of the population.

2.5 Random Graph Models

Random graph models refer to probability distributions over related graphs with interesting
or useful mathematical properties. Many random graph models have e�cient means by
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which we may sample from them. Some of these sampling methods are merely descriptive
of the �nal product, while others are generative and shed clues on how the network may be
formed. These graph models allow us to generate graphs that mimic real world networks
in important ways, on demand, and with control over parameters such as network size (i.e.
the number of nodes n) and edge density (i.e. the average degree of nodes).

Real world social networks also exhibit a number of important structural characteristics.
Two that we will focus on are the small-world and scale-free properties.

In small-world networks, the average distance between any two vertices in the graph
grows as a logarithm of the number of vertices. We expect information to travel quickly
through small-world networks, which may have an e�ect on the aggregate strategic behavior
of the population.

Real world networks are often scale-free, which means they are comprised of a handful
of highly-connected hubs and many sparsely connected vertices. Highly-connected hubs
may represent popular public �gures or mass media outlets. They may wield considerable
in�uence within the network. Scale-free graphs are so named because plotting the number
of vertices of a particular degree on log-log scale results in a linear trend. The connectivity
between highly popular, hub vertices follows a similar �scale-free� pattern as less popular
vertices.

2.5.1 Erdös-Rényi

The Erdös-Rényi (ER) random graph [56] is a standard graph model used in graph theory
literature. It is simple to construct and incorporates minimal assumptions. A (directed)
Erdös-Rényi random graph with connectivity probability p is constructed by considering
every admissible (directed) edge (i, j), and adding it to E with �xed probability p. An
ER graph exhibits the small-world property, but is not scale-free in general. Note that
the resulting graph may be disconnected. If a connected graph is required, we discard the
result and regenerate the graph.

2.5.2 Barabási-Albert

A Barabási-Albert (BA) random graph [9] with attachment parameter d is constructed by
iteratively adding vertices, and connecting them to d existing vertices with probability pro-
portional to their respective degrees. New vertices are preferentially drawn toward popular
nodes in the network in a process of preferential attachment. The result degree distribution
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follows a �rich get richer� scheme, resulting in a scale-free distribution of degrees. A BA
network also exhibits the small-world property as well.

The original BA model assumes an undirected graph. A number of models extend
the notion of preferential attachment to directed graphs. We use a simplistic extension
where edges from newly added nodes are oriented toward existing nodes in the network,
producing a strongly hierarchical network. Note that the attachment parameters for the
directed BA network must be doubled to preserve the same average out-degree as the
undirected network.

Figure 2.2 shows an undirected example from each random graph model. Both graphs
have 40 vertices and are parameterized so that each node has average degree 3.

Figure 2.2: Example of an ER random graph (left) and a BA random graph (right).

2.5.3 Homophily

Another property exhibited by real world social networks is homophily : the tendency
for people to connect and socialize with those sharing similar characteristics, beliefs and
values. This concept dates as far back as Plato, who wrote in Phaedrus that �similarity
begets friendship�. In their seminal work, McPherson, Smith-Lovin and Cook o�er a
survey of evidence that adults, in particular, preferentially associate with those of similar
political persuasions [90]. This e�ect is not only limited to individuals. Hargittai, Gallo
and Kane examined the link relationships between sites of top conservative and liberal
bloggers discussing political issues, and found homophily to be prevalent; i.e. sites were
much more likely to discuss and reference each other when they shared political views. Even
more importantly, upon examining the context of links between conservative and liberal
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blogs, they found that fully half of them were embedded with �straw-man� arguments that
reinforced the political position of the author by distorting the opposition's position [67].
This is especially relevant to voting because voters derive information about the election
from their neighbors in the social network. A homophily of opinions can lead to the so
called Echo Chamber E�ect, where a voter is surrounded by associates that share similar
beliefs, reinforcing its validity regardless of its merit. This is discussed in more detail in
Chapter 5.

We modify both the ER and BA graph models to incorporate homophily. Given a
homophily factor h(i, j) between two nodes i and j, we adjust the likelihood of a connection
between i and j by a multiplicative factor of h(i, j). Formally, in an ER graph with
parameter p, the probability that a (directed or undirected) edge (i, j) exists is h(i, j)p.
In a BA graph, the probability that a new vertex i connects to an existing vertex j with
degree dj is djh(i, j)/Z, where Z is a normalizing constant. We denote the modi�ed graphs
the hER and hBA models.

Our modi�ed ER graph model with homophily is an example of Latent Space Models,
where individual nodes have real valued attributes and the probability of an edge between
two nodes is a function of the attributes of those nodes [72]. A more recent survey on
general spatial networks is available at [14]. A similar model exists in the Social Distance
Graphs [22], where connection probabilities are inversely proportional to a measure of social
distance (dissimilarity) between two agents.

19



Chapter 3

Related Work

In this chapter, we will survey the existing literature, from the multi-agent systems and
wider social choice communities, on models on voting mechanisms and voter behavior, as
well as the e�ects of social networks on information propagation and decision making.

3.1 Voting Models

In this section, we examine several models of voting. These papers examine the process
of voting from a game theoretic perspective, with an emphasis on equilibrium solution
concepts, winner determination, and computability. Unless stated otherwise, we presume
that the plurality voting system is used to determine the winner. Indeed, the use of
plurality voting scheme is integral to many of the papers mentioned in this section.

3.1.1 Voting Equilibria

Nash Equilibrium is a central concept in game theory. At Nash Equilibrium, each player is
playing a strategy such that no single player will pro�t from deviating from that strategy.
While useful in many settings, it breaks down in large games involving many players, such
as voting games: any outcome where the winner exceeds the runner-up by more than 1
ballot is a Nash Equilibrium. In their seminal work, Myerson and Weber [100] extend Nash
Equilibrium to voting games, creating voting equilibria. The concept is motivated by the
importance of electoral polling prior to the voting process, and how it impacts the voting
behavior of the population. Electoral polls may be used to determine the set of �viable
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candidates� that have a reasonable chance of winning the election, allowing strategic voters
to possibly abandon their favorite candidates in favor of a more promising second-choice.

In their model, the result of the poll is modeled as a set of pivot-probabilities p = pi,j
between each pair of candidates i, j. This is the probability that a single ballot supporting
i will change the winner of the election from j to i. While technically a possible outcome,
three-way ties are considered vastly less likely and assigned a probability of zero to make
the problem tractable. Each voter has a type corresponding to a vector containing the
utilities they derive for each candidate being elected; ballots (which are positional scoring)
are cast strategically to maximize their expected utility given the probability of casting a
pivotal vote.

We say pivot-probabilities p justi�es an electoral result µ (itself a probability distribu-
tion over candidates) if µ is in the set of possible responses of voters reacting strategically
based on p. We say p obeys the Ordering Condition for µ if candidate i has a higher
expected score than j in µ, then pi,h ≥ pj,h for any third candidate h.

Then an election result µ is an Voting Equilibrium if there exists pivot probabilities
p s.t. p justi�es µ, and obeys the Ordering Condition of µ for all ε > 0.

Myerson and Weber establish that all election scenarios have a non-empty set of vo-
ting equilibria. More importantly, if µ is a voting equilibrium, then there exists pivot-
probabilities q justifying µ s.t. qi,j > 0 only for candidates that have the top two maximal
expected scores. That is, no voter will vote for a third place candidate.

While the Voting Equilibrium is a powerful solution concept for capturing plausible
outcomes of an election, it gives no indication of how the voters arrive at that outcome.
Throughout this thesis, we will explore various models of voter behaviors that arrive at
similar solution concepts.

3.1.2 Poisson Games

Myerson also propose an alternative method for modeling elections, in the form of Large
Poisson Games, �rst proposed in [98] and further expanded on in [99]. The Poisson Game
models the voting process by assuming that the number of voters is uncertain, following
a Poisson distribution. This allows us to decouple the distribution of voters supporting
one candidate from those supporting another (called the Independent Actions property).
The paper also proposes a mechanism for estimating the probability of pivot conditions
between candidates in a 2-candidate election.
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In a Poisson Game, the number of voters is given by a Poisson Distribution, parame-
terized by the expected number of players n. The probability that there are k voters is
given by P (k|n) = e−nnk/k!. Each voter has a type drawn independently from T accor-
ding to some distribution r. Each voter casts a ballot from the set of admissible ballots
C, receiving a payo� according to utility function U based on the outcome of the vote and
the voter's type. A Poisson Game (which can be generalized beyond the voting setting) is
fully parametrized as the tuple (T, n, r, C, U).

Let each voter act according to a strategy function σ, where σ(c|S) is the probability
that a voter having a type in S ⊆ T will play action c ∈ C. Since each voter acts
independently, the number of voters playing any action c ∈ C is itself a Poisson random
variable, with mean nτ(c), where τ(c) is the probability any given voter in the population
plays action c. This is the aforementioned Independent Actions property.

Another interesting property exhibited by the Poisson Game is Environmental Equiva-
lence. Given a Poisson Game with players distributed according to Poisson(n), from the
perspective of a player within the game, the number of other players in the game is also
distributed according to Poisson(n) (i.e. not n − 1). This is because the fact that the
player was chosen to be part of the game in the �rst place, suggests that the game has
many players. This exactly cancels out the e�ect that the number of other players must
be 1 smaller to account for the perspective player.

These tools allow us to calculate the exact tie probability between two candidates. For
instance, in a plurality election with two candidates 1 and 2, where a tie is broken randomly,
the probability that casting a ballot for candidate c ∈ {1, 2} will be pivotal (cause c to
win, where c was not winning) is given by

v(c|nτ) ≈ en(2
√
τ(1)τ(2)−τ(1)−τ(2))

4
√
πn
√
τ(1)τ(2)

√
τ(1) +

√
τ(2)√

τ(c)

where τ(1) is the probability a given voter in the population will support 1 (and likewise
for τ(2)), and n is the expected number of total voters. The ≈ symbol denotes that the
function v converges to the correct probability as n→∞.

In Chapter 6, we extend the solution of the Poisson Game to a multi-candidate election
to obtain a voter heuristic that is both fast and accurate.
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3.1.3 Local Dominance

Meir, Lev and Rosenschein [94] expand on the concept of Voting Equilibria pioneered
by Myerson and Weber. They construct a framework for examining equilibria in various
auction types as well as produce a behavioral voter model that has certain desirable pro-
perties (called the �Desiderata for Voting Models�); most notable amongst these criteria,
they require their model to be predictive (able to predict a small but nonempty set of
possible winners) and realistic (computationally feasible for human voters and accounting
for limited knowledge; most importantly, they should not be required to compute exact
probability).

In Meir's model, voters' observation of the electoral situation is limited to the retrieval
of a set of possible winners. Each voter then iteratively revises their votes based on their
private preferences. The system is at a Voting Equilibrium if no revision occurs.

The authors analyze the system using a strategic voter model where the set of possible
winners are exactly those candidates that are within r votes of the current winner. If this
set is empty, they default to voting truthfully. They �nd that when vote revision is done
in a sequential manner (i.e. with an external scheduler) and starts from the truthful state,
it always converges. They conjecture that it will also converge if starting from an arbitrary
state. However, if voting is simultaneous, then cycles can occur.

The paper also presents a simulation to analyze the behavior of the electorate under
varying conditions. The most important tuning parameter was r. They �nd there is
a �peaked� value for r (not too high and not too low) where voters are most strategic
(i.e. reporting anything other than their favorite option), and social welfare is maximized.
When they repeat the simulation with heterogenous r values, they �nd this e�ect is less
pronounced.

In Chapter 6, we extend Meir's Desiderata to the social network domain, and consider
other plausible and tractable heuristics for voter behavior.

3.1.4 Sequential Voting

Sequential Voting occurs in T rounds, where each voter vi has been assigned to vote in some
round ti a-priori. Voting within each round occurs simultaneously amongst voters assigned
that round, and each vote has full knowledge of the history of voting in prior rounds. Dekel
and Piccione [44] are the �rst to compare the results of Sequential Voting with that of a
simultaneous voting. They consider a setting with m = 2 alternatives, where each voter
has a private, noisy signal on the utility she would gain from each alternative. They show
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that any symmetric equilibrium using informational strategies in the simultaneous game
is also an equilibrium in any sequential game, and therefore, information cascades in the
sequential game do not a�ect its ability to aggregate information. However, it does leave
open the question of whether the sequential game admits uniquely sequential equilibria.

Battaglini [16] further extend this work by making voting costly and allowing one to
avoid this cost by abstaining. He shows that even a small cost of voting (i.e. lost pro-
ductivity and time) substantially changes the equilibria in the sequential and simultaneous
games, and that they are generally disjoint. When voters are allowed to abstain, simulta-
neous voting is uniformly more informative than sequential voting. Moreover, Battaglini,
Morton and Palfrey [17] establish in both theoretical models and in laboratory experiments
that early voters bear a larger cost when they choose to contribute to the information ag-
gregation process.

Desmedt and Elkind [46] explore strategic behavior in Sequential Voting with abstention
with multiple candidates. They show how the subgame perfect Nash equilibrium may be
computed, and that when there are more than 3 candidates, the equilibrium behavior of
voters is complex and sometimes counterintuitive. The outcome of the election is sensitive
to the risk adversity of the voters, and the voter order.

3.1.5 Sequential Voting and Herding

Callander [29] proposed a voting mechanism for exploring the so-called �bandwagon� or
�momentum� e�ects highly publicized in American primary elections. This mechanism is
founded on the behavioral notion that an agent becomes invested once they commit to a
particular option, and therefore derive utility for having voted for the winner (in addition
to the objective utility associated with the winning candidate). Conceptually, it may be
easier to frame this model via social network phenomena such as �Liking� on Facebook or
�Retweeting� on Twitter, which presents a publicly visible vote as a public show of support
for an idea. The model is also applicable in any setting where voting occurs sequentially
and your votes become public knowledge. For example, when electing a new department
head with public voting, it is not only pro�table to elect your preferred candidate, but it
would also be ideal if you had voted for the eventual winner.

Callander's model is based on Sequential Voting with two alternatives A and B, where
the world exists in one of two states corresponding to whether A or B is the better alterna-
tive. Voters all have the same preference for electing the correct alternative, but also derive
additional utility for having voted for the winner. Each voter has a private, independent,
noisy signal on which candidate is better. There are a countably in�nite number of voters,
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and the winning candidate is one that maintains a lead in the limit (or a tie, if there is no
limit). Voters arrive one-by-one to cast their ballots, knowing the current standings from
prior ballots. Based on this standing, voters may cast an informative ballot according to
their signal, or cast an uninformative ballot, following the current leader. It is this latter
case that leads to the �bandwagon� e�ect.

Callander observes that the bandwagon phase is inevitable as the size of the population
grows large, and can form a Perfect Bayesian Equilibrium. Conversely, there are no PBE
where all voters only vote informatively. Surprisingly, sometimes a voter will strategically
vote against her preferred candidate, even if he is currently winning, in order to elicit more
information from other voters (termed �Buyer's Remorse�). Callander also examines the
amount of informativeness of voting under these conditions. Each election proceeds from
an informative phase where votes help aggregate the private opinions of voters, before
entering an uninformative cascade phase. Surprisingly, even under strong preference for
conformity, and a population size that converges to in�nite, some degree of information
can be extracted.

Alon et al. [10] examine an alternative formulation of the sequential voting model, where
preferences are subjective and private. Speci�cally, each voter has, a-priori, a preference
for either A or B (with equal probability). Each voter derives maximum utility from
voting truthfully and winning, but failing that, the agent would prefer voting strategically
(opposite of their preference) and having that vote match the winning candidate (whom
they do not prefer).

As before, there are a countably in�nite number of voters. In this version of the
election, the winner is determined by establishing a leading gap of size M > 0. Each
voter will follow a threshold strategy, where they will vote truthfully unless the opposing
candidate has established a lead of size at least 0 < r ≤M . They establish that the unique
symmetric subgame perfect Nash equilibrium is a threshold strategy where r depends only
on the agent's prescribed utilities, and surprisingly, does not depend on M .

Finally, Gaspers, Naroditskiy, Narodytska, and Walsh [63] examine the possible and
necessary winner problem in Sequential Voting (which they term �social polls�) when con-
ducted in a social network setting. Based on examining a strict subset of ballots, a candi-
date is a necessary winner if no arrangement of remaining ballots will prevent the candidate
from winning; a candidate is a possible winner if there exists an arrangement of remaining
ballots that allow the candidate to win. They �nd that the possible winner problem is
NP-hard to compute, but propose an e�cient algorithm for �nding necessary winners.
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3.1.6 Stackelberg Voting

Xia and Conitzer [134] examine a variation of Sequential Voting called Stackelberg Voting,
where a �nite number of voters play the game with subjective but public preferences. It
is clear that the extensive form game can be solved using backward induction, but the
game space is infeasible. The paper presents a dynamic programming algorithm, utilizing
compilation functions that solves this program in polynomial time.

They also analyze the strategic behavior of such agents, as they are able to fully deter-
mine the future actions of voters following them in the voting sequence. Their results are
based on the dominance index DIr(n) of various voting rules � the minimum number
of voters beyond half the population (i.e. b(n/2)c) needed to ensure a candidate's victory.
The authors �nd that, for voting rules with a low dominance index, the backward-induction
outcome for strategic voters can result in a highly suboptimal alternative being selected.
In particular, for n− 2DIr(n) voters, the winning alternative will be ranked either last or
second-to-last place. Simulation results, however, show that more voters prefer the winner
obtained from backward-induction, over the winner obtained by a truthful (nonstrategic)
voting.

3.1.7 Iterative Voting

A more recent line of inquiry inspired by Myerson and Weber is Iterative Voting [95].
Similar to Sequential Voting, Iterative Voting proceeds in rounds, with the crucial di�erence
that voters may choose to revise their ballots in subsequent rounds. Formally, voting
begins with some initial con�guration of ballots from the voters (for example, their truthful
ballots). Voters have complete information on the current ballots. In each round, voters
respond to this interim outcome by revising their ballots if it will yield a better outcome.
This may occur simultaneously or one at a time. Iterative Voting is guaranteed to converge
from a truthful state under plurality and veto [84, 95]. Branzei et al. have also investigated
average utility of voters, using iterative voting under di�erent voting rules (Plurality, Veto
and Borda) [27]. They de�ne the Dynamic Price of Anarchy (DPoA) to be the worst
case ratio between the social welfare of the winner elected under truthful voting versus
strategic voting. This is similar to our de�nition for Price of Honesty used in Chapter 5.
Since their model does not operate under a social network, they are able to compute
analytical bounds for DPoA under di�erent voting rules. Similar to us, they show that
strategic voting improves the elected outcome under Plurality. Other work incorporates
voters who are truth biased (who prefer voting sincerely if they cannot otherwise a�ect
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the outcome), lazy (who prefer abstaining, all else being equal) [111], or optimistic (who
assume some �xed number of voters may be swayed to their cause) [102].

The voter models presented in Chapters 5 and 6 generalize Iterative Voting to a domain
of incomplete information. While Iterative Voting assumes voters have complete informa-
tion on the current state of the election, we assume that the social network restricts the
visibility of information to only a voter's social network neighbors. Iterative Voting, then,
is a special case within our more general framework, where the voters are embedded in a
complete network.

3.1.8 Modal Logic Voting Models

An alternative approach to modeling voters is the epistemic approach �rst formalized by
Chopra, Pacuit and Parikh [32]. They highlight that in order for Gibbard-Satterthwaite's
results to apply � that any useful voting system must allow for strategic voting � the
strategic voter must possess appropriate knowledge of the preferences of other voters. A
voter with limited knowledge of the actions of other voters has little ability to formulate a
strategic ballot. To formalize the notion of the partial knowledge available to voters, they
apply techniques from modal logic. They de�ne a logical language of Boolean formulae
that captures voter preferences, and their knowledge (or lack of knowledge) of each others'
preferences. They show how the formulae may be updated as voters change their ballots.
These dynamics result in a voting process that proceeds in rounds. The authors compare
earlier rounds to pre-election �opinion polls�, which help inform voters' �nal decisions in
the last round.

Van Ditmarsch, Lang and Sa�dine [131] extend this work by specifying a plausible
voter responses to di�erent states of partial information. They introduce knowledge pro-
�les and information sets to the model. A knowledge pro�le corresponds to a particular
con�guration of ballots and epistemologies (i.e. voters' knowledge of each others' ballots).
For each voter, the model de�nes a number of information sets, each of which contain a
non-zero number of knowledge pro�les. At any point in time, each voter knows which in-
formation set they are in, but cannot distinguish between the knowledge pro�les within the
set. The authors formalize several types of manipulations, and posit that voters manipu-
late based on a �pessimistic� (risk-averse) heuristic. Each voter associates each information
set with the worst possible outcome from the knowledge pro�les within that set, and casts
her ballot to best mitigate this worst case outcome1. This epistemic voting game is at an

1We use the game theoretic term �information set� here for brevity. In the paper, the authors de�ne
states corresponding to con�gurations of ballots and epistemology in the voting game, and an �indistin-
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equilibrium if no voter wishes to revise her ballot.

3.2 Voter Behavior

In this section, we survey literature that focuses on the behavior of individual voters,
including observations from laboratory experiments or models designed to mimic human
behaviors.

3.2.1 Pólya's Urn Model

Perhaps one of the earliest attempts to model a voting process is Pólya's Urn Process by
Eggenberger and Pólya [108].2 Pólya's Urns is a sampling process that may be interpreted
as the opposite of sampling without replacement. The process begins with an urn contai-
ning a �nite number of balls, each painted with one of m ≥ 2 colors. At each step, a ball
is drawn from the urn independently and uniformly at random; the ball is returned to the
urn with a duplicate ball of the same color. The resulting distribution of colored balls in
the urn forms a Dirichlet-multinomial distribution, or a multivariate Pólya distribution.

While Pólya's Urn Model has been extended in a number of interesting ways, the
basic urn model can be interpreted as a Bayesian model for voter behavior: The current
distribution of urns represents both the current tally of votes, and a distribution of future
voter behavior. Moreover, a Bayesian update is performed after each ballot to revise future
voter behaviors.

3.2.2 Approval Voting in Doodle Polls

Zou, Meir and Parkes [135] examine over 340,000 polls from the popular social polling
website Doodle (restricted to the U.S. to avoid cultural confounds). Doodle allows users
to conduct a quick Approval election for selecting time slots for an activity. The polls can
be constructed to be open (users are expected to enter their names with their publicly
revealed ballots) or closed (anonymous voting, with ballots visible only to the organizer).
The paper examines the data for common trends and di�erences between open and closed
polls, �nding the following tendencies:

guishability� equivalence relations between states for each voter.
2 The original article [108] is written in German. We use the de�nition provided at [6].
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• Open polls show higher average availability.

• Both polls have monotonically increasing correlation with previous responses. Open
polls have higher correlation. Correlation in closed polls may be from intrinsic po-
pularity of some slots.

• In open polls, voters will approve a popular slot more often than in closed polls.

• In open polls, voters will approve an unpopular slot more often than in closed polls.

• In open polls, a person who approves a highly popular time slot is more likely to
approve an unpopular time slot; but is also unlikely to approve a time slot of inter-
mediate popularity.

The paper constructs a model in which voters cast their ballots in a �xed order and, in
the open poll system, have a behavioral response function that examines the current state of
the poll to produce a sensible ballot to maximize expected utility3. After considering several
plausible behavioral functions (Random Cuto�, Random Cuto� restricted to Popular slots,
and the Leader Rule), the authors propose Social Voting which attempts to also increase
the number of slots approved (so the user does not appear to be �too picky�) while avoiding
selecting lesser candidates; this is done by approving a number of slots of lower utility but
are also Unpopular (and thus will be unlikely to win). Simulations show that Social Voting
produces similar results as those observed in open polls.

Obraztsova, Polukarov, Rabinovich and Elkind [103] propose the Doodle Poll Game
capturing this behavior, where users derive additional utility from appearing to be available.
Reinecke et al. [113] have also examined how Doodle voting behavior may be a�ected by
national culture and social norms. Our work on strategic timing in Chapter 7 establishes
an alternative framework for examining open polls. Crucially, we are the �rst to consider
the timing of participation to be an important element of participant strategy.

3.2.3 Observing Human Strategic Voting Behaviors

Eckel and Holt [52] examine human strategic voting behavior in an agenda-controlled
committee sequential voting environment. Their experiment occurs in successive rounds.

3It is interesting to note they do not consider the question of when users choose to vote. In an open
poll, it is easy for a user to visit the survey, inspect the results and decide to return at a later time of their
choosing.
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In each round, the voters cast a ballot in favor of two strict subsets (�options�) of remaining
alternatives until only one alternative remains. The voters receive a predetermined and
randomized monetary payo�, which establishes their (privately known) preference over the
alternatives. A neutral third party �sets the agenda� by determining which subsets are to
be voted over ahead of time. In their experiment, they consider only three alternatives,
and each round eliminates one alternative from the running.

The authors consider three types of voting behavior from Plott and Levine [107]: Sincere
Voting where the voter selects the option containing her most preferred item over one that
doesn't (and working her way down her preference list); Avoid Worst Voting where the
voter selects the option omitting her least preferred item over one that contains it (and
working her way up her preference list); and Average Value Voting where the voter treats
all items in the options as being equally likely (and is risk neutral).

The exercise was repeated with the same group to examine longitudinal learning e�ects
(with preferences being reshu�ed after each instance of strategization4). This exercise
series was repeated across several groups. Over the course of the experiments, certain
patterns emerged. There was evidence of strategic voting in the �rst meeting, but signi-
�cant learning e�ects (i.e. strategization) were present through the course of each series
of meetings. Strategization was most frequent when preferences were not changed, which
allowed the voters to learn each others' preferences. Finally, once an individual behaves
strategically, they are very likely to continue to do so.

Me�ert and Gschwend conducted several experiments to investigate how strategic vo-
ting occurs in human participants [92, 93], focusing on coalition formation in governments
with proportional representation, which they view as a more realistic scenario for strategic
voting to take place. In these elections, parties win a number of seats proportional to the
number of votes they receive, though often only when they have at least some threshold
percentage of supporters (typically 5%). Frequently, these elections do not produce a single
party with majority seats, and so the dominant party must form a coalition with a smaller
party. This complicates the decision process of a voter, because they must decide between
supporting the dominant, or helping elevate their favored small party to the 5% threshold.

Me�ert and Gschwend initially begin by conducting economically motivated experi-
ments [93], where they constructed �ctitious election scenarios where participants played
the role of a strategic voter. Each �ctional party held some position in a policy space, and
voters were rewarded with monetary incentives to vote in a way that elected a government
closest to a given position in the policy space. A coalitional government held a position

4The experimenters determined that once the group adopted a strategy, they would continue to use
that strategy unless the pro�les were changed.
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that is the average of their members (weighted by vote count). The experimenter manipu-
late pre-election polls and other election information to set experimental conditions. They
found that voters exercised certain heuristics when determining who to vote for:

1. They avoided parties distant to themselves in the policy space.

2. They avoided isolated parties (who were unlikely to be recruited by a dominant party
anyways).

3. They avoided small parties, who were unlikely to pass the threshold or contribute
enough votes to a dominant party to majority.

They also investigated the role of coalition signaling, a political strategy where a party
explicitly announces a proposed coalition (or explicitly rejects the possibility of one), and
found that to be a signi�cant component of voter heuristics.

The authors follow the above study with a second investigation [92]. They claim that a
monetarily motivated scenario is unrealistic, and its conclusions may not generalize to real
elections. In this follow-up experiment, they manipulate election information embedded
in the context of two actual elections in adjacent states in Germany. Participants were
asked about their party preferences and sorted into one of the states that best re�ected
those preferences. This allowed for manipulations that would appear �realistic� to the
participants. In this study, the authors found that both political sophistication (prior
knowledge of politics) and time spent examining poll information to be the main factors
that led to e�ective strategic voting decisions; however, the two factors are substitutive �
a political non-savvy person could �make up for it� by spending more time studying the
polls. The authors also identify a signi�cant number of voters who voted insincerely, but
non-strategically (i.e. did not utilize polling information). The authors claim these voters
�reacted passively� to signals advertized by the various parties without verifying their
credibility. Only 5% of all participants identi�ed themselves as having made strategic
considerations while voting.

Poncela-Casasnovas et al. [109] investigate the modes of human behavior when they are
engaged in games in a controlled �within subject� experimental setting. That is, they are
concerned with how the same subject treat di�erent variations of 2-player cooperate/defect
games. They focus on four types of games: the classic con�ict games of Prisoner's Dilemma,
Stag Hunt, and Snowdrift Game; in addition to the Harmony Game where both players
receive the maximum award if they both coordinate.

31



They treat the experimental data without assumptions on player behavioral types, and
perform unsupervised clustering on player strategies based on the frequency of coordina-
tion in each of the game types. They �nd that players can be classi�ed with high �delity
into only one of 5 types. Optimistic players seek to maximize their own payo�, regardless
of whether their opponents will cooperate. Pessimistic players maximize their minimal
payo�, displaying risk-averse behavior. Envious players seek to maximize the payo� di�e-
rence between them and their opponents. Trusting players always play Cooperate. And
�nally, 12% of players are classi�ed as Unde�ned who appear to play the game randomly.

Tal, Meir and Gal [124] study online human voting behavior in response to poll infor-
mation. They conduct experiments on Amazon Mechanical Turk where participants are
given preferences (in the form of small monetary rewards) for playing in a plurality voting
game. The game may be one-shot, where poll information is �ctitious; or it may be a game
of Iterative Voting with other participants. Aside from a small number of erratic voters
(who act randomly), most voters exercise either the �default� option (a truthful ballot
in the one-shot game, or maintaining the same ballot in an iterated game), or utilized a
myopic best response.

Reijngoud and Endriss have also modeled how voters might respond to information
from a series of polls [112]. In their paper, they de�ne poll information functions (PIF) for
summarizing the information present in the current ballot pro�le. For instance, the PIF
may only report the current winner, or may report the current score for each candidate
in an election using position scoring rule. A voter may then use this information to alter
their ballot to their bene�t. In their model, voters have ordinal preferences (i.e a strict
ordering over candidates) and will only change their ballots when there is a guarantee that
they will not be worse o�. They analyze the susceptibility and immunity to manipulation
of di�erent voting rules and PIFs, with expanded results in a follow-up paper by Endriss,
Obraztsova, Polukarov and Rosenschein [55]. In general, the two papers show that many
voting rules (including Plurality, k-Approval with k < m− 1, Borda, Copeland and Max-
imin) are susceptible to manipulation with the PIF reveals the score vector or even only
the winner. Notably, Veto is immune to manipulation when only the winner is revealed
and susceptible when the full score vector is revealed. They also establish that Borda,
Copeland and Maximin are susceptible when the PIF reveals the graph encoding pairwise
majority winners.

3.2.4 Strategic E�ects of Early and Late Ballots

Dekel and Piccione[45] explore the information asymmetry that exists when voters cast
their ballots earlier or later in a sequential voting process. They consider plurality with
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N ≥ 4 voters and m = 3 candidates. Voter preferences are randomized and private. Voters
must choose to cast their ballot in one of two periods; this choice is chosen prior to the
election, and indeed prior to the voters' own preferences are realized. The choice of time
periods is made simultaneously and then made public. Voters who chose to go in period
one cast their ballots �rst, simultaneously; this interim result is revealed to all remaining
voters, who cast their ballots simultaneously.

The authors posit, as we do in Chapter 7, that voter timing is in�uenced by two mo-
tivations: early voters establish the lead runners of the race, while later voters are less
likely to �waste� their ballots on hopeless candidates. Under their model (and certain
assumptions on voter strategies), Dekel and Piccione show that the latter e�ect by far
dominates the former, and in most cases, all voters will choose to go in the second pe-
riod, making the sequential voting outcome (equilibrium) equivalent to the simultaneous
outcome (equilibrium).

To formalize their model, let ω = {1, 2}N be the set of all possible timing choices made
by the N voters, H2(ω) be the set of all possible ballots collected in period 1 (i.e. all
possible histories when arriving in period 2), and H1(ω) be the empty history. Then, a
mixed strategy si(ω) for player i maps a history H ti(ω) and the type (preferences) of i to
a distribution over the candidates (probabilities for casting di�erent plurality ballots).

A strategy si is persistent if (1) i votes for her most preferred candidate in period 1
and (2) i votes for her most preferred candidate who can still possibly win in period 2.
Assuming voter strategies are symmetric across voters and candidates, the authors show
that in a game where all voters use persistent strategies, and N ≥ 6, the sequential voting
equilibrium has all voters voting in period 2, and thus is equivalent to the simultaneous
equilibrium.

In order for the sequential equilibrium to be di�erent, voters must not be persistent.
This may happen if their utility for electing their second favorite candidate is closer to their
top choice. If this is true, then the voters show that there cannot exist a pure strategy
equilibrium where all voters vote in the same period.

Dekel and Piccione's model di�ers from our alternative model of vote timing, proposed
in Chapter 7, in several important ways. The primary di�erence is when agents choose
their timing strategy. In their model, agents must choose their voting period a-priori, in
fact, before they even known their own preferences. We view this assumption as unrealistic.
Even in structured environments such as the U.S. primaries, individual states learn enough
of their preferences over time to argue for shifting the timings of primaries. We propose
that the decisions of when to cast and which ballot to cast are the same decision, made
in each period in a Markovian process (i.e. each history maps to a decision to either wait
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or to commit a particular ballot). Note that even in a 2-period scenario, the two models
are not identical. While the decision of whether to wait or to commit for the �rst period
is made in the absence of any ballot information, in our model, agents already know their
type. A more detailed discussion of our results and how they contrast with those obtained
in several of the aforementioned works is reserved for Chapter 7.

Morton and Williams [97] examine informational e�ects of elections that happen in
stages where some subset of voters must cast their ballots �rst, and subsequent voter may
make use of the observed voting patterns in their own assessment of likely electoral out-
comes. Their experiments are inspired by the United States primaries, which are a series
of elections held in sequence through the U.S. states, where elections held later in the
sequence may make use of the electoral results of earlier states to make more informed
decisions. The 2000 Republican convention posited that this would lead to �better� out-
comes.5 In political science, it is suggested that �front-loaded� primaries (i.e. primaries
held close together, limiting informational e�ects) favored well-known candidates, while a
more spread out primary allowed �dark horse� candidates to be discovered by the voters
and build support [39]. Our results of Chapter 7 support this hypothesis.

The authors use monetary incentives to drive voter preferences in their laboratory
experiments. Voters were assigned randomly one of three (private) types: left, moderate
and right. They cast a single plurality ballot in favor of one of three candidates: x, y, or
z. The candidates were assigned to one of three allegiances, but only one of the candidates
would have their types revealed. Voters received a utility of 1 for electing their �rst
preference, 0 for their last preference, and α for their second preference. The experimental
parameter α, then controlled the risk adverseness of the voting population (the left and
right voters, speci�cally, who may pick a moderate candidate if they are revealed, versus
taking the lottery on the 2 remaining candidates).

In the simultaneous condition, all voters cast their ballots at the same time, having
only known for certain the a�liation of one candidate. In the sequential condition, half
the voters were randomly selected to cast their ballots �rst (after learning one of the
candidates); the other half voters can then view their voting behavior, however, they did
not know the identity of the candidate revealed to the �rst group and instead, learned the
identity of a di�erent candidate. Some groups in the sequential condition were additionally
privy to the distribution of voter types in the initial group; these were called the �high
information condition�.

The authors analyze equilibirum strategies in each of these conditions, using Myerson
5Both the Republican and Democratic conventions award bonus delegates to incentivize states that

scheduled their primaries later in the sequence.
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and Weber's concept of Voting Equilibria [100]. In the simultaneous condition, voters act
myopically since they have only limited information to work with. But in the sequential
condition, the �rst group acts as in the simultaneous condition, but the second group may
converge to multiple sequential voting equilibria, depending on the information revealed
by the �rst group and their own risk-adverseness.

In the laboratory experiments, the authors found that the candidate revealed �rst in the
sequential conditions were less likely to win than those revealed in simultaneous conditions.
More importantly, the moderate candidate is more likely to win in the sequential condition
than the simultaneous condition. Informational e�ects were more di�cult to tease out, but
the authors found clear evidence that voting behavior in the second group in the sequential
condition were noticeably di�erent than the simultaneous condition; moreover, this e�ect
was more pronounced in the high information condition, and when α was high (voters were
risk averse).

In related, non-voting literature, Sandholm and Vulkan [117] examine bargaining ga-
mes in distributed systems where agents have externally imposed deadlines. Prior to their
deadline, agents may negotiate with each other by making o�ers in continuous time. Inte-
restingly, they �nd that the sequential equilibrium behavior for the agents is to wait until
the deadline, at which point they will concede fully. This is due to the informational e�ect
that accompanies making an early o�er, which signals a weakness in bargaining position.
Moreover, an accepted o�er shows that the o�erer has already conceded too much, and
would have been better o� by waiting.

3.3 Voting in Networks

Finally, we survey current literature that speci�cally examine the topic of voting in social
networks.

3.3.1 Preference Aggregation in Social Networks

In their paper, Dhamal and Narahari [47] describe a method by which preferences can
be aggregated over a social network e�ciently by only eliciting the preferences at certain
critical nodes within the network. Their method �exploits network structure and homophily
of relationships�. In their tests, the method works well for networks that exhibit homophilic
properties, with certain assumptions on how much deviations voters' preferences may have
from those critical nodes.
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To obtain data to validate their method, the authors employ a survey spread along
the social network via known �seeders�, with an option for completing the survey anony-
mously to address privacy concerns. A total of 26 participants completed the survey, and
homophily is demonstrated within the network. Using this data, the authors are able to
calculate the preference-similarity matrix between the users. They also propose a way for
estimating the similarity matrix when such data is unavailable: for connected neighbors,
the amount of similarity is related to the cliqueness coe�cient (a measure of the �clusters�
that both voters belong to); for unconnected neighbors, the amount of �dissimilarity� is
related to the shortest path between the two nodes.

Feldman et al. [59] examine the convergence of opinions within networks that resemble
large social networks. Large social networks are characterized by being expansive (no
sparse cuts) and sparse (low edge density). In previous studies, Bayesian learning models
favor sparsely connected graphs, since highly-connected graphs lead to the suppression of
useful information. However, majority dynamics models rely on a well-connected network
without highly in�uential individuals to perform. Thus, there is a tension between the
models on the type of graphs that information propagation operate well on.

The authors suggest a model that incorporates the asynchronous element from the
Bayesian learning models within a majority dynamics model. Formally, each vertex in the
graph receives one of two private signals about the ground truth of the world: blue, and
red. They receive the correct signal with probability δ > 0.5. All vertices in the graph
begin in a third uncolored stated. At each stage, a vertex v is selected uniformly at random
to be updated. v takes the color of the majority of its neighbors who have declared a color,
breaking ties in favor of its private signal. Note that the update will turn an uncolored
vertex to one of two colors.

The paper investigates the performance of their dynamics model on λ-expander graphs.
De�ne the weighted adjacency matrix M as follows:

M(x, y) =

{
1√

d(x)d(y)
, if (x, y) ∈ G

0, otherwise

Then a λ-expander graph is a graph whose weighted adjacency matrix have all but the
�rst eigenvalue laying within [−λ, λ].6

The authors go on to show that the dynamics are guaranteed to stabilize over time via
a potential function (on any graph). They also extend Condorcet's Jury Theorem to any

6Expander graphs are generally considered to be sparse graphs that are strongly connected; i.e., they
lack small subsets of edges whose removal disconnect the graph.
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λ-expander graphs with �xed degree d ≥ 6λ; that is, as n → ∞, the probability that the
network converges to the correct result approaches 1.

3.3.2 Exploring Duverger's Law

Clough [33] examines the applicability of Duverger's Law in social networks using agent
based modeling. Eschewing the assumption of global information or common shared belief,
Clough's model allows each agent to vote strategically based only on the information
present from those �nearby� in their network. The model is dynamic and agents revise
their votes over time. Only plurality voting is considered.

Formally, each agent in the model has a preference drawn uniformly from [1,100]; each
party (�alternative�) has an agenda drawn the same way, and the utility derived from an
alternative being elected decreases with the square of the distance of opinions. Voting
proceeds in iterations, where each agent announces their new ballot simultaneously. In
order to vote strategically, each agent considers the votes of their i-neighbors (those at
most distance i away in the network), and assumes they are representative as priors for
a multinomial distribution for the whole electorate. Tie probabilities Tj,k can then be
computed between every pair of candidates j, k, and then Cox Prospective Ratings can be
used to determine which candidate is most attractive for each voter:

ξj =
∑K

k=1 Tj,k(uj − uk)
In the �rst round, with no previous information to go on, agents vote truthfully. The

simulation continues for 20 iterations; the author mentions that few changes occur after 20
iterations when experiments were allowed to run longer. For all experiments, agents were
laid out in a 13x13 torus. Elections with 3 or 4 parties were considered, along with varying
connectivity i (up to i = 6 for full information).

Results show that in the majority of cases, support for third and fourth parties dwindle
after the third round. But even so, a small but signi�cant number of experiments still
result in 3- or 4- party systems, in contradiction to Duverger's Law. Analysis of the SF
Ratio (ratio of support between the 3rd and 2nd place candidates) rea�rms this belief. It
also shows that Duverger's Law is more di�cult to uphold when there are a large number
of parties, and when connectivity is sparse.

In a follow-up paper, Clough investigates the e�ects of homogenization of the initial
distribution of agents [34]. This is motivated by the idea of homophily, that people are
more likely to associate with similar ideologies in a social network7. This paper continues

7The term homophily is not mentioned in the paper, and due to the choice of graph models and
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the usage of the 13x13 grid torus setup, but in the �homogenized� model, the region is
subdivided into 4 quadrants. Each quadrant represents an in-group espousing a certain
ideology dl drawn uniformly from [1,100]. Each agent within quandrant l has a preference
drawn from a Gaussian distribution with mean µ = dl and standard deviation σ = 3. This
is contrasted with the heterogenous model where agent preferences are randomly drawn
from one of the four distributions (i.e. mixing the homogenous model).

The analysis of experimental results are almost identical to the earlier paper[33]: In
both models, a 4-party system is more di�cult to coordinate than a 3-party system, with
the di�culty mitigated by connectivity. Interestingly, increased homogeneity leads to an
increased diversity of opinions as agents frequently fail to coordinate to a 2-party system.
And unsurprisingly, homogenous models with low connectivity exhibit similar behaviors to
models with no connectivity at all, as most agents do not receiving meaningful information
from their neighbors.

In Chapter 5, we extend Clough's model to more realistic depictions of social networks,
such as the random graph models introduced in Section 2.5. We examine the desirability
of the elected candidate, by looking at computational social choice properties such as
Price of Stability and Price of Honesty, and their interactions with network structure. We
also examine Duverger's Law and compare our results to those obtained by Clough. In
Chapter 6, we further extend our voter model with voter heuristic to help scale up our
simulations to larger elections.

3.3.3 Iterative Voting in Social Networks

Sina et al. [121] have also extended Iterative Voting more directly to the social network
domain. Voters are embedded in an undirected social network. Similar to the Knowledge
Graphs approach, they assume that each voter i observes the ballots of her neighbors. In
addition, voters combine this local level information with a publicly available poll to derive
a score for each candidate, and alters their own ballot only when it will change the winner
favorably due to a pivot condition in this local score.

The paper focuses on how the outcome of the election may be altered by manipulating
the social network. They show that they can make any candidate c the winner of the
election by adding only a linear number of edges (in the score di�erence between the
current winner and c), and do so in polynomial time, as long as that candidate enjoys at

experimental setup, I believe the author is not aware of more principled methods of incorporating it into
the graphical models.
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least some basic level of support in the population. The algorithm is successful regardless
of the nature of the poll, even if it is adversarial in selecting poll participants. Finally, they
propose a greedy heuristic for a manipulator who may add only a limited number of edges
to the graph, and show that it is e�ective in simulations based on real world pro�les and
networks.

Sina's model di�ers importantly from our model presented in Chapter 5 in how voters
address the incompleteness of their information. In Sina's model, each voter treats her
social network neighbors as the entirety of the electorate, and only act strategically if she
observes a pivot condition within her neighbors (i.e. she knows for certain she can sway
the election). We argue that it is unrealistic to assume voters only wait until they observe
an exact pivot condition before they act strategically, but rather, they may choose to act
strategically in optimism that it may sway the election. To this end, our voters consider
probable outcomes of the election, informed by their social network neighbors.

3.3.4 Other Related works

The conspicuously titled paper, Voting in social networks by Boldi et al. [23] actually
explores a very di�erent topic from this thesis. Motivated by the lack of voter turn out
in both real elections and virtual elections such as one conducted by Facebook in 2009
(with only a 0.3% turn out of its active user base of 200 million), the authors examine a
pragmatic system for voting that could be applied to social networks. In this system, users
can both vote directly, or they may vote by proxy by entrusting their ballot to one of their
personal contacts. This delegation is transitive; the select contacts may themself delegate
their own and the entrusted ballots further along a delegation path. The authors study
the properties of such a transitive proxy voting system. They also investigate the e�ects
of dampening, where successive delegation renders a ballot less e�ective. Their results
are similar to that of the Google PageRank algorithm, with the additional limit that all
vertices have out-degree 1.

Other researchers have also focused on the junction of social choice and social networks.
Salehi-Abari and Boutilier [115] examine social choice in a context where individual voters
are empathetic � they derive utility not only from an intrinsic preference for the outcome,
but also from the happiness of their friends. Their paper focuses on the computation of
the socially optimal outcome under this paradigm, and examine the Irish election data set
for the presence of this for empathetic behavior.

Tosatto and van Zee [126] approach the idea from a di�erent direction. They wish to
use tools from social networks to assist in social choice by �rst imputing a social network
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from the voters' ballots. They consider a problem where a set of m binary policies must be
accepted or rejected. Each ballot b is drawn from {0, 1}m. However, to complicate matters,
certain policies are mutually incompatible, and so not all ballots / outcomes in {0, 1}m are
admissible. They focus on the Average Voter Rule, where the set of admissible outcomes is
restricted to the set of submitted (and therefore admissible) ballots, and the ballot closest
to the average ballot is selected as the winner. The authors use a similarity measure to
construct a social network based on the voters' ballots; an edge of with w connects voters
i and j, where w is the number of policies that the two voters agree on (i.e. the Hamming
distance). They then use a weighted extension of degree centrality to obtain the winner,
and �nd that the result is similar to using the Average Voter Rule.

40



Chapter 4

Opinion Dynamics

The �eld of opinion dynamics draws its early roots from the study of innovation di�usion.
Under these models, agents within a community individually choose whether or not to
adopt a novel trait based on the actions of their neighbours, in a repeated coordination
game. Early studies focused on the decision to adopt new technologies such as antibiotics
[35] and hybrid corn [122]. These decisions are naturally modelled by binary variables,
and the model can just as easily be applied to study operating system and social media
adoptation today.

While binary variables are appropriate for modelling such decisions, they lack the ri-
chness necessary to capture more gradated opinions such as political leanings, socioeco-
nomic standings, or various fashions and fads. The �eld of opinion dynamics generalizes
the innovation model by interpreting opinions as continuous values in the interval [0, 1].
Agents' opinions are swayed by each other through repeated interactions, and the opinions
of the community gradually converge to an equilibrium.

The analogous problem to innovation adoption in the continuous domain is the study
of the e�ects of extremism in a community. In the discrete model, �early adopters� are
represented as agents whose opinions are �xed to a certain value. In the continuous model,
agents with �xed (or merely steadfast) opinions at the ends of the spectrum are akin to
extremists in a population. The pitfall is that most mathematical models in this domain
tend to focus on convergence of opinions [69]. The challenge then is to devise a model that
allows fractions of a population to disagree with each other, even at equilibrium.

A class of phenomena known to cognitive scientists as cognitive bias motivates our
approach. When subjects experience cognitive bias, they arrive at skewed or irrational
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conclusions based on an inaccurate and subjective reconstruction of reality [21]. One par-
ticular type of cognitive bias is motivated cognition, where observations are evaluated in
ways most bene�cial to the individual or compatible with the individual's beliefs.1 In one
experiment [82], when asked to rate the attractiveness and personality of a confederate,
participants who were led to believe they must go on a date with the confederate con-
sistently gave more favorable ratings. In a study of a more everyday phenomenon, after
observing a sports event containing a minor but questionable call, fans of the losing team
were more likely to attribute the outcome to referee error over qualities of the teams, when
compared to fans of the winning team; however, in games where no such a questionable
call is evident, there is no such bias.

The second study is very telling. Two groups of people were exposed to the same
evidence, but their opinions (on the competitive merits of the respective teams) did not
converge. This seems to �y in the face of belief updates via Bayes' rule. Jaynes provides
some insight on this by allowing agents to consider the possibility that the evidence is
unreliable. The further away the evidence is from an agent's expectations, the more likely
the agent is to believe that it is �awed, and therefore the less persuasive the evidence [75].
Laplace summarizes this idea nicely in his essay on probability [83], that outlandish claims
�decrease rather than augment the belief which they wish to inspire; for the those recitals
render very probable the error or the falsehood of their authors.�

This idea of motivated cognition is central to our model. Agents are skeptical of another
agent when their opinions diverge, but are more receptive to persuasion when their opinions
better align. In the rest of this chapter, we detail work on related models in opinion
dynamics, then we formalize this concept of skepticism and trust2 in our model of opinion
dynamics, and explore its e�ects in simulated social networks.

4.1 Related Work

Numerous researchers in the arti�cial intelligence community have explored how ideas dif-
fuse through social networks. Recent works that emphasize the convergence of opinions
include a model for how language features emerge, evolve and expire [123] and how opi-
nions can be e�ciently di�used in large communities [110]; Parunak also coins the term

1A competing theory called cognitive dissonance explains the same behavior through a di�erent set of
mechanisms. The speci�c mechanics of these behaviors are unimportant to us, as we are only concerned
with the fact that these behaviors do occur regularly in humans and other animals.

2We use �trust� only in its plain, nontechnical sense, and not in reference to mathematical trust models
within the multi-agent systems community.
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�collective cognitive convergence� in his study of the phenomenon, which also includes a
more comprehensive review of literature [105].

Our skeptical paradigm places emphasis on limiting interactions between agents whose
opinions diverge signi�cantly, to emulate the e�ects of motivated cognition. Many resear-
chers in the 20th century have explored various linear models for opinion formation [69].
Krause [80] was the �rst in the �eld to incorporate nonlinear systems, formulating the
bounded con�dence model. In this scenario, a panel of experts must arrive at a consensus
about the evaluation of a piece of work. Each begins with a private opinion and a level
of con�dence on the accuracy of that opinion. As they interact with each other, they al-
low their opinions to be swayed by only those experts who hold opinions within a certain
interval of theirs. The more con�dent the expert, the smaller their interval. The more
con�dent the other expert is, the larger the sway.3

Most related to our work are De�uant's bounded con�dence models. In the basic
bounded con�dence models, agents may only in�uence each other if their opinions di�er
by less than a threshold parameter. In subsequent work, De�uant [41] re�nes this model
by incorporating a Gaussian kernel with bandwidth equal to the con�dence level. This
allows in�uence to be dropped o� in a smooth, continuous manner. The initial motivation
for this model was to study the emergence of �mob mentality�, where sensible individuals
are driven to extreme actions when present in a crowd containing only a small fraction of
radicals [43]. Interestingly, while this avalanche e�ect sits as a counterpoint to the skeptical
behavior motivating our model, it is emergent in our experiments. In his paper, De�uant
explores the rami�cations of this model on Erdös-Rényi random graphs, while a variant of
his model is explored in small-world social networks [62].

The idea of skepticism arising in social networks, between agents with di�erent opinions,
has also been explored more recently by Cho, Ver Steeg and Galstyan, and veri�ed on data
from the U.S. Senate [31]. In their paper, they consider co-membership in groups as being
a surrogate for trust and a driver for evolution of network structure. Salzarulo [116] also
investigates a similar phenomenon based on exogenously de�ned �in-group� and �out-group�
mentalities.

Carvalho and Larson [30] explore the role skepticism plays in expert panels. In their
model, a group of experts with initially di�erent opinions revise their evaluations, with less
weight given to experts whose opinions di�er greatly from their own. They show that such
a panel always reaches consensus, and such a model works e�ciently on real world data.

3This description is based on subsequent work in [81], as [80] is written in German. A subsequent
model by De�uant [42] also weights the amount of in�uence exerted by the degree of overlap between the
intervals.
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The concepts of trust and persuasion have also been explored from di�erent perspecti-
ves. Fang, Zhang and Thalmann [58] proposed a model for uniting the concepts of trust
and innovation di�usion by allowing trust itself to be di�used through a network; Ha-
zon, Lin and Kraus [68] considered how group decisions may be altered by appealing to
self-interested individual to change their preference ballots.

Finally, Martins [87] proposes a model bridging the continuous and discrete domains,
where agents maintain an internal (continuous) probability about which of two actions is
more pro�table, but is only able to communicate with each other through taking (discrete)
actions. His simulations on a grid lattice show that a population eventually reaches stable
equilibrium con�gurations of actions, where certain agents can become extremely con�dent
of their choices.

4.2 Opinion Dynamics Model

We begin �rst by outlining several opinion dynamics models proposed by Krause and
De�uant. In all opinion dynamics models, agents V = {1, 2, . . . n} each have opinions,
labelled x = {x1, x2, . . . xn}, xi ∈ [0, 1]. An agent's opinion may be in�uenced by those of
other agents. This process proceeds in discrete timesteps. When an agent's opinion xi is
updated to a new value f(x), we use the notation

xi ← f(x)

The simplest opinion dynamics model is the arithmetic mean, where an agent's opi-
nion is updated to the average of the opinions of all agents:

xi ←
∑
j∈V

xj
|V |

Since the right hand side does not depend on i, after one such update, all agents acquire
the same opinion. We say that opinions converge in one timestep.

Krause' basic bounded con�dence model (BC) [81] extends this basic model via
the additional stipulation that agents discard any opinions that are too di�erent from
their own, acquiring the average opinion amongst the remaining agents. Formally, let
Ni = {j ∈ V : |xi − xj| ≤ ε}, where ε is a model parameter representing the threshold of
maximum di�erence in opinion that is tolerated by individuals.
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xi ←
∑
j∈N

xj
|N |

Kraus shows that even in this simplistic model, convergence is not guaranteed. Let us
de�ne a vector of opinions x as an ε-pro�le if there exists an ordering {y1, y2, . . . yn} of x
such that y1 ≤ y2 ≤ . . . ≤ yn, and |yi − yi+1| ≤ ε, ∀1 ≤ i ≤ n − 1. Kraus shows that for
2 ≤ n ≤ 4, x converges if and only if it begins as an epsilon-pro�le. But for n ≥ 5, x
beginning in an epsilon-pro�le is a necessary but not su�cient condition for convergence.

The BC model is simple, but also �awed. One major shortcoming of the model is that
the strength of in�uence of others' opinions depends very much on ε. In fact, the maximal
in�uence is attained by an agent whose opinion di�ers by exactly the maximal tolerated
amount ε. This seems unintuitive and unrealistic, which prompts the extension of De�uant,
Amblard and Weisbuch, called the smoothed bounded con�dence model (SBC) [43].
At a high level, SBC smooths the in�uence of other agents by applying a Gaussian kernel;
agents whose opinions are similar are given higher weights, and those whose opinions are
further away are given diminishingly lower weights. Each agent i has an opinion value xi
as before, and an uncertainty value ci which controls how receptive that agent is to new
and di�erent information. As the agent updates, uncertainty may decrease, which makes
the agent more discriminating and assigns less trust to agents with di�ering opinions.

Formally, we �rst de�ne the Gaussian kernel for i, which depends on the agent's uncer-
tainty ci, and opinions x and x′:

gi(x, x
′) = exp

(
−(x− x′)2

ci

)
Then, at each timestep, agent i pairs up with a randomly selected agent j, updating its

opinion xi and uncertainty ci as follows (agent j performs a symmetric and simultaneous
update):

xi ←
xi + gi(xi, xj)xj

1 + gi(xi, xj)

ci ←
ci + gi(xi, xj)cj
1 + gi(xi, xj)

One limitation of this model is that the in�uence between an agent and her neighbors
is governed by a single parameter ci, and this parameter a�ects all neighbors in the same
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way. We propose an alternative model where each edge is weighted by how much one
agent trusts another, and that these trust values are allowed to evolve independently of
each other. This allows agents to maintain close ties to some individuals, while being
skeptical of others.

4.2.1 Our Model

In our model, agents {1, 2, . . . n} are embedded in a social network represented by a simple,
undirected graph G = (V,E). Each agent i has an opinion xi ∈ [0, 1] and is in�uenced by
neighbours N(i) = {v ∈ V |{i, v} ∈ E}. For each neighbour j, i maintains a trust value
wi,j > 0 representing the weight i gives to j's opinions.

We de�ne a trust function T , based on the distance between any particular opinions
x and x′ via the Gaussian kernel, described in Equation (4.1). The bandwidth parameter
b represents the empathy of the population; a higher empathy re�ects a population more
willing to be persuaded by someone with a more di�erent opinion.

T (x, x′) = exp(−(x− x′)2

b
) (4.1)

Equations (4.2) and (4.3) describe the opinion and trust updates performed at each time
step: each agent i updates its opinion xi and trust values wi,j via a weighted average. A
lower wi,j indicates i is more skeptical of j, and therefore, less in�uenced by j's opinions.
We include a parameter wi,i as the inertia of i's trust and opinions, to be weighted against
those of its neighbours. A high value of wi,i means i changes its opinion slowly, while a low
value means i is easily swayed by the opinions of others. The value of wi,i does not change
throughout the simulation. We also de�ne a parameter r representing the learning rate of
the population; a higher learning rate re�ects a more judgemental population that more
quickly distrusts someone with a di�erent opinion. Note also that the opinion update (4.2)
is performed before the trust update (4.3) in each iteration.

xi ←
wi,ixi +

∑
j∈N(i)

wi,jxj

wi,i +
∑

j∈N(i)

wi,j
(4.2)

wi,j ←
wi,j + r T (xi, xj)

1 + r
(4.3)
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The majority of nodes in each network will represent moderate agents, with randomly
chosen initial opinions which update as described above. The reminder of the vertices will
represent extremists. Extremists have polarized opinions xi �xed at one extreme of the
spectrum (either 0 or 1), which is equivalent to setting their empathy to 0; i.e. they do
not updated according to equations (4.2) and (4.3).

The use of the Gaussian kernel is reminiscent of the smoothed bounded con�dence
(SBC) model in [43]. Our model di�ers by replacing each agent's personal con�dence
value, with dynamically updated trust values between every pair of agents. This allows
agents to remain receptive to some of their neighbours while becoming more skeptical of
others, and also for trust to be gradually lost or recovered over time. The notion of equating
con�dence with persuasiveness is appropriate in a cooperative setting such as an expert
panel, but seems less suitable in a setting where agents are skeptical in their interactions.

Figure 4.1: A Erdös-Rényi graph with homophily. Node colors indicate initial opinions,
with progression from white (0) to black (1).

4.2.2 Graph Models

We consider two types of random graph models in our experiments: the classic Barabási-
Albert random graph, and a homophily model based on Erdös-Rényi random graphs similar
to that presented in [133].
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A Barabási-Albert random graph with attachment parameterm is constructed by itera-
tively adding vertices, connecting them tom existing vertices with probability proportional
to their respective degrees. It is often used to model the scale-free property of social net-
works where a relatively few number of vertices (�hubs�) cover most of the edges.

A directed Erdös-Rényi random graph with connectivity probability p is constructed by
considering every pair of vertices i and j, and connecting them with �xed probability p. We
incorporate homophily in this model by reweighting the connection probability between i
and j as (1−d)p, where d = |xi−xj|. This causes vertices with similar opinions to be joined
with higher probability than those with disparate opinions. As with the classic Erdös-Rényi
model, the resulting graph may be disconnected. If this is the case, we simply discard and
regenerate the graph. A typical modi�ed Erdös-Rényi graph on 50 vertices and p = 0.2 is
shown in Figure 4.1; agent opinions were drawn from the distribution Beta(0.5, 0.5).

4.2.3 A-priori Trust Models

The initial trust between the agents represent how much the agents trust each other prior
to the start of the experiment. We utilize three di�erent trust models:

First, we have the uniform trust model, where wi,j = 1,∀{i, j} ∈ E. We de�ne wi,i = di,
where di is the degree of vertex i, which is consistent with a degree-based voter model
where the interactions between an agent and its neighbours are modeled as a series of
pairwise interactions. This model makes the fewest assumptions about how trust has been
established.

Next, we have the degree based trust model, where more initial trust given to the
opinions of well-connected (�popular�) members of the community: wi,j =

dj
di
,∀{i, j} ∈ E.

Similarly by the logic above, we de�ne wi,i = 1.

Finally, we have the kernel based trust model. Here, we assume the vertices have
interacted previously and their trust value have converged to equilibrium values speci�ed
by equation (4.1); that is, wi,j = T (xi, xj) and wi,i = 1

4.3 Empirical Simulations

In this section, we describe two sets of experiments that explore the behavior of agents in
our model. The �rst set of experiments operate only on Barabási-Albert random graphs,
and aims to explore the ability of extremists to in�uence the moderate population on
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typical (i.e. scale-free) social networks. That is, we will measure the average opinions of
the moderate population at the end of each trial. By seeing how much they deviate from
their initial opinions, we will know how much in�uence extremists have exerted on them.
We will look at how variations in graph structure, edge density and agent empathy a�ect
the magnitude of this in�uence. Both higher edge density and higher agent empathy are
traits that facilitate the spread of opinions in networks, and so we hypothesize that they
also allow extremists to have a larger impact on the population, even in our Skeptical
model. Di�erences in graph structure are a more complicated topic. The dominant feature
of Barabási-Albert graphs is the presence of highly connected hubs. We hypothesize that
the conversion of these hubs will allow extremists to exert more in�uence in these graphs
than in Erdös-Rényi random graphs.

In the second set of experiments, we explore the ability for extremists at both ends
of the spectrum to polarize the moderate population, with the ultimate goal of �nding
necessary conditions for the opinions of the moderates to stratify and stabilize at multiple,
non-polarized levels. As before, we measure the change in average opinion of the moderate
population to show the ability of the extremists to polarize the population. Moreover, we
will measure the number of distinct clusters of �nal opinions to show whether or not the
entire population collapsed to a single �nal opinion, or become strati�ed with multiple
clusters of opinions. We hypothesize that traits that are conducive to extremist in�uence
in the �rst set of experiments will similarly facilitate polarization, and that most graph
conditions will result in the convergence to one or two opinion clusters.

4.3.1 Experimental Design

For each experiment, we initialize the social network G with 200 nodes using the appro-
priate graph model, with varying parameters for graph construction and agent empathy.
In the �rst set of experiments, 10% (20 nodes) of the population is chosen uniformly at
random to be 1-extremists; we call this the 1-pole model. In the second set, the population
contains 10% 0-extremists and 10% 1-extremists4, also chosen uniformly at random; we
call this the 2-pole model.

The remainder of the population comprise the moderates. They begin with opinions
initialized to random values: either sampled uniformly from the interval [0, 1), or from
the partially polarized distribution Beta(0.5, 0.5). The uniform distribution serves as a

4We selected 10% as an arbitrary percentage that still leaves a large segment of the population as
moderates to be in�uenced. The 2-pole experiments of De�uant, Amblard and Weisbuch [43] used 5%
extremists of each type. We do not expect the di�erence to have a qualitative impact on the results.
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baseline incorporating minimal assumptions, while the Beta distribution is set so that
initial opinions will already be bimodal and drawn toward the extremes; this is thought
to increase the likelihood that opinions will stratify. Initial trust between them is set
according to one of the models outlined in Section 4.2.3.

Once the instance is initialized, the variables are updated according to equations (4.1)-
(4.3). We set r = 1.5 for all experiments, as preliminary tests did not �nd varying r > 0
changed our qualitative results.

The experiment terminates when no opinions changed by more than a small value ε, or a
maximum number of iterations tmax has been reached. In our experiments, we set ε = 0.001
and tmax = 500; tmax was rarely reached in practice. This model was implemented using
Python 3.3.2. All results are averaged over 25 replicated trials.

4.3.2 In�uence of Extremists

We begin by investigating the ability of extremists to a�ect the opinions of the moderates,
and how that impact varies with graph structure and parameters of the agents. Figure
4.2 shows the evolution of opinions over the course of an experiment. Opinions of the
moderates are bucketed in intervals of size 0.05 on the y-axis, and the timesteps is marked
on the x-axis. Each column of the heat map shows the distribution of opinions in that
particular timestep. We see that opinions are distributed randomly at the start, and begin
to converge toward the mean before shifting dramatically toward 1.0. To quantify the
impact of extremists, we measure the mean opinion of the moderates at the end of each
experiment. If the moderates were completely una�ected by the extremists, the mean
would hover around 0.5. If the extremists were completely successful at persuading the
moderates, the mean would near 1.0.

Figure 4.3 shows how the average opinion at convergence changes as we adjust the em-
pathy bandwidth parameter b, and the attachment parameter m. As expected, increasing
empathy increases the impact of the extremists on the population. However, aside from
the special case when m = 1, which imposes a tree structure on the network, increasing
connectivity does not signi�cantly impact the mean at convergence. This is likely due to
the small-world property of these graphs, allowing in�uence to propagate quickly through
the network.

Figure 4.3 also contrasts the e�ects of initializing using uniform trust (top) and degree-
based trust (bottom). Adopting initial degree based trust introduces more degrees of
freedom in the experiment, in the form of the portion of hubs becoming extremists. This
accounts for the higher variability in our results.
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Figure 4.2: Opinions of moderates over the course of an experiment. Note the color scale
is logarithmic, and the y-axis is decreasing.
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Figure 4.3: The convergence mean opinion of moderates, in the presence of 10% 1-
extremists. The model at the top is initialized using uniform trust (95% con�dence in-
terval within ±0.11 for all sets), and the bottom, using degree based trust (95% C.I.
within ±0.10).
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Figure 4.4: E�ects of introducing noise to the model of Figure 4.3. Uniform trust (top,
95% C.I. within ±0.11) and degree based trust (bottom, 95% C.I. within ±0.10).
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One critique of De�uant's SBC model is its sensitivity to noise [53]. We introduce a
similar level of noise to our model, allowing each moderate agent to change their opinion by
a small value drawn from a Gaussian distribution, with small probability at each update.
More formally, each agent at each iteration has a 0.01 probability of using the following
equation in place of equation (4.2) for their opinion update. Note that the resulting opinion
is bounded within [0, 1].

xi ←
wi,ixi +

∑
j∈N(i)

wi,jxj

wi,i +
∑

j∈N(i)

wi,j
+ ∆,∆ ∼ N (0, 0.15) (4.4)

Figure 4.4 shows the e�ect of introducing this degree of noise into the update process.
Aside from the m = 1 case, there is little qualitative di�erence compared to Figure 4.3.
Equation (4.3) controls the trust dynamics within our network and enables agents to react
to sudden deviations in opinions. This gives our model the robustness to absorb noisy
signals.

Examining the evolution of opinions in Figure 4.2, we see that in the initial stage of the
experiment, the moderates rapidly converge toward a common opinion. Even agents near
the pole are drawn in due to the initial trust conditions. This e�ect is ampli�ed by the
small-worlds property of these graphs. Once an early consensus is reached, the moderate
opinion may slowly migrate to the extreme through gradual in�uence from extremists (as
the case in Figure 4.2), or may successfully insulate the extremists from in�uencing the
general opinion.

4.3.3 Opinion Polarization

In our second set of experiments, we incorporate two sets of extremists competing for
the opinions of the moderate population. We initialize a randomly selected 10% of the
population as 1-extremists and another 10% as 0-extremists. De�uant [41] characterized 4
types of convergence in these two-pole situations: the moderates may converge to a single
opinion that is either (I) moderate or (II) polarized, (III) the population may split in two
with a portion converging at each pole, or (IV) the population may fragment, with fractions
that retain non-extreme opinions.

The polarization of each agent's opinion is the absolute di�erence of their �nal opinion
from the middle ground of 0.5. The higher the polarization, the more in�uence is felt
from the extremists. This allows us to di�erentiate non-polarized outcomes (types I and
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IV) from polarized outcomes (types II and III). To detect whether or not moderates have
strati�ed opinions, we examine the �nal distribution of their opinions to see if they are
unimodal (types I and II), or multimodal (types III and IV).

To eliminate false positives due to noise, we use the following procedure for identifying
multimodality. First, we form a histogram of opinions, dividing the [0, 1) interval into 20
buckets b1, . . . b20, each of width 0.05. A distribution is multimodal if there exist three
buckets bi, bj, bk (i < j < k) such that bj < min(bi, bk)/2, and min(bi, bk) ≥ T . We
arbitrary choose the threshold T = 20, which represents 10% of the agents.

Figure 4.5 shows the average polarization for our experiments. As before, higher em-
pathy b is correlated with increased in�uence from extremists. However, now network
structure plays a role as well: There is less impact from extremists in more highly con-
nected networks, represented by lower average polarization. We examine the �nal opinions
and �nd that, in all cases with m > 1, the moderates converge to a unimodal distribution
that drifts toward one of the extremes, reaching a type I or type II convergence. As before,
we verify that these results are robust against noise (data not shown).

One might wonder whether a population that is initially divided can produce type III
or type IV convergences. We investigate this possibility by drawing initial opinions xi from
Beta(0.5, 0.5). Figure 4.6 shows a run under these parameters. We observe a behavior
similar to that of Figure 4.2 � the population converges toward an early consensus, and
gradually shifts to a unimodal distribution near one of the extremes. This behavior is
consistent across all trials, with no multimodal distributions arising when m > 1.

Figure 4.7 shows the average polarization of the general population using the two initial
trust models. On the top, we observe that uniform initial trust allows polarization to
occur rapidly, regardless of network structure, with nearly complete polarization occurring
at b > 0.04. This is a surprising result, since in order for moderates to polarize at one
extreme, a large portion of the population must be converted from their initial opinions
set on the other end of the spectrum. We also observe this trend when the network is
initialized using degree-based trust (Figure 4.7, bottom), but it is not as obvious as with
uniform initial trust.

Thus, there appear to be two main factors preventing opinions from stratifying. The
initial trust given to agents of signi�cantly di�erent opinions, and the lack of homophily
in the graph structure. To remedy the �rst issue, we implement the kernel trust model,
where agents are inoculated with skepticism right from the start, modeling a situation
where agents have previously interacted and trust dynamics have reached an equilibrium
between them. To combat the second issue, we de�ne the modi�ed Erdös-Rényi random
graph to capture the homophily property of social networks.
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Figure 4.5: The average polarization of moderates when exposed to extremists of opposing
camps. The model at the top is initialized using uniform trust (95% C.I. within ±0.09),
and the bottom, using degree based trust (95% C.I. within ±0.09).
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Figure 4.6: Evolution of opinions in moderates, with partially polarized initial opinions.
Note the color scale is logarithmic.
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Figure 4.7: The average polarization of moderates with initial opinions drawn from
β(0.5, 0.5). The model at the top is initialized using uniform trust (95% C.I. within ±0.07),
and the bottom, using degree based trust (95% C.I. within ±0.09).
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Figure 4.8: Evolution of opinions in moderates, on a modi�ed ER-graph with homophily,
with partially polarized initial opinions. Note the color scale is logarithmic.
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Figure 4.9: Average polarization of moderates on a modi�ed ER-graph with homophily,
with partially polarized initial opinions (top, 95% C.I. within ±0.03), and the frequency
of strati�cation (bottom).
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Interestingly, in our simulations of this new model, strati�cation does not occur until
empathy b > 0.3, far above the point at which opinions normally become polarized. Figure
4.8 shows the evolution of opinions in a run that ends in a Type IV convergence. No-
tice the concentration of opinions migrate gradually from the poles, but do not converge.
As shown in Figure 4.9 (top), the amount of polarization actually decreases as empathy
increases beyond 0.3. Figure 4.9 (bottom) shows the fraction of runs that converge to
multimodal distributions. As empathy exceeds 0.3, the likelihood of a type III or type IV
outcome increases, and the presence of type IV convergences necessarily lowers the average
polarization.

The notion that agents with higher empathy, and therefore those who �listen� to, and are
in�uenced by, a wider range of opinions, is a necessary ingredient for opinions to stratify
is very surprising. We hypothesize that this is because agents with such high empathy
values are simultaneously a�ected by extremists from both poles, stabilizing their opinions
in a bimodal con�guration. Similar strati�cation is not observed in the Barabási-Albert or
the unmodi�ed Erdös-Rényi models, even when employing kernel trust; nor is it observed
in the modi�ed Erdös-Rényi model without kernel trust (data not shown). And thus we
hypothesize that these conditions represent a narrow band of conditions that are necessary
for opinion strati�cation.

4.4 Discussion

One natural question to ask is how the conversion of half the population from one end
of the opinion spectrum to the other occurs in Barabási-Albert graphs. The answer may
be found by approximating the amount of in�uence that can be exerted on a densely
connected community, even when they have already reached a uni�ed opinion (this is a
best case scenario that lower bounds the amount of in�uence that can be exerted on it).
To do this, we extend the concept of cluster densities from innovation di�usion. We de�ne
a cluster of density p as a set of nodes in G such that no node in the cluster has more than
fraction p of its neighbours outside the cluster [51].

Now, suppose A is a cluster of density p, B = G \ A, and all agents in A have opinion
x, while all agents in B have opinion x+ ∆.

Consider a node i in A with degree d. According to Equation (4.2), xi will be updated
according to

61



xi ←
dxi +

∑
j∈N(i)

wi,jxj

d+
∑

j∈N(i)

wi,j

=

dxi +
∑

j∈N(i)∩A
xi +

∑
j∈N(i)∩B

wi,jxj

d+ |N(i) ∩ A|+
∑

j∈N(i)∩B
wi,j

=

d(1 + p)xi +
∑

j∈N(i)∩B
wi,jxj

d(1 + p) +
∑

j∈N(i)∩B
wi,j

.

Now, recall the trust function T (x, x + ∆), which denotes the weight given to an opinion
that di�ers from an agent's by ∆. Let us write this as T (∆) for brevity. If we approximate
the weights wi,j with the target trust function T (∆),

xi ←
d(1 + p)xi + d(1− p) T (∆)(xi + ∆)

d(1 + p) + d(1− p) T (∆)

= xi +
((1− p) T (∆))∆

(1 + p) + (1− p) T (∆)
.

Finally, if the di�erence in opinions is su�ciently large, and the clusters su�ciently dense,
then we may assume (1 + p) >> (1− p) T (∆). Then,

xi ← xi +
1− p
1 + p

T (∆)∆ .

And we substitute our trust function to get

xi ← xi +
1− p
1 + p

exp(−∆2

b
)∆ . (4.5)
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If the right hand side of this expression is bounded within ε of xi, then the simulation will
terminate. By comparison, let us modify the above setup by allowing xi to have a very
small fraction p′′ of its neighbours that are bridge vertices, with an intermediate opinion
xi + ∆/2. xi still has fraction p of its neighbours in A, and p′ of its neighbours in B with
opinion xi + ∆ (p + p′ + p′′ = 1). By a similar analysis, approximating the weights wi,j
with T yields:

xi ←
(1 + p)xi + p′ T (∆)(xi + ∆) + p′′ T (∆

2
)(xi + ∆

2
)

(1 + p) + p′ T (∆) + p′′ T (∆
2

)

= xi +
(p′ T (∆))∆ + p′′ T (∆

2
))∆

2

(1 + p) + p′ T (∆) + p′′ T (∆
2

)
.

And if we assume (1 + p) >> p′ T (∆) + p′′ T (∆
2

), then,

∼= xi +
1

1 + p

[
p′ T (∆)∆ + p′′ T (

∆

2
)
∆

2

]
= xi +

1

1 + p

[
exp(−∆2

b
)∆ + exp(−∆2

4b
)
∆

2

]
. (4.6)

By comparing equation (4.5) with (4.6), we see that the amount of in�uence e�ected on
xi is greater in the presence of bridge vertices if T (∆) < 2/3, which is certainly true if we
expect the simulation to halt in the bridgeless case.

Thus, when there is a large gulf in opinions, in�uence is quite limited and skepticism
is high. However, the presence of even a handful of unpolarized intermediaries will serve
as a siphon through which in�uence will �ow, starting an avalanche e�ect where the two
clusters' opinions begin to converge with increasing speed. This is reminiscent of the �mob
mentality� that inspired De�uant's SBC model.

4.5 Conclusion

We have introduced a robust model of opinion dynamics that captures trust and skepticism
between agents that changes over time based on the di�erence in opinions between the
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agents. We show that agents operating in a preferential attachment, small-world network
will quickly converge to an early, loose consensus before taking coordinated action to
migrate the collective opinion to the equilibrium. This equilibrium may be moderate or
polar, with agent empathy being the primary factor in�uencing the �nal outcome. A
secondary factor is connectivity, which has a signi�cant moderating e�ect, but only in the
two-pole model.

Only by utilizing a homophilic graph model and inoculating our agents with an equili-
brium amount of skepticism for other agents, can we cause opinions to stratify away from
extreme values. We hypothesize that this strati�cation can only exist when individual
opinions are stabilized by more extreme opinions from both ends of the spectrum.

Future work include further exploration of the properties of homophilic graph models.
The model could be adjusted to include heterogeneous empathy and learning rates within
the population. It could also be extended to a dynamic population, with agents entering
and leaving the community over time, and with their opinions growing more con�dent
(higher skepticism) as they interact with the community. Finally, our model could be
adapted to the discrete action domain, where each agent possesses a private continuous
opinion, takes discrete actions based on that private opinion, and only observes the discrete
actions of their neighbours.
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Chapter 5

Voting in Social Networks

Voting is a method of social choice where a community elicits the personal preferences
of individuals to conduct collective decision making. A major concern in voting systems
is manipulation via strategic voting. This happens when voters bene�t from casting a
ballot that does not re�ect their true preferences; while this may be bene�cial for the
voter, it misinforms the community on the needs of its constituents. In order for voters
to manipulate successfully, they must have some knowledge regarding the outcome of the
election. One reasonable model is to view the election as a series of rounds, where voters
put forth tentative ballots that may be continually revised; this is called Iterative Voting,
which assumes voters have complete information on the ballots of all other voters [95].
Subsequent work incorporates voters who are truth biased (who prefer voting sincerely if
they cannot otherwise a�ect the outcome) or lazy (who prefer abstaining, all else being
equal) [111]. In a social network, however, voters are restricted to observing only the
actions of their neighbors. Each voter must form a model of the likely outcome of the
election based on this incomplete information, and use this model to inform their actions.
This assumption may appear unrealistic at �rst glance. Since, after all, one does not simply
make decisions based on a sampling of opinions from Facebook friends. However, our use
of the term social network extends beyond relationships in online social media platforms,
and also include experts and associates, media outlets, and any other source of opinion
and information that may contribute to the decision making process.

In this chapter, we present a behavioral model of voters embedded in a social network.
Voting occurs in successive rounds during which voters may alter their ballots. Voters can
observe only the ballots of their friends in the social network. Each voter assumes her
friends are representative of the wider population, and will vote strategically to maximize
her own expected utility. We explore the behavior of this model on a variety of random
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graph networks, including ones that exhibit homophily. We focus on using plurality as our
voting system. Strategization is a major concern in plurality voting. Voters are incentivized
to submit ballots that do not truthfully represent their true, underlying preferences. If
voters are not being truthful, the voting mechanism may produce an outcome that is
inappropriate or damaging to the population. However, we show that in our model of
self-interested strategization, social welfare is improved via strategization, when compared
to truthful voting. We also conjecture that network homophily a�ects strategic voting
behavior, and contributes to low percentage of voters that strategize in many real world
elections (for example, in [20] and [61]). In particular, when voters are surrounded by like-
minded individuals, they are more likely to vote truthfully, echoing the opinions of those
around them. This is called the �Echo Chamber E�ect� in popular media, and can be
observed in our simulations. Crucially, it lowers social welfare by decreasing the amount
of strategization that occurs, hurting the overall community. Finally, while our model
converges quickly in practice, we show a counterexample where voters never converge to a
stable state.

5.1 Model

Let V = {1, 2, . . . n} represent our set of voters. They are embedded in a social network,
represented as a simple, directed graph G = (V,E). We adopt the convention that a
directed edge (i, j) ∈ E denotes that voter i observes voter j and as such, j's actions may
in�uence i. An edge may represent communication between friends, a leader's in�uence
on followers, or patronage of media and news platforms. Let N (i) denote the set of voters
observed by i; i.e. N (i) is the out-neighbors of i.

Let C = {c1, c2, . . . cm} represent the set of available candidates. Let F be the voting
function used to aggregate those ballots to choose a single winner; it may or may not be
deterministic. The choice of F will de�ne a set of valid ballots that can be submitted by
voters; let us denote this set as B. Then, F maps Bn to a winner ĉ ∈ C.

The voting process proceeds in rounds. In round t, each voter i ∈ V submits a ballot
b

(t)
i ∈ B. The voter formulates this ballot as a response Ri : B|N (i)| → B based on her
observations of her friends � i.e. the previous ballots of her out-neighbors. These rounds
may represent a series of preliminary polls leading up to the �nal election. We assume all
voters begin with the truthful ballot.1 Voting continues until no agents choose to revise
their ballots, whereupon the winner is decided by the voting function F . When no voters

1Or a truthful ballot, depending on the voting system
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wish to deviate from their current ballot, the system has converged to an equilibrium. If
it reaches this state, we say the system is stable.

5.1.1 Model of Voters

Models of voters in multiagent systems literature are divided between those utilizing ordinal
preferences (where only the ordering of outcomes matter) and cardinal preferences (where
outcomes are associated with utility values).2 While each model has its own merits, we
choose the latter model because our voters infer and weight the probabilities of the di�erent
outcomes, and act rationally to maximize expected utility.

Formally, voters derive utility based on the candidate that is elected by F . Each
candidate ci ∈ C advocates a position p(ci) in some domain D that is common knowledge.
Each voter i favors a position pi ∈ D known only to herself. If ĉ is the winning candidate
elected by F , then a utility function ui(pi, p(ĉ)) : D ×D → R determines the value of this
outcome.

For the purpose of this chapter, D are the integers from 0 to 100 (inclusive), and
preferences are single-peaked. This allows us to benchmark our result to previous work (e.g.
[33, 34]); this one dimensional scale is also commonly used in political science literature to
represent the left-right political spectrum [19, 71]. We assume the utility a voter derives
from the outcome decreases with the square of the distance between her favored position
pi and the winner's advocated position p̂:

ui(pi, p̂) = −|pi − p̂|2.

For brevity, we write ui to imply ui(pi, p̂) where the position of the candidate ci and
the position favored by the agent is clear from the context. Throughout this chapter, we
will refer to the social welfare of the elected outcome. If p̂ is the position of the elected
candidate, the social welfare SW (V ) is the sum of the utilities for all voters for that
outcome:

SW (V ) =
∑
i

ui(pi, p̂).

2Cardinal utility models are used commonly in the literature, for example in Random Utility Theory
[12].
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5.1.2 Response Model

First, let us consider a rational voter v in a complete information setting, where a voter
observes all of the ballots from the rest of the population. Let n−i = {ni} be the vector
enumerating the ballots supporting each candidate i ∈ C. If b represents the ballot our
voter submits, let F(n−i, b) denote the winner of the resulting election. Note that in a vast
majority of cases, it does not matter what v votes at all! For instance, let us assume we
break ties randomly. If two candidates i and j are locked in a close race for �rst place,
with |ni − nj| ≤ 1, then v has the opportunity to cast a pivotal vote to break the tie in
favor of the preferred option. This condition is called a pivot condition, and it is easy
to see that such scenarios are very uncommon. Outside of a pivot condition, it does not
actually matter who v votes for at all! It is, however, unrealistic to assume voters act
only when they are pivotal. Indeed, turnout of elections would be very low if this is the
case. To improve this model, we do away with the assumption of complete information.
This section focuses on modeling how a rational voter processes partial information, and
formulates a strategic ballot in response. Moreover, the voter implements a local response
model that strategizes using only locally available information in her social network.

We begin by making a natural assumption that each voter assumes her friends are
representative of the wider population. If a ballot b is observed in a fraction f of her friends,
then she assumes any voter within the network will submit ballot b with probability f .

We formally specify the response model for plurality voting for simplicity, but it can
be adapted to any voting system with �nite |B|. This means each ballot is an individual
candidate, and B = C. Let (s1, s2, . . . sm) represent the number of voters in N (i) voting for
candidates (c1, c2, . . . cm). Voter i will then assume each voter (other than herself) in the
network will support candidate cx with probability sx+1

S
, where S is a normalizing constant

to make the probabilities sum to 1. The +1 is a Laplace smoothing, and is necessary to
ensure that all ballots remain possible. This means the ballots from the rest of the electorate
follow a multinomial distribution with support s = ( s1+1

S
, s2+1

S
, . . . sm+1

S
), S = |N (i)|+m.

We can calculate the probability of any outcome of the election by using the multinomial
distribution. Let the vector b = (b1, b2, . . . bm) denote the outcome where the remaining
n− 1 voters in the network contribute bi ballots supporting candidate ci. The probability
of this outcome is calculated as follows:

Pr(b;n− 1; s) =
(n− 1)!

b1!b2! . . . bm!

m∏
i=1

(si + 1)bi

Sn−1
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With complete information, a rational voter only pro�ts from casting a ballot when it
is pivotal. With incomplete information, however, our voter must calculate the probability
of each winning tie, and cast a ballot that, in expectation, will break ties to maximize
her utility. For simplicity, we assume that winning ties between 3 or more candidates are
such remote possibilities that they functionally have probability zero. Then, let T (y, x) be
the probability of a winning tie between candidates x and y, calculated by enumerating
all possible such ties and summing their probabilities. Additionally, we also consider all
near-ties, where the addition of one vote to candidate x will cause a winning tie with y;
let T̃ (y, x) be the probability of this outcome.

Finally, voter i revises her ballot to support the candidate x with the maximal marginal
gain in expected utility Cx, calculated below. If a voter observes no other ballots (i.e.
N (i) = ∅), her ballot remains �xed.

We consider two tie-breaking rules: probabilistic and lexicographic tie-breaking. Be-
low is a modi�cation of prospective ratings introduced by Myerson and Weber [100], for
unbiased probabilistic tie-breaking and risk-neutral voters:

Cx =
m∑
y=1

(
1
2
T (y, x)(ux − uy) + 1

2
T̃ (y, x)(ux − uy)

)
The �rst term in the summation calculates the expected utility where the voter breaks

a winning tie between x and y in favor of x. Since we break ties randomly, without the
additional vote, x would win half the time; the additional ballot changes the outcome
so that x wins with certainty. This is the reason behind the 1

2
coe�cient for this term.

Similarly, the second term in the summation calculates the expected utility where the voter
casts a ballot that causes a winning tie between x and y, which allows x to win half the
time; without this ballot, y would win with certainty.

An analogous modi�cation exists for lexicographic tie-breaking, where 1x<y is an indi-
cator variable with 1x<y = 1 when x lexicographically precedes y, and 0 otherwise:

Cx =
m∑
y=1

(
1x>yT (y, x)(ux − uy) + 1x<yT̃ (y, x)(ux − uy)

)

5.1.3 Sequential vs Simultaneous Updates

We consider two methods for scheduling when opinion updates take place: sequential and
simultaneous. In sequential updates, voters are updated one at a time in a �xed order in
each round, and they observe the most up-to-date ballots of their neighbors (which may be
updated earlier in the current round, or in the previous round). In contrast, in simultaneous
updates, all voters respond simultaneously to observed ballots from the previous round.
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5.2 Experimental Design

Our investigation will focus only on the plurality voting rule. We �rst investigate the e�ects
of the two tie-breaking schemes and update methods. As with Clough's investigation [33]
(see Section 3.3.2), we initialize a population of 169 voters in the baseline graph models: ER
and BA. For tractability, we limit ourselves to 3- and 4-candidate scenarios. The positions
of candidates and voters are drawn independently, uniformly at random from the interval
[0,100]. The parameters of the graph models are chosen so that the resulting conditions
have average out-degree approximately 8, 12, 16, 20, 24, and 28. 3

In our second set of experiments, we investigate the e�ects of graph structure and
homophily on the behavior of voters and the social welfare of the selected outcome. We
focus the experiment on sequential updates and lexicographic tie-breaking, but extend the
conditions to include all four graph models. Once again, parameters are chosen to produce
the same set of average out-degrees.

The simulation is written in the D programming language, and compiled using DMD32
D Compiler v2.067.1 on a 64-bit Windows 7 machine. We limit each election to a maximum
of 25 rounds (i.e. 25 updates for each voter), though this limit is never reached. Each data
point in the �rst set of experiments is the average of 500 replications; each data point in
the second set is the average of 800 replications.

5.3 Results

We de�ne several metrics measured across our experiments. The quality of the elected
candidate is measured as a ratio of social welfare scores. This allows us to normalize
out some of the noise that is introduced by randomizing voter preferences and candidate
positions.

First, we de�ne thePrice of Honesty (PoH) as the ratio of social welfare of the truthful
outcome to that of the strategic outcome.4 Since both utility values are negative, the larger
the PoH, the more costly the truthful outcome is, relative to the strategic outcome. In
other words, a large PoH indicates that a population that voted truthfully produces an
outcomes that is much worse o� than if they had voted strategically. A PoH of less than

3The connection probabilities used for ER graphs were {0.045, 0.07, 0.095, 0.12, 0.145, 0.17}. The
attachment factors used for BA graphs were {4, 6, 8, 10, 12, 14}.

4There are various names given for this metric: for example, �improvement in social welfare over
truthful� [94], and �dynamic price of anarchy� [27].
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1 indicates the population would have been better o� if they had voted truthfully instead
of strategically.

Similarly, we de�ne the Price of Stability (PoS) is the ratio of social welfare of the
strategic outcome to that of the optimal outcome.5 The optimal outcome is the outcome
that yields the highest social welfare, and so the PoS has a minimal value of 1 (when
the strategic outcome is always the optimal outcome). The larger the PoS, the worse the
strategic outcome is, by comparison.

We also measure the percentage of voters that engage in strategic play � i.e. the fraction
of voters who converge to a ballot that is not truthful � as well as the average number of
updates required to reach stability.

Table 5.1 summarizes these four metrics measured on ER and BA graphs (m = 4).
Within each graph type, there is little change in the amount of strategization, PoH nor
PoS across the three conditions. Despite reaching a similar amount of strategization, si-
multaneous updates requires a larger number of updates to reach stability. By comparison,
the di�erences between strategization, PoH and PoS is much larger between the two graph
types. The same pattern appears in each of the other conditions. We conclude that neither
the update methods nor tie-breaking mechanism has a signi�cant impact on the behavior
of the voters or the result of the voting process.

Next, we move to the second series of experiments, and the central �ndings of the
chapter. We compare the four aforementioned metrics across the four graph models. Stra-
tegization is a major concern in elections using the plurality system. However, we show in
our experiments that it actually improves the overall social welfare of the elected outcome.
Throughout our experiment (> 4800 total trials), we found that the average PoH for each
condition is greater than 1 in each condition; that is, in expectation, the candidate selected
by strategic voting achieves a higher social welfare than that selected by truthful voting.

As one might expect, the amount of strategic play increases as voters gain access to more
information as connectivity increases (see Figure 5.1). However, this gain is asymptotic
and the ceiling of strategic play is reached relatively quickly. Interestingly, the ceiling is
lower in graphs with homophily than those without. The rate at which strategic play
increases (with edge density) is dependent on the graph type, with ER graphs reaching
saturation more quickly than BA graphs.

Figure 5.2 shows the Price of Honesty and the Price of Stability under the di�erent
graph models. We include only m = 4 plots, but the same qualitative trends occur for

5Since the voter response is deterministic, we may view the outcome of the strategic voting process as
unique, and this de�nition parallels the usual de�nition of Price of Stability or Price of Anarchy. If viewed
as an online algorithm, this measure is analogous to the competitive ratio.
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Update/Tie % Strat Updates Avg PoH Avg PoS
Erdös-Renyi Random Graph
seq / lex 0.268 (0.0230) 57.9 (5.58) 1.2312 (0.0127) 1.0795 (0.0199)
seq / prob 0.267 (0.0255) 57.2 (5.80) 1.2287 (0.0128) 1.0776 (0.00915)
sim / lex 0.277 (0.0200) 78.6 (9.44) 1.2523 (0.0317) 1.0689 (0.0152)

Barabási-Albert Random Graph
seq / lex 0.243 (0.0509) 44.9 (9.95) 1.2128 (0.0216) 1.0866 (0.0188)
seq / prob 0.235 (0.0519) 43.3 (9.93) 1.2133 (0.0157) 1.1002 (0.0171)
sim / lex 0.252 (0.0441) 68.6 (13.5) 1.2149 (0.0272) 1.0885 (0.0252)

Table 5.1: E�ects of update and tie-breaking methods (ER and BA graphs with m = 4).
The metrics measured are the percentage of agents casting strategic ballots, the number of
updates before convergence, the Price of Honesty and the Price of Stability. The standard
deviation is included in parentheses.

m = 3. Here we see a possible explanation for the lower strategic ceiling observed in
homophilic graphs: it is simply less pro�table. The PoH is consistently lower than PoS
in these graphs, though they begin to converge at higher edge densities. That is, in these
graphs, the social welfare of the strategic outcome is closer to that of the truthful outcome
than the optimal outcome.

As strategization occurs in plurality elections, voters begin to abandon less promising
candidates for the likely winners, even if they are less preferable. The net result of this
behavior is that a multi-party system using the plurality rule will eventually devolve into
a race between the two front running candidates. This tendency of plurality favoring 2-
party systems is observable in electoral systems around the world, and is known in political
science as Duverger's Law [50].6

The consistency of Duverger's Law is measured by the SF Ratio: the ratio of support
for the third and second place candidates [40].7 Complete agreement with Duverger's Law
would mean no voters will �waste� their votes on lower ranking candidates, and will only
cast their ballots in favor of the two leading candidates. This would be re�ected by an SR
Ratio of 0. Figure 5.3 shows the distribution of SF Ratios under di�erent graph models, at
the condition with the lowest edge density conditions (average out-degree 8). Duverger's
Law would predict that the distribution of SF Ratios be concentrated as a sharp peak near
0. In both 3- and 4- candidate elections, there is little agreement to Duverger's Law in

6Canada and India are notable exceptions to this rule.
7The term SF Ratio refers to the second and �rst runner-up candidates.
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most graphs, with fewer than 50% of the instances exhibiting an SR Ratio of less than
0.1 (i.e. the third place candidate enjoy less than 10% of the support of the second place
candidate). If hER graphs are excluded, at least 50% account for those instances with SF
Ratio of at least 0.2. It is interesting to note that in both 3- and 4- candidate elections,
hER graphs standout as showing the most agreement to Duverger's Law. Notably, the
dominant feature of these graphs is homophily, suggesting it helps voters enact Duverger's
Law, even when little information is available to an individual voter.

Figure 5.4 is a histogram showing the distributions of SF Ratios for ER and hER
models, for the three lowest connectivity settings. The bars in blue represents the same
data as presented in Figure 5.3, which is gathered at the lowest connectivity setting (with
average out-degree 8). The orange bars shows the distribution of SF Ratios in graphs with
average out-degree 12. Here, it is clear that the distribution peaks at 0, and Duverger's Law
is rapidly being restored due to an increase of information available to individual voters.
In approximately 65% of the hER instances, the SF Ratio is below 0.1; in the ER graphs,
the percentage increases to 80%. The trend continues as we increase the connectivity, as
shown in the average out-degree 16 condition (shown as gray bars).

5.4 Convergence

In our empirical simulation, all trials converge to stability, and do so quickly. It is natural
to ask whether the response model is guaranteed to reach an equilibrium in either the
sequential or the simultaneous settings. Figure 5.5 sketches an undirected social network
with preferences such that the voter responses result in a cycling of ballots. In this network,
there are three candidates, denoted A, B, and C. The vertices of the graph are divided
into four groups, labelled V1, V2, A and B. A and B are cliques on n′ vertices; all voters in
A have candidate A as their top preference, and correspondingly with B, for candidate B.
V1 contains n′ vertices; each has preference A � B � C, and is connected to every vertex
in B and V2, but not to each other. Similarly, V2 contains n′ vertices; each has preference
C � A � B, and is connected to every vertex in A and V1, but not to each other. n′ may
be some large number, such as 10.

It is easy to see that there exist positions for the candidates such that none of the
vertices in A or B will change their ballots. Each sees strong support for her favorite
candidate, which ensures the most likely winning ties will involve that candidate.

Let us consider the sequential update process that updates the vertices of V1 before
V2. Each agent votes truthfully in the �rst round. In the second round, each vertex in V1
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Figure 5.1: Fraction of agents strategizing (3- and 4-candidates). Note the di�erent scales
in the vertical axis.

sees n′ supporters for B and C, and infers that the outcome will be a likely tie between
those two candidates; each vertex switches support to their second-choice B. Each vertex
in V2 then observes a tie between A and B, and also switches to their second-choice: A. In
the third round, each vertex in V1 observes a tie between B and A, and therefore reverts
to their truthful ballot in support of A. And �nally, each vertex in V2 now observes only
support for their second place candidate A; since they are unlikely to a�ect the election,
they revert to their truthful vote of C. With all vertices returned to their initial, truthful
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Figure 5.2: Price of Honesty and Stability under various conditions. Mann-Whitney U <
303, 000, n1 = n2 = 800, P < 0.01, one-tailed, for all conditions in Figure 5.2, with two
exceptions: ER (avg out-degree 8), and BA (avg out-degree 12). We obtain similar results
of statistical signi�cance on m = 3 conditions.

ballot, the cycle begins anew.8

The same counterexample works for the simultaneous update process, with V1 and V2

changing in alternate rounds.

Contrast this result with convergence results in the related model of Iterative Voting.
By comparison, Iterative Voting occurs in the absence of a social network, where all ballots
are common knowledge. Voters iteratively revise their ballots only if it alters the outcome
to their bene�t. Meir et al. [95] showed that Iterative Voting converges under plurality
when voters respond one-at-a-time, but not when they update simultaneously. Lev and

8A number of positions for our candidates and voter blocs will produce this behavior. For example,
consider candidates A, B, and C having positions 10, 9, 12 respectively. Let blocs B and V1 prefer
position 10 (therefore prefers candidates A � B � C), and A and V2 prefer position 12 (prefers candidates
C � A � B).
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Figure 5.3: Degree of convergence to a 2-candidate system, measured as the SF ratio (3-
and 4-candidates). Note the di�erent scales in the vertical axis.

Rosenschein [84] demonstrated a similar result for veto, and showed that there is no gua-
rantee of convergence in other scoring rules. Our result generalizes Iterative Voting to
social networks, where the complete information aspect of Iterative Voting may be repre-
sented by embedding voters in a complete graph. We show that their results do not hold
in the more general network setting, and that voting dynamics on a network o�er a richer
space of interactions between voters.

76



Figure 5.4: Distribution of SF Ratios show the degree with which results from each graph
model conform to Duverger's Law.

5.5 Discussion

While we have obtained empirical results for our model, the question remains as to how
well it generalizes to real world scenarios. As was alluded to in the Introduction, the
social network we depict with our model is a general social network. The neighbors in the
network describe not merely �Facebook friends�, but include all sources of information that
may be considered by a voter in deciding on her ballot. This may include close friends,
trusted con�dants and knowledgeable associates, but will also news feeds, political blogs,
and subscriptions to any number of popular media outlets. Such institutions acts as highly-
connected nodes in the social network, much like hubs in Barabási-Albert random graphs.

77



Figure 5.5: Voters need not converge to stability.

Further, as is shown in Hargittai, Gallo and Kane [67], even such social institutions are
not immune to the same homophily exhibited in people.

The successive rounds of voter revision in our model represents the preliminary period
preceding an election where voters may discuss and revise their opinions. In the real
world, this is often accompanied by a series of preliminary polls leading up to the main
election. These polls can be a major factor in strategic voting. Such polls are comprised
of (tentative) ballots sampled from a random subset of the population. This is exactly the
relationship captured by the (non-homophilic) Erdös-Renyi random graphs, where each
voter may view the ballots of a number of other voters sampled uniformly, independently
at random from the population.

With homophily being such an intrinsic property of real world networks, it is interesting
to note that the graph depicted in Figure 5.5 shows a very low degree of homophily (for
vertices in V1 and V2). This lack of homophily is necessary for the counterexample to
function. Voters that are connected to likeminded voters are less likely to change their
votes away from their truthful ballot. They observe many other voters declaring the same
ballot, and therefore their favorite candidate is very likely to participate in winning ties.
In fact, a careful analysis of the graph structure of Figure 5.5 reveals what is needed to
cause a faithful voter to vote strategically: they view their own position as hopeless, and
must be convinced to �pitch in� to resolve a close race between two less-favored candidates.
This is in agreement with observations of political elections, such as the empirical study
conducted by Cain [28].

The existence of this counterexample also gives some insights on voter sincerity, even
in preliminary polls. A naive voter may believe that showing support for her favorite
candidate in the polls will improve public perception of that candidate. The scenario
illustrated in Figure 5.5 provides a scenario where that is not true. When voters in the V1

78



and V2 change their strategic ballots to a truthful state to support their favorite candidate,
they actually cause a chain reaction that erodes support for that candidate from other
voters.

Nonetheless, these results shed some light on to why there is less strategic voting in
the presence of homophily, and also why the strategic outcome is (comparatively) less
pro�table. When voters are surrounded with those of similar opinions, it creates an Echo
Chamber E�ect where they view their own position as being more widely supported than
it is. It causes them to be further entrenched in their current position, and they require a
larger amount of con�icting evidence to change their minds. The e�ect causes a voter to
have a harder time discerning whether their own position is in the minority, and prevents
them from shifting to a more strategic choice. This, as it turns out, has a net negative
e�ect on the social welfare of the elected outcome. Moreover, this e�ect may explain the
relatively small number of strategic voters observed in real world elections (for example,
in [20] and [61]): it is not that few voters are strategic, it may be that many voters fail to
recognize the strategic opportunity due to their Echo Chamber.

5.6 Conclusion

In this chapter, we proposed a model of strategic voting on social networks, based on
a natural assumption on the part of voters that their friends are representative of the
population. We show that strategization leads to improved social welfare of the elected
outcome in all conditions. Network structure has an e�ect on the social welfare of the
elected outcome. However, as we observe in Figure 5.1, as edge density increases, the
amount of information available to each voter also increases, and the number of strategic
voters quickly saturate at a ceiling. The ceiling is independent of graph structure, but
highly dependent on homophily.

It is this network homophily that causes the Echo Chamber E�ect. This may o�er
insight on why a relatively low number of voters are strategic in real world elections.
When surrounded by others with similar opinions, voters do not see an opportunity or
even a need to strategize, even when their position holds little merit. This ends up hurting
social welfare of the elected result.

Clough has also explored this form of strategic interaction between voters in simulated
social networks [33, 34]. Coming from a political science angle, she analyzes simple 13×13
grid-based undirected graphs on 169 nodes, which is neither small-world nor scale-free.
In her model, each voter responds by considering only tie-probabilities, while our model
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considers all pivotal cases under di�erent tie-breaking rules. Her work focuses solely on
investigating Duverger's Law. Her �ndings parallel ours: SF Ratios drop dramatically
when going from 28 to 8 neighbors. Unfortunately, her model does not o�er any �ner
levels of granularity for investigating this behavior.

Iterative voting has also been applied to social networks only very recently in Sina et al.
[121], which focuses on manipulation by a chair under plurality voting. Our model di�ers
from Sina et al.'s in that our voters individually infer the likely outcomes of the election
based on their limited information, and always act upon this information (to maximize
their expected utility based on tie-probabilities). By contrast, in the Iterative Voting
model applied by Sina et al., agents only choose to revise their vote when they observe an
exact pivotal condition in their neighborhood.

As Figure 5.5 demonstrates, our model is not guaranteed to converge to stability. Ho-
wever, stability is reached relatively quickly in practice. In our simulations, no instances
used more than 10 rounds to reach stability. It is unclear why this is the case, and may
be a direction for future work. Are such cyclic instances rare? Under what conditions can
we guarantee stability? Are such conditions natural to human networks?

Another natural question to ask is, how susceptible to manipulation are voters on a
social network? Will voter strategization hinder or amplify the e�ects of manipulations? If
candidates have knowledge of the social network, what strategies may they take to improve
their own odds?

Finally, it would be interesting to extend this framework to other, more interesting
voting systems. Duverger's Law applies only to plurality, so we expect to see less conver-
gence to 2-party systems when using other voting rules. What e�ects will this have on
strategization and social welfare? Tie-probability modeling for other systems remains an
exciting open question.
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Chapter 6

Heuristic Voter Models

In the previous chapter, we introduced a basic model for how voting may occur in a social
network. Voters observe how their neighbors vote, and use that information to infer the
likely outcomes of the �nal election. Of particular interest to rational voters are the pivotal
outcomes; these are the only situations where a single voter's vote will alter the outcome
of the election. Weighted by the likelihood of these pivotal outcomes, voters may calculate
the expected utilities of casting di�erent ballots, and thereby determine the best course of
action.

While this voter model is fully rational and comprehensive, the calculation of pivot pro-
babilities is computationally intensive � it scales poorly in larger populations and elections
with many candidates; moreover, it places large cognitive burdens on the voters. In this
chapter, we propose a number of heuristic models that greatly simpli�es these pivot cal-
culations. We argue that these heuristics represent natural models of boundedly rational
human behavior. Simultaneously, our heuristics speed up the computation of strategic
response by up to 2 orders of magnitude, allowing us to explore the strategic behavior of
voters in larger populations. In particular, we examine the Micromega rule, the tendency
for large political parties to favor small assemblies with large electoral districts, and vice
versa. We show that population is a contributing factor to the Micromega rule in some
networks.

6.1 Framework

To establish a framework for voter behavior for elections with large populations, we consider
several desirable criteria for these models. We base our framework on the desiderata
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presented by Meir, Lev, and Rosenschein [94], and adapt them to our domain. While their
framework describes desirable criteria when modeling voters in general populations, our
framework focuses on modeling voters in large populations embedded in social networks.
The social network naturally restricts the availability of information to voters, and does
so in an asymmetric way; one voter has di�erent information about the election than
another. Moreover, we emphasize that the voters in our framework are boundedly rational,
and therefore computationally limited. This both re�ects the human nature of real world
voters, and also ensures our heuristics can be computed in a timely manner.

Knowledge: A voter's knowledge of the actions of others is limited. In particular,
voters are limited to what can be observed from their neighbors in the social network.
Voters must infer the current state of the world based on this limited information.

Rationality: Subject to their observations, preferences, and beliefs, voters act to
maximize their expected utility of the electoral outcome. In particular, while the chances
of casting a pivotal vote in an election is very small, it is the only event of importance to
rational voters. Their observations allow them to compare the likelihood of pivot conditions
between di�erent candidates and act accordingly.

Anonymity: Beyond readily available network properties, voters treat observations
from their social contacts anonymously. Beyond the utility gained through the election of
each candidate, candidates are treated anonymously as well.

Equilibrium: The model converges to an equilibrium outcome (according to some
established solution concept), or readily shows it cannot exist.

Tractability: The computation of voter responses is computationally tractable for the
voter. Real world voters are boundedly rational agents and frequently employ heuristics
to simplify their cognitive load. While the computation or approximation of probabilities
may be unavoidable, this computation should be fast, particularly for �easy� cases.

Optimistic: Voters act in the belief that their action may have an impact, even when
that is not guaranteed. This is in sharp contrast to the complete information setting of
Iterative Voting, where voters act strategically only when they know they are pivotal.

Motivated by these desiderata, we make the following assumptions in our heuristic models.
We do not consider these desirable criteria; rather, we consider these to be natural ways
of implementing the above desiderata in our voter heuristics.

Markovian Strategy: While voters have access to histories of past actions from their
social contacts, we assume voter response is Markovian and computed as a function of
current observations. While making use of past history may allow the voter to detect pat-
terns and trends, doing so is computationally intensive and further compounds concerns of
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tractability. We argue that this simplifying assumption reasonably models human behavior
because humans are bounded rational agents and human memory is a limited resource.

Myopic Response: Being boundedly rational, voters are not concerned about second
order e�ects in the network. That is, they do not consider that an adjustment in their ballot
may also cause others to adjust their ballots, and this knock-on e�ect may be detrimental
to the original voter. Instead, we assume voter responses are myopic improvements to
the current situation. This is a reasonable assumption to adopt because predicting these
knock-on e�ects will be computationally intensive. However, adopting this assumption
may actually make equilibria more di�cult to achieve. For instance, non-myopic agents
may be able to predict actions to lead to cycling behaviors within the population, which
prevent the convergence to an equilibrium outcome.

6.1.1 Voting Model

We consider the spatial model of voters and candidates proposed by Tsang and Larson [129]
and described in Chapter 5. Let the population V of n voters be situated in a social network
represented by a simple, directed graph G = (V,E). A directed edge (i, j) ∈ E means voter
i observes voter j, and therefore, j's actions may in�uence i. Let C = {1, 2, . . .m} denote
the set of candidates. Each voter i has a preference pi represented as an integer from the
interval [0, 100]; each candidate supports a position drawn from the same space. If the
winning candidate supports position p̂, voter i derives utility ui(pi, p̂) = −|pi − p̂|2 from
this outcome.

Each voter casts a ballot from the set of admissible ballots B. A social choice function
F maps the set of submitted ballots to a unique winner from C. We focus on the plurality
voting rule, where B = C; i.e. voters mark their unique favorite candidate on their ballots.
If ni is the number of ballots supporting candidate i, then the plurality voting rule F =
arg maxx nx maps the set of ballots to the candidate receiving the most votes, breaking
ties randomly.

Voting proceeds in rounds. In the �rst round, voters' ballots re�ect their sincere top
choice. In subsequent rounds, one by one, voters are allowed to revise their ballots based
on observing the ballots of their out-neighbors. For a particular voter i, let the vector
s = (s1, s2, . . . sm) denote the fraction of i's out-neighbors supporting each candidate, with
Laplace smoothing applied by adding one to the tally of support for each candidate. Each
voter i computes her revised ballot b′ ∈ B according to her Voter Response Function
Ri(s, ui) = b′. We assume voter behavior is symmetric and so omit the subscript for
simplicity. We also omit the parameter ui when it is clear from context. Voting terminates
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when no voter's ballot changes in a round; we say that our population has converged to
an equilibrium.

6.1.2 Fully Rational Voter

The fully rational voter computes the exact pivot probability for each pair of candidates
by assuming future ballots will be distributed according to a multinomial distribution with
support s. The probability of observing a �nal tally of b = (b1, b2, . . . bm) is

Pr(b;n− 1; s) =
(n− 1)!

b1!b2! . . . bm!

m∏
i=1

sbii (6.1)

The voter then computes the probability T (y, x) that the any two given candidates x
and y are in a pivot condition. That is, by adding one ballot supporting x, the winner
changes from y to x. This is calculated by enumerating all possible such pivot outcomes,
and summing the probability of each outcome. Formally, we de�ne T (y, x) as follows:

T (y, x) =
∑

b∈Bn−1

bx=by>max{bi:i 6=x,y}

Pr(b, n− 1, s) (6.2)

For example, under lexicographic tie breaking, and ignoring multi-way ties, the pivot
outcomes for candidates 1 and 2, when n = 10, m = 4, are (5, 5, 0, 0), (4, 4, 2, 0), (4, 4, 1, 1),
(4, 4, 0, 2), and (3, 3, 2, 2); each would be associated with a probability of occurrence ba-
sed on the multinomial distribution. Then, she calculates the Prospect Rating for that
candidate:

Cx =
m∑
y=1

T (x, y)(ux − uy) (6.3)

The Voter Response Function is RFULL(s) = arg maxxCx. We will refer to this model as
the Full Voter model.

Implementation

To compute the Prospect Rating according to Equation 6.3, we must iterate over all pivot
conditions indicated in the summation in Equation 6.2. In this section, we outline the
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algorithm which e�ciently enumerates all such pivot conditions. We begin by introducing
a simple counting problem which we call the Bus Packing Problem with positive integer
parameters (n,m, k):

Given n > 0 passengers to be seated on m > 0 buses, each of capacity no more
than k > 0. How many di�erent ways are there to assign seats to the buses?
We may assume that the seats are interchangeable, but the buses are not.

For example, a valid packing of n = 10 seats tom = 3 buses each with capacity k = 5, is
(5, 5, 0); a distinct packing would be (5, 0, 5). Each counts as a single bus packing, and we
do not concern ourselves with the 10! permutations of passengers to the 10 seats onboard
the buses. Note that the Bus Packing problem may return with no valid con�guration, as
evidence by the parameters n = 10, m = 2, k = 4 (there is not enough capacity in the
bus �eet to reserve that many seats). Let the Bus Packing Number BP (n,m, k) be the
number of such bus packings.

We implement a recursive algorithm that e�ciently enumerates all valid bus packings
{s1, s2, . . . sm} for given parameters n,m, k > 0. At each iteration, the algorithm considers
packing s1 = 0, 1, . . .min(n, k) seats in the �rst bus, and then recursively solves the problem
of packing n− s1 seats in the remaining m− 1 buses.

The case for m = 1 is solved as the base case (there is only one way to pack the bus),
and the algorithm terminates early with an empty list if the �eet can no longer �t the
requested numbered of seats (m · k < n).

To implement the Full Voter Model, we must enumerate over all outcomes of the
election where exactly two candidates are tied as the winner, as depicted in Equation 6.2.
We make use of the Bus Packing algorithm outlined above to achieve this. For simplicity,
we assume candidates c0 and c1 are the winners. First, we iterate over all possible values
that the co-winners may achieve s0 = d n

m
+ 1e . . . bn

2
c. s0 is upper-bounded by the scenario

where all votes are split equally between c0 and c1. The lower-bound occurs when votes are
nearly evenly split between all candidates, with c0 and c1 having a slight lead; the ceiling
function ensures there are few enough votes between the remaining candidates such that
there are solutions where each of them receive strictly fewer than s0 votes (to prevent a
three-way tie).

For each value of s0 = s1, we must �nd all possible partitions of the remaining n− 2s0

votes between the remaining m − 2 candidates such that they receive s0 − 1 or fewer
votes each. This exactly corresponds with the Bus Packing Problem with parameters
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(n−2s0,m−2, s0−1). Once we obtain this solution, we may simply permute the co-winners
through the other candidates in

(
m
2

)
combinations.

To calculate the pivot probability, we iterate over all pivot outcomes and take the sum
of the probability of each outcome, according to the multinomial distribution.

6.1.3 Voter Heuristics

As we illustrate above, the Full voter model must enumerate all possible pairwise pivot
conditions, calculating RFULL is computationally intensive, and scales poorly as n or m
increases. We can upper-bound the computation complexity of this process by examining
a related counting problem, the classic Stars and Bars Problem by William Feller
[60]:

Given positive integers n and m, the number of distinct m-tuples of non-
negative integers that sum to n is given by the multiset function

((
n+1
m−1

))
.

Let us refer to this number as the Stars and Bars Number SB(n,m). We arrive at
this solution for SB(n,m) by imagining n stars laid out along a line and we are invited
to partition the stars into m parts by placing m− 1 bars as separators between the parts.
There are n + 1 positions for the bars, and the positions may be selected multiple times
� two adjacent bars indicating a part with zero stars. This gives us a solution of

((
n+1
m−1

))
using the multiset function, which may also be expressed as

(
n+m−1

n

)
.

Notice that Feller's Stars and Bars Problem is very similar to our Bus Packing
Problem; the latter adds a restriction on the maximum number of stars that may be
included in any given part. As a result, some solutions to the Stars and Bars may be
inadmissible as bus packings, but all bus packings are valid solutions to the Stars and
Bars Problem. Therefore, we may use SB(n,m) as an upper-bound to BP (n,m, k).

We will upper-bound the runtime of a single best response calculation of the Full

Voter Model by examining the number of times the probability of an outcome is queried
through the multinomial distribution. Calculating the probability of an outcome based
on a multinomial distribution is itself an expensive operation; in our implementation, it
requires m+ 1 invocations of the gamma function. For simplicity, our complexity analysis
will be in terms of queries to the multinomial distribution, which allows us to encapsulate
implementation details of the queries.

Let us denote this number, the number of queries to the multinomial distribution, as
#ties. The algorithm iterates over the admissible range for the number of votes supporting
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a tied winner s0 = d n
m

+ 1e . . . bn
2
c. At each iteration, it will query the multinomial

distribution a number of times equal to the Bus Packing Number BP (n−2s0,m−2, s0−1),
therefore the exact number of queries is given by the following expression:

#ties =

bn
2
c∑

s0=d n
m

+1e

BP (n− 2s0,m− 2, s0 − 1)

Since BP (n− 2s0,m− 2, s0− 1) ≤ SB(n− 2s0,m− 2) = (n+m−2s0−3)!
(n−2s0)!(m−3)!

, we may rewrite

#ties ≤
bn
2
c∑

s0=d n
m

+1e

(n+m− 2s0 − 3)!

(n− 2s0)!(m− 3)!

Moreover, the fraction is maximized when s0 takes the minimal value of d n
m

+1e, which
allows us to upper-bound the terms of the summation independently of the index of the
summation. This gives us the following upper-bound (since this is an approximation, we
remove the �oor and ceiling notation for clarity):

#ties ≤
(n

2
− n

m
− 1
) (n+m− 2n

m
− 5)!

(n− 2n
m
− 2)!(m− 3)!

=
(n

2
− n

m
− 1
) (n+m− 2n

m
− 5) . . . (n− 2n

m
− 1)

(m− 3)!

<
(n

2
− n

m
− 1
) (n+m− 2n

m
− 5)m−3

(m− 3)!

We may also use Stirling's approximation that n!
√

2πn(n
e
)n to simplify the denomina-

tor:

#ties <
(n

2
− n

m
− 1
) (n+m− 2n

m
− 5)m−3√

2π(m− 3)(m−3
e

)m−3

Thus, we establish a rough upper-bound for the runtime of a single pivot probability
computation between a pair of candidates in the Full Voter Model as O(n( n

m
)m−3). Since

for our purposes, we may assume n � m, we may simplify the runtime's upper-bound
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as roughly O(nm−2). There are also
(
m
2

)
such pairs, so the runtime for the best response

calculation requires roughly O(m2nm−2) queries.

Empirical experimentation reinforces this bound. The Full Voter Model scales very
poorly as either n or m increases. Since one of our desiderata is Tractability, both for
the purpose of scalability, and to more accurately model human bounded rationality, we
propose a number of voter heuristics that reduces the computational and cognitive load
on the voters. In each of these models, the pivot probabilities are simpli�ed to the chance
that x and y are exactly tied as winners (i.e. discounting the cases where x has one fewer
ballot than y).

Top-k Voter

An intuitive way of easing the voters' cognitive burden is for them to ignore unpromi-
sing candidates. This is observed in political science literature. For example, Me�ert and
Gschwend [91] conducted studies in the laboratory on strategic voting behavior in coa-
litional governments. They used �ctional parties with monetary incentives based on the
elected outcome, and found that participants used a number heuristics when considering
their ballot. One of these heuristics was to avoid parties that did not enjoy enough popular
support to contribute meaningfully to the result. We model this type of behavior directly
with the Top-k voter. Here, voters consider only the k ≤ m candidates with the most
popular support according to s, breaking ties in favor of utility of victory. The voter treats
the election as if only these top k candidates were participating, and computes RTop−k
based on

(
k
2

)
pivot probabilities, rather than

(
m
2

)
. The resulting algorithm requires only

O(k2nk−2) queries to the multinomial distribution, though determining the top-k suppor-
ters and permuting the entries adds a small overhead to the computation that scales with
m.

Max-M Voter

The Full Voter considers the expected utility gained by supporting a candidate over all
other candidates. A boundedly rational voter may employ a di�erent measure, suppor-
ting the candidate o�ering the maximum marginal gain over a rival candidate. That is,
the voter focuses on pairwise comparisons between candidates, picking the candidate who
o�ers the most compelling position, and has the best chance of beating the most serious
threat. Formally, consider the following utility computation in place of prospect rating Cx
(Equation 6.3):
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Dx = max
y 6=x

T (y, x)(ux − uy)

RMax−M = arg maxxDx selects the candidate maximizing this marginal utility over some
other candidate. The motivation behind using this alternative utility function is that it
approximates the behavior of the Full Voter, while o�ering mathematical optimizations
that greatly reduce computation load. Such pairwise comparisons may also be more natural
for human voters to process. Rather than considering the marginal gains over every other
candidate, this calculation emphasize the candidate's merits against the most salient of
opposition. Indeed, political campaigns often focus on demonizing particular opponents to
bolster the merits of the favored candidate.

More formally, the voter's strategic response is simply to choose x satisfying the Arg-
Max Condition:

arg max
x

D′x = arg max
x

max
y 6=x

T (y, x)(ux − uy) (6.4)

In order for condition 6.4 to be satis�ed for x, it is su�cient (but not necessary) that,
for some choice of x and y

T (y, x)(ux − uy) ≥ T (y′, x′)(ux′ − uy′) ∀x′, y′ ∈ C; y 6= x, x′ 6= y′ (6.5)

Since ux, uy, ux′ and uy′ are all constants, let Hx′y′
xy =

ux′−uy′
ux−uy . For simplicity, we assume

ux − uy > 0,

T (y, x) ≥ T (y′, x′)Hx′y′

xy ∀x′, y′ ∈ C; y 6= x, x′ 6= y′ (6.6)

We call this inequality the Domination Condition. We may omit the subscripts and
superscripts from Hx′y′

xy , where it is clear from context.

First, note that since T (y, x) sums over all possible tallies of n−1 ballots where y and x
are tied as winners, both T (y, x) and T (y′, x′) sum over the same domains. We may match
each term in the summation of the LHS with a corresponding term in the RHS that has
the same multinomial coe�cients (with the elements of b permuted). Speci�cally, suppose
b = (. . . bx, . . . by, . . . bx′ . . . by′) is a possible tally when calculating T (y, x) (i.e. where x
and y are in a winning tie). Then, it corresponds to a tally

˙
b = (. . .

˙
bx, . . .

˙
by, . . .

˙
bx′ . . .

˙
by′)

where 1

1To be clear, it is implied by the notation that bx and
˙
bx have the same indices in their respective

vectors, and so on.
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˙
bx′ = bx

˙
by′ = by

˙
bx = bx′

˙
by = by′

(6.7)

Moreover, since these situations involve winning ties,

˙
bx′ =

˙
by′

bx = by
(6.8)

Matched this way, it is easy to see that, for Condition 6.6 to be true, it is su�cient
(but not necessary) for each term on the LHS to be at least as large as the corresponding
term in the RHS (multiplied by H):2

m∏
i=1

sbii ≥ H
m∏
i=1

s˙
bi
i (6.9)

And since bi =
˙
bi for all i 6= x, y, x′, y′, we may rewrite the inequality as

sbxx s
by
y s

bx′
x′ s

by′

y′ ≥ Hs˙
bx
x s˙

by
y s˙

bx′
x′ s˙

by′

y′ (6.10)

And applying the mapping speci�ed by the Equations 6.7 and 6.8,

sbxx s
by
y s

bx′
x′ s

by′

y′ ≥ Hsbx′x s
by′
y sbxx′ s

by
y′ (6.11)

sbxx s
bx
y s

bx′
x′ s

by′

y′ ≥ Hsbx′x s
by′
y sbxx′ s

bx
y′ (6.12)

Finally, we rearrange
2For simplicity of notation, for the remainder of this section, we have omitted the +1 Bayesian smoo-

thing, and write sx in place of sx + 1.
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(
sxsy
sx′sy′

)bx(
sx′

sx
)bx′ (

sy′

sy
)by′ ≥ H (6.13)

(
sx
sx′

)bx−bx′ (
sy
sy′

)bx−by′ ≥ H (6.14)

We want to establish a lower bound of the LHS, to check it against H as a quick check
that bypasses the calculations. We can break this into a number of cases called Bounding
Conditions, depending on the values of the two ratios sx

sx′
and sy

sy′
. The truth of the

Bounding Condition implies the truth of Equation (6.14) for all admissible values of x, x′,
y, and y′.

Case A1: sx
sx′
≤ 1 and sy

sy′
≤ 1.

Then, to minimize the LHS, we need to maximize both expressions (bx − bx′) and
(bx− by′). This is done by setting both bx′ and by′ to their minimum values of 0, and bx to
its maximum value of bn

2
c. Therefore, LHS has a lower bound of

(
sx
sx′

)b
n
2
c(
sy
sy′

)b
n
2
c ≥ H

Case A2: sx
sx′

> 1 and sy
sy′

> 1.

To minimize the LHS, we need to minimize both expressions (bx − bx′) and (bx − by′).
Since these parameters are discrete values, and bx must be strictly greater than both bx′
and by′ , both expressions are minimized to a value of 1.

(
sx
sx′

)(
sy
sy′

) ≥ H

Case A3: sx
sx′
≤ 1, and sy

sy′
> 1.

To minimize the LHS, we need to maximize (bx−bx′) and minimize (bx−by′). As in the
previous cases, the �rst expression can be maximized by setting bx′ = 0. Additionally, we
want to maximize by′ subject to our choice of bx. This can be done by splitting the votes
strictly between the two tied winners (with bx each), and the runner up (with by′). This
arrangement roughly corresponds to the following equation (ignoring parity concerns):

2bx + by′ = n
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Substituting this and bx′ = 0 into the LHS of (6.14), we get

(
sx
sx′

)bx(
sy
sy′

)(3bx−n)

((
sx
sx′

)(
sy
sy′

)3)bx(
sy
sy′

)−n

It is clear to minimize this expression, if ( sx
sx′

)( sy
sy′

)3 ≤ 1, we must maximize bx by setting
it to n

2
, and by′ = 0; this gives us

(
sx
sx′

)
n
2 (
sy
sy′

)
n
2 ≥ H

On the other hand, if ( sx
sx′

)( sy
sy′

)3 > 1, then we want to minimize bx by equally splitting
the votes between the three contenders with approximately n

3
votes each. In fact, the

minimum number of winning votes is calculated as bx = bn−6
3
c + 3 for our tied winners, 3

with a gap of bx − by′ = 3− (n mod 3), for n ≥ 6. 4 Therefore, the LHS is minimized as

(
sx
sx′

)b
n−6
3
c+3(

sy
sy′

)3−(n mod 3) ≥ H

Case A4: sx
sx′

> 1 and sy
sy′
≤ 1.

Symmetrically to the previous case, the LHS is minimized according to two sub-cases.
If (( sx

sx′
)3( sy

sy′
)) ≤ 1, we want to maximize bx by setting bx = n

2
, and we get

(
sx
sx′

)
n
2 (
sy
sy′

)
n
2 ≥ H

3For example, if n = 6, then the split would be (3, 3, 0), because our model does not consider a three-
way tie of (2, 2, 2) to be possible; by the same argument, when n = 9, the split is (4, 4, 1). This can be
thought of as reserving 3 votes for each winner, and dividing the remaining votes evenly between the three
candidates, with the third candidate getting the 0, 1 or 2 remaining votes; the 3 reserved votes ensures
the �rst two candidates have a winning tie. If we allow three-way ties, then the expression becomes dn3 e,
which is lower upper bound for the expression.

4The latter expression is the di�erence between the votes for the tied winners and the non-winner,
which as described in the above footnote, can be 1, 2, or 3 ballots. n mod 3 calculates the number of
ballots �left over� for the non-winning candidate; therefore, 3-n mod 3 is the size of the gap between the
non-winner and the tied winners. If three-way ties are allowed, the expression would be 2− (n+1) mod 3.
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Symmetrically, if (( sx
sx′

)3( sy
sy′

)) > 1, then

(
sx
sx′

)3−(n mod 3)(
sy
sy′

)b
n−6
3
c+3 ≥ H

Relaxing Assumptions

Recall, in Condition 6.6, we assumed that ux− uy > 0. If ux− uy < 0, then the inequality
sign in the condition is reversed:

T (y, x) ≤ T (x′, y′)Hx′y′

xy ∀y, x′, y′ ∈ C; y 6= x, x′ 6= y′ (6.15)

And the analysis holds, with the �ipped inequality sign. Condition 6.14 becomes

(
sx
sx′

)bx−bx′ (
sy
sy′

)bx−by′ ≤ H (6.16)

Symmetrically to Conditions 6.14, for Condition 6.16 to hold, we must establish an
upper bound for the LHS. This requires us to solve a maximization problem for the LHS,
which yields the following analogs to the four Bounding Conditions (labelled Cases A1
to A4) then become the following:

Case B1: sx
sx′
≤ 1 and sy

sy′
≤ 1.

To maximize the LHS, we need to minimize both coe�cients, which corresponds to
Case A2, giving us

(
sx
sx′

)(
sy
sy′

) ≤ H

Case B2: sx
sx′

> 1 and sy
sy′

> 1.

By a similar analogy to the above, we get

(
sx
sx′

)b
n
2
c(
sy
sy′

)b
n
2
c ≤ H

Case B3: sx
sx′
≤ 1 and sy

sy′
> 1.

If ( sx
sx′

)3 sy
sy′
≤ 1, then check

93



(
sx
sx′

)3−(n mod 3)(
sy
sy′

)b
n−6
3
c+3 ≤ H

otherwise, we check

(
sx
sx′

)
n
2 (
sy
sy′

)
n
2 ≤ H

Case B4: sx
sx′

> 1 and sy
sy′
≤ 1.

Symmetrically to the previous case, the LHS is maximized as

If sx
sx′

( sy
sy′

)3 ≤ 1, then check

(
sx
sx′

)b
n−6
3
c+3(

sy
sy′

)3−(n mod 3) ≤ H

otherwise, we check

(
sx
sx′

)
n
2 (
sy
sy′

)
n
2 ≤ H

Implementation

To evaluate a voter's strategic response according to the MaxM model, we must �nd
candidate x satisfying the ArgMax Condition (6.4). That is, we need to �nd a candidate
pair (x, y), such that the Domination Condition (6.6) holds for every other pair of
candidates x′ and y′. The heuristic shortcuts this process by providing the Bounding
Conditions (A1 to A4, and B1 to B4). Satisfying the Bounding Condition means the
Domination Condition holds for that particular set of x, x′, y, y′.

If for some candidate pair (x, y), the Bounding Conditions are satis�ed for all other
x′, y′, then we have found the unique x satisfying the ArgMax Condition (6.4).

If one of the Bounding Conditions is violated, then we move on to try the next y 6= x,
because we cannot o�er any guarantees for this current pair (x, y). If we have exhausted
all values of y, then we try to next x.

Finally, if we cannot o�er any guarantees for any x, then we revert to the general
solution of performing all calculations explicitly.

94



By altering the objective function slightly, this heuristic allows us to incorporate a
number of guard statements that check for boundary conditions. When they are triggered,
they allow the algorithm to bypass a number of costly operations. In practice, the guard
statements trigger with higher frequency in more complex instances (i.e. larger population
n or more candidates m), though never more than half the time. The net e�ect is a
roughly constant factor speed-up, approximately halving the time needed to compute the
pivot probabilities to determine a voter's best response. The cost is that the modi�ed
objective function does not fully replicate the decisions of the Full Voter.

Tie Sampling Heuristics

Rather than calculating the exact probability of a pivot condition between x and y, we may
utilize sampling techniques to estimate this probability. Here, the voter may be thought of
as sampling from the outcome space to consider speci�c pivot scenarios, and acting based
only on these imaged, plausible outcomes. This gives us the TieU, TieR and TieH models
below, each is based on the Full voter model.

TieU

We �rst enumerate all pivot outcomes using the Bus Packing algorithm speci�ed in
the Full Voter Model. But rather than querying the multinomial distribution for each
outcome, we sample l outcomes from this space, and calculate the probabilities of each of
these outcomes according to Equation 6.1, and approximate T (y, x) as the sum of these
l probabilities. This reduces the number of queries to l, though the algorithm must still
iterate over the entire pivot space, which is still an O(m2nm−2) operation.

TieH

Rather than sampling uniformly from the space of pivot outcomes, which requires enume-
rating that space fully, we use the following heuristic for sampling non-uniformly from this
space. The number of ballots bw for our tied winners is drawn uniformly from the interval
[dn−2

m
+ 1e, bn

2
c].5 To allocate the remaining ballots r, the algorithm iterates through the

other candidates in random order. For each candidate, the space of admissible allocations
5The lower bound is obtained by reserving two ballots for the tied winners and then splitting the

remaining ballots evenly between m candidates.
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is the interval [max(0, r − m′ × min(r, bw − 1)),min(r, bw − 1)], where m′ is the number
of unallocated candidates. The algorithm draws uniformly from this interval to allocate
the number of ballots for the current candidate, and updates r and m′ before moving to
the next candidate. The result is one possible pivot outcome. Its probability is calculated
according to Equation 6.1, and T (y, x) is approximated as the sum of l such probabilities.
This requires exactly l queries, with negligible overhead.

TieR

We estimate T (y, x) by using a Monte Carlo algorithm in the space of pivot outcomes
using rejection sampling. We generate l outcomes of the election by sampling from the
multinomial distribution, and reject (i.e. discard) any outcomes that do not result in a
2-way pivot condition. T (y, x) is estimated as the proportion of those outcomes which
result in a 2-way pivot between y and x. This requires exactly l queries, with negligible
overhead.

Poisson

Myerson proposed an alternative model for elections, treating them as large Poisson Ga-
mes [99]. In this interpretation, the number of voters is uncertain and follows a Poisson
distribution with mean ne. That is, the probability that there are k players is

Poisson(k|ne) = e−nenke/k!

He shows that if a given voter has probability sb of casting a particular ballot b, then
the number of voters casting b is also a Poisson distribution with mean sbne. Crucially, he
shows that the number of voters casting one type of ballot is independent of the number
of voters casting another ballot. In his paper, Myerson examines �one-dimensional events�,
events that may be represented as rays in the outcome space. He focuses on the conver-
gence behavior of the probability that a 2-candidate election results in a tie, allowing for
abstention where voting may be costly. We will propose a voter heuristic that extends this
model to a multi-candidate election.

While Myerson's Poisson Game models a fundamentally di�erent voting process, we
extend his results for the 2-candidate election to construct a voter model with behavior
similar to the Full Voter: we generalize their results to an m-candidate election, and
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the voters compute and compare the pivot probabilities between pairs of candidates to
determine the course of action that maximizes their expected utility.

Let ni be the random variable representing the number of votes that candidate i receives,
and si denote the probability that a given voter casts a ballot supporting candidate i. Recall
that ni follows a Poisson distribution with mean sine. Then, Myerson shows that, as ne
approaches ∞, the probability of casting a pivotal vote6 in support of c ∈ {1, 2}, in a
2-candidate election, converges to

Pr(n1 = n2|s) ≈ ene(2
√
s1s2−s1−s2)

4
√
πn
√
s1s2

√
s1 +

√
s2√

sc

This requires that s1+s2 ≤ 1, allowing for some voters to abstain. To extend this model
to a multi-candidate election, we treat ballots supporting other candidates as abstentions.
We also require that this be a winning tie: i.e. nc > ni,∀i 6= 1, 2. Since ni are drawn
independently from Poisson distributions with mean sine, the probability that nc− ni > 0
follows a Skellam distribution, which is approximated as

Pr(nc > ni) ≈
(1 + (bc + bi)

2)e−(
√
bc−
√
bi)

2

2(bc + bi)2

−e
−(bc+bi)

4
√
bcbi

− e−(bc+bi)

8bcbi

where bc = scne and bi = sine, and sc > si [76]. If we make the simplifying assumption
that the events n1 = n2 and n1 > ni∀i 6= 1, 2 are independent7, then the probability that
candidate x and y are in a pivot condition is the intersection of the events where x and y
are tied, and x has more votes than every other candidate i 6= x, y. So, we approximate
T (y, x) as

T (y, x) = Pr(nx = ny|s)
∏

i∈C\{x,y}

Pr(nx > ni)

As a result, the Poisson Model requires
(
m
2

)
probability calculations, each of which

takes O(m) computations, giving us a rough runtime of O(m3).
6This accounts for both a direct tie, and where c is one vote away from a tie.
7The two events n1 = n2 and n1 > ni are not independent in general. For example, suppose that

s1 = s2 � s3. If we know that n1 < n3, then we know that n1 is likely small, which makes the event
n1 = n2 much less likely.
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Figure 6.1: Runtime in seconds to construct one voter response (m = 5, n = 100).

Figure 6.2: Runtime in seconds to construct one voter response (m = 5, n = 500). Inset
show runtimes of heuristics using a di�erent axis.

6.2 Comparison via Simulations

To benchmark these heuristics against the Full Voter model, we construct a framework
where a voter v is queried for a strategic response based on a particular set of observations.
For each trial, m candidates are generated with positions drawn uniformly at random from
[0, 100]. The voter v and her d = 25 out-neighbors also draw their preferences from the
same distribution. The value of d captures the amount of information available to the
voter, and also the �resolution� of Figures 6.5�6.7. We chose a moderate value of d = 25,
though we do not expect changing the value of d to signi�cantly impact the results in
this section. Each of the out-neighbors are assumed to vote truthfully, and v constructs
a strategic ballot based on her Voter Response Function. The framework and algorithms
are implemented using the D programming language, compiled using DMD64 D Compiler
v2.071.1 on a 64-bit Ubuntu 14.04.5 server.
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Figure 6.3: Runtime in seconds to construct one voter response (m = 6, n = 100). Inset
show runtimes of heuristics using a di�erent axis.

Figures 6.1 through 6.3 show the time (in seconds) required to construct one voter
response under di�erent voter models, with varying number of candidates m and size of
electorate n. Each datum is averaged over 1000 trials. The top bar shows the time required
for the Full voter. We see that the sampling heuristics, particularly TieR and TieH perform
well, up to 2 orders of magnitude faster than Full; their runtimes are plotted in the inset
using a di�erent scale. Additionally, the runtime of TieH is una�ected by n. The Poisson
Voter is not included in these benchmarks because its runtime is negligible.

We also compare the voter response of the heuristics to the response of the Full Voter.
Figure 6.4 shows the rate of disagreement between the heuristics and the Full Voter. TieH
(L = 2000) has a disagreement rate of 0.124, which means it computes a strategic ballot
di�erent from Full 12.4% of the time. Most heuristics are comparable in their accuracy,
except TieR which performs noticeably worse. The accuracy of TieR may be increased by
increasing the sample size l, but the gain is modest compared to the increase in runtime.
It is interesting to note that even though the Poisson Voter is based on a fundamentally
di�erent model of voting, its accuracy is comparable to the other heuristics according to
this benchmark. The results of Figure 6.4 are representative of other settings of n and m.

Poisson and TieH Voters appear to be our best heuristics for approximating the be-
havior of Full Voter. Next, we examine exactly when they disagree with Full Voter.
For this benchmark, we consider the space of all possible observations that the voter may
encounter, and determine which observations induce di�erences in voter response. For
simplicity, we consider the case where m = 4 and n = 500. We assume the voter observes
the ballots of d = 25 other people in her social network. We �x the voter's preference to
be 0, the candidates positions to be (10, 15, 20, 25); that is, v likes candidate c1 the most,
and c4 the least. This results in a plot on 3-axes: (b1, b2, b3) representing the number of
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Figure 6.4: Rate of Disagreements from the Full Voter Model (m = 5, n = 500).

observed ballots supporting candidates 1, 2, and 3 (ballots supporting 4 may be inferred).
We project this to the 2 dimensional heatmap shown in Figure 6.5. Along the x-axis, we
plot b1, the number of ballots the voter observes supporting her favorite candidate; along
the y-axis, b2, the support for her second choice. Each cell represents multiple points in
the observation space. For instance, the cell (4, 5) corresponds to all observations (4, 5, b3),
where b3 ∈ {0, 1, . . . 16}. Cells in solid green represent conditions where Full Voter always
casts a sincere ballot for candidate 1; Cells in solid white represent conditions where Full
Voter never votes sincerely. Because the heatmap is a projection from a higher dimensional
plot, each cell may represent more than one possible observation. When Full votes sin-
cerely in only some of those observations, the cell is shaded in lighter green. The triangle
on the bottom right, show in gray, are inadmissible conditions where the total number of
ballots supporting candidate 1 and 2 exceed 25.

Naturally, as b1 increases, Full will have a tendency to vote for 1 as well. The large
triangular cutout on the left shows when candidate 2 has enough support that v will change
to a strategic vote for 2. The upper left region shows situations where neither 1 nor 2 have
much support, and the election is a race between 3 and 4. This plot shows that the Full
Voter tends to vote sincerely when her favorite candidate has even moderate amount of
support (to bolster her chance for victory), or when the race is between her top and second
choices. She only votes strategically when she believes the likely winners do not include
candidate 1.

Figure 6.6 uses the same axes, and highlights the conditions where TieH (L = 1000)
disagrees with Full. Cells in red show increased preference for sincere voting; cells in
green show decreased preference for sincere voting. Cells in white show the two models
in general agreement (i.e. the observations represented by the cell result in the same
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Figure 6.5: Conditions
where Full votes sincerely
in green.

Figure 6.6: Conditions
where TieH disagrees in red
or green.

Figure 6.7: Conditions
where Poisson disagrees in
red or green.

number of wins for each candidate, though not necessarily for the same observations).
Due to the stochastic nature of TieH, the instances of disagreement are spread out in the
observation space. However, there is a trend for them to concentrate near the borders
where the Full Voter transitions between di�erent ballots. This is more clearly seen in
Figure 6.7, which maps the same di�erences between Poisson and Full. Here, we see that
Poisson systematically casts more sincere votes, and the disagreements concentrate on the
transition between sincere voting and strategically voting for the second choice.

6.3 Addressing the Desiderata

We return to the desiderata proposed in Section 6.1 and consider how well our proposed
heuristics implement them. Table 6.1 summarizes the degree to which each proposed
heuristic ful�lls the desiderata, including a column for the Full Voter Model, and a row
for a heuristic's Fidelity when compared to Full. By their design, the heuristics adhere
to the Knowledge requirement, that each voter acts only upon observations gleaned from
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Full Top-K Max-M TieU TieH TieR Poisson

Knowledge 3 3 3 3 3 3 3

Rationality 3 Aprx Aprx Aprx Aprx Aprx Aprx
Anonymity 3 3 3 3 3 3 3

Equilibrium * * * * * * *
Tractability 7 7 7 * 3 3 3

Optimistic 3 3 3 3 3 3 3

Fidelity � 3 3 3 3 7 3

Table 6.1: Adherence to the Desiderata by the Heuristics. All heuristics approximate the
rational behavior of the Full voter. The asterisks in the Equilibrium row indicate each
algorithm will either converge to an equilibrium or display a cyclic behavior. The symbols
in the Tractability row provide rough indicators on the speed of the algorithms, ranging
from slow (7), to moderate (*), to fast (3).

her social network. Similarly, all heuristics ful�ll the Anonymity and Optimistic criteria.
Our models also ful�ll the Equilibrium desideratum in the sense that it terminates when
the population converges, or exhibits cyclic behavior to show an equilibrium cannot be
reached.

As explained in Section 6.1.1, the Full Voter Model is based on rational actions of
the voter, and so ful�lls the Rationality desideratum. The other models approximate this
rational behavior to varying degrees of �delity. With the exception of the TieR models, all
our proposed heuristics replicate the decisions of the fully rational voter most of the time
(about 88% to 90% for m = 5 and n = 500).

The main di�erence between our models is in the Tractability desideratum. As noted
before, the Full Voter Model scales very poorly with both the number of candidates m
and the number of other voters n. This is because the algorithm must explicitly enumerate
every possible 2-way winning tie outcome when computing the pivot probability between
two candidates, and the size of this pivot space grows very quickly with m and n. The
heuristics Top-K, Max-M and TieU simplify this computation in di�erent ways, but still
require this enumeration. As a result, they scale poorly to larger elections. The TieR

heuristic bypasses the need for enumerating pivot space by using Monte Carlo sampling
on the entire outcome space; this is fast, but unfortunately loses accuracy quickly in larger
elections due to the sparsity of pivot outcomes. On the other hand, the TieH heuristic
generates more consistent runtimes by allow the heuristic to not sample uniformly from
the pivot space. The cost in accuracy for making this assumption is small, while the
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performance gains are enormous. Surprisingly, the Poisson heuristic also performs very
well in our experiments. While it makes fundamentally di�erent assumptions about the
voters, it produces results that are comparable in accuracy to TieH in a negligible runtime.
Thus, Poisson and TieH are the heuristic models that ful�ll the best combination of
desiderata for use in larger simulations.

6.4 Case Study: The Micromega Rule

In this section, we illustrate an application of our heuristics by studying the Micromega
Rule. In particular, we focus on the e�ects of di�erent population sizes, an aspect that
relies on our heuristics' ability to scale to larger graphs.

In political science, the Micromega rule frequently deals with districting and systems
of proportional representation. While it is intuitive that properties of the voting rules
determine the qualities of successful parties, Josep Colomer posits that this in�uence runs
both ways: that existing political parties will favor electoral rules that improve their future
electoral chances. In particular, he formulated the Micromega rule, which predicts that a
government comprised of few, large parties will favor smaller assemblies and larger districts,
while those formed from smaller parties will favor assemblies with many seats and smaller
individual districts [36]. These topics have been explored in computational social choice
in [13]. They compare the outcomes from a district based election to that of a popular
vote. They devise the Misrepresentation Ratio to measure this deviation, and show that
misrepresentation occurs when the number of voters is small or large.

We explore a variation of the Micromega rule. We posit that large parties are more ef-
fectively able to consolidate their voter base in large electoral districts, while less populous
districts will see more continued support for less popular candidates. It is this continued
support that allows the party to remain viable in future elections. The use of voter heuris-
tics is essential to this exploration of the Micromega rule because our hypothesis depends
on population size. Without using heuristic voter responses, it would not be feasible to
simulate communities of any signi�cant size, and we would not be able to sample election
results from a large enough range of community sizes of test our hypothesis.

We present our electoral districts as simulated social networks. We use directed and
undirected versions of the Erd®s-Rényi (ER) random graph model [56], and the Barabási-
Albert (BA) preferential attachment model [9]. In the (directed) ER graph with density
parameter pr, every (directed) edge exists with probability pr. To create a (directed)
BA graph with attachment parameter pr, we recursively add new nodes to an existing
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graph, attaching it to pr existing vertices via a (directed) edge; the existing vertices are
picked with probability proportion to their (in-)degree. We consider graphs of sizes n ∈
{200, 400, 600, 800}. We focus on the scenario with m = 5 candidates. We �x the average
in-degree of each node to be approximately d = 30.8 A value of d = 30 was selected
as a reasonable number of informational sources voters may consider in such a scenario.
Increasing d allows voters to sample more information from the network, and therefore
give them a more precise estimate on the outcome of the election. This will likely increase
the amount of strategic play in all conditions, since voters will be less optimistic a favorite
candidate will recover if they are behind in the polls. However, we do not believe changes
to d will signi�cantly a�ect the qualitative patterns that emerge.

Based on our results from the previous section, we will use both the Poisson and
TieH models for this simulation. The Poisson model is parameter free, though it exhibits
systematic bias as compared to the Full voter; for the TieH model, we set the sample size
parameter at L = 2000. To measure the degree of support for less popular parties, we take
the SF Ratio, the ratio of support between the second- and �rst-runner up candidates.
Each data point is the average of 200 replications.

6.4.1 Results

Figure 6.8 plots the average SF-Ratio for each condition, and Table 6.2 shows the actual
values. Under the TieH model, we observe that clear downward trends in the directed ER
and BA graphs � the amount of support for the third place candidate diminishes expo-
nentially with increasing voter population, re�ecting an exponentially increasing ability for
voters to vote strategically. Most interesting is the di�erence in SF Ratios of the ER and
dER graphs. Structurally, there is only one di�erence between these two models. In the
ER graph, in�uence is reciprocal � if v observes another voter, then that other voter also
observes v. The same is not generally true in a dER graph, which allows their voters an
increased ability to communicate and propagate information through strategic play.

The most signi�cant downward trend is observed in the dBA graph. The dBA model
generates directed acyclic graphs that have a strongly hierarchical structure, where all
edges are oriented toward older nodes. Information in these graphs �ow from the older and
higher degree nodes, toward the younger, lower degree nodes. This hierarchical structure
prevents e�ective communication, which manifests in the high SF Ratios, particularly in
smaller graphs.

8Importantly, the parameter pr is doubled when constructing directed BA graphs.
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In the Poisson model, we observe the same strong trend in the directed BA graphs.
However, there is no discernible pattern in any of the other graph types as the population
size changes. It is possible that this di�erence is due to the systematic bias in how the
Poisson model attempts to estimate the Full voter's behavior, or that the trend observed
in the directed ER graphs is relatively fragile compared to that of the directed BA graph.

Figure 6.8: Average SF Ratios of graphs of di�erent sizes. TieH voters on the left. Poisson
voters on the right. Note y-axis is in log scale.

Model n=200 n=400 n=600 n=800
TieH model
ER 0.007746 0.010873 0.014477 0.008847
dER 0.005333 0.004676 0.004722 0.003231
BA 0.013058 0.012966 0.014909 0.014406
dBA 0.28263 0.19711 0.175578 0.122599
Poisson model
ER 0.018958 0.003924 0.012530 0.017439
dER 0.003965 0.003504 0.003512 0.004412
BA 0.012314 0.012492 0.007419 0.014982
dBA 0.37516 0.30224 0.24184 0.237367

Table 6.2: Average SF-Ratios. TieH model on top. Poisson model on bottom.

It is worthy to note that the undirected BA graph shows no signi�cant trend in either
direction. Amongst the models used, the BA preferential attachment model may be the
most representative of real world social networks. So while we demonstrate an alternate
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cause for the Micromega rule in certain types of social networks, the result does not neces-
sarily generalize to real world networks.

6.5 Conclusion

In this chapter, we proposed a number of heuristic voter models for strategic voting in
social networks. While the Full Voter model in [129] works well in small graphs, the exact
computation of expected utilities proves infeasible for larger graphs. Voters in our models
are boundedly rational and our heuristics lighten their cognitive burden in ways that would
be natural for a human voter. Our heuristics perform up to 2 orders of magnitude faster,
and retain a high level of �delity when compared to the Full Voter model.

We use our heuristic voter model to investigate the Micromega rule. We show that
in certain networks, particularly the directed Erd®s-Rényi and directed Barabási-Albert
models, smaller populations o�er more support for fringe candidates than larger electorates.
The orientation of directed edges in the dBA graphs lends it a strict hierarchical structure,
which reinforces the Micromega rule dramatically in our simulations. Other preferential
attachment models such as Bollobás's scale-free graphs o�er parameters which may be
tuned to allow for di�erent degrees of hierarchy [24]. It would be interesting to explore the
impact of hierarchical structure on strategic voting in future work.

Our heuristic models also pave the way to simulating strategic voting behavior in truly
large scale networks. This opens up the possibility of simulating on real world datasets,
where nodes number in the millions. Framing the voter's best response decision as an
optimization problem may also prove fruitful, as it allows us to leverage industry standard
tools for solving optimization problems. Moreover, we may also consider broadening our
model to include other scoring rules, such as Borda and k-Approval, and other social choice
functions in general.
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Chapter 7

Vote Timing

7.1 Introduction

Because voting is a process that takes place over time, there is an asymmetry of informa-
tion that is available to earlier and later voters. The ballots cast by earlier voters inform
subsequent voters. The latter may use this information to vote strategically, maximizing
their chances of casting a pivotal ballot; The former may gain a �rst-mover advantage,
establishing their favorite candidate as a lead runner by shaping what information is avai-
lable to later voters. Strategic voters must decide not only which ballot to cast, but also
when to cast their ballot.

The U.S. presidential primaries is an example of such a sequential procedure. The
primaries determine each parties' presidential nominee, and are conducted as a series of
elections in each state. Each state-level election determines how many delegates are sent in
support of each nominee by that state. States schedule their own primary dates1. The re-
sulting elections are spread over several months. In 2016, primaries began in February and
ended in June, in preparation for the November election [1]. Both parties and individual
states recognize the importance of strategic timing. Certain time slots are highly prized
by both the Republican and Democratic Parties. Both parties award bonus delegates to
states holding their elections later in the primary season [18, 114].

Online polls are another domain which allows for strategic timing. These polls are
used as a social choice mechanism for selecting anything from the cutest animal, to artistic
direction for crowdfunded projects, to the winner of the Webby People's Voice award. A

1Each state and party has their own set of rules.
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popular implementation of online polls is the popular group scheduling platform Doodle.
Doodle allows participants to approve or decline proposed time slots. Importantly, Doodle
supports open polls, which allow voters to view the ballots cast by previous voters before
committing their own, or waiting and revisiting the poll at a later time.

This type of strategic timing and voting behavior was dramatically seen in the selection
of titles for the Evolution Championship Series (EVO) in 2017. EVO is an annual inter-
national �ghting game tournament, the largest of its kind. To determine the title played
at one of its events, the organizers ask the community to vote by contributing on an on-
line charity platform, over a period of 15 days. Because the funds raised were updated
in real time, voters e�ectively had access to accurate polling information throughout the
process, and could strategically pick when and how they voted. The results show evidence
of strategic behavior. Of the $147,570 raised, the top two titles account for more than 90%
of the funds[4], with both having established their lead by the second day[7], with large
donations arriving up until the closing minutes [5].

In this chapter, we propose the Sticker Voting framework, where voters are invited to
place a sticker (their ballot) on their chosen candidate (which becomes common knowledge).
In addition to the potential for casting a strategic ballot, this process also invites voters
to be strategic in timing their vote. We propose a model for strategic voter behavior that
incorporates strategic timing, and we analyze the strategic equilibrium in a simple Sticker
Plurality Voting game. Finally, we discuss how we may use our model to capture voting
behavior in the real world.

7.2 Sticker Voting Model

We consider a non-sequential voting game G with n voters, and m candidatesM. Let B
be the set of admissible ballots a voter may cast, and Bn be the set of possible ballots cast
by the population of voters. Let F be a social choice function mapping Bn to the set of
winners, a non-empty subset ofM. Each voter v has a private utility function uv : 2M → R
mapping each outcome to a utility value.

We de�ne a Sticker Voting game based on G by specifying a number of voting rounds
T ≥ 1. In each round, voters may cast a ballot or choose to �Wait�; this choice is made
simultaneously within each round. Once a voter casts a ballot, it is committed and irre-
versible. Formally, in each round, each voter plays an action from the action set B ∪ {∅},
where ∅ corresponds to �Wait� action. Once a voter casts a ballot b ∈ B, their action space
for subsequent rounds is reduced to the set {b}, representing their vote being �locked in�;
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we refer to this as moving from the controlled game to the uncontrolled game. Let
Ht ∈ Bn denote the set of actions played by agents in round t. The history of play prior to
current round t, Ht = (H1, H2, . . . Ht−1) is common knowledge. The winner set is F(HT ),
where ∅ actions are interpreted as �Abstain�.

In round t, a voter may act according to a pure strategy function S, which maps Ht to
an action at ∈ B ∪ {∅}. S maps to the action b if the agent entered the uncontrolled game
by casting ballot b ∈ B in a prior round. We also allow voters to play mixed strategies,
which map Ht to a mixed strategy, i.e. a distribution over B ∪ {∅}.

We focus on Markovian strategies, where the voters do not care about the history of
ballots prior to the previous round t − 1. A Markovian strategy S maps t and Ht−1 to a
mixed strategy.

7.2.1 Plurality Sticker Voting

In this chapter, we focus on the Resolute Plurality Voting Rule. Admissible ballots B are
the candidates M. For round t, denote the standing st as a vector whose i-th element
corresponds to the number of ballots supporting candidate i in Ht−1, or the zero vector
if t = 1. The social choice function F maps the �nal votes HT to the unique candidate i
with the highest siT , breaking ties uniformly at random.

We consider Markovian strategies that are also anonymous to other voters. In round t,
while in the controlled game, an agent's strategy simply maps t and st to a mixed strategy.

7.2.2 Solution Concept

The Sticker Voting Game uses the solution concept of the Perfect Bayesian Equilibrium
(PBE). PBE is a re�nement of Subgame Perfect Equilibrium (SPE) for sequential games. In
a SPE, players act according to strategies that form a Nash equilibrium in every subgame
of the original game. PBE additionally allows players to have incomplete information,
where certain nodes of the game tree are indistinguishable from each other to particular
players; these are called Information Sets. Players maintain beliefs corresponding to the
probability that they are in a particular node in the current Information Set; their strategies
are de�ned according to these beliefs that are on the equilibrium path (and may depend
on the history of play). In the Sticker Voting Game, Information Sets correspond to voters
not knowing the types of the other voters.
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In the Plurality Sticker Voting Game, the current round and tally form a tuple (t, st)
that uniquely identi�es the information set for the player in the controlled game. Each
information set consists of nodes representing the possible types that the remaining un-
committed voters may have. The voter has a belief over the distribution of types of the
uncommitted voters.

A second set of nodes capture the uncontrolled games, with a unique node for each
round t and uncontrolled tally st.

After each round, the beliefs held by each player are updated in the Bayesian manner.
That is, let Pi(Θ−i) be voter i's prior belief about the the types of each other player.
Then, if each player draws their type from a type space Θ, Pi(Θ−i) is a distribution over
Θn−1. After observing a sequence of action pro�les {b(1),b(2), . . .b(k)}, corresponding to
the actions of players from the �rst k rounds of the game, voter i's beliefs are updated as
follows:

Pi(Θ−i|b(1),b(2), . . .b(k)) =
Pi(b

(k)|b(1),b(2), . . .b(k−1),Θ−i)Pi(b
(1),b(2), . . .b(k−1),Θ−i)

Pi(b(1),b(2), . . .b(k))
(7.1)

The numerator term Pi(b
(1),b(2), . . .b(k−1),Θ−i) refers to the probability that the game

has reached the information set of the preceding round, given assumption Θ−i about the
types of the players; the other term in the numerator, Pi(b(k)|b(1),b(2), . . .b(k−1),Θ−i)
refers to the probability of observing the actions of the current round, given the preceding
information set. The term in the denominator Pi(b(1),b(2), . . .b(k)) is a normalizing factor
that is equal to the probability of observing the given sequence of actions, regardless of
voter types. Note that all three terms may be calculated from the game tree, and these
calculations may be e�ciently implemented via dynamic programming.

7.3 Complete Information Game

We �rst consider a simpli�ed scenario with n = 3 voters, {1, 2, 3}, with complete informa-
tion, and m = 3 candidates, {A,B,C}, in a T = 2 round game. Player 1 has preference
A � B � C; player 2, B � C � A; player 3, C � A � B, forming a Condorcet cycle. Each
player gains utility u1 if their favorite candidate wins, u2 utility for their second choice,
and 0 for their third choice, with u1 > u2 > 0. We also require that 2u2 > u1 so that
conceding to one's second place alternative is better than a three-way tie. The types of all
agents are public knowledge. The following table summarizes the utilities:

110



Voter A B C
1 u1 u2 0
2 0 u1 u2

3 u2 0 u1

For simplicity of notation, we denote voter v's favorite candidate as bv,1, the second
choice as bv,2, and so on. When the v is clear from context, we omit v from the subscript.
Since we focus on Plurality, where voters act by submitting a ballot that support one
particular candidate, we also use bv,i to denote the action where v votes for this candidate
(i.e. v's i-th preference). We will actualize the utility values as u1 = 3 and u2 = 2.

Since agents have complete information, the agents' beliefs correspond to the actual
types of the agents, and do not update throughout the game.

Analysis: Final Round

Since the types are common knowledge, we use the more general solution concept of the
Subgame Perfect Equilibrium, and use backward induction to solve the game. Without
lost of generality, we take the perspective of Agent 1.

We begin with the �nal round T . If the agent is still in control, she may �nd the game
in a number of di�erent states:

Case 1: 2 ballots for the same candidate.

Agent 1's vote is irrelevant, and that candidate is selected

Case 2: 2 ballots for di�erent candidates.

Agent 1 breaks ties in favor of the better option.

Case 3: 1 ballot for A

Agent 1 also votes A and gets A as the outcome.

Case 4: 1 ballot for B

Note that this ballot must be cast by Agent 2, since Agent 3 would never vote for B.
In this scenario, we can break down the utilities for the remaining players in the following
table. Entries indicate the winning candidate, with the payo� for the row and column
players in parentheses.
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Agent 3
C A

Agent 1
A tie(5/3, 5/3) A(3, 2)
B B(2, 0) B(2, 0)

It is clear both agents will coordinate on action b1,1 = b3,2 = A as other actions are
strictly dominated, and we may iteratively remove dominated strategies.

Case 5: Only Agent 3 has voted, for C = b1,3

We also break down utilities here:

Agent 2
B C

Agent 1
A tie(5/3, 5/3) C(0, 2)
B B(2, 3) C(0, 2)

By the same argument before, the two agents will coordinate on selecting B.

Case 6: Only Agent 2 has voted, for C = b1,3

Since Agent 3 has not voted, this is actually Case 1 from the perspective of Agent 3.
That is, since C is Agent 3's top choice, Agent 3 will also vote C, secure it as the outcome.
Agent 1's vote is irrelevant. For completeness, we include the utility breakdown as well:

Agent 3
C A

Agent 1
A C(0, 3) A(3, 2)
B C(0, 3) tie(5/3, 5/3)

Case 7: No votes observed

Assuming each agent plays symmetric strategies, each outcome is equally likely, giving
an expected utility of 5/3.

Interestingly, Case 4 and Case 5 clearly show that there is no straightforward �rst-
mover advantage in this scenario. Any agent that is the sole voter in the initial round, and
votes for b1, will force the remaining agents to coordinate in the next round, and produce
b3 as the outcome.
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Analysis: Initial Round

Now that we have the actions and expected utilities for the �nal round, we apply backward
induction to determine the course of play in the initial round. We assume symmetric play;
that is, each player v plays action bv,i with probability pi, i = ∅, 1, 2, 0 ≤ p∅, p1, p2 ≤ 1 and
p∅ + p1 + p2 = 1. We analyze the expected utility for Agent 1 for each action.

Case 1: Agent 1 plays A

As we have established, if Agent 1 plays A and the other agents plays ∅, the other
agents will coordinate to select C, yielding 0 utility for Agent 1. However, Agent 1 may
potentially gain an advantage if the other agents choose not to wait. The following table
shows the outcomes and their payo�s for Agent 1, based on the actions of Agents 2 and 3.

Agent 3
C A ∅

Agent 2
B tie(5/3) A(3) A(3)
C C(0) A(3) C(0)
∅ C(0) A(3) C(0)

The expected utility for voting b1 in the �rst round is

E(u|b1) =
5

3
p2

1 + 3p2 + 3p∅p1 (7.2)

Case 2: Agent 1 plays B

Agent 3
C A ∅

Agent 2
B B(2) B(2) B(2)
C C(0) tie(5/3) C(0)
∅ B(2) B(2) B(2)

The expected utility for voting b2 in the �rst round is

E(u|b2) = 2(p2
1 + p1p2 + 2p∅p1 + p∅p2 + p2

∅) +
5

3
p2

2
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= 2p1 + 2p∅ +
5

3
p2

2 (7.3)

Case 3: Agent 1 plays ∅

Agent 3
C A ∅

Agent 2
B B(2) A(3) A(3)
C C(0) A(3) C(0)
∅ B(2) A(3) tie(5/3)

The expected utility for Waiting in the �rst round is

E(u|b∅) = 3p2 + 2p2
1 + 5p∅p1 +

5

3
p2
∅ (7.4)

Notice immediately that even when factoring in the possibility of multiple agents voting
in the initial round, Waiting dominates voting for A. So we conclude that p1 = 0.

Suppose we are at a symmetric mixed Nash Equilibrium, then Agent 1 must be ambi-
valent over the actions in its support (i.e. b2 and ∅). So we may set equations (7.3) and
(7.4) equal, and solve.

−p1p2 − p∅p1 − p∅p2 +
1

3
p2
∅ −

4

3
p2

2 = 0

And since p1 = 0:

−p∅p2 +
1

3
p2
∅ −

4

3
p2

2 = 0

p2
∅ − 3p∅p2 − 4p2

2 = 0

(p∅ + p2)(p∅ − 4p2) = 0

p∅ = 4p2

Surprisingly, the symmetric mixed Nash Equilibrium strategy for the initial round is
for each agent to play b2 with probability 0.2, and Wait with probability 0.8.
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7.3.1 Rational Voter Behavior

In this simple, complete information game, rational voters will never vote for their top
choice in the �rst round. Instead, they will vote b2 with probability 0.2, or otherwise Wait
in the �rst round. In the latter case, Agent 1 will vote for her favorite candidate in the
second round, unless both other voters have committed their ballots and she must break a
tie in her favor; or Agent 3 casts the only ballot and has voted for C, in which case Agent
1 votes for B.

7.4 Incomplete Information Game

Next, we consider an incomplete information scenario based on the simple game above. As
before, we have n = 3 voters {1, 2, 3} and m = 3 alternatives {A,B,C}. Players may be
one of three types: Type A players have preference A � B � C; Type B, B � C � A;
and Type C, C � A � B. The possible types form a Condorcet cycle, but there is no
guarantee that such a cycle will exist in a particular realization of types. Nature assigns a
type to each player with equal probability. Players know their own types, but do not know
the types of other players. The game will be played over T ≥ 2 rounds. We impose the
same utility structure as before.

Each agent begins knowing her own type, and with the belief that the remaining agents
may have types A, B or C with equal probabilities. Once an agent i commits a ballot,
the other agents update their beliefs of i's type in a Bayesian manner, according to Equa-
tion 7.1. In particular, if the vote was for c, they rule out the possibility that i is of a
type that prefers c the least, because the probability that they commit such a ballot bk,
P (b(k)|b(1),b(2), . . .b(k−1),Θ−i), is identically zero. We note that these belief updates have
no impact on the actions of the remaining voters, as the agent who has voted can no longer
a�ect the outcome of the election, and that no additional information is gleaned about the
other (uncommitted) players.

Analysis: Final Round T

WLOG, we consider the game from the perspective of Agent 1, who is Type A. If we are
in the �nal round of the controlled game, with tally st, let the voters' strategy S(t, st)
be a mixed strategy playing bi with probability pt,sti , where i ∈ {1, 2, 3, ∅}. We will omit
the t and/or st from the superscript where it is clear from context. Additionally, because
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voter strategies are symmetric with respect to type, we adopt the notational convenience
of permuting the vector st so that its i-th entry corresponds to the tally of the voter's i-th
favorite candidate.

Playing b3 is strictly dominated, so by the iterated removal of dominated strategies,
p3 = 0 in all situations. Moreover, since this is the �nal round, Waiting is strictly dominated
by voting b1, so p∅ = 0. Therefore, for any particular s, ps1 + ps2 = 1. All probability values
are bounded within [0, 1].

Case 1: 2 ballots for the same alternative.

Agent 1's vote is irrelevant, at that alternative is selected. There are three outcomes,
with utilities for Agent 1 being 3, 2 or 0.

Case 2: 2 ballots for di�erent alternatives.

Agent 1 breaks ties in favor of the better option. There are 6 outcomes here. Agent 1
may break the tie to gain her top choice in 4 cases, and get her second choice in 2 cases.

Case 3: Agent 3 (WLOG) casts the only vote, for A = b1,1

Agent 1 also votes A and gets A as the outcome.

Case 4: Agent 3 casts the only vote, for B = b1,2

Agent 2 may be of one of three types. If Agent 2 is Type B, then they will also vote
for B. Agent 1's vote is irrelevant, and gets a payo� of 2. The following tables break down
the utility of Agent 1's actions for the other two cases:

Table 7.1: Utility breakdown if Agent 2 is Type A

Agent 2
A B

Agent 1
A A(3, 3) B(2, 2)
B B(2, 2) B(2, 2)
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Table 7.2: Utility breakdown if Agent 2 is Type C

Agent 2
C A

Agent 1
A tie(5/3, 5/3) A(3, 2)
B B(2, 0) B(2, 0)

Since Agent 2's type is not known to Agent 1, neither action is dominant. But we can
calculate the expected utility for each action.

E(u|b(0,1,0)
1 ) =

1

3
(3p

(0,1,0)
1 + 2p

(0,1,0)
2 )

+
1

3
(
5

3
p

(0,0,1)
1 + 3p

(0,0,1)
2 )

+
1

3
(2) (7.5)

E(u|b(0,1,0)
2 ) =

1

3
(2p

(0,1,0)
1 + 2p

(0,1,0)
2 ) +

1

3
(2p

(0,0,1)
1 + 2p

(0,0,1)
2 ) +

1

3
(0)

=
1

3
(2) +

1

3
(2) +

1

3
(2)

= 2 (7.6)

If there is a mixed equilibrium, then Agent 1 will be ambivalent over the two choices.
We set equations (7.5) = (7.6), and solve to obtain

p
(0,1,0)
1 =

4

3
p

(0,0,1)
1 − 1 (7.7)

We set aside this equation, and carry it forward to Case 5.

Case 5: Agent 3 casts the only vote, for C = b1,3

Agent 2 may be of one of three types. If Agent 2 is Type C, then they will vote for C
and Agent 1's action is irrelevant, and they get utility 0. The following tables break down
the utility of Agent 1's actions for the other two cases:
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Table 7.3: Utility breakdown if Agent 2 is Type A

Agent 2
A B

Agent 1
A A(3, 3) tie(5/3, 5/3)
B tie(5/3, 5/3) B(2, 2)

Table 7.4: Utility breakdown if Agent 2 is Type B

Agent 2
B C

Agent 1
A tie(5/3, 5/3) C(0, 2)
B B(2, 3) C(0, 2)

Since Agent 2's type is not known to Agent 1, neither action is dominant. But we can
calculate the expected utility for each action.

E(u|b(0,0,1)
1 ) =

1

3
(3p

(0,0,1)
1 +

5

3
p

(0,0,1)
2 ) +

1

3
(
5

3
p

(0,1,0)
1 + 0p

(0,1,0)
2 ) +

1

3
(0) (7.8)

E(u|b(0,0,1)
2 ) =

1

3
(
5

3
p

(0,0,1)
1 + 2p

(0,0,1)
2 ) +

1

3
(2p

(0,1,0)
1 + 0p

(0,1,0)
2 ) +

1

3
(0) (7.9)

As before, if we are at a mixed equilibrium, the agent must be ambivalent over the two
actions. And so we set equations (7.8) = (7.9), and solve:

(
4

3
p

(0,0,1)
1 − 1

3
p

(0,0,1)
2 ) + (−1

3
p

(0,1,0)
1 ) = 0

4p
(0,0,1)
1 − p(0,0,1)

2 − p(0,1,0)
1 = 0

5p
(0,0,1)
1 − 1− p(0,1,0)

1 = 0 (7.10)

More over, we can substitute equation (7.7) into (7.10) to obtain p
(0,0,1)
1 = 0. But

substituting this result back into Equation 7.7, we get p(0,1,0)
1 = −1. A contradiction. So

we are not at a mixed equilibrium.
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We then consider the pure strategy outcomes based on the actions in Case 4 and Case
5. An agent who observes (0, 1, 0) may play p(0,1,0)

1 = 1 or p(0,1,0)
2 = 1. In addition, an agent

who observes (0, 0, 1) has options p(0,0,1)
1 = 1 or p(0,0,1)

2 = 1. There are four possible pure
strategy combinations, and we may calculate the expected payo� for each player, in each
scenario. For example, consider p(0,1,0)

1 = 1 and p(0,0,1)
1 = 1, where both players will play b1

regardless of their observation. That means, if Agent 1 observed (0, 1, 0), we will reach one
of three possible outcomes: we elect A, B or reach a Tie. Thus, the expected utility will
be 20/9. We repeat these calculations to formulate the outcomes in the matrix below:2

Table 7.5: Expected Utilities for Pure Strategies

Observes (0,0,1)
p

(0,0,1)
1 = 1 p

(0,0,1)
2 = 1

Observes
(0,1,0)

p
(0,1,0)
1 = 1 (20

9
, 14

9
) (8

3
, 4

3
)

p
(0,1,0)
2 = 1 (2, 1) (2, 2

3
)

Notice three of the pure strategies are dominated, leaving only the top left cell as the
unique symmetric Nash Equilibrium for the �nal round. This corresponds to the actions of
voting for the top choice regardless of the nature of the single ballot observed.
This nets an expected utility of 20

9
if Agent 1 observed a ballot for her second choice, and

14
9
, for her third choice.

Case 6: No agent has cast any ballots, in which case Agent 1's best response is to vote
honestly and hope for the best: p(0,0,0)

1 = 1, with probability 5
9
of electing A, 2

9
of getting

a tie, 1
9
of getting B, and 1

9
of getting C. This results in an expected utility of 61

27
.

Analysis: Preceding Round t

Now that we have an equilibrium analysis of the last round, we extend our analysis to
preceding rounds via backward induction. Here, each agent has three actions, and Waiting
is not a clearly dominated action: p(0,0,1)

1 +p
(0,0,1)
2 +p

(0,0,1)
∅ = 1, and p(0,1,0)

1 +p
(0,1,0)
2 +p

(0,1,0)
∅ =

1.
2While this matrix resembles a normal form game, it is only analogous to one. The rows and columns

represent information states that the players �nd themselves in, and the actions they may take. The cell
represents the payo� to the player for a particular pure strategy the agents symmetrically pursue.
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If Agent 1 takes the Wait action ∅, she proceeds into the information state (t + 1, s+)
of the controlled game, where s+ is obtained from st by adding a number of ballots up to
an including the number of uncommitted voters, representing new ballots cast this turn by
the other voters. If Agent 1 casts a ballot b, then she enters into the uncontrolled game
(t+ 1, s+) (see Section 7.4.2).

Case 1: 2 ballots for the same alternative.

Agent 1's vote is irrelevant.

Case 2: 2 ballots for di�erent alternatives.

Agent 1 breaks ties in favor of the better option.

Case 3: Agent 3 (WLOG) casts the only vote, for A = b1,1

Agent 1 also votes A and gets A as the outcome.

Case 4: Agent 3 casts the only vote, for B = b1,2

As before, we may lay out the possible actions of each agent, based on the possible
types of Agent 2 (recall if Agent 2 is type B, the outcome is decided regardless of the
actions Agent 1):

Table 7.6: Utility breakdown if Agent 2 is Type A

Agent 2
A B ∅

Agent 1
A A(3, 3) B(2, 2) A(3, 3)
B B(2, 2) B(2, 2) B(2, 2)
∅ A(3, 3) B(2, 2) ∗(H,H)

Table 7.7: Utility breakdown if Agent 2 is Type C

Agent 2
C A ∅

Agent 1
A tie(5/3, 5/3) A(3, 2) A(3, 2)
B B(2, 0) B(2, 0) B(2, 0)
∅ B(2, 0) A(3, 2) ∗(H,L)
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Importantly, the outcome designated as ∗ represents the outcome computed in the
inductive step for the next round, where the expected utility for a player who observes a
ballot for her second choice is H, or is L if a ballot for her last choice is observed (H > L,
and H > 2). If the current round is t = T − 1, then H = 20

9
and L = 14

9
.

As before, we can write equations for expected utilities and solve to show that b(0,1,0)
2

is dominated by b(0,1,0)
∅ , if H ≥ 2. We solve the remaining equalities in conjunction with

Case 5 below.

E(u|b(0,1,0)
1 ) =

1

3
(3p

(0,1,0)
1 + 2p

(0,1,0)
2 + 3p

(0,1,0)
∅ ) +

1

3
(
5

3
p

(0,0,1)
1 + 3p

(0,0,1)
2 + 3p

(0,0,1)
∅ ) +

1

3
(2)

(7.11)

E(u|b(0,1,0)
2 ) =

1

3
(2) +

1

3
(2) +

1

3
(2)

= 2 (7.12)

E(u|b(0,1,0)
∅ ) =

1

3
(3p

(0,1,0)
1 + 2p

(0,1,0)
2 +Hp

(0,1,0)∗
∅ ) +

1

3
(2p

(0,0,1)
1 + 3p

(0,0,1)
2 +Hp

(0,0,1)
∅ ) +

1

3
(2)

(7.13)

Since we know that p(0,1,0)
1 + p

(0,1,0)
2 + p

(0,1,0)
∅ = 1 and p(0,0,1)

1 + p
(0,0,1)
2 + p

(0,0,1)
∅ = 1, we

can simplify Equations 7.11 and 7.13 as follows:

E(u|b(0,1,0)
1 ) =

1

3
(2 + p

(0,1,0)
1 + p

(0,1,0)
∅ ) +

1

3
(
5

3
+

4

3
p

(0,0,1)
2 +

4

3
p

(0,0,1)
∅ ) +

1

3
(2) (7.14)

E(u|b(0,1,0)
∅ ) =

1

3
(2 + p

(0,1,0)
1 + (H − 2)p

(0,1,0)
∅ ) +

1

3
(3− p(0,0,1)

1 + (H − 3)p
(0,0,1)
∅ ) +

1

3
(2)

(7.15)

Let us examine the expected utilities E(u|b(0,1,0)
2 ) and E(u|b(0,1,0)

∅ ). Suppose the former
is greater than the latter. Then p(0,1,0)

2 > 0, but by Equation 7.15, E(u|b(0,1,0)
∅ ) > 2, and

we reach a contradiction. Suppose that the two are equal, then p(0,0,1)
2 = 0, which is also a

contradiction. Therefore, we may assume that playing b(0,1,0)
2 is a dominated strategy, and

p
(0,1,0)
2 = 0.

Case 5: Agent 3 casts the only vote, for C = b1,3
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Agent 2 may be of one of three types. If Agent 2 is Type C, then they will vote for C
and Agent 1's action is irrelevant, and they get utility 0. The following tables break down
the utility of Agent 1's actions for the other two cases:

Table 7.8: Utility breakdown if Agent 2 is Type A

Agent 2
A B ∅

Agent 1
A A(3, 3) tie(5/3, 5/3) A(3, 3)
B tie(5/3, 5/3) B(2, 2) B(2, 2)
∅ A(3, 3) B(2, 2) ∗(L,L)

Table 7.9: Utility breakdown if Agent 2 is Type B

Agent 2
B C ∅

Agent 1
A tie(5/3, 5/3) C(0, 2) C(0, 2)
B B(2, 3) C(0, 2) B(2, 3)
∅ B(2, 3) C(0, 2) ∗(L,H)

We formulate expected utilities as before. We utilize Gambit [88] to solve this subgame
for the t = T − 1 case, and �nd that p(0,0,1)

2 = 0. Using this information (see Section 7.4.1
for details), we may solve the system of equations exactly to obtain

p
(0,1,0)
∅ = − 3H − 3L− 1

24H − 3L− 71
(7.16)

p
(0,0,1)
∅ =

3H − 3L− 8

24H − 3L− 71
(7.17)

We can substitute this solution into the Expected Utility calculations in Equations
(7.15):
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E(u|b(0,1,0)
∅ ) =

(H − 3)

3
p

(0,1,0)
∅ +

(H − 2)

3
p

(0,0,1)
∅ +

7

3
(7.18)

= −(H − 3)

3

3H − 3L− 1

24H − 3L− 71
+

(H − 2)

3

3H − 3L− 8

24H − 3L− 71
+

7

3
(7.19)

=
4(41H − 6L− 121)

3(24H − 3L− 71)
(7.20)

This gives the expected utility of 2.34 for the optimal action (the mixed strategy des-
cribed above) when observing the vote vector (0, 1, 0) in the second last round. We may
also derive the expected utility for Waiting when observing vote vector (0, 0, 1) from the
above tables.

E(u|b(0,0,1)
∅ ) =

(L− 2)

3
p

(0,1,0)
∅ +

(L− 3)

3
p

(0,0,1)
∅ +

5

3
(7.21)

= −(L− 2)

3

3H − 3L− 1

24H − 3L− 71
+

(L− 3)

3

3H − 3L− 8

24H − 3L− 71
+

5

3
(7.22)

=
117H − 19L− 333

3(24H − 3L− 71)
(7.23)

In particular, for t = T − 1 of the controlled game, when observing (0, 1, 0), Agent
1 should vote b1 with probability p

(0,1,0)
1 = 64/67 (and Wait otherwise) for an

expected utility of 2.34. When observing (0, 0, 1), she should vote b1 with pro-

bability p
(0,0,1)
1 = 49/67 for an expected utility of 1.53.

Case 6: No ballots observed.

If no ballots are observed, all agents are in the same information set, and we may
assume they act symmetrically. We denote the probability that they play their top choice,
second choice and Wait as p1, p2, and p∅, respectively.

If Agent 1 Waits, then with probability p2
∅, we enter the next round with the tally

(0, 0, 0), which gives an expected utility of N (N = 61
27

in round T − 1). With probability
2p∅(1−p∅), we enter the next round with one other ballot cast (uniformly randomly selected
between the candidates); each of these outcomes gives an expected utility of 3, H, and L.
Finally, with probability (1−p∅)2, both other agents cast their ballots. There are 9 possible
outcomes (all equally likely); Agent 1 gains her top choice in 5 cases, her second choice in
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3 cases, and her last choice in 1 case. This gives an expected utility of 7
3
. Therefore, the

expected utility of waiting is

E(u|b(0,0,0)
∅ ) = Np2

∅ + 2p∅(1− p∅)
3 +H + L

3
+ (1− p∅)2 7

3
(7.24)

If Agent 1 votes for b1, then with probability p2
∅, we enter the uncontrolled game (t +

1, (1, 0, 0)), with expected utility U1 (see Section 7.4.2). With probability 2p∅(1− p∅), one
other agent has blindly voted, resulting in the vote vector (2, 0, 0) (utility = 3), (1, 1, 0)
(utility = 8

3
)3, or (1, 0, 1) (utility = 1). Finally, with probability (1 − p∅)

2, both other
agents have blindly voted, giving a utility of 61

27
.

Thus, the expected utility for this action is

E(u|b(0,0,0)
1 ) = U1p

2
∅ + 2p∅(1− p∅)

1

3
(3 +

8

3
+ 1) + (1− p∅)2 61

27

= U1p
2
∅ +

40

9
p∅(1− p∅) + (1− p∅)2 61

27
(7.25)

By a similar set of calculations, we get the expected utility for casting a b2 ballot is

E(u|b(0,0,0)
2 ) = U2p

2
∅ + 2p∅(1− p∅)

1

3
(2 +

8

3
+

4

3
) + (1− p∅)2 61

27

= U2p
2
∅ + 4p∅(1− p∅) + (1− p∅)2 49

27
(7.26)

where U2 is the expected utility from the uncontrolled game (t+ 1, (0, 1, 0)), and U2 <

U1. Notice E(u|b(0,0,0)
2 ) is smaller than E(u|b(0,0,0)

1 ) for all values of p0. Therefore, we may
assume p(0,0,0)

2 = 0, and p(0,0,0)
1 + p

(0,0,0)
∅ = 1.

Let us consider the di�erence of expected utility from the remaining two options:

E(u|b(0,0,0)
1 )− E(u|b(0,0,0)

∅ )

3Note that the Condorcet cycle is important here: if the remaining voter is Type C, she would strate-
gically vote for A.
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= (U1 −N +
2

3
(H + L)− 68

27
)p2
∅ + (

70

27
− 2

3
(H + L))p∅ −

2

27
(7.27)

Clearly, if p∅ = 0, this would result in a negative value and E(u|b(0,0,0)
1 ) < E(u|b(0,0,0)

∅ ),
which is a contradiction. So we know that regardless of the values of H and L, there is a
non-zero probability that an agent Waits.

If t = T − 1, then N = U1 = 61
27

and H + L = 34
9
, which zeroes out the p2

0 term, and
(7.27) becomes 2

27
(p∅ − 1). Therefore, p∅ = 1 and Agent 1 waits.

We carry forward the induction to t = T − 2. N = 61/27 U1 = 2.1739 and H + L =
3.8723. Equation 7.27 becomes 1/27(−2 + 0.2986p∅ − 0.6033p2

∅), which is negative for
all values of p∅. Thus, E(u|b(0,0,0)

1 ) < E(u|b(0,0,0)
∅ ), and so Agent 1 waits as well. Trend

continues in further rounds of induction.

Therefore, regardless of the number of rounds in the election, the rational voter always
Waits until the last round in the process before casting a sincere ballot for their
top choice. For this arrangement of candidates and voter preferences, Sticker Voting is
equivalent to a simultaneous vote.

7.4.1 Utilities for Round t

The expected utilities for playing b1, b2 or b∅ in round t, upon observing a single ballot for
C can be calculated as follows:

E(u|b(0,0,1)∗
1 ) =

1

3
(
5

3
p

(0,1,0)∗
1 + 0p

(0,1,0)∗
2 + 0p

(0,1,0)∗
∅ )

+
1

3
(3p

(0,0,1)∗
1 +

5

3
p

(0,0,1)∗
2 + 3p

(0,0,1)∗
∅ ) (7.28)

E(u|b(0,0,1)∗
2 ) =

1

3
(2p

(0,1,0)∗
1 + 0p

(0,1,0)∗
2 + 2p

(0,1,0)∗
∅ )

+
1

3
(
5

3
p

(0,0,1)∗
1 + 2p

(0,0,1)∗
2 + 2p

(0,0,1)∗
∅ ) (7.29)

E(u|b(0,0,1)∗
∅ ) =

1

3
(2p

(0,1,0)∗
1 + 0p

(0,1,0)∗
2 +

14

9
p

(0,1,0)∗
∅ )

+
1

3
(3p

(0,0,1)∗
1 + 2p

(0,0,1)∗
2 +

14

9
p

(0,0,1)∗
∅ ) (7.30)

At this point, we may use Gambit to solve the game for the T − 1 round numerically.
We get the following mixed Nash equilibrium: p(0,1,0)

1 = 0.96, p(0,1,0)
2 = 0, p(0,1,0)

∅ = 0.045,
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and p(0,0,1)
1 = 0.73, p(0,0,1)

2 = 0, p(0,0,1)
∅ = 0.27. This leads to an expected utility of 2.31 for

a player who observes a ballot for her second choice, or of 1.53 for a player who observes
a ballot for her last choice.

In other words, in the second-to-last round, an agent plays a mixed strategy between
playing her top choice and waiting. The probability of waiting is higher if she observes a
ballot supporting her last choice.

More importantly, this informs us that playing b2 is always dominated by another
strategy, when observing both (0, 1, 0) and (0, 0, 1). This allows us to calculate the exact
solution. If we assume that p(0,0,1)∗

2 = 0, we may substitute

p
(0,0,1)
1 + p

(0,0,1)
∅ = 1p

(0,1,0)
1 + p

(0,1,0)
∅ = 1 (7.31)

into the previous expected utilities:

E(u|b(0,1,0)∗
1 ) =

1

3
(3) +

1

3
(
5

3
p

(0,0,1)∗
1 + 3p

(0,0,1)∗
∅ ) +

1

3
(2)
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If we assume the equilibrium strategy is a mixed strategy comprised of the remaining
actions, then we may also set E(u|b(0,1,0)∗

1 ) = E(u|b(0,1,0)∗
∅ ), and E(u|b(0,0,1)∗

1 ) = E(u|b(0,0,1)∗
∅ ),

and solving gives us the system of equations:
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This solves to give us the exact solution that veri�es with the empirical solution provided
by Gambit, p(0,1,0)∗

∅ = 3/67 and p(0,0,1)∗
∅ = 18/67.

Using this same method allows us to compute the exact solution for any values for
expected utility obtained for taking the Wait action for any given round. Let H (L) be the
expected utility gained by waiting when observing (0, 1, 0) ((0, 0, 1)), respectively. The only
changes are to the utility calculations for E(u|b(0,1,0)∗

∅ ) and E(u|b(0,0,1)∗
∅ ) (Equation (7.30)),

as follows:
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We set E(u|b(0,1,0)∗
1 ) = E(u|b(0,1,0)∗

∅ ), and E(u|b(0,0,1)∗
1 ) = E(u|b(0,0,1)∗

∅ ), and solve:

(H − 3)p
(0,1,0)∗
∅ + (H − 10

3
)p

(0,0,1)∗
∅ = −1

3

(L− 1

3
)p

(0,1,0)∗
∅ + (L− 3)p

(0,0,1)∗
∅ = −1

3

which gives the solution

p
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∅ = − 3H − 3L− 1

24H − 3L− 71

p
(0,0,1)
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7.4.2 The Uncontrolled Subgames

We say Agent 1 enters the uncontrolled game node (t + 1, s) when she has chosen to cast
a ballot in round t, resulting in the tally s (which includes her ballot and other ballots
submitted simultaneously in round t).
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Round t+ 1 T T-1 T-2
Utility 2.26 2.17 2.18

In particular, we are interested in the uncontrolled game (t+ 1, (1, 0, 0)). If t+ 1 = T ,
then we know (due to symmetry) both remaining agents will vote for their top preferences.
This gives an expected utility 61

27
as may be expected.

However, in prior rounds t+ 1 < T , the remaining agents may be able to coordinate if
they happen to vote sequentially. This only matters if the remaining agents have types B
and C (a 2 in 9 chance), and depends on the probability of them waiting upon observing
the controlled information state t + 1, s. As a result, the expected utility of entering this
uncontrolled game is

E(u|(t+ 1, (1, 0, 0))) (7.32)

=
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27
(2p

t+1,(0,1,0)
∅ p
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where pt+1,(0,1,0)
∅ and p

t+1,(0,0,1)
∅ are inductively calculated for round t + 1 by Equati-

ons (7.16) and (7.17). The following table shows the expected utility of entering the un-
controlled game (t + 1, (1, 0, 0)), i.e. by casting a sincere ballot in round t after observing
no ballots. Notice all are strictly less than 61

27
.

7.5 Discussion & Conclusion

In our two simple instances of Sticker Voting, we observe that rational voter behavior
di�ers dramatically. In the complete information game, voters will play a mixed strategy
in the �rst round, playing either their second choice or Waiting; if they chose to Wait,
they will break any ties in their favor in the �nal round, or otherwise vote sincerely. In the
incomplete information game, voters will always exercise the Wait option until they reach
the �nal round, during which they vote sincerely.

It is interesting to contrast the two behaviors. The voters in the complete information
game know that the other players are rivals, and therefore understand that there is a �rst-
mover disadvantage if they are greedy. Yet there is also an incentive to concede early to
secure acceptable compromise. In the incomplete information game, the voter is unsure
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as to the nature of the other players. However, more likely than not, one of the other
players has the same type as her, so there is an opportunity to signal cooperation. But
any incentive to do this is outweighed by the shrewdness of Waiting until the �nal round,
where any other players with the same type as her will naturally coordinate their votes
out of self interest. Additionally, in sharp contrast with the complete information game,
voting second choice is never exercised as an option.

This type of strategic timing and strategic voting is consistent with observations in the
community vote organized by the Evolution Championship Series (EVO) in 2017. EVO is
an annual, open format, international �ghting game tournament. The tournament features
a selection of video games currently popular in the gaming community. Because of the
rapidly evolving nature of the medium, the organizers change the featured titles regularly
based on community interest.

For the 2017 tournament, the organizers used a voting mechanism to choose one of
the titles, in a manner similar to our Sticker Voting model. Voters were directed to cast
their ballots by making charitable donations to one of several specially setup accounts on
the online charity platform generosity.com, with 100% of the proceeds going to Make-a-
Wish International4. The winner, naturally, would be the title with the most donations.
Donations are capped at $10,000 per person, and corporate sponsors were not allowed [3].
Since the current funds for each donation drive is clearly displayed on the website, voters
have highly accurate information on the interim standings of each candidate [4]. Moreover,
many gaming news sites also covered the changing standings prominently [7].

The winner, Ultimate Marvel vs. Capcom 3, received $71,690 of donations, followed
closely by Pokken Tournament at $66,906 [5]. The other titles garnered substantially fewer
donations. The third place title earned about 10% of the second place title, with the top
two titles accounting for over 90% of donations. This would be consistent with human
models of bounded rationality in all-in auctions. The �nal tallies are listed in Table 7.10
[4].5

Early on in the process, Killer Instinct amassed a sizable lead in the early hours [5].
However, by day 2, UMvC3 and Pokken had already emerged as the main contenders [7].
In a dramatic display of strategic timing, one donor put in $2,000 in the closing minutes
of the election, securing the win for UMvC3 and causing some supporters for Pokken to
withdraw their donations[5]. These observations may be interpreted through the lens of

4From their website, �the mission of Make-A-Wish International is to grant the wishes of children with
life-threatening medical conditions to enrich the human experience with hope, strength and joy.�

5There is a discrepancy in donations due to a number of donors canceled their funds when their favorite
title failed to win.
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Title Money Raised Donors
Ultimate Marvel vs. Capcom 3 $71,640 1,486
Pokken Tournament $62,431 742
Killer Instinct $6,116 159
Windjammers $4,000 50
ARMS $1,337 74
Skullgirls $920 39
Super SFII Turbo $831 22
Nidhogg $158 11
Mortal Kombat XL $137 8

Table 7.10: EVO 2017 �People's Choice� Voting Results, as Measured in Charitable Dona-
tions (USD). Retrieved March 4, 2017.

our model. Enthusiasm in the Killer Instinct community sought to establish an early lead
and solidify its position as a major contender, but were overtaken by UMvC3 and Pokken
by the second day. From day 2 onward, as predicted by strategic behavior, the majority
of donations went toward either the �rst or second place candidates. The generous last
minute donation could be seen as a dramatic example of strategic timing. By placing such
a large donation so close to the end of the election, the donor all but ensured that the
action would be pivotal.

Returning to our results, the result of our incomplete information game is in line with
the results of Dekel and Piccione [45]. In their model, voters must commit to voting in
one of two rounds. More importantly, this decision is made prior to the election, and prior
to realizing their own preferences. This is an important distinction from our model, which
allows voters to make their decisions dynamically as the election unfolds. For instance, we
allow our voters to undertake di�erent voting strategies if they observe other voters com-
mitting their ballots in a certain way (for instance, if another voter supports your favorite
option); this is a more realistic generalization of the Dekel-Piccione model. Nonetheless,
we �nd that our results mirror theirs � in their model, they �nd that rational voters will
always vote in the second (i.e. �nal) round.

Battaglini, Morton and Palfrey [16, 17] explore a similar model with 2 candidates, in
which voters cast ballots in a �xed sequence. Moreover, voting is costly, and voters may
earn a small amount of utility by choosing to abstain. Voters must choose between passing
up on this bonus to help the group select the better alternative, or abstaining and trusting
in the decisions of others. In their analysis and laboratory experiments, they also remark
that later voters bene�t from informational e�ects revealed by earlier voters; while their
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model is fundamentally di�erent from ours, their observation parallels our own conclusion.

Finally, in Sandholm and Vulkan's bargaining game with deadlines [117], rational agents
will wait until the �nal moment before their deadline before acting. Yet, these results
appear to be at odds with the incentives o�ered by the Republican and Democratic Parties
in the U.S., who award bonus delegates to states voting later in the primary season.

Our solution is based on the 3-player voting game. We chose this number because
this is the smallest number of voters where interesting strategic behavior could occur. A
larger number of players enable richer strategies to emerge. For instance, in a 5-player
game, it becomes possible for a player's favorite candidate to become a necessary loser
of the election, and therefore, must vote strategically.6 Even for our 3-player game, a
full solution requires complicated calculations, and so performing a similar full analysis
of a larger game seems intractable. Thus, it is important to consider to what degree
our conclusions may generalize to a larger game. We may still expect Waiting to confer
some strategic advantage; or rather, that voting early is likely to allow other players to
subsequently gain the upper hand. It is believable that for most preference con�gurations,
that Waiting until the last round remains a equilibrium strategy. However, this solution
for the rational voter seem unintuitive when applied to human voters. In real world Sticker
Voting venues and in online polls, we do not expect to see all (or even, a majority of) voters
deliberating until the last minute to cast their ballots. We know that humans are impatient
and place diminishing value on future payo�s. Are these important qualities to model in
Sticker Voting? Human voters also place importance on the expressiveness of voting � they
gain satisfaction from having expressed their opinion through voting sincerely. It would be
interesting to conduct experiments similar to Battaglini, Morton and Palfrey [17] to elicit
data on human voting behavior when using the Sticker Voting mechanism.

Additionally, we have made several assumptions about the preference structure and
voter behavior for tractability of analysis. What happens when we relax these assumptions?
The Condorcet cycle in the preference structure is an important element in at least one of
the calculations in the model (see Footnote 3). Do the results hold if such cycles are rare
in practice?

One possible model of bounded rationality that may applied to Sticker Voting is the
Quantal Response Equilibrium (QRE) model [89], where players have a nonzero probability
of playing each action, de�ned as a function of the expected payo� of that action. For
instance, in the logit equilibrium (LQRE), the probability of playing an action a with
expected utility u(a|a−i) where other players are using strategies a−i is de�ned as

6This is also possible in 3-player games with a lexicographic voting rule. However, exogenous asymmetry
between the candidates makes this less attractive to study.
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Pr(a|a−i) =
eλu(a|a−i)

Z

with sharpness parameter λ and normalization constant Z. QRE has also been extended
to extensive form games, where the agents' future actions are treated as mixed strategies
de�ned inductively [89]. Other models include incorporating a future discount factor for
utilities, or varying the weights of ballots cast during di�erent phases of the election.

Alternatively, it may be interesting to consider a setting where some proportion of
voters are impulsive, and will commit to a ballot early in the voting process. How will the
presence of such voters a�ect the behavior of the strategic voters? Will their actions cause
a collapse in the �Waiting� equilibrium?

Finally, it would be interesting future work to investigate other models of deliberative
agents in Sticker Voting setting. For instance, agents may also make use of history to infer
the types of other agents, allowing them to update their beliefs of the distribution of types
in population of uncommitted voters, and therefore strategize accordingly.
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Chapter 8

Conclusion

As social networks play ever increasing roles in our daily lives, there is an increasing need
to understand their e�ects on human behavior. Our social network �lters and shapes
the information we receive about the world, and thereby a�ect the way we act in various
circumstances. We focused on a particular social choice scenario � voting. We considered
intelligent voters who vote strategically according to the information presented to them,
and examined how social network structure may shape their behavior.

This thesis began with the intention to advance our understanding of the interactions
between social network structure and strategic voter behavior, by examining the question
of how di�erent network structures alter the �ow of information through a network, and
thereby alter the aggregate outcomes of independent and strategic voters over time. We
examined how network structure may a�ect the propagation of information in a social
network of skeptical agents, leading to either the convergence or divergence of opinions
(Chapter 4). We proposed a framework in the form of several desiderata for modeling vo-
ters embedded within such a social network, who must act strategically, but only according
to information available to them (Chapter 6). We constructed voter models based on this
framework (Chapters 5 and 6), and showed that they qualitatively replicated real world
phenomena such as Duverger's Law (Chapter 5), and the Micromega Rule (Chapter 6).
We also showed network homophily leads to the Echo Chamber E�ect (Chapter 5), which
reduced the rate of strategization in the population, and thereby produces less suitable
candidates. Moreover, we showed that by using heuristic models, we could scale our si-
mulation to large populations (Chapter 6). Finally, we also examined how agents may
exploit the informational e�ects of the voting process by strategically timing their ballots
(Chapter 7).
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8.1 Summary of Main Results

In the following, we summarize the main results of each chapter:

Chapter 4: Opinion Dynamics. We examined a model for opinion dynamics for
skeptical agents. In opinion dynamics, agents each possess an initial personal opinion,
and in�uence each others' opinions through repeated interactions with their social network
neighbors. We introduced an opinion dynamics model for skeptical agents, where the in�u-
ence an agent has on another agent is a function of the di�erence between their opinions:
The greater the di�erence, the greater the skepticism between the agents, and therefore,
the less e�ect they will have on each others' opinions. We studied the degree to which an
opinion will spread through a social network by examining the opinions of agents at con-
vergence � i.e. once they have reached a stable state. We showed that agents will quickly
converge to an early but interim consensus before taking coordinated action to migrate
to a �nal collective opinion. We found that, when faced with polarizing �extremists� in
the networks, high connectivity helped maintain moderate opinions in large parts of the
community. Moreover, in homophilic networks where agents were less skeptical, opinions
may stratify at several distinct, moderate levels at equilibrium, representing a diversity of
opinions that was stabilized by more extreme opinions from both ends of the spectrum.

Chapter 5: Voting in Social Networks. We presented a model for strategic voters
embedded in a social network. This model extended Iterative Voting to an environment of
incomplete information. Voters must utilize only information from their social networks to
predict the likely outcomes of the election, and select a ballot that maximizes their expected
utility. That is, they are willing to abandon their favorite candidate for a more promising
alternative in situations where the latter is much more likely to win. We showed that in such
a network, strategization is a good thing: Strategization increased as voters have access to
more information, and selects candidates were more likely to produce a higher social welfare
for the population. On the other hand, networks that exhibited homophily reduced the level
of strategization within the community, and thereby produced less suitable candidates. In
popular media, this e�ect is called �The Echo Chamber E�ect�, which is a natural tendency
for people to connect with people who are similar to themselves. When voters surround
themselves with similar people, it hides opportunities for strategic voting, and so they end
up casting ine�ective, �wasted� ballots. This may be a contributing factor to the low rate
of strategic voting observed in real world elections. Additionally, strategization may lead
to the elimination of less popular candidates, as voters revise their votes to less preferred
but more promising candidates. This phenomenon is known as Duverger's Law in political
science, and we showed that it does not hold in sparse network structures.

Chapter 6: Heuristic Voter Models. We proposed a general framework for mo-
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deling strategic voters who operate with incomplete information, based on the structure
of a social network. We de�ned several boundedly-rational heuristics based on this fra-
mework. We analyzed the computational complexity of each heuristic, and gauged their
performance according to their �delity and speed. According to those results, we put
forth two heuristics that are both fast and accurate � TieH, based on a biased sampling
technique; and Poisson, which extends Myerson's Large Poisson Games [99] to a multi-
ple candidate election. To illustrate the e�ectiveness of our techniques, we applied our
heuristics to explore the Micromega rule � an observation in political science that large
political parties favor small assemblies. We found that the size of electoral districts is a
contributing factor to the Micromega rule in some networks. Fringe candidates retained
more support in smaller districts, while larger parties dominated in larger districts.

Chapter 7: Vote Timing. We proposed a new voting mechanism called Sticker
Voting, where ballots are cast by placing stickers on favored candidates. Unlike Iterative
Voting, the selection of a ballot is a permanent and irrevocable commitment. Moreover, it
di�ers from many other voting methods because the act of voting reveals information to
other players, which induces an asymmetry of information available to subsequent voters.
Voters may strategize through both the choice of the submitted ballot and the timing of
its submission. We introduced and analyzed a model for strategic voter behavior in Sticker
Voting for small games with 3 players. We found its equilibrium behaviors in these settings,
speculated on how it may generalize in larger settings, and discussed how it re�ects human
voting behavior.

8.2 Future Directions

While we have explored a number of di�erent aspects of the interplay between social
choice and social networks, there are yet many exciting research directions that begin at
the intersection of these two �elds.

Strategic Models for Other Voting Mechanisms. This thesis focused on plura-
lity voting. Therefore, a natural direction of exploration is to study strategization in other
voting systems such as Borda, Bucklin or Single Transferable Vote. While Armstrong and
Larson generalize our strategic model to k-Approval [11], it is not clear how to repre-
sent strategic voter responses in elections using general position scoring rules. Rational
voters cast a ballot based on expected tie probabilities, inferred through their observati-
ons. Throughout our thesis, we have presented several reasonable mechanisms by which
a sampling of plurality ballots may be transformed into a distribution over the possible
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outcomes of the election. For this computation to be remotely feasible, the space of admis-
sible ballots must be small. This no longer holds true for other, richer, voting systems, and
therefore, more sophisticated heuristics and computational techniques must be developed
to handle these scenarios. What does strategic play look like in other voting systems with
incomplete information? How will di�erent network structures a�ect voter behavior in
other voting systems? Do certain voting systems elect more capable candidates in di�erent
communities?

Strategic Network Formation. Real world networks are dynamic and changing
entities: collaborations and friendships grow and extend the network, while outdated con-
nections fade away. In this thesis, we examined how agents in a network exchange infor-
mation, in�uence each other, and exercise strategic behavior. But the structure of the
network itself also evolves over time. While economic networks have been studied quite
extensively by researchers (see [74] for example), allowing agents to alter the network adds
another dimension of strategic play in social choice games. How can agents manipulate
the network structure to their advantage? How does competition between agents a�ect the
network formation process? Will this form of strategic behavior bene�t or harm the social
welfare of mechanisms operating in those networks?

Strategic Timing Models. In Chapter 7, we proposed a model for Sticker Voting
where voters were free to strategically choose when to commit their ballots. However, the
analysis for even a simple 3-player scenario proved to be a complex endeavor. In order to
analyze larger games, we must adopt behavioral models for voters where their actions are
computed via heuristics of bounded-rationality. These behavioral models may also allow
more human-like behaviors to emerge. One possible model of human behavior we may use
is the Quantal Response Equilibrium (QRE) model [89], where any action has a nonzero
probability of being played, even if it is not optimal. Therefore, even if waiting until the
last round is the optimal strategy, there is a chance that a number of voters will vote early
anyways, possibly starting a strategic cascade in the remaining voters. This �impatience�
factor may be explicitly accounted for as well, by adding a deliberation cost for remaining
active in the game. Finally, we may also change how time is considered in our model:
Rather than having discrete time steps, we may consider each round to be de�ned by the
moment that the next agent chooses to act. Rede�ning the problem this way may prove
fruitful for further mathematical analyses.

Real World Data Sets. Hand in hand with the arrival of �big data� comes veritable
treasure troves of data about how individuals connect with each other in society, and
how individual behaviors and opinions evolve over time. The proprietary nature of this
data means this resource has remained largely untapped by researchers of computational
social choice. While we must be mindful of the many privacy and ethical concerns when
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dealing with such personal pieces of information, responsible access to this data may yield
new insight into how individuals in�uence each other over time. For instance, we may
validate the actions of our strategic voter models from Chapters 5 and 6 against human
behavior extracted from popular social media platforms alongside information about the
social network structure. It may be possible to infer some of this information from publicly
available data. For example, sentiment analysis techniques may be applied to Tweets to
evaluate the (publicly disclosed, even if implicitly) political allegiance of Twitter users,
and the underlying social network may be approximated by examining the list of Twitter
Followers. Monitoring the evolution of these opinions over time may reveal how social
in�uence occurs in situ. Moreover, data on when humans commit social choice decisions
will inform behavioral models of strategic timing being developed in Chapter 7. Indeed,
data from public social choice platforms like Doodle show evidence of strategic timing
[135, 103]. Similar data may be available from other online platforms that have been
harnessed for social choice purposes, such as generosity.com discussed in Chapter 7.
Finally, simple laboratory experiments may be devised to tease out ground truth on this
aspect of human behavior as well.

Social In�uence Evaluation. Many researchers have already examined the problem
of detecting in�uential individuals in the network, or the more speci�c application to
maximize in�uence in networks (see [77] and [78], for instance). This problem is of obvious
bene�t to marketers and lobbyists. However, many of these metrics are based on analyzing
network structure alone, prior to and independent of exposure to the social stimuli. In this
thesis, we examined several models of how this in�uence is e�ected in a network and how
it materialized as distinct action. This paves the way for an action-based model of social
in�uence, where its impact may be measured through actions taken by the agents rather
than inferred through network structure alone. When coupled with community detection
techniques, this may be used to enhance the identi�cation of leaders and in�uential �gures
in communities. Moreover, this action-based model of in�uence allows us to detect social
pressure exerted within social network whose structure are shaped by more innocuous
forces, with applications in policing and detecting instances of cyberbullying.

Social Predictions Equipped with a model of social in�uence and strategic action,
we may then apply our knowledge toward the ultimate goal of predicting social choice
outcomes on our network. Our model may be used to take social network structure and
social in�uence into account, and re�ne the accuracy of forecasting models. We would be
able to tease out important and lasting social changes, from more ephemeral fashions, fads
and viral phenomena. When coupled with tools such as sentiment analysis, our system may
be able to formulate automated predictions that react dynamically to new information and
chaotic events. Alternatively, if we consider voting as an objective process, where agents
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are cooperating to uncover some hidden ground truth based on noisy signals, then we
may also leverage social network structure to help us re�ne the results of the social choice
mechanisms; indeed, we have already made interesting headway in this line of inquiry
[127, 73], though this work is outside the scope of this thesis.

In closing, social networks encode the nature of human relationships within a commu-
nity and contain insights into how information �ows through a population. By understan-
ding the nature of these interactions, and how they inform strategic behavior, this thesis
sheds light on the underlying interplay between network structure and strategic voting be-
havior, and paves the way to further work at the intersection of social networks and social
choice.
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