520 research outputs found

    The prediction of fatigue using speech as a biosignal

    Get PDF
    Automatic systems for estimating operator fatigue have application in safety-critical environments. We develop and evaluate a system to detect fatigue from speech recordings collected from speakers kept awake over a 60-hour period. A binary classification system (fatigued/not-fatigued) based on time spent awake showed good discrimination, with 80 % unweighted accuracy using raw features, and 90 % with speaker-normalized features. We describe the data collection, feature analysis, machine learning and cross-validation used in the study. Results are promising for real-world applications in domains such as aerospace, transportation and mining where operators are in regular verbal communication as part of their normal working activities

    Uncertainty Quantification in Machine Learning for Biosignal Applications -- A Review

    Get PDF
    Uncertainty Quantification (UQ) has gained traction in an attempt to fix the black-box nature of Deep Learning. Specifically (medical) biosignals such as electroencephalography (EEG), electrocardiography (ECG), electroocculography (EOG) and electromyography (EMG) could benefit from good UQ, since these suffer from a poor signal to noise ratio, and good human interpretability is pivotal for medical applications and Brain Computer Interfaces. In this paper, we review the state of the art at the intersection of Uncertainty Quantification and Biosignal with Machine Learning. We present various methods, shortcomings, uncertainty measures and theoretical frameworks that currently exist in this application domain. Overall it can be concluded that promising UQ methods are available, but that research is needed on how people and systems may interact with an uncertainty model in a (clinical) environment

    Uncertainty Quantification in Machine Learning for Biosignal Applications -- A Review

    Full text link
    Uncertainty Quantification (UQ) has gained traction in an attempt to fix the black-box nature of Deep Learning. Specifically (medical) biosignals such as electroencephalography (EEG), electrocardiography (ECG), electroocculography (EOG) and electromyography (EMG) could benefit from good UQ, since these suffer from a poor signal to noise ratio, and good human interpretability is pivotal for medical applications and Brain Computer Interfaces. In this paper, we review the state of the art at the intersection of Uncertainty Quantification and Biosignal with Machine Learning. We present various methods, shortcomings, uncertainty measures and theoretical frameworks that currently exist in this application domain. Overall it can be concluded that promising UQ methods are available, but that research is needed on how people and systems may interact with an uncertainty model in a (clinical) environment.Comment: 26 pages, 13 figures, 3 table

    Unobtrusive Health Monitoring in Private Spaces: The Smart Vehicle

    Get PDF
    Unobtrusive in-vehicle health monitoring has the potential to use the driving time to perform regular medical check-ups. This work intends to provide a guide to currently proposed sensor systems for in-vehicle monitoring and to answer, in particular, the questions: (1) Which sensors are suitable for in-vehicle data collection? (2) Where should the sensors be placed? (3) Which biosignals or vital signs can be monitored in the vehicle? (4) Which purposes can be supported with the health data? We reviewed retrospective literature systematically and summarized the up-to-date research on leveraging sensor technology for unobtrusive in-vehicle health monitoring. PubMed, IEEE Xplore, and Scopus delivered 959 articles. We firstly screened titles and abstracts for relevance. Thereafter, we assessed the entire articles. Finally, 46 papers were included and analyzed. A guide is provided to the currently proposed sensor systems. Through this guide, potential sensor information can be derived from the biomedical data needed for respective purposes. The suggested locations for the corresponding sensors are also linked. Fifteen types of sensors were found. Driver-centered locations, such as steering wheel, car seat, and windscreen, are frequently used for mounting unobtrusive sensors, through which some typical biosignals like heart rate and respiration rate are measured. To date, most research focuses on sensor technology development, and most application-driven research aims at driving safety. Health-oriented research on the medical use of sensor-derived physiological parameters is still of interest

    Uncertainty Quantification in Machine Learning for Biosignal Applications -- A Review

    Get PDF
    Uncertainty Quantification (UQ) has gained traction in an attempt to fix the black-box nature of Deep Learning. Specifically (medical) biosignals such as electroencephalography (EEG), electrocardiography (ECG), electroocculography (EOG) and electromyography (EMG) could benefit from good UQ, since these suffer from a poor signal to noise ratio, and good human interpretability is pivotal for medical applications and Brain Computer Interfaces. In this paper, we review the state of the art at the intersection of Uncertainty Quantification and Biosignal with Machine Learning. We present various methods, shortcomings, uncertainty measures and theoretical frameworks that currently exist in this application domain. Overall it can be concluded that promising UQ methods are available, but that research is needed on how people and systems may interact with an uncertainty model in a (clinical) environment

    Towards Cognitive Dialog Systems

    Get PDF

    A State of the Art Overview on Biosignal-based User-Adaptive Video Conferencing Systems

    Get PDF
    Video conferencing systems are widely used in times of distributed teams since they support flexible work arrangements. However, they have negative impacts on users, such as lacking eye gaze or zoom fatigue. Adaptive interventions in video conferences based on user behavior provide interesting solutions to overcome these challenges, for example, by alerting users when looking tired. Specifically, biosignals measured by sensors like microphones or eye-trackers are a promising basis for adaptive interventions. To provide an overview of current biosignal-based user-adaptive video conferencing systems, we conducted a systematic literature review and identified 24 publications. We summarize existing knowledge in a morphological box and outline further research directions. Thereby, a focus on biooptical signals is visible. Current adaptations target audience feedback, expression understanding and eye gaze mostly by image and representation modifications. In future, we recommend including further biosignals and addressing more diverse problems by investigating adaptation capabilities of further software elements

    Learning Biosignals with Deep Learning

    Get PDF
    The healthcare system, which is ubiquitously recognized as one of the most influential system in society, is facing new challenges since the start of the decade.The myriad of physiological data generated by individuals, namely in the healthcare system, is generating a burden on physicians, losing effectiveness on the collection of patient data. Information systems and, in particular, novel deep learning (DL) algorithms have been prompting a way to take this problem. This thesis has the aim to have an impact in biosignal research and industry by presenting DL solutions that could empower this field. For this purpose an extensive study of how to incorporate and implement Convolutional Neural Networks (CNN), Recursive Neural Networks (RNN) and Fully Connected Networks in biosignal studies is discussed. Different architecture configurations were explored for signal processing and decision making and were implemented in three different scenarios: (1) Biosignal learning and synthesis; (2) Electrocardiogram (ECG) biometric systems, and; (3) Electrocardiogram (ECG) anomaly detection systems. In (1) a RNN-based architecture was able to replicate autonomously three types of biosignals with a high degree of confidence. As for (2) three CNN-based architectures, and a RNN-based architecture (same used in (1)) were used for both biometric identification, reaching values above 90% for electrode-base datasets (Fantasia, ECG-ID and MIT-BIH) and 75% for off-person dataset (CYBHi), and biometric authentication, achieving Equal Error Rates (EER) of near 0% for Fantasia and MIT-BIH and bellow 4% for CYBHi. As for (3) the abstraction of healthy clean the ECG signal and detection of its deviation was made and tested in two different scenarios: presence of noise using autoencoder and fully-connected network (reaching 99% accuracy for binary classification and 71% for multi-class), and; arrhythmia events by including a RNN to the previous architecture (57% accuracy and 61% sensitivity). In sum, these systems are shown to be capable of producing novel results. The incorporation of several AI systems into one could provide to be the next generation of preventive medicine, as the machines have access to different physiological and anatomical states, it could produce more informed solutions for the issues that one may face in the future increasing the performance of autonomous preventing systems that could be used in every-day life in remote places where the access to medicine is limited. These systems will also help the study of the signal behaviour and how they are made in real life context as explainable AI could trigger this perception and link the inner states of a network with the biological traits.O sistema de saúde, que é ubiquamente reconhecido como um dos sistemas mais influentes da sociedade, enfrenta novos desafios desde o ínicio da década. A miríade de dados fisiológicos gerados por indíviduos, nomeadamente no sistema de saúde, está a gerar um fardo para os médicos, perdendo a eficiência no conjunto dos dados do paciente. Os sistemas de informação e, mais espcificamente, da inovação de algoritmos de aprendizagem profunda (DL) têm sido usados na procura de uma solução para este problema. Esta tese tem o objetivo de ter um impacto na pesquisa e na indústria de biosinais, apresentando soluções de DL que poderiam melhorar esta área de investigação. Para esse fim, é discutido um extenso estudo de como incorporar e implementar redes neurais convolucionais (CNN), redes neurais recursivas (RNN) e redes totalmente conectadas para o estudo de biosinais. Diferentes arquiteturas foram exploradas para processamento e tomada de decisão de sinais e foram implementadas em três cenários diferentes: (1) Aprendizagem e síntese de biosinais; (2) sistemas biométricos com o uso de eletrocardiograma (ECG), e; (3) Sistema de detecção de anomalias no ECG. Em (1) uma arquitetura baseada na RNN foi capaz de replicar autonomamente três tipos de sinais biológicos com um alto grau de confiança. Quanto a (2) três arquiteturas baseadas em CNN e uma arquitetura baseada em RNN (a mesma usada em (1)) foram usadas para ambas as identificações, atingindo valores acima de 90 % para conjuntos de dados à base de eletrodos (Fantasia, ECG-ID e MIT -BIH) e 75 % para o conjunto de dados fora da pessoa (CYBHi) e autenticação, atingindo taxas de erro iguais (EER) de quase 0 % para Fantasia e MIT-BIH e abaixo de 4 % para CYBHi. Quanto a (3) a abstração de sinais limpos e assimptomáticos de ECG e a detecção do seu desvio foram feitas e testadas em dois cenários diferentes: na presença de ruído usando um autocodificador e uma rede totalmente conectada (atingindo 99 % de precisão na classificação binária e 71 % na multi-classe), e; eventos de arritmia incluindo um RNN na arquitetura anterior (57 % de precisão e 61 % de sensibilidade). Em suma, esses sistemas são mais uma vez demonstrados como capazes de produzir resultados inovadores. A incorporação de vários sistemas de inteligência artificial em um unico sistema pederá desencadear a próxima geração de medicina preventiva. Os algoritmos ao terem acesso a diferentes estados fisiológicos e anatómicos, podem produzir soluções mais informadas para os problemas que se possam enfrentar no futuro, aumentando o desempenho de sistemas autónomos de prevenção que poderiam ser usados na vida quotidiana, nomeadamente em locais remotos onde o acesso à medicinas é limitado. Estes sistemas também ajudarão o estudo do comportamento do sinal e como eles são feitos no contexto da vida real, pois a IA explicável pode desencadear essa percepção e vincular os estados internos de uma rede às características biológicas
    corecore