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Uncertainty Quantification in Machine Learning for
Biosignal Applications - A Review

Ivo Pascal de Jong, Andreea Ioana Sburlea and Matias Valdenegro-Toro
Department of Artificial Intelligence, Bernoulli Institute, University of Groningen, The Netherlands

Abstract—Uncertainty Quantification (UQ) has gained traction
in an attempt to fix the black-box nature of Deep Learning.
Specifically (medical) biosignals such as electroencephalography
(EEG), electrocardiography (ECG), electroocculography (EOG)
and electromyography (EMG) could benefit from good UQ,
since these suffer from a poor signal to noise ratio, and good
human interpretability is pivotal for medical applications and
Brain Computer Interfaces. In this paper, we review the state
of the art at the intersection of Uncertainty Quantification and
Biosignal with Machine Learning. We present various methods,
shortcomings, uncertainty measures and theoretical frameworks
that currently exist in this application domain. Overall it can
be concluded that promising UQ methods are available, but that
research is needed on how people and systems may interact with
an uncertainty-model in a (clinical) environment.

I. INTRODUCTION

Standard Machine Learning (ML) systems such as Random
Forests, SVMs, and Neural Networks typically produce single-
point estimates for their classification task. This means that it
is not possible to get an estimate of how likely the model
is to be correct for a given sample. The inability to know
how well a model will actually perform once deployed is part
of the black-box skepticism that hinders implementation of
Machine Learning methods in clinical settings [1]. Uncertainty
Quantification (UQ) attempts to address this problem by
adapting Machine Learning systems to also predict a measure
of confidence for a given prediction. Over the past years this
has been gaining traction in Computer Vision [2], but it is still
only lightly explored in Machine Learning tasks that focus on
Biosignals.

Applications using Biosignals such as electroencephalog-
raphy (EEG), electrocardiography (ECG), electromyography
(EMG) and electrooculography (EOG) can gain particular ben-
efits from uncertainty quantification. Their signals are sensitive
to artefacts that could corrupt the prediction of a Machine
Learning system in unexpected ways. Uncertainty Quantifica-
tion methods may help here by recognizing that the data is
corrupted and withholding a classification, rather than giving
an erroneous response. Another argument for the importance
of Uncertainty Quantification is that the human interpretation
of the signal requires substantial time investment. Uncertainty
Quantification may identify which samples really need an
expert opinion, and which may be automatically classified with
minimal risk of error. To give an order of scale to the human
effort: sleep scoring a patients EEG recording of an overnight
stay will typically take a neurologist about 2 hours [3]. A
Machine Learning system that can automatically classify the

majority of the overnight stay with high confidence while
identifying the parts that it is uncertain on may reduce this.
Figure 1 shows where the uncertainty quantification aspect
might occur in a Machine Learning based medical biosignal
analysis.

With the value that this direction of research can bring this
review attempts to identify how Uncertainty Quantification
methods should be used in biosignal applications. Answer-
ing this question directly is impossible, but by investigating
and critically assessing the way research is currently being
conducted we attempt to provide some adjustments to the
current directions and suggests new avenues to be explored
in the future. Moreover, we intend to provide an overview
of currently common methods as an entryway for researchers
new to the topic of UQ in Biosignal processing, together with
a simplified end-to-end guide for implementing, applying and
evaluating uncertainty.

In the rest of this section we explain how the literature
review was performed to offer some usability, and we end
the section with a thorough explanation of what uncertainty is
in Subsection I-B. Section II discusses the different Machine
Learning algorithms for quantifying uncertainty. A large part
of this is devoted to Bayesian Neural Networks and its various
implementations. It discusses the other available algorithms in
decreasing other of prevalence. Section III provides different
ways a numerical measure of uncertainty can be extracted from
a predicted distribution generated by some of the uncertainty
quantification methods. Then, Section IV describes different
ways uncertainty has been used in the biosignal domain.
Together, Sections II-IV form the main body of findings
and reflect how uncertainty quantification has been used for
biosignals. The paper closes with a guide for uncertainty quan-
tification in Section V and some identified open challenges in
Section VI, to close with a brief conclusion in Section VII.

A. Search Method
To ensure reproducibility we used a systematic

review. A first search had a higher level structure
of ((Uncertainty Quantification ∧ Machine Learning) ∨
Bayesian Neural Networks) ∧ Biosignals. However, it was
found that a line of research [4]–[6] uses the term ”Bayesian
Neural Networks” erroneously to describe classical Neural
Networks trained with Bayesian Regularization [7]. A second
search was performed without the Bayesian Neural Networks
disjunction.

To ensure good coverage of the review various synonyms
and abbreviations were used for each term. Specifically for
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Fig. 1. Position of Uncertainty Quantification in medical biosignal interpretation. The uncertainty of a prediction may be considered by a clinician to improve
diagnosis, or predictions with very low uncertainty may be accepted without human involvement.

the Machine Learning term several Neural Networks methods
were used, and various Machine Learning models such as
SVM, Random Forest and Fuzzy Logic. For the application
domain we searched on the following terms: EEG, ECG, EOG,
EMG, BCI and fNIRS, although no fNIRS papers were found.
The choice of these terms was selected for the consistent
modality, as each of them cover data from a set of time series
from different locations.

Works that did not touch on the predictive uncertainty of
a Machine Learning model, or that did not cover one of the
relevant biosignals were rejected from the review. The two
searches were applied to the databases: Web of Science, Sco-
pus, IEEE Xplore and PsycINFO. Manual filtering by abstract
and title resulted in a total of 59 papers, of which 35 met the
criteria. 14 papers used the Bayesian Neural Networks term
erroneously, five did not look at predictive uncertainty of a ML
model, and two papers did not concern a relevant biosignal.
Three papers looked at different biosignals, but were kept due
to their interesting application of uncertainty quantification.
The included and not included papers are visualised in Figure
2. The search covers any work before October 2023.

Figure 3 shows an overview of the results from this search.
It shows that since 2020 there has been an increase in the use
of Uncertainty Quantification, but overall there is not a lot of
research in this intersection of Uncertainty Quantification and
Biosignals.

B. Fundamentals of Predictive Uncertainty

Before going into the specific Machine Learning models that
can quantify uncertainty for a given prediction, it is important
to first understand what uncertainty really entails. Hüllermeier
et al. [8] explains how predictive uncertainty can arise from
two conceptual sources: aleatoric uncertainty and epistemic
uncertainty. Aleatoric uncertainty1 (also known as stochastic
uncertainty) is the uncertainty that is inherent in the data.
This kind of uncertainty cannot be reduced by having a better
model, or by having the data be evaluated by a human expert.
It comes from an imperfect predictive relationship between the

1Aleatoric is derived from the Latin word ”alea”, meaning dice

Included: 38

All papers: 59

Failed criteria: 24

Wrong biosignal: 5

No uncertainty: 5

Wrong BNN: 14
Not included: 21

Fig. 2. The flow of papers that were covered in the systematic literature
search, divided by rejection criteria.

features X and the to-be-predicted label y. A toy example of
aleatoric uncertainty is predicting the outcome of a coin toss.
Even with arbitrarily many training samples, the uncertainty
will not decrease.

In more detail, we may subdivide aleatoric uncertainty into
three sources. Firstly, there may be noise in the features. This
could be due to artifacts, sensor noise or sensor failure. The
second is label noise. In virtually every dataset there will be
training samples that have been mislabeled. For classifiers used
to aid diagnosis this is largely due to ground truth labels
that have been annotated with imperfect expert diagnosis.
Third, there is the possibility that even noiseless features and
noiseless labels simply do not have a completely predictive
relationship. It may be inherently impossible to uncover certain
fine-grained cognitive processes with complete certainty from
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Fig. 3. Histogram of the number of papers per year using Uncertainty
Quantification for each Biosignal. The search was conducted in September of
2023, so more papers for 2023 are expected. Overall this shows an increase in
the number of Biosignal papers using Uncertainty Quantification. This shows
an increase in the popularity of Uncertainty Quantification methods, although
the amounts are still small.

electricity on the scalp, even if this task is absent of any
noise in the recordings and has an infinite amount of perfectly
labeled training samples.

Epistemic uncertainty (also known as model uncertainty) is
the uncertainty that comes from a lack of knowledge. In this
case a better model or a human expert would be able to make
an accurate prediction. This kind of uncertainty may arise
when a model is applied to data that is different from the data
it was trained on, which is referred to as out-of-distribution [9].
Other causes of epistemic uncertainty include limited training
data or model misspecification. Unlike aleatoric uncertainty,
epistemic uncertainty does decrease with an increase in train-
ing samples. This property is explicitly used when epistemic
uncertainty is measured by the Mutual Information between
the model and a new hypothetical training sample in Section
III-D

In biosignal contexts epistemic uncertainty commonly
comes from limited labeled training data. It also arises when a
model fails to generalise. This happens either across subjects,
across recording hardware, and possibly even across clinics.
Moreover, some tasks suffer from concept drifts where the
signals that should be identified as a certain class may change
over time or over contexts. In EEG research this can exhibit
as cross-session variability.

The distinction between aleatoric and epistemic uncertainty
is made clear in Figure 4, which shows how aleatoric and
epistemic uncertainty arise in classification. In this case we
see that in the area of feature space where both classes occur,
aleatoric uncertainty arises. Epistemic uncertainty arises as the
model cannot perfectly learn the distribution of the classes in
feature space.

Van Gorp et al. [10] emphasises the need for this distinction
in sleep stage classification, although this need also applies
to other areas. They explain how aleatoric uncertainty should

         

         

         

Fig. 4. Aleatoric and epistemic uncertainty in the 2D feature space of
a classification tasks. The purple and yellow indicate the different class
distributions, and the green area in which the classes overlap indicates
aleatoric uncertainty. The dashed lines indicate a possible decision boundary.
The part of the class distributions that fall outside of the decision boundary
has not yet been learned. These parts show epistemic uncertainty.

be addressed differently than epistemic uncertainty. If there is
high aleatoric uncertainty for a given sample, then there is no
use in asking a colleague for a second opinion, or for extra
training on how to do sleep scoring. For a model, this means
that more training samples will not improve performance.
Instead the approach to improving model accuracy is to either
collect cleaner data to improve the correlation, or to collect
additional features such as age or known pathologies to make
the classes more separable. For epistemic uncertainty more
training data, better models, or asking an expert for help can
improve performance.

In Section II we will discuss how these different kinds of
uncertainties can present differently in some ML methods,
which can be used to help inform what needs to be done to
make a more confident prediction, or to decide how to respond
to samples that are classified with aleatoric or with epistemic
uncertainty.

1) Limitations of Aleatoric and Epistemic Uncertainty :
Understanding aleatoric and epistemic uncertainty is suffi-
cient to follow most of the current Uncertainty Quantification
methods in the biosignal domain. However, it is important
to know that is only a perspective, and not a fundamental
property of uncertainty. The rest of this sections outlines some
of the limitations of this perspective and shows where this
perspective fails and what alternatives exist. While this is not
required to understand the current methods, it may be helpful
for the development of novel methods and offers a broadened
concept of uncertainty.

Since the aleatoric-epistemic perspective is only a perspec-
tive on uncertainty there are other ways to look at uncertainty.
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Some of these alternatives fit into the aleatoric-epistemic
framework, but others do not. For example, in Section II-D1
we discuss Prior Networks, where the epistemic uncertainty
is further split into model uncertainty and distributional un-
certainty. Meanwhile Bishop et al. [11] makes a distinction
between discriminative and generative models, where the
former learns a decision boundary between the classes, the
latter learns the class likelihood in feature space. Under these
generative models samples with low likelihood for either
class may be considered uncertain. However, this does not
intuitively fit into either aleatoric or epistemic uncertainty.
Bayesian Neural Networks finding an uncertainty decision
boundary can be classified as discriminative models, whereas
feature density methods can be classified as generative models
for Uncertainty Quantification [12], [13].

We can explore the limitations of aleatoric and epistemic
uncertainty with a toy example. Consider fitting a linear
regression model to samples from a quadratic polynomial
without any noise. With infinite training samples we can be
certain about the optimal parameters for the linear model, thus
resulting in zero epistemic uncertainty. The uncertainty that
remains is aleatoric uncertainty, which is considered to be
irreducible. However, while the uncertainty is not reducible
through increased training samples, it is reducible by having a
nonlinear model. Given this, we should be careful when saying
aleatoric uncertainty is irreducible.

The problem here is that aleatoric and epistemic uncertainty
are measured for a modelling task given a set of features and
a model architecture, but this may not be the task we need
to understand the uncertainty for. In a practical setting, we
might want to know the uncertainty of a classification for an
arrhythmia, which should be invariant to the feature extraction
and model architecture chosen by the modeller. This shows
that aleatoric and epistemic uncertainty can easily be confused.

2) Uncertainty in Terms of Evidence: One alternative per-
spective on uncertainty is discussed in the literature. Lin et
al. [14], distinguishes between uncertainty from vacuity and
from dissonance. This comes from the domain of Subjective
Logic [15]. Here, vacuity is the absence of evidence for a
prediction. Dissonance arises from conflicting evidence. Lin et
al. [14] describes these in a context of evidence-based Machine
Learning. Similar to the aleatoric and epistemic uncertainty
one can use this distinction to make decisions on how to
improve the quality of a model.

This perspective of uncertainty does not directly unify
with aleatoric and epistemic uncertainty, but there are some
similarities. Firstly, aleatoric uncertainty has a similarity with
dissonance. In Figure 4 we see that the part of the feature
space that fits both classes is considered aleatoric uncertainty.
In terms of evidence, we may say there is evidence for both
classes, and thus there is dissonance. With this it may be said
that dissonance is likely to co-occur with aleatoric uncertainty.
However, they are not perfectly identical, as there may be parts
where there is evidence for both class, but the model is still
epistemically uncertain about which classification should come
from this.

Similarly, when there is a lack of evidence for either
class there is vacuity, but it is also likely that these samples

have epistemic uncertainty as no evidence has been learned
yet. Again, there may be cases where vacuity and epistemic
uncertainty do not co-occur, such that a model may in fact be
very certain that there is no evidence.

With this starting point of how the aleatoric-epistemic
perspective and the vacuity-dissonance perspective may be
unified, we encourage experimental research in this area.
Specifically, it would be interesting to quantify how strongly
these concepts are related in existing datasets. Moreover,
attempts to measure the epistemic and aleatoric uncertainty of
the evidence for a classification may result in novel Machine
Learning methods for Uncertainty Quantification that unify
these perspectives of uncertainty. Specifically, new methods
combining ideas from Bayesian Neural Networks (Section
II-B) and Prior Networks (Section II-D1) could give predic-
tions with more complete explanations of uncertainty.

II. METHODS FOR UNCERTAINTY QUANTIFICATION

As most of the development of Uncertainty Quantification
methods happens in the field of Computer Vision [2], it is
no surprise that the Machine Learning models for which
Uncertainty Quantification is defined are models that perform
well in Computer Vision. As a result we find most works
build on Neural Networks. Specifically this review found many
Convolutional and Recurrent Neural Networks. On overview
of the popluation of different Neural Network types is given
in Figure 5.

With the vast majority of models being Neural Networks,
the Uncertainty Quantification methods are also mostly in-
tended for Neural Networks. An overview of the most com-
mon methods covered is given in Table I, although they are
discussed in much more detail below.

CNN
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RNN
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Fig. 5. Popularity of various Neural Network architectures in this review.
Models with at least one convolutional or recurrent layer are respectively
labeled CNN or RNN. Models with both are labeled as CRNN. Yellow
indicates models with attention layers.
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In accordance with the literature, this section mostly dis-
cusses Deep Learning methods for Uncertainty Quantification.
First, the concept of Bayesian Neural Networks is explained,
including the range of different implementations. Bayesian
Neural Networks are the most common method for Uncer-
tainty Quantification, and lends itself well to interpretation
through the lens of aleatoric and epistemic uncertainty. Next,
we will discuss some more common Uncertainty Quantifica-
tion methods such as Varaitional Autoencoders, Direct Un-
ceretainty Quantification and Gaussian Process Regression. We
also discuss post-hoc uncertainty calibration methods, and end
this section with a list of the less common and experimental
methods for uncertainty quantification that have been used
for Biosignals. All-together, this section gives a complete
overview of all the Uncertainty Quantification methods that
have been used for Biosignals.

A. Notation for Softmax Uncertainty

Standard Neural Networks give point-estimate predictions
for a given sample. In regression, this prediction is a scalar
with no indication of uncertainty or expected error. However,
in classification with standard Neural Networks a Softmax
activation function is often used such that the prediction is
given as

p(y= c |x, θ) = exp(fθ
c (x))∑′

c exp(f
θ
c′(x))

. (1)

Where fθ
c predicts the logits for a given input x, as pa-

rameterized by θ. To ease notation we introduce the predicted
probability of a class c as

pc := p(y= c |x, D), (2)

which in the case of a standard Neural Network with pa-
rameters θ learned on dataset D = {X,y} simplifies to
pc = p(y= c |x, θ).

Before going into how uncertainty is modelled in Bayesian
Neural Networks, it is important to be aware that predicting
class probabilities, rather than directly predicting a class label
already quantifies uncertainty. The uncertainty that arises here
(e.g. pc = 0.5) can come from two possible sources. Firstly,
it can come from samples in dataset D where the annotated
ground truth is uncertain such that pc = 0.5. Alternatively, it is
due to restricted degrees of freedom in the model architecture
such that two similar samples in {x, x′ = x + ϵ} ∈ X
with different labels {y, y′ ̸= y} ∈ y cannot be given a
different classification. Both of these uncertainties are aleatoric
uncertainty. Epistemic uncertainty cannot be captured in this
framework. As such, generalization error, adversarial examples
and out-of-distribution data will cause overconfident predic-
tions.

B. Bayesian Neural Networks

Given a starting point of aleatoric uncertainty with soft-
max, we move towards quantifying epistemic uncertainty with
Bayesian Neural Networks. The foundational difference is the
way both methods look at learning the parameters. In the

standard Neural Network the parameters θ is learned from the
space of all possible sets of parameters Θ to minimize a loss
function L(θ,D). The loss function primarily measures the
error between the predictions and the annotated ground truth.
Under Bayesian Neural Networks, instead of considering a
single optimized set of parameters θ, we consider a distribution
of all possible sets of parameters in Θ. Since some parameters
are more likely under dataset D than others, we also consider
the likelihood of each set of parameters. This results in the
integral

pc =

∫
p(y= c |x, θ)︸ ︷︷ ︸

Aleatoric

p(θ|D)︸ ︷︷ ︸
Epistemic

dθ. (3)

.
From this the epistemic uncertainty as the probability distri-

bution of the parameter vector p(θ|D) also becomes apparent.
This integral combining aleatoric and epistemic uncertainty is
referred to as the posterior predictive distribution.

Some approximations of Bayesian Neural Networks such
as MC-Dropout and Ensembles are based on this equation.
They sample multiple parameter vectors θ which are all trained
to maximise p(θ|D) through e.g. the negative log likelihood.
From each parameter vector predictions are made, resulting
in a distribution over predicted probabilities. The variance
between classes (or disagreement between samples models)
now captures epistemic uncertainty.

To complete the picture of the Bayesian Neural Network,
and to show why it is called ”Bayesian”, we take the dataset
D as Random Variables {X,Y } and deconstruct the posterior
p(θ|D) with Bayes theorem as

p(θ|X,Y ) =
p(Y |X, θ)p(θ)

p(Y |X)
. (4)

The evidence term p(Y |X) is intractable2. Fortunately, it is
a constant for a given dataset, so we can optimize θ only on
the likelihood and the prior. The likelihood is determined by
the model fit to the data and may be computer through a loss
function. The prior p(θ) can be selected to match assumptions
about the modelling task. For example, it has been used to
explain regularization terms in a loss function such as L2-
regularization where large weights are considered less likely
than small weights [11]. This property also makes Bayesian
Neural Networks well suited for injecting prior domain knowl-
edge into a Machine Learning task. Unfortunately, none of the
reviewed literature applied this property, despite the potential
benefits this may have given the amount of domain knowledge
available, and the often limited size of datasets.

The last implementation of Bayesian Neural Networks that
we will discuss in this section is Variational Inference. Unlike
the MC-Dropout and Ensembles which try to draw samples
from p(θ|D), Variational Inference tries to learn an approxi-
mation of the actual distribution of p(θ|D).

The rest of this section explains these three methods in more
detail to provide a conceptual understanding, and to show the
limitations of each method.

2This would result in an integral for each parameter of the Neural Network
such that p(Y |X) =

∫
θ1

∫
θ2

. . .
∫
θD

p(Y |X, θ)dθ1dθ2 . . . dθD where D
represents the number of dimensions of the parameter vector θ.
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1) MC-Dropout: Dropout [16] has been a prominent reg-
ularization method in Deep Learning applications. During
training with dropout, some nodes (either hidden or input)
have some probability p to be dropped (i.e. activation set
to 0). This adds noise to the training procedure and has
been thoroughly shown to prevent overfitting in various Deep
Learning domains.

Normally, the dropout is removed during inference to keep
it deterministic and prevent dropping important information.
MC-Dropout (Monte Carlo Dropout) [17] keeps this dropout
during inference. Gal et al. [17] shows that each forward pass
with dropout is a sample from q(θ) ≈ p(θ|D).

Dropout can be considered as a special probability distri-
bution over parameter vectors, because dropping a node is
equivalent to setting all the incoming or outgoing weights of
that node to zero. With this we can think about the sampling
of MC-Dropout as sampling from an unusual probability
distribution over weights. Due to the training process, each of
these samples is optimized to be as-likely-as-possible. When
we then make predictions with MC-Dropout, it is effectively
sampling from q(θ).

This approximate sampling of the posterior then results
in a distribution of predictions. When samples from the
posterior result in different predictions, this can be considered
as epistemic uncertainty.

A commonly considered advantage of MC-Dropout is the
simplicity with which it can be applied to a Deep Learning
model. Many Deep Learning architectures are already trained
with dropout, so MC-Dropout can easily be applied without
even re-training the model. The big disadvantage however is
that it takes many forward passes3 for the MC-Dropout to
capture the predictive distribution, making inference compu-
tationally expensive.

2) Ensembles: Although MC-Dropout is technically an
ensemble of weight-sharing NNs [16], the idea of an En-
semble as an approximation of a Bayesian Neural Network
originally takes the form of several independently trained
Neural Networks following the same architecture and trained
on the same data [20]4. Only a limited number of models 5 is
needed to achieve an acceptable approximation of the weight
distribution. This keeps the computational cost relatively cheap
compared to MC-Dropout at inference time, but performing
the training several times and storing several models in mem-
ory may be prohibitively expensive.

An Ensemble may be interpreted as a small set of samples of
the parameter distribution p(θ|D)[23]. Each of these samples
are trained to the data, so each sample should reflect a
parameter vector with high posterior probability. While this
matches the parameter distribution of the BNN a lot sparser
than MC-Dropout, it may actually be more efficient as it
samples only well optimized parameters.

3T = 50 is recommended, but anywhere from T = 10 to T = 1001 may
be used. [17]–[19]

4Originally Deep Ensembles were introduced as a non-Bayesian method
for UQ [20], but it has since been shown that it can be considered as a very
coarse approximation of a BNN [21], [22].

5As an example: Lakshminarayanan et al. [20] uses an ensemble of 5
models.

Much like MC-Dropout, ensembles are conceptually simple,
and intuitive to reason about. It aligns with human analogies
where when all the models/people disagree, then there is a lot
of (epistemic) uncertainty. Contrastingly, situations where all
models/people agree must be very certain.

Xia et al. [18] shows that ensembles represent epistemic
uncertainty under distributional shifts better than MC-Dropout,
and that the accuracy of the predictions are also better. They do
this on various Biosignal classification tasks such as auditory
COVID-19 classification, respiratory abnormality detection
and heart arrhythmia detection. By providing various forms of
dataset shift, they concur with findings from computer vision
and language models [24], suggesting that ensembles may be
better at presenting epistemic uncertainty under dataset shifts.

3) Variational Inference: In variational inference (VI) the
intractable posterior distribution p(θ|X,Y ) is approximated
with a simpler distribution qω(θ). In the case of a Bayesian
Neural Network p(θ|X, y) is an arbitrary high dimensional
distribution with no known parametric form, where each
dimension corresponds to a weight in the neural network.
This makes it impossible to sample from directly. A possible
approximation through qω(θ) might say that each weight is a
Gaussian distribution with a mean and a variance. The goal is
then to optimize the parameters ω for the high-dimensional
Gaussian, so that it is similar to the true posterior. With
this, we can then sample models from qω(θ) to predict class
probabilities according to the integral in Equation 3.

In order to make a good approximation of the posterior
VI needs to minimize the Kullback-Leibler divergence (KL-
divergence) between the approximate distribution qω(θ) and
the true distribution p(θ|X,Y ). The KL-divergence measures
the distance between two distributions. In this case it is given
as

KL(qω(θ) || p(θ|X,Y )) =

∫
Θ

qω(θ) log
qω(θ)

p(θ|X,Y )
dθ. (5)

This minimization task still contains the posterior distri-
bution term p(θ|X,Y ) which is intractable as discussed in
Equation 4. By rearranging the KL-divergence into the evi-
dence lower bound (ELBO) we instead get the maximization
task [2]:

ELBO(ω) :=

∫
Θ

qω(θ) log p(Y |X, θ)dθ −KL(qω(θ) || p(θ))
(6)

The prior chosen for p(θ) may still be defined by the
modeller, and can have an impact on the quality of the model.
For the purposes of transfer learning, this prior may even be
a learned distribution on another dataset (see [25]).

While Variational Inference is a better approximation of a
Bayesian Neural Network than Ensemble-based methods, it
is often much more expensive to train and do inference on.
Moreover, implementing it introduces many new decisions to
make. The form of the posterior approximation needs to be
chosen, as well as the prior for its parameters. Moreover,
measuring the evidence lower bound requires Monte-Carlo
sampling from the approximated posterior. The number of
samples to use is a balance between computational cost per
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epoch, and the stochasticity of the gradient descent. Lastly,
having many Bayesian layers in a Deep Bayesian Network
can cause the loss to become numerically unstable.

Only one reviewed work tested Variational Inference and
compared it against other methods of Uncertainty Quantifi-
cation. Xia et al. [18] found that Variational Inference and
Ensembles together showed the best classification accuracies
for an arrhythmia detection task and on a separate respira-
tory abnormality detection task, but that Variational Inference
performed poorly on an auditory COVID-19 detection task
compared to Ensembles. They also found that all methods per-
formed poorly at quantifying uncertainty under their synthetic
dataset shift.

While Variational Inference introduces several challenges,
the ability to directly use an informative prior to inject do-
main knowledge may have considerable advantages. Moreover,
while using smaller Neural Networks, VI may prove to be the
best approximation of a Bayesian Neural Network currently
available.

C. Variational Autoencoders
Variational Autoencoders [26] are a specific type of neural

network architecture. It has an encoder which receives a high-
dimensional input x and encode it into a lower dimensional
latent distribution p(z |x, θ). It does so by predicting a mean
and a variance for each dimension of the latent distribu-
tion, from which latent representations z ∼ p(z |x) can be
sampled. A decoder network then reconstructs the encoding
back into the original dimensionality of the input to achieve
x′ = fθ′(z ∼ p(z|x, θ)) ≈ x.

The VAE model is trained to minimize the difference
between the input x and the reconstructed output x′. As a
result, the latent distribution p(z |x, θ′) should be a lower-level
representation of the salient features that exist in the data. This
works under the concept of manifold learning where many
of the points on the high-dimensional input have near-zero
likelihood, and that actually a lower-dimensional manifold
should be able to capture the distribution of the actual data.

VAEs were originally intended a generative unsupervised
learning models, and were not invented with Uncertainty
Quantification in mind. However, because the latent represen-
tation is a distribution which can be sampled from, researchers
have constructed various methods to extract uncertainty from
that stochasticity. Belen et al. [27] uses a trained VAE on
a dataset of segments of ECG with and without expert an-
notated atrial fibrillation. They then use the sampled latent
representations as input for a multi-layer-perceptron to do the
classification task as

p(y = c | p(z|x, θ), θ′). (7)

This results in a distribution of probabilities, of which the
variance is used to measure aleatoric uncertainty.

Van De Leur et al. [28] apply Principal Component Analysis
to get a 2-dimensional visualization of the latent space as a
method for interpretability. They show how various diagnoses
would show in the latent representation, so that a sample on
the boundary of two classes, or far away from any known
classes can be qualitatively assessed as uncertain.

D. Direct Quantification of Uncertainty

In contrast to the previous methods which rely on stochas-
ticity to quantify uncertainty, there is also a set of methods
that aim to directly predict uncertainty as part of the model
training task. The most intuitive form of this is heteroscedastic
uncertainty quantification for regression [29]. In these models,
the Neural Network not only attempts to learn a predicted
regression value, but it has a separate output for the predicted
error. This results in a prediction, paired with a measure of
aleatoric uncertainty. Taking µθ(x) as the predicted mean and
σθ(x) as the predicted variance for a sample, the predicted
value y is given as

y = N (µθ(x), σ
2
θ(x)). (8)

Such a model is then trained with a loss function that opti-
mizes both the predicted mean and the variance. The Gaussian
Negative Log-Likelihood is the simplest, but alternatives have
been proposed [29].

In this category where Neural Networks have a modified
output structure to give uncertainty quantification we found
two papers presenting two uncertainty quantification methods,
which will be discussed below. The first is Prior Networks,
which expands on the concepts of aleatoric and epistemic un-
certainty. The second is Evidential Machine Learning, which
looks at uncertainty in terms of vacuity and dissonance.

Both methods predict for c classes the parameters αc > 0
for a Dirichlet distribution. From this distribution, class proba-
bility vectors may be sampled such that each class probability
is in the range [0, 1] and that all class probabilities together
sum to 1. Small values for all αc result in plots similar to 7b
and d, whereas large values result in plots similar to 7 a and c.
The difference between the different αc skew the distribution
towards a class.

Through the Dirichlet distribution these models produce the
same second-order uncertainty as found in the Bayesian Neural
Networks, so that the predicted class probabilities are subject
to uncertainty as well.

Below we will explain how Prior Networks and Evidential
Machine Learning use Dirichlet distributions with two differ-
ent perspectives on uncertainty.

1) Prior Networks: Prior networks [30] work within the
framework of aleatoric and epistemic uncertainty, but make
a further distinction beyond these two. Under the Bayesian
Neural Network framework we consider the uncertainty due to
generalization error, such as when the model is evaluated under
out-of-distribution data, as part of the epistemic uncertainty.
Prior networks instead add the term distributional uncertainty.
This then gives

pc =

∫ ∫
p(y= c |µ)︸ ︷︷ ︸

aleatoric

p(µ |x, θ)︸ ︷︷ ︸
distributional

p(θ |D)︸ ︷︷ ︸
epistemic

dµ dθ. (9)

This formulation follows from Equation 3, but now models
a specific uncertainty for the mismatch between the training
and testing data. Prior Networks only specifically learns the
distributional uncertainty and the aleatoric uncertainty, but not
the epistemic uncertainty.
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In practice, these prior networks for classification learn
the parameters αc for a C dimensional Dirichlet distribution.
However, standard cross-entropy loss does not enforce a dif-
ference in sharpness for out-of-distribution and in-distribution
samples. Therefore, prior networks are multi-task trained to
get a flat prediction for out-of-distribution samples and a sharp
prediction for in-distribution samples.

Naturally, this requires specific out-of-distribution samples,
but the true out-of-distribution samples are unknown. Instead
one may use synthetic samples [31] or real other datasets [32]
as the out-of-distribution samples.

2) Evidential Machine Learning: Similar to Prior Net-
works, Evidential Machine Learning [33] uses a single-point
model to predict the parameters for a c dimensional Dirichlet
distribution. Unlike the Prior Network, it instead looks at
uncertainty through the Dempster-Shafer Theory of Evidence
(DST).

An Evidential Neural Network attempts to predict evidence
for each class c ∈ C as a C-dimensional output from a ReLU
activation function. The value for each class gives the amount
of evidence for that class. These values are then used as the
parameters αc for the Dirichlet distribution.

The uncertainty here is split into vacuity and disso-
nance [14], [32]. Vacuity is the absence of evidence causing
uncertainty. Like standard Neural Networks with a Softmax
activation function, Evidential Machine Learning assumes that
exactly one class must be the ground truth. The absence of
evidence for any of the classes would then result in a form of
uncertainty referred to as vacuity. The opposite uncertainty is
dissonance, which occurs when the model has found evidence
for multiple classes, which is not in line with the assumption
of mutual exclusivity.

Here we say that small αc for all classes is a lack of
evidence and is therefore vacuity, while large αc for all
classes is dissonance. This gives a more direct interpretation
of the uncertainty in the Dirichlet distribution compared to
Prior Networks which requires explicit in-distribution and out-
of-distribution datasets to quantify uncertainty through the
Dirichlet distribution. Meanwhile vacuity and dissonance are
an emergent property of the model.

E. Gaussian Process Regression

Gaussian Process Regression [34], [35] is a non-parametric
regression method that considers epistemic uncertainty. It
assumes a Gaussian prior over the dependent variable Y . It
also assumes that the samples in the training data D are
drawn without measurement error. This leaves uncertainty in
the regression between and outside training samples, and gives
more certainty at points close to the training samples.

As more training samples get collected, the epistemic un-
certainty will decrease. The assumption that data are drawn
without measurement error does naturally lead to an inability
to capture aleatoric uncertainty.

F. Post-hoc Calibration

Post-hoc calibration methods [36] look at uncertainty only
in terms of the predicted probability for each class, and

addresses how this may deviate from the observed probability.
A class prediction with p = 0.75 should be correct 75% of the
time, but this does not hold for standard softmax classification.
By learning a mapping from the softmax output to observed
probabilities post-hoc calibration methods provide a more
directly interpretable and workable measure of uncertainty.
Post-hoc calibration methods aim for an optimal calibration
such that

p(y= c | pc) = pc. (10)

The mismatch between the predicted probability and the
observed probability is measured by the Expected Calibration
Error (ECE) [36]. This is usually computed over bins of
probability predictions, since most datasets will have one-hot
encoded class labels.

While the ECE is often used simply as a measure of
how well calibrated the predicted probabilities of a model
are, the concept of binning probabilities and observing the
true probability in a dataset can also be used to shift the
predicted probabilities for a certain bin up/down depending
on the calibration error.

Various methods for post-hoc probability calibration meth-
ods exist [36]. Temperature Scaling is the simplest (and often
the most effective) method of post-hoc calibration, which
determines the softness of the Softmax function. It does so
by introducing a hyperparameter τ to get the scaled Softmax
function

p(y= c |x, θ) =
exp(

fθ
c (x)
τ )∑′

c exp(
fθ
c′ (x)

τ )
. (11)

While this can make the probabilities a better reflection of the
true probability, which is a concern for clinical deployment
of ML models [37], it would not provide any benefit to
methods that use a threshold against the uncertainty to abstain
from predicting a sample. Since calibrated probabilities are
monotonically increasing with the uncalibrated uncertainties,
moving the threshold will achieve the same decision boundary.

Calibration methods do not distinguish between aleatoric
and epistemic uncertainty. Epistemic uncertainty can be ac-
counted for when the calibration data is different than the train-
ing data. However, since calibration methods only calibrate
homoscedastic uncertainty, it may fail to present substantial
epistemic uncertainty on out-of-distribution data.

G. Non-standard UQ Methods

Above, a selection of common and well studied methods
for Uncertainty Quantification is discussed. This does not
cover all the UQ methods that were encountered in the
review. Below we continue the description of uncertainty
quantification methods with some non-standard encountered in
the reviewed literature to provide an exhaustive presentation
of UQ research on Biosignals. However, we consider these
models to be more experimental or niche, and may not transfer
as easily or reliably as some of the previous methods.
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TABLE I
AN OVERVIEW OF THE DIFFERENT UQ METHODS DISCUSSED IN II. DUE TO THE REDUCTIVE NATURE OF THIS TABLE, IT SHOULD ONLY BE CONSIDERED

IN CONJUNCTION WITH SECTION II. COMPUTATIONAL COST OF UQ METHODS IS QUALITATIVELY GROUPED INTO 3 CLASSES. None HAS NEGLIGIBLE
ADDED COMPUTATIONAL COST. Small HAS SOME ADDED COMPUTATIONAL COST E.G. DUE TO SLOWER CONVERGENCE OR TRAINING STEPS BEING MORE

COMPUTATIONALLY EXPENSIVE. Large INDICATES SUBSTANTIAL INCREASE IN COMPUTATIONAL COST, SUCH AS 5 TIMES THE TRAINING COST, OR 50
TIMES THE INFERENCE COST.

Method Model Agnostic Epistemic UQ Aleatoric UQ** Training Cost Inference Cost

MC-Dropout [17] NN only ✓ None Large
Ensembles [20] ✓* ✓ Large Small
Variational Inference [38] NN only ✓ Large Large
Variational Autoencoder [26] ✓ Small Large
Prior Networks [30] ✓ *** ✓ None None
Evidential Machine Learning [33] ✓ ✓ None None
Gaussian Process Regression [39] ✓ ✓ Small Small
Post-hoc calibration [36] ✓ ✓ None None

*Requires bootstrapping for non-stochastic training procedures. May perform poorly without local minima.
**Aleatoric uncertainty may still show in classification with Softmax.
***Generalization uncertainty through out-of-distribution dataset

1) Bayesian Model Averaging with Reversible-Jump
MCMC: Schetinin et al. [40] attempted to classify EEG
artifacts using a method based on Bayesian Model Averaging.
They use Markov-Chain Monte Carlo to sample changes to
a decision tree. These changes are any of 4 types: adding
a split in the tree, removing a split in the tree, changing
the variable a split is focused on, or changing the rule of a
split. These changes are accepted or rejected based on the
likelihood given the data. This consists of how well a given
change improves the training classification, as well as how
likely it is given a set prior.

As a measure of uncertainty the authors consider the entropy
in the leaf nodes. The authors showed that subtracting a non-
stationary component from the power of the subdelta band
improved the accuracy of their model, but since the dataset is
not specified and no other models are shown it is not possible
to assess the quality of the model, nor the resulting entropies.

Another reviewed work also used the entropy of the leaf-
nodes in a decision tree as a measure of uncertainty, but this
also lacked interpretation [41] .

2) Majorization-Minimization and Hierarchical Bayesian
Modelling: Bekhti et al. [42] compares Majorization-
minimization and Hierarchical Bayesian Modelling and shows
how they are fundamentally the same. Unlike the majority of
work found in this review which try to learn an arbitrary func-
tion p(y|x,D) = fθ(x), this work starts with the assumption
that observed EEG recordings X are a linear combination
of underlying sources G connected through a known linear
forward propagation matrix G, with some Gaussian noise E
such that M = GX+E. This results in a multi-task regression
where we need to learn an optimal matrix X that minimizes
the E. Without considering regularization this results in the
optimization

X̂ = argmin
X

1

2
||M −GX||2F . (12)

Majorization-minimization solves this by taking a random
initialization, fitting a Taylor expansion to the cost function at

that point, and then using the Xt that minimizes that Taylor
expansion as the next initialization. To avoid overfitting l2,p-
norm regularization is used. This has the added benefit of
promoting sparse solutions.

They are able to show that the full maximum a posteriori
estimate of a Hierarchical Bayesian Modelling approach can
be re-derived as a Majorization-Minimization optimization
problem. From this insight, authors propose a method of
sampling multiple initialization for the MM optimization,
resulting in multiple sparse solutions to the inverse problem.

Using the multiple sparse solutions, together with how well
they minimize the objective function, the authors are able
to present various source attribution to an observed EEG or
MEG signal, together with a measure of how (un)certain each
solution is.

3) Bayesian Moderated Outputs: Based on Mackay [43],
Mohamed et al. [44] compare Bayesian Moderated Outputs
to a standard Multi-Layer Perceptron for the task of epileptic
activity classification in sleep EEG recordings. The concept
of Bayesian Moderated Outputs is that instead of having a
single optimal parameter vector θ̂, a more robust method will
have a Gaussian distribution of parameters around an optimum
Θ = N (θ̂, s2). The hypothesis is that the mean prediction over
these different models provides a better representation of the
predicted probability.

Unfortunately, this did not lead to apparent better perfor-
mance than a maximum-likelihood trained Multi-Layer Per-
ceptron [44]. This was observed by using a rejection threshold
of 0.9 for both models. The Bayesian Moderated Outputs did
achieve slightly higher accuracy (up to 1 percent-point), but
at the cost of rejecting up to 15 percent-point more samples
from classification.

This concept has further been explored by Maddox et al.
[45].

4) Neural Stochastic Differential Equations: Wabina et
al. [46] propose a novel method called Neural Stochastic
Differential Equations to learn an electrical conductivity model
of the head based on MRI. Such conductivity models can be
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Fig. 6. A diagram showing the concept of Early Exit Ensembles [48]. There is
a shared backbone network, from which Exit Branches make predictions. The
architecture of the backbone, exit branches, and where those connect can be
arbitrarily designed. Each exit branch makes an independent prediction. The
distribution of predictions may be interpreted similar to a normal Ensemble.

used to inform the forward propagation of EEG signals as
referred to in Section II-G2.

They use a class of Deep Neural Networks proposed in
[47], which includes a split block consisting of a drift and
a diffusion network to consider the Neural Network as a
Stochastic Differential Equation. The drift network continues
to attempt to optimize predictions, while the diffusion network
predicts a heteroscedastic amount of Gaussian noise. The noise
should be minimal for samples in the training distribution,
and maximal for out-of-distribution samples. The result of
the SDE-block can be sampled and passed through a final
block of dense layers to reach a distribution of predictions.
The complete Neural Network proposed is called SDE-Net.

An experiment on the Single Individual volunteer for Mul-
tiple Observations across Networks (SIMON) MRI dataset
showed that SDE-Net outperformed Bayesian methods. How-
ever, the effect of epistemic uncertainty on the spread of
the predictions and SDE-Net’s ability to capture epistemic
uncertainty is not investigated.

5) Early Exit Ensembles: As a quasi-ensembling method
Campbell et al. [48] propose Early Exit Ensembles. Early exit
ensembles work by taking any deep neural network and adding
various exit branches to points of the network as illustrated in
Figure 6. Each exit will have a global pooling operation and 2
dense layers. The idea is that each exit branch will try to learn
to do the classification task (as an ensemble), but depending
on the location on the backbone architecture they may learn
on either lower or higher level features.

Like normal ensembling methods, the disagreement between
the various classifiers corresponds to epistemic uncertainty.
The advantage compared to normal ensembling is that the large
amount of weight sharing can reduce the computational cost
of training and inference, as well as the size of the model.
The ways in which constructing an Early Exit Ensemble from
an existing architecture affects the quality of the predicted
uncertainty is an interesting avenue for research, which may
be partly inspired by what is already known about early-exit
neural networks (see [49], [50]).

6) Reconstruction Error: Martinez et al. [51] look at how to
reconstruct an ECG signal based on bioimpedance recordings.
Bioimpedance can be much easier to record, but also difficult
for cardiologists to interpret. They propose a method where
an Autoencoder uses the biosignals to construct the ECG
morphology, but without correct amplitudes. Then a second

autoencoder uses this amplitude-invariant data, and the original
bioimpedance to reconstruct the ECG.

Since the amplitude corrected data should have the same
morphology as the predicted ECG, any differences in morphol-
ogy can be attributed to a generalization failure of the second
autoencoder. Thus, the authors measure the Pearson correlation
between the amplitude invariant and amplitude corrected data
as a measure of uncertainty.

7) Fuzzy Logic: The systematic search found one work in
the domain of fuzzy logic. In [52] they propose a method
to automatically construct Fuzzy Cognitive Maps. These are
directed graphs where each node represents a concept, and
each weighted edge represents a causal relation with a strength
wi,j ∈ [0, 1]. Each node/concept will have an activation
Ai ∈ [0, 1] which spreads through the graph. Fuzzy Cognitive
Maps aim to provide an interpretable medical decision support
systems [53]. Sovatzidi et al. [52] propose a method for
automatically constructing such a Fuzzy Cognitive Map for
supporting diagnosis of depression based on EEG data. They
cluster the frequency-band power in different scalp areas and
use these clusters as the concepts, with one last concept being
the level of depression.

They use a fuzzy clustering where each sample has partial
membership of a cluster, resulting in partial activation of the
corresponding concepts. The authors claim that this makes the
classification system uncertainty-aware.

8) Assumed Density Filtering: Duan et al. [54] applies a
more computationally affordable method for modelling data
uncertainty called Assumed Density Filtering (ADF). Whereas
Bayesian Neural Networks model a distribution for each
weight, ADF takes a single-point solution for the weights, but
has a distribution for the activations.

This is achieved by modelling the input as a Gaussian
distribution around the single-point input features such that

z = N (x, σ2). (13)

Passing this as the input to a Neural Network results in
distributions for each activation. Each activation is modelled
by a mean and variance, where the variance corresponds to the
uncertainty. This ultimately results in a mean (prediction) and
variance (uncertainty) in the output. This method is intended
to correspond to aleatoric uncertainty.

This can be applied to any neural network architecture. The
assumed variance of the input can be optimised against the
Negative Log Likelihood to get a better calibrated model.

For biosignals this corresponds well with sensor noise as
this is explicitly modelled and propagated, but it may not work
well with other sources of aleatoric uncertainty such as label
errors.

Combined with a Bayesian Neural Network as done by
Duan et al. [54] provides explicit modelling for both uncer-
tainty of the model, and uncertainty of the biosignal recording.

9) Data Uncertainty Learning: As a method for aleatoric
uncertainty, Data Uncertainty Learning [55] models uncer-
tainty as a distribution in an embedding such that

p(z|x) = N (x;µ, σ2I). (14)
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Here a Neural Network learns an embedding as a Gaussian
distribution. This method holds similarities to a Variational
Autoencoder, as both methods learn a Gaussian distributed
representation of the input.

The primary differences are the architecture and the learning
task of the model. Where a VAE normally has structural sym-
metry between the encoder and decoder, using the embedding
as a bottleneck, Data Uncertainty Learning has the embedding
as the penultimate layer. For Data Uncertainty Learning the
decoder is then replaced with a shallow classifier.

Deng et al. [56] applied this method with a Vision Trans-
former to predict seizures from EEG. The uncertainty in the
embedding should then capture the uncertainty that is in the
EEG recording. Since the uncertainty is modelled in a deep
embedding it may represent more complicated uncertainty in
the EEG signal. This goes beyond simple sensor noise, but
may instead capture uncertainty from various artifacts with
more complicated patterns.

Although Deng et al. [56] do not give a thorough evaluation
of the uncertainty, they do show that the modelling of uncer-
tainty improves the classifier as compared to a deterministic
equivalent, with minimal additional computational cost. Next
to a Gaussian embedding, they also explore a Laplacian
embedding. The Laplacian embedding was still better than a
deterministic model, but it performed worse than the Gaussian
embedding model.

10) Miscellaneous methods: Two more uncertainty quan-
tification methods we encountered, but they were sufficiently
rare that they do not fit into the presented narrative. The first
of these is Adaptive Stochastic Gradient Hamiltonian Monte
Carlo, which Chetkin et al. [57] uses for Motor Imagery
classification. This Bayesian Neural Network method assumes
a parameterized distribution over each weight, but uses a
Markov Chain to converge to the posterior distribution. They
found that this worked better than an ensemble when applied to
ShallowConvNet [58], but there was no statistically significant
different when applied to EEGNet [59].

To deal with the large amount of data in the Temple
University Hospital Seizure Corpus (TUSZ) [60] dataset, De
Rooij et al. [61] used Kalman Filters to solve the least squares
adaption of SVMs. Rather than optimizing the SVM for
epilepsy classification against the whole dataset at once, they
consider parts of the dataset to continually learn the parameters
of the SVM. Since Kalman Filters allow for some uncertainty,
this method should capture model uncertainty. However, the
authors do not go into detail on how well the uncertainty
quantification performs.

III. UNCERTAINTY MEASURES FOR DISTRIBUTIONS OF
PROBABILITIES

Some of the uncertainty quantification methods when ap-
plied in classifications tasks produce a distribution over class
probabilities. There are several different ways in which these
distributions over class probabilities may be used to get a
scalar measure of uncertainty. An overview of such methods
is given in Table II. We refer to these quantifications as
Uncertainty Measures.

We found that throughout the literature various authors
define some measure of ”uncertainty” and refer to that as the
quantified uncertainty. In this section we review these different
methods explaining their intuition and relation to aleatoric and
epistemic uncertainty. For a comparison on how some of these
methods compare in practice we refer the reader to Milanes-
Hermosilla et al. [62] and Wabina et al. [46].

Some of these measures are affected by the agreement
between different forward passes (e.g. variance), while others
may be affected by the (un)certainty of the probabilities
being predicted. The UQ methods that are able to capture
epistemic uncertainty (e.g. BNNs) will present this in the
variance between forward passes. For this reason, we will
refer to the uncertainty over class probability as the epistemic
uncertainty and the predicted probabilities as the aleatoric
uncertainty, even though some methods will instead present
aleatoric uncertainty in both (see Sections II-C, II-D and
II-G8). It is therefore important to consider that in order to cap-
ture epistemic uncertainty (and thus have a good uncertainty
measure for generalization error), both a UQ method able to
capture epistemic uncertainty, and an uncertainty measure that
measures this is required.

A set of Simplex plots in Figure 7 shows how aleatoric and
epistemic uncertainty interact. These plots are generated by
taking 3 Gaussian distributions to represent predicted logits.
100.000 samples are taken from these logits and passed
through the Softmax function. The closeness to each vertex
represent the predicted class probability. This provides an
intuition of how aleatoric and epistemic uncertainty may
present as predicted class probabilities. It becomes apparent
that under high epistemic uncertainty, determining aleatoric
uncertainty becomes difficult.

Below we provide more details to the various Uncertainty
Measures presented in Table II, and provide more details on
their properties.

A. Class Probability

The standard method for measuring uncertainty in Neural
Networks is the predicted Softmax probability of a classifica-
tion. A (balanced) epilepsy classifier that gives the diagnosis
of epilepsy with p = 0.55 is less certain than if it gives the
diagnosis with p = 0.97.

This uncertainty measure typically captures aleatoric uncer-
tainty. This uncertainty can either arise when the training data
has annotations that reflect uncertainty, or when some samples
in the training data have similar features, but different labels.
Softmax probabilities are infamously overconfident in single-
point neural networks, even when using a proper scoring loss
function [36].

When multiple forward passes are made under a BNN the
class probability is determined by the average of all forward
passes. With T as the number of forward passes and c̄ as
the max probability class of the average probabilities (c̄ =
argmaxc T

−1
∑

t pc) we define the class probability as:

P(p) ≡ T−1
∑
T

pc̄ (15)
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Fig. 7. Simplexes presenting different types of uncertainty. Epistemic uncertainty is presented by increased variance in the logits. Aleatoric uncertainty
is presented by decreasing the difference between the means of the logits between classes. The points represent softmax probabilities determined by logits
following a multivariate Gaussian N (µ, σ2). For high aleatoric uncertainty we set µ = [10, 10, 10], whereas for low we use µ = [10, 8, 8]. For high epistemic
uncertainty we set σ2 = [2, 2, 2], whereas for low we use σ2 = [0.01, 0.01, 0.01].
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Fig. 8. Mean class probability decreases for higher variance in the logits.
This illustration assumes binary classification. The logits are distributed as
N ([4, 0], [σ2, σ2]). Only the first class is shown.

Or in a shorthand:

P(p) ≡ p̄c̄ (16)

Depending on the number of classes in a classification task,
the range of this measure varies as p ∈ [C−1, 1], although
some works choose to normalize this into p ∈ [0, 1] [14].
Since high values are actually more certain here, it is more
intuitive to consider the class probability as a ”confidence”
measure instead. To consider it in terms of uncertainty the
negative is also sometimes used [14], [32].

a) The effect of variance on a Softmax probability: Most
Uncertainty Quantification methods produce a distribution
over probabilities, instead of a singular probability. In these
cases, the mean of the predicted probabilities could then be
considered as the most likely probability [63].

For approximations of Bayesian Neural Networks we can
assume that the logits increase in variance as the epistemic
uncertainty increases. The Softmax function (or a sigmoidal
activation function) pushes high logits down into a [0, 1] range,
while lower logits are shifted less. As such, logits from a
distribution with high variance will result in less confident
probabilites. Figure 8 visualizes this effect. This means that the
averaged class probabilities may actually also be affected by
epistemic uncertainty. This provides a possible explanation of
how mean class probability of a BNN can respond to epistemic
uncertainty, and how it may prevent overconfidence.

Several of the reviewed works do discuss the difference
between aleatoric and epistemic uncertainty, but they typically
do not explore this interaction. Some works compare Bayesian
Neural Networks to single-point networks [64], [65]. They find
that the uncertainty becomes more precise (reduced Expected
Calibration Error) by using MC-Dropout, but this may be
because single-point classifiers are typically overconfident
while BNNs will reduce confidence.

B. Variance

Various methods consider the variance or standard devia-
tions of the posterior distributions as a measure of uncertainty
[19], [37], [64], [66]–[68]. This works under the idea that
epistemic uncertainty will lead to more disagreement between
model samples.

Unfortunately, under multi-class classification it can be
unclear which variance should be computed. Some imple-
mentations measure the variance over each class and either
present all those variances to clinicians [37] or as features to
another Machine Learning model [66]. One implementation
seems to take the variance over the concatenated array of
all class predictions [27]. This variance however then also
goes down when the central tendency of the different classes
becomes the same (as is expected under aleatoric uncertainty).
While a good uncertainty measure may respond either to
aleatoric uncertainty, epistemic uncertainty or both, it should
not respond inversely to the different kinds of uncertainty.

Fiorillo et al. [64] presents the mean and variance for
each class as a measure of how certain the model is for
distinguishing the different classes. Through this they show
that their model for sleep stage classification is more uncertain
in predicting the sleep stage N1 (which it also performs the
worse at), while it is more certain with the predictions for
wakefulness. It is still unclear how the uncertainties interact
within a single classification. When only a single measure of
uncertainty can be used it is unclear whether that should be the
variance of the predicted class, or if should it be the average
variance over all classes.

To be specific, this leaves two possible measures for prob-
ability variance under multi-class predictions6:

6Note that this also applies to binary classifications that use two output
nodes
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Fig. 9. Probability variance decreases as the logit mean increases. This
illustration was generated by taking logits as N ([µ, 0], [2, 2]). Here we see
that probability variance (used as a measure of epistemic uncertainty) becomes
smaller when aleatoric uncertainty decreases.

Vc̄(p) = T−1
∑
t

(pc̄t − p̄c̄)
2 (17)

V(p) = C−1
∑
c

T−1
∑
t

(pct − p̄c)
2 (18)

A similar effect as described in Section III-A0a occurs when
applying variance uncertainty measures to the class probabili-
ties. Figure 9 illustrates that the difference in the mean of the
logits increases (less aleatoric uncertainty) the variance of the
class probabilities decreases. As a result a decrease in aleatoric
uncertainty can present as a perceived decrease in epistemic
uncertainty. Future works should consider using the variance
of the logits as described in [69] to get a more independent
measure of epistemic uncertainty.

C. Predictive Entropy

Predictive entropy measures the total amount of uncertainty
over the probabilities of all classes. This is also a method com-
monly used for single point Neural Networks. It is functionally
equivalent to class probability for a binary classification task,
but for more classes it also considers the amount of uncertainty
remaining in the other classes.

Predictive Entropy7 is given as:

Hpred(p) = −
∑
c

p̄c log p̄c (19)

When a UQ method that produces a distribution over
predictions is used, the mean probability for each class is used
(with similar consequences as discussed in III-A0a). Other
variations include normalizing the entropy by dividing it by
log(C) or taking 1−Hpred to get a confidence measure instead
of an uncertainty measure [70].

As an example of how predictive entropy as an uncertainty
measure can be functionally different from class probability

7While the current work strictly defined this a predictive entropy, some
works refer to this simply as entropy. Expected Entropy will sometimes also
simply be referred to as entropy. In this work we consistently keep these
distinct.

consider the (mean) probability vectors Pa = [0.6, 0.2, 0.2]
and Pb = [0.6, 0.35, 0.05]. Both will have the class probability
for the first class as 0.6, while their respective predictive en-
tropies are 0.41 and 0.36. The predictive entropy (uncertainty)
is lower in the second case, because it is more certain about the
alternative classes. It is important to consider this effect when
deciding between an uncertainty measure based on predictive
entropy or on class probability.

D. Disentangling Entropy

By capturing the total uncertainty, predictive entropy re-
sponds to both aleatoric and epistemic uncertainty. I.e. it is
high when aleatoric uncertainty is high, or when epistemic
uncertainty is high. It may be desirable to disentangle these
methods.

The mutual information between a models parameters ω and
a new labelled sample {x, y} gives the amount of information
gained by knowing that label of that sample, relative to what
was already known by the models parameters. Since this may
be considered equivalent to epistemic uncertainty [71] we get
an intractable epistemic uncertainty measure:

I(ω, y|D,x) = H[p(y|x,D)]− Ep(ω|D)H[p(y|x, ω)] (20)

This can be approximated by sampling from the posterior
distribution:

I(p) ≈ Hpred(p) + T−1
∑
t

∑
c

pct log pct (21)

These terms can be reordered as shown by Mukhoti et al.
[13] into:

Hpred(p)︸ ︷︷ ︸
total

≈ I(p)︸︷︷︸
epistemic

−T−1
∑
t

∑
c

plog pct︸ ︷︷ ︸
aleatoric if ID

(22)

The latter part may be considered an approximation of the
Expected Entropy, which we refer to shorthandedly as the
Expected Entropy, just as we refer to the approximation of
the Mutual Information between the model parameters and a
new sample as simply ”Mutual Information”.

Mukhoti et al. [13] brings forward an interesting observation
about how Expected Entropy reflects aleatoric uncertainty.
Since aleatoric uncertainty is learned on the training data, it is
only well defined on data that is similar to the training data. As
such, when samples are out of distribution and the epistemic
uncertainty is high, Expected Entropy may be either high or
low.

Wabina et al. [46] used Mutual Information as a method
to do Bayesian Active Learning for EEG source localization.
This method selected MRI training samples for a neural
network based on which items the model was most uncertain
about. One might expect that optimizing information gain
would be ideal for this, but the authors found that it was
actually outperformed by predictive entropy. It is unclear
why this happens. Mukhoti et al. [13] suggests that when
datasets have minimal aleatoric uncertainty in the training data,
the predictive entropy may be dominated by the epistemic
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TABLE II
AN OVERVIEW OF DIFFERENT UNCERTAINTY MEASURES THAT CAPTURE PREDICTIVE UNCERTAINTY/CONFIDENCE FROM A DISTRIBUTION OVER

PROBABILITIES.

Name Formula Intuition Ale UQ Epi UQ

Class Probability [63] P(p) = p̄c̄ Mean probability of predicted class ✓ ✓

Predictive Entropy[62] Hpred(p) = −
∑

c p̄c log p̄c Uncertainty in mean prediction ✓ ✓

Probability Variance [67] Vc̄(p) = T−1
∑

t(pc̄t − p̄c̄)2 Variance of the predicted probability ✓

Expected Entropy [18], [71] HE(p) = −T−1
∑

t

∑
c pct log pct Average uncertainty for each prediction ✓

Mutual Information [62] I(p) ≈ Hpred(p)− HE(p) Information gain from new sample ✓

Margin of Confidence [62] M(p) = T−1
∑

t pc̄t −maxc′ ̸=c pc′t Average distance to second class ✓ ?

We consider some number of forward passes t ∈ T . We denote some number of classes c ∈ C. A given probability for a class c on pass t is then pct. The
average probability of a class c over all passes T is denoted p̄c. To denote the highest probability class after averaging over T we use c̄. Lastly, fc̄ is the
number of passes in T where pc̄t = maxc pct.
The arrow behind each measure indicate the value where a measure is most certain.
Vacuity and Dissonance fall outside of this scope due to their different nature.

uncertainty. If this is happening, then the approximative nature
of this disentanglement could explain why predicitive entropy
outperformed mutual information.

1) Explaining Ad-Hoc Methods by Entropy: Disentangling
predictive entropy into mutual information and expected en-
tropy gives a well formalized understanding of how a distri-
bution over probabilities may be deconstructed into separate
aleatoric and epistemic uncertainty.

Epistemic uncertainty has been modelled by the variance
or standard deviation of the predicted probability in 27.3%
of the reviewed papers, but without evidence of why this
reflects epistemic uncertainty. The intuition available is that
disagreement between sampled models should be epistemic
uncertainty.

Smith et al. [71] looks at the Taylor series of the Mutual
Information and finds a similarity to probability variance. The
first term of the Taylor expansion is equivalent to probability
variance, up to a multiplicative constant. This shows that prob-
ability variance and mutual information have some functional
similarities, and shows that probability variance therefore must
also capture epistemic uncertainty.

To the best of the author’s knowledge, there is no similar
proof known to connect the Expected Entropy to a similar
statistical measure of central tendency. Since the predictive
entropy build on the mean prediction, it is unlikely that the
mean would reflect aleatoric uncertainty, but rather a mixed
uncertainty. Other measures of central tendency, such as the
mode or the median, may reflect aleatoric uncertainty and have
functional similarities to Expected Entropy. Further exploring
this will allow a more intuitive measure to be constructed that
can correspond to aleatoric uncertainty.

E. Margin of Confidence

Last but perhaps not least, Milanes-Hermosilla et al. [62]
proposes Margin of Confidence as an intuitive uncertainty
measurement. This rather ad-hoc measure looks at the average
distance between the probability of the predicted class and
the class with the next highest probability. Note that while
the predicted class is taken over the average from the forward
passes c̄ = argmaxc∈C p̄c, the second-highest is chosen on

each sample. This means that in some forward passes, the
second-highest probability maxc′ ̸=c pc′t is actually higher than
the probability of the predicted class pc̄t.

In its full form the Margin of Confidence is given as:

M(p) = T−1
∑
t

pc̄t −max
c′ ̸=c

pc′t (23)

Milanes-Hermosilla et al. [62] used the Margin of Confi-
dence to separate correctly and incorrectly classified predic-
tions. They found that the Margin of Confidence had a greater
Bhattacharyya distance between the correctly and incorrectly
classified predictions than Mutual Information, Predictive En-
tropy and Probability Variance (following Equation 18).

IV. UNCERTAINTY USE CASES

The study of Uncertainty Quantification methods in Biosig-
nals focuses on implementing these methods to solve some
kind of problem, or to gain knowledge about the Biosignal or
the underlying biological process. This separates the research
on Uncertainty Quantification in Biosignals from other do-
mains. While the Machine Learning methods may transfer well
between Computer Vision research and Biosignal research, the
actual problems being solves are very different. Therefore, the
ways uncertainty are used may also be different.

Below we outline several common purposes that uncertainty
quantification has been used for. We specifically look at
what behaviour is expected of the uncertainty for different
applications. We will see that different tasks have different
requirements for how uncertainty should behave.

A. Rejection Methods

The most common use for estimating uncertainty is to be
able to not make a prediction when the likelihood of that
prediction being wrong is too high. 37% of papers in this
review use a measured uncertainty to reject samples from the
testing data.

Both aleatoric and epistemic uncertainty can contribute to
a risk of predictions being wrong. A good estimation that
considers both would be optimal. However, under epistemic
uncertain the models prediction of aleatoric uncertainty may
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Fig. 10. Example calibration plot for an EEG Motor Imagery classifier. The
predicted probability is consistently higher than the true probability of being
correct. This means the model is overconfident. Note that a plot like this is
only reliable with sufficient samples with different predicted probabilities.

also be wrong [13]. When the to-be-rejected samples are
dissimilar to the training data, epistemic uncertainty measures
may be preferred.

Provided that the uncertainty measure has any predictive
power of the accuracy of a prediction, a rejection method will
always improve accuracy. The cost of this is a reduction in
the amount of samples the system makes a prediction for. The
ratio of samples for which a prediction is made can be referred
to as coverage[19].

An ideal uncertainty measure simultaneously maximizes
coverage and predictive accuracy. It may do so by producing
higher values when the probability of a classification being
wrong is high, and lower values when that probability is low.
Since the goal is to be able to separate those two groups
by a decision threshold, the uncertainty does not need to
match the probability of a classification being incorrect, nor
is it constraint to expectations of being linearly related to the
probability of the class being accurate.

Expected Calibration Error (ECE) is a common method
for evaluating uncertainty quantification which measures the
difference between a predicted probability for a classification
and the actual observed probability on a validation set [72].
This is often visualised with a calibration plot as shown in
Figure 10. While minimizing the Expected Calibration Error
does satisfy the needs of making a good decision boundary, a
consistently over or under confident uncertainty quantification
can make an equally good decision boundary. As a result,
a consistently overconfident model with good separability of
correct and incorrect predictions still gets a bad ECE, while an
appropriately confident model with poor separability of correct
and incorrect predictions gets a better ECE. Moreover, a model
which is always predicts p(y) = 0.5 is not a usable model,
but will have a minimal ECE. Therefore, ECE should be used
cautiously as a way to evaluate uncertainty calibration, but not
of uncertainty quantification as a whole.
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Fig. 11. Example plot showing the tradeoff between coverage and accuracy
for two EEG Motor Imagery classifiers. The plot shows that both models have
very similar accuracy without rejection (coverage at 1.0), but that the Support
Vector Machine has a better accuracy-coverage trade-off.

TABLE III
VARIOUS UNCERTAINTY USE CASES GROUPED IN THEIR REQUIRED TYPE

OF UNCERTAINTY. IN GENERAL, METHODS THAT NEED EITHER
ALEATORIC OR EPISTEMIC UNCERTAINTY MAY STILL DO WELL WITH A

MIXTURE OF BOTH. REJECTION IS SPLIT INTO REJECTION WHEN THE
DATA IS IN-DISTRIBUTION (ID), OR OUT-OF-DISTRIBUTION (OOD),

RELATIVE TO THE TRAINING DATA.

Aleatoric Epistemic Both

Feature Active Learning Interpretability
Rejection (ID) Model Pruning Social Bias

Data Augmentation Soft Voting
Rejection (OOD)

1) Uncertainty as a Classification Task: A common tech-
nique used to evaluate uncertainty quantification for rejection
methods is setting a threshold against uncertainty and ob-
serving an increase in accuracy and a decrease in coverage
[14], [19], [32], [44], [64], [70]. This framework considers
uncertainty as a tool to improve classification performance,
instead of having uncertainty as an inherent goal. While some
works set a single threshold against uncertainty [32], [44],
[64] a range of thresholds is preferred [14], [19], [70], as
the right balance between coverage and accuracy is typically
not well established. Moreover, when different uncertainty
quantification methods are compared against a threshold they
might decrease in coverage while increasing accuracy, which
makes them harder to compare. Instead, coverage-accuracy
plots as visualised in Figure 11 may be used to assess the
reject-performance of a model. By going over all possible
thresholds, this plot shows the options for balancing coverage
and accuracy, which may be used for comparing models.

The alternative framework is to consider uncertainty as
a classification task, where the goal is to classify whether
a prediction will be correct or incorrect [14], [31], [62],
[65], [73], [74]. This results in the common classification
metrics such as uncertainty accuracy, uncertainty precision and
uncertainty recall being used in this domain, although other
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common classification metrics such as the ROC-curve should
be considered [75]. Unlike the accuracy/coverage framework,
this perspective keeps the quality of uncertainty and the quality
of predictions as orthogonal.

Two disadvantages of having uncertainty as a classification
task can be observed. First is that it does not show the
trade-off between accuracy and coverage. When the focus is
on implementing a model that complies with certain needs
this might be what one wants to evaluate the model on.
Instead it gives more insight into the performance of individual
components, which could be more helpful for knowing what
to optimize. Lin et al. [14] solves this dilemma by presenting
both frameworks. The second disadvantage is that the precision
of uncertainty can never approach 100%. In the ideal case it
separates the predictions that are certainly correct from the
predictions that are randomly guessed. However, it is evaluated
on separating the correct from the incorrect predictions. As a
result, the upper limit of uncertainty precision is lower than
100%. Jahmunah et al. [31] performed 10-class myocardial
infarction classification with ECG data. As artificially added
noise increased, the uncertainty accuracy flatted out at 88.5%.
Considering the aforementioned, this may be closer to opti-
mal uncertainty quantification than the uncertainty accuracy
suggests.

When uncertainty is considered as a classification task it
may be worth considering normalizing the accuracy to control
for this upper limit.

2) Choice of Uncertainty Measure: Fiorillo et al. [64]
explored the choice of using class probability or probability
variance as an uncertainty measure. They found the accuracy
improved most under class probability. Similarly, 5 out of
9 other papers using uncertainty as a rejection method used
measures that observe a mixture of aleatoric and epistemic
uncertainty, while only 1 used an epistemic method, and 1 an
aleatoric method. The last one used Margin of Confidence,
for which is it unknown whether it responds to aleatoric
uncertainty, epistemic uncertainty, or both. Overall it can
be concluded that most works use mixed uncertainties for
rejection methods.

While it is clear that mixed uncertainty measures are com-
monly preferred, it may still be worth considering separated
uncertainty measures. By using a specifically aleatoric and a
specifically epistemic measure, one may be able to set different
rejection thresholds against different kinds of uncertainty. This
makes evaluation more tricky, but it can improve usability in
situ. When reducing aleatoric uncertainty by collecting another
recording is very expensive, but reducing epistemic uncertainty
by getting a second opinion from an expert or another model
is cheap, it is desirable to make different decisions for the
different causes of uncertainty.

3) The Rejected Samples: In rejection methods it is worth
contemplating what happens to the samples that are rejected.
In medical applications a common expectation may be to have
a clinician re-asses the data, but this would only be valuable
under epistemic uncertainty. Under aleatoric uncertainty a re-
recording of the electrodes would be needed instead [27],
or additional information about the patient. Implementations
where predictions are made and used in real-time require a

well-considered behaviour for rejected cases. In the current
literature this consideration seems to be missing or limited.

B. Uncertainty for Interpretability
Uncertainty is sometimes proposed as a method to alleviate

a part of the black-box problem of Neural Networks [70]. Stan-
dard Neural Networks only give a single point prediction, but
do not show any insights about how it got to this prediction, or
how likely it is that a prediction is correct. This is a legitimate
objection to the adoption of Deep Learning systems in medical
applications, but methods that detect uncertainty may alleviate
this [37]. By presenting aleatoric uncertainty a model is able
to show that a given prediction may not be correct. Epistemic
uncertainty can show this specifically when the data to be
classified is dissimilar to the data a model is trained on, for
example due to changes in recording equipment or protocol.

Determining what good communication of a quantified
uncertainty is can be difficult. Some works use uncertainty
to get an estimate of the scientific validity of outcomes from
a Neural Network [35], [42]. In this case, interpretation is not
very time-sensitive, and the purpose of interpretation may vary
widely. Research on scientific visualization of uncertainty is
available [76], [77], but is not interweaved with the reviewed
literature and does not demonstrate how to present aleatoric
and epistemic uncertainty.

Clinical interpretation of uncertainty can be even more
critical, as it may affect the quality of a diagnosis or the
adoptability of Machine Learning methods. For some ECG
applications time-sensitivity is given as a factor affecting
manual diagnosis [31], so the interpretation of an uncertain
prediction may be subject to time constraints in such cases.

In standard classification tasks an accepted way of pre-
senting a quantified uncertainty is by reporting an accurate
class probability. A predicted class probability that accurately
corresponds to the true probability of a class (even under
epistemic uncertainty) can be mathematically interpreted and
gives a well-defined and well understood measure of uncer-
tainty. Expected Calibration Error has been used to capture
this goal in a metric [18], [48], [63]. However, people may
prefer non-numerical representations of probability [78]. These
methods will aggregate a range of probabilities under one
label. This means that small deviations on each sample have
no effect, but a few samples with large difference may be
a problem. In general, there is a need for more research
on how people interpret measures of epistemic and aleatoric
uncertainty from UQ methods, so that future research can
focus on optimizing the appropriate interpretations, rather than
appropriate numerical outcomes.

1) Visualizations of Uncertainty: Within the interpretability
domain there are opportunities to create task specific visu-
alizations of uncertainty to improve interpretability. Three
different generalised approaches are shown in Figure 12. This
makes a generalised observation that these visualisations may
deliver uncertainty and prediction separately, together, or may
even leave both to be decided by the user. In practice, the
specific task for the visualisation impacts the way it should be
implemented. Below we discuss how visualisations have been
done in the reviewed literature.
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Fig. 12. Three different general approaches to visualising uncertainty. The first plot specifically shows a separated prediction and a degree of uncertainty.
The second plot explicitly shows the uncertainty, but leaves the predicted probability to be determined by the user. The third plot shows an embedding of the
sample, but does not explicitly give a prediction nor an uncertainty.

Bekhti et al. [42] proposes a Markov Chain Monte Carlo
approach for Majority Minimization to solve the inverse prob-
lem. The MCMC sampling results in multiple sparse solutions,
where the agreement between solutions is interpreted as un-
certainty. By presenting a heatmap of the source localization
solutions on 3D brain renderings they allow the reader to
interpret the level of uncertainty based on the relative density
and the total spread of solutions. This also allows readers to
involve their prior knowledge about neuroanatomy implicitly
by contrasting the certainty of the predictions against prior
knowledge.

As an alternative, Gill et al. [79] uses a CNN with MC-
Dropout to classify lesional voxels in patients with focal
cortical dysplasia. The results are presented by a map of
class probability voxels (predictive uncertainty) and a separate
map of probability variance voxels (epistemic uncertainty).
It is then up to the user to combine these two sources of
information.

Phan et al. [70] shows a method to support EEG-based sleep
classification. They show a timeseries of the predictive entropy,
the stacked class probabilities (also predictive uncertainty) and
the classifications above each other. To improve readability
they highlight the parts where confidence drops below a given
threshold. This is used to show how uncertainty is highest
during stage transitions.

A more generalizable method is given by Costabal et al.
[35], who present a histogram of the whole distribution of class
probabilities. This allows readers to intuitively asses central
tendencies, spread and skew.

The design of a visualization is very task dependent, and
may have an impact on the effectiveness of quantified un-
certainty. More research in how these visualization can be
optimized, especially in (emergency) medicine is needed and
may guide how uncertainty should be quantified. It is currently
unknown how aleatoric and epistemic uncertainty may be
differently interpreted, or if a vacuity-dissonance framework
is more interpretable.

One interesting approach to dealing with this is suggested by
Van De Leur et al. [28], where a VAE embedding of an ECG is
reduced to 2 dimensions using Principal Component Analysis.
A user is presented with the embeddings of known diagnoses.

This allows the user to determine a measure of uncertainty
based on a more fluid notion of vacuity, dissonance, aleatoric
or epistemic uncertainty. By not trying to quantify uncertainty,
but instead allowing the user to assess uncertainty, they aim
to make a diagnosis more interpretable.

C. Uncertainty as a Feature

Another interesting, but rather task-dependent, use of uncer-
tainty is as a feature for subsequent Machine Learning tasks.
For example, Stoean et al. [66] attempts to detect presymp-
tomatic spinocereballar ataxia type 2 using electrooculography.
They observe the saccadic eye movements in healthy, sick,
and presymptomatic participants. Healthy participants show
a sudden eye movement with nearly instant acceleration and
deceleration. Sick participants can show more chaotic move-
ment with slower acceleration and speed. Presymptomatic
participants can show a decrease in control, speed and rate
of acceleration. Since there is a lot of variation between
participants and each saccade, 85 saccades are recorded for
each participant, and classified with an ensemble of Deep
Neural Networks using MC-Dropout. The 3 class probabilities
and the 3 class standard deviations for all 85 saccades were
used for a decision tree classifier. The system was able to
classify sick and healthy participant quite well, and performed
acceptably at classifying presymptomatic participants.

When uncertainty is used as a feature for another Machine
Learning model the constraints of what a good uncertainty is
are loosened. The main difference is that the uncertainty no-
longer needs to be a single value, but can instead be given by
multiple uncertainty measures. As such, the choice of using
a epistemic and a aleatoric uncertainty measure can provide
more information. Depending on the choice for a subsequent
Machine Learning model, even the requirement of the measure
being monotonically in/decreasing with uncertainty may be
lifted.

D. Uncertainty to Control Social Bias

As fairness and negative social biases are a growing concern
in Machine Learning, Zanna et al. [67] present a rather unique
usecase for uncertainty quantification. They propose a Multi-
Task Learning method using Uncertainty Quantification to
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reduce social bias while classifying periods of anxiety from
ECG features. The bias mitigation strategy uses a multi-task
branch that attempts to classify whether the samples belongs
to a person from an unprivileged demographic group.

The model is trained for 100 epochs, with the weights being
saved every 5 epochs. After training, the model with the high-
est average epistemic uncertainty (probability variance) on the
demographic-classification and the lowest average uncertainty
on the anxiety-classification is selected. The model performing
poorly at demographic classification should not have features
in the latent representation to capture demographic classifica-
tion. The authors showed that this minimized bias, but this did
come at a loss in model performance.

While this method is still somewhat ad-hoc, it paves the
way for future methods in minimizing social bias through
uncertainty quantification. Future research may focus on forms
of adversarial training, so that an anxiety model will try to
optimize the anxiety classification while under an ongoing
constraint of having no features that may be used to infer
the demographic class. The different effects of aleatoric and
epistemic uncertainty are also worth exploring here.

E. Bayesian Active Learning

The last usage for uncertainty quantification encountered
in the review is in Bayesian Active Learning. Under Active
Learning training samples are iteratively selected by the epis-
temic uncertainty that the model has about that sample [80].
These methods are proposed for situations where insufficient
labelled training data is available, and manual labelling of data
is expensive. To reduce the labelling cost, Active Learning
starts with a model trained on very little data, and observes the
uncertainty it has on the unlabelled data. The most uncertain
samples are then manually labelled by an Oracle: a system
that produces the ground truth labels. This Oracle can (in the
domain of Biosignals) be the expert annotations, but may also
be additional testing to establish a better ground truth such as
an MRI scan8.

Gal et al. [80] produces a proof-of-concept of Bayesian
Active Learning with the MNIST dataset of handwritten
digit classification. They use MC-Dropout as the uncertainty
quantification methods, and then compare different uncertainty
measures as criteria to select training samples with (this is
called the Acquisition Function).

They found that variation ratio (based on the rate of times
predicted class is most-likely) performed best, followed by
Mutual Information9 and predictive entropy. When repeating
the setup on skin cancer classification they found that variation
ratio was consistently the same value, and therefore not usable.
Mutual Information and predictive entropy still performed
well.

Wabina et al. [46] reproduced this comparison of acquisition
functions for solving the inverse problem. However, while Gal
et al. [80] evaluated the performance by the minimum number

8This is only valuable if the experts have aleatoric uncertainty about the
Biosignal recording

9In Active Learning Mutual Information is referred to as Bayesian Active
Learning by Disagreement (BALd)

of training samples needed to achieve a given accuracy,
Wabina et al. [46] evaluated on the quality of the model
predictions after training with all data but limiting the learning
by early stopping. They find predictive entropy to perform the
best, but they do not focus on reducing the number of samples.

F. Miscellaneous use cases for uncertainty

Two works propose novel ways to use uncertainty for Brain
Computer Interfaces. As part of their UNCER model, Duan
et al. [54] uses uncertainty to assess the quality of data
augmentation. They consider data augmentation as a method
to reduce uncertainty to unseen corruptions.

For a P300 speller Ma et al. [81] look at model uncertainty,
not only in terms of how it affects predictive uncertainty, but
also in what it says about the model. They argue that weights
with a poor signal-to-noise ratio are redundant. With this
method they were able to prune 75% of the weights without
decreasing the F1 score. In the single-point model any amount
of pruning would result in a (slight) decrease in F1 score.

Additionally, Ma et al. [81] used the predicted probability
for a special soft-voting strategy. In P300 spellers each letter
is flashed several times, and a classifier tries to identify a
P300 wave. By using the probability of a P300 wave their
Bayesian CNN outperformed an equivalent single-point model.
This strategy of voting with probabilities, rather than with
discretised predictions is similar to Soft Voting in Machine
Learning ensembles.

V. GUIDELINE FOR ADDING UNCERTAINTY
QUANTIFICATION

The review covered various methods for obtaining quanti-
fied uncertainties and presented methods which people have
been using uncertainty for. Based on these findings, we aim
to conclude a guideline on how to implement uncertainty
quantification for a Machine Learning task on Biosignal data.
Unfortunately, there is no singular solution or decision tree
that works best for all cases. Nonetheless, we provide an
outline below of decisions to make for researchers using a
Machine Learning system for a Biosignal that are interested
in using Uncertainty Quantification. The descriptive study of
UQ for Biosignals in the previous section cannot result in
a complete guideline. Instead, the remainder of this section
gives prescriptive advice. These instructions should be taken
with a critical eye and may be subject to disagreement. Still,
it is intended to provide a starting point from which better
methodologies may be constructed.

We start with considering the cost of adding Uncertainty
Quantification to a Machine Learning task. After this the first
step will cover the uncertainty quantification methods, which is
mostly guided by your choice of Machine Learning model and
computational constraints. Second is the choice of uncertainty
measure, which is chosen on the constraints of the uncertainty
usecase, and whether the task concerns aleatoric or epistemic
uncertainty. The last step is the evaluation. Depending on the
uncertainty usecase, different evaluation methods align best
with the specific goal. Lastly, we discuss some sanity checks to
validate that the uncertainty quantification works as intended.
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A. Cost of Uncertainty

Knowing when your models predictions are likely to be
wrong, and a hint of why they might be wrong, can be quite
valuable. However, there is always a price to pay.

For MC-Dropout and Ensembles this price is computational
cost. MC-Dropout requires many forward passes, so the cost of
inference might increase 100 times. Ensembles require training
several models, which means training cost may increase 5
times. At inference, this also requires having enough memory
for 5 models.

However, these methods do not result in a decrease in model
accuracy. MC-Dropout converges to the prediction a single-
point model would have made after 100 forward passes [69],
and Ensembles have been researched extensively with the aim
of improving model accuracy [82].

Methods that optimise a model for uncertainty (such as Vari-
ational Inference, Prior Networks, Evidential Machine Learn-
ing and Variational Autoencoders) are at risk of decreased
model accuracy. Since the model is now optimised towards
two tasks simultaneously, this may have a negative effect on
the predictive performance. However, this is not guaranteed as
multi-task learning leverages a similar mechanism to improve
predictive performance [83].

Post-hoc calibration does not directly have a substantial
computational cost, nor does it directly affect the model
predictions. However, doing post-hoc calibration requires data
to do the calibration on, which generally cuts into the data
available for training or testing.

B. Choice of Uncertainty Method

Without a goal to specifically explore novel uncertainty
quantification methods, simply following the most commonly
used methods can give a good starting point. Figure 13
shows that most of the Biosignal papers using Uncertainty
Quantification use MC-Dropout. This is probably because it is
easy to implement, and can be applied to any Neural Network
using dropout without retraining.

A practical downside to using MC-Dropout is that it sub-
stantially increases the inference cost. 100 forward passes is a
good starting point to capture the predictive distribution, but
that increases inference cost up to 100 times. This may be
acceptable when doing offline inference or when the model
is small, but can be prohibitive when inference is done under
computational constraints. Moreover, MC-Dropout is only an
approximation of a Bayesian Neural Network. Depending on
how it is applied this may be a rather poor approximation.

Ensembles are the next common method. The advantage
relative to MC-Dropout is that it requires fewer forward passes
to get a decent approximation of the predictive distribution. 5
models in an ensemble is a good starting point, increasing
inference cost only 5 times, but also increasing model storage
size 5 times, and increasing training cost 5 times.

For large Neural Networks either of these approaches may
be prohibitively expensive. In that case direct Uncertainty
Quantification methods such as Evidential Deep Learning or
Prior Networks may be preferable, although it is not certain
whether they capture epistemic uncertainty as well as BNNs
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Fig. 13. Popularity of various Uncertainty Quantification methods in this
review. Several papers presented multiple Uncertainty Quantification methods.
MC-Dropout and Ensembles are the most common. A large group of Other
consists of 14 different methods. MCD is MC-Dropout, VAE is Variational
Autoencoder, VI is Variational Inference, PHC is Post-Hoc Calibration, and
GP is a Gaussian Process.

do. Alternatively, Early Exit Ensembles may be considered as
a computationally affordable solution to deep ensembles.

When the Neural Networks are particularly small and train-
ing data is sparse one may opt for Variational Inference.
Variational Inference can provide a better approximation of
a Bayesian Neural Network than MC-Dropout, but it is pro-
hibitively expensive and may suffer from numerical instability
on Deep Neural Networks [84]. The impact of injecting do-
main knowledge through informative priors is not known. Note
that while MC-dropout and Ensembles can be trained with
regular loss functions used for single-point Neural Networks,
most UQ methods require loss functions that consider the
uncertainty such as the VI loss in Equation 6 or variance
attenuated negative log-likelihood [29].

If the base-model of choice is not a Neural Network this
review finds insufficient previous research to suggest a method
of uncertainty quantification. Two studies use the entropy in
a decision tree as a measure of uncertainty, but this does
not capture epistemic uncertainty, is often quite coarse and
may be dependent on the choice of hyperparameters of the
training process. It is unclear whether the Kalman Filter
SVM [61] result in good uncertainties. Instead we recommend
considering Bayesian methods for standard Machine Learning
models such as Bayesian Linear Discriminant Analysis and
Relevance Vector Machines as explained by Prince [85].

C. Choice of Uncertainty Measure

For regression problems, the current review only covers two
papers, which is insufficient to make data-driven recommen-
dations on a good choice of uncertainty measure. Instead we
recommend from our experience two measures of uncertainty
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for regression: the variance of the prediction, or the 95%
Confidence Interval. Measures of variance may be well suited
for rejection systems, as they present a scalar uncertainty
which can be thresholded against. Confidence Intervals may
be preferable for human interpretation as it gives a notion of
likely possible values.

For classification problems however, the choices for uncer-
tainty measures may be discussed more extensively. For rejec-
tion methods the, expected entropy, or mutual information may
be good options. Expected entropy and mutual information can
be useful when only aleatoric or only epistemic uncertainty
is to be considered, or when different behaviour is expected
for each kind of uncertainty. Even when there is no interest
in disentangling uncertainty, expected entropy or predictive
entropy may perform poorly when there is a lot of epistemic
uncertainty, as the predictions of aleatoric uncertainty are then
made by an uncertain model.

However, the entropy based measures may be more difficult
to interpret by people. If human interpretation is the goal
instead consider using statistical measures to represent the
predictive distribution. A well calibrated mean probability that
accounts for epistemic uncertainty may be easy to interpret. A
visualization of the probability variance (e.g. by color) can
be used to present epistemic uncertainty. Alternatively, for
completeness the entire distribution of class probabilities can
be presented.

When the uncertainty measure is used for active learning
it would intuitively make most sense to use a measure of
epistemic uncertainty. However, Wabina et al. [46] found that
predictive entropy, which captures both aleatoric and epistemic
uncertainty, works best.

D. Evaluating Uncertainty Quantification

Whenever Uncertainty Quantification is considered as a tool
to improve the outcome of a larger system, rather than as its
own end-goal, the evaluation methods may need to be adjusted
to the purpose for which uncertainty is used. Below take in
each section a given uncertainty usecase, and discuss how to
evaluate the uncertainty quantification for that usecase.

1) Rejection: If uncertainty is used in order to reject dif-
ficult samples, the impact of uncertainty on the larger system
may be directly measured with a coverage-accuracy plot as
in [14], [70]. These systems all depend on setting a threshold,
which is usually arbitrary. Therefore, it is better to create a plot
that shows the outcome for all possible thresholds by plotting
the coverage against the accuracy. Showing the coverage and
accuracy only for a single threshold makes it hard to compare
models when the distribution of the uncertainty measure shifts.

However, these coverage-accuracy plots do not give direct
insights into the Uncertainty Quantification performance per
se. Gaining more insights into this may help improve the
large system, rather than only evaluate it. For this, it may
be worth casting the uncertainty as a classification task, so
that regular classification metrics may be used. Be aware that
this is typically an unbalanced task, where again the cost
of false-positives and false-negatives is not well defined, so
ROC curves may be a preferred approach. Since a perfect

uncertainty measure is not able to provide perfect classification
(as described in Section IV-A1), it may be worth adjusting the
metrics to give a more directly interpretable evaluation of the
uncertainty.

For both of these cases, it is worthwhile to use a good base-
line to assess whether the Uncertainty Quantification method
actually provides an improvement. Setting a threshold against
a standard Neural Network with Softmax as uncertainty gives
a fair baseline.

2) Interpretation: While the rejection usecase does not
demand a well-calibrated measure of uncertainty, that may
important for interpretation by a person. In this case the best
approximation that can be given is that a predicted probability
should align with the true probability. This can be measured
by the Expected Calibration Error, which is therefore an
acceptable metric for evaluating an uncertainty that needs to
be directly interpreted.

However, giving too many significant figures of a proba-
bility may give a false sense of precision, so it is possible
that similar probabilities can be put in larger bins, which
may even be mapped to natural language. In that case, the
Expected Calibration Error is not ideal, as many small errors
can have a substantial contribution to this metric, but may not
actually affect the presented uncertainties. Instead, Maximum
Calibration Error may be used, as this would ignore the small
calibration errors and only focus on the large differences.

To really get a thorough understanding of what works best
for interpretability human evaluation and user studies are
needed. Both for the general problem of using uncertainty
quantifying ML models, as well as for specific user groups
and specific tasks. For supporting interpretability in medical
decision making user studies should focus on the specific
medical discipline of the user.

3) Intermediary Features: When uncertainty is used as an
intermediate, for example as a feature for a different model,
or as an acquisition function for Active Learning, it can be
hard to identify which properties are required for an optimal
uncertainty measure.

Expected Calibration Error or the quality of uncertainty as
a classifier may be used as a proxy for the quality of the
uncertainty, but this is not specific to the usecase. Instead, the
uncertainty method should be evaluated on the impact it has
on the performance of the larger system.

For any case of using uncertainty, it may be good to perform
some sanity checks to ensure the uncertainty is behaving
as intended [86]. For systems that are expected to measure
epistemic uncertainty, one may try to create out-of-distribution
data, and validate whether the epistemic uncertainty increases.
To observe the quality of aleatoric uncertainty, one may look
at the samples in the training data that are classified with high
aleatoric uncertainty, to assess whether they align with the
intuitions for aleatoric uncertainty. Alternatively, aleatoric un-
certainty may be evaluated with relevant and realistic induced
noise in the training data.

VI. OPEN CHALLENGES

We identify several open challenges to the Biosignal ap-
plication domain for uncertainty quantification. Overall, while
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uncertainty quantification has been gaining traction, there are
still some obstacles for adoption and some under-explored
areas. This paper attempted to address two of these obstactles
already. By providing an outline of how to add Uncertainty
Quantification to a biosignal classifier in Section V we invite
more researchers to incorporate Uncertainty Quantification
methods into their Neural Networks.

Many previous papers used ad-hoc measures of uncertainty
which generally seemed to behave quite well. Section III
provides an overview of these uncertainty measures, and
explains how they correspond to aleatoric and epistemic un-
certainty. This should encourage researchers to distinguish be-
tween aleatoric and epistemic uncertainty in their Uncertainty
Quantification, in an attempt to encourage Machine Learning
applications that are conscious of the distinction between
aleatoric and epistemic uncertainty in the model environment.

Many issues and opportunities still exist that are not solved
in the currently available literature. Below we outline some of
the open challenges identified, and we specifically encourage
research projects that study Uncertainty Quantification models
in situ.

A. Interpretability of Uncertainty

This review found 13 papers where the quantified uncer-
tainty was explicitly or implicitly intended to be interpreted
by a person, but none of them connected the uncertainty
to thorough studies of how different representations affect
uncertainty. Gill et al. [79] - for example - makes a visual-
ization distinguishing predictive and epistemic uncertainty in
FCD lesions detection, but it is not known how well such a
visualization helps a clinician with identifying the true lesions
and the false positives.

Previous research about how well clinicians can interpret
probabilistic tests exists [87], [88], but that is currently not tied
to the way Uncertainty Quantification research is conducted.
Research on what makes a well-interpretable (disentangled)
uncertainty is needed.

B. Biosignals Are Not Images

Bayesian Neural Networks cover the majority of uncertainty
quantification methods encountered in this review. These meth-
ods have been popularized in Computer Vision, where Deep
Neural Networks are dominating the state-of-the-art.

While Deep Learning has been gaining popularity and
generating good results on large datasets [89], its infamy for
requiring large amounts of training data means many Biosignal
models prefer shallower Machine Learning systems such as
Support Vector Machines [90] and Linear Discriminant Analy-
sis [91]. This review did not find uncertainty quantification for
such models, although they do exist (see Prince [85]). More
research implementing uncertainty quantification on shallow
models is needed, preferably with the ability to disentangle
aleatoric and epistemic uncertainty, but minimally with the
ability to capture a mixture of aleatoric and epistemic uncer-
tainty. Bayesian alternatives for both methods are available
[11], but they are not yet used in the biosignal literature.

C. Appropriate Benchmarks for Uncertainty

Xia et al. [18] offers some benchmark data. They do this
by introducing noise to existing biosignal datasets with the
intention that uncertainty should go up as dataset shift makes
the accuracy go down. While this is a good starting point, the
type of introduced noise may not be reflective of real dataset
shifts that may be observe when UQ models are implemented
in practice. Instead, there is a need for datasets that realistically
capture the aleatoric and epistemic uncertainty they may be
encountered when biosignal models are deployed in practice.

Epistemic uncertainty presents most realistically in cross-
subject generalizability, rare comorbidities, or unusual erro-
neous recordings. By tailoring a dataset with these sources of
epistemic uncertainty, we can improve the construct validity
of UQ research.

For aleatoric uncertainty we may make annotations in
existing datasets that indicate ambiguity. For sleep stage
classification this can be done by focusing on the inter operator
variability. We may also annotate artifacts in training datasets
that would corrupt the discernibly of classes.

D. Vacuity-Dissonance and Aleatoric-Epistemic

Two frameworks for understanding uncertainty were en-
countered. The most common is the distinction between
aleatoric (data) and epistemic (knowledge) uncertainty. How-
ever, the vacuity (absence of class features) and dissonance
(contradicting class features) distinction could provide a more
directly interpretable disentangling of uncertainty. It is not
clear how these frameworks interact, and clarifying this may
provide a more complete understanding of the uncertainty a
model encounters.

Future research may explore their interactions, their differ-
ences, and other interpretations of uncertainty that may be
useful for biosignal classification tasks.

E. The Needs of Clinicians

Elul et al. [37] discusses the needs of clinicians in three
concepts: estimating uncertainty, handling unknown classes,
and detecting a failure to generalize.

Under the aleatoric-epistemic uncertainty framework, the
estimating uncertainty corresponds to aleatoric uncertainty,
while both out-of-distribution unknown and known classes
fall under epistemic uncertainty. In order to better address
the clinical concerns, each of these problems may be ad-
dressed uniquely. While the path towards this is not known,
the unification of aleatoric-epistemic and vacuity-dissonance
uncertainties may provide a starting point.

F. Using Uncertainty for Biosignal Applications

67.6% of papers reviewed use uncertainty either for present-
ing a confidence with a prediction, or for rejecting difficult
samples. However, there is an unknown number of other
possible things that uncertainty quantification may be used for
that need exploring.

A promising purpose is to use epistemic and aleatoric
uncertainty in an online setting while recording a biosignal. An
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increase in uncertainty may correspond with artefacts in the
data, making uncertainty an artefact detector with possibly bet-
ter properties than normal artefact classifiers. One advantage
is that it may only detect artefacts that are obstructing a good
classification, allowing it to tolerate artefacts in channels or at
timepoints where they do not pose a problem for the specific
task.

Moreover, there may be many possible artefacts for some
setups, so creating a dataset to train an artefact classifier may
require a very large dataset. Even then, some artefacts may
be too rare to occur in the dataset, while they could still
arise in a recording. Similarly, there may be many anomalies
in clean data that actually correspond with a physiological
anomaly. These anomalies may specifically be markers for a
(rare) condition that needs to be detected. This makes artefact-
classification a difficult task for a dedicated model, but since
epistemic uncertainty does not need artefact-datasets, it has
the potential to outperform dedicated artefact classifiers.

There may be many more unexplored opportunities to use
estimated uncertainties when these uncertainty-enabled models
are integrated in a task environment. Perhaps in a neurorehabil-
itation BCI the uncertainty may be used to support the patient
in improving their movement attempts, or in situations where
the labels may be erroneous an uncertainty measure is able
detect mislabeled training samples.

Holistic models for multi-task diagnosis on Biosignals may
also be benefited by uncertainty quantification, or may even
produce novel techniques to quantify uncertainty.

G. Informative Priors

Variational Inference gives a modeller the option to specify
a prior p(θ). This prior may be very helpful in training good
Bayesian Neural Networks when data is limited. Efforts to cast
domain knowledge into a probability distribution for p(θ) may
be non-trivial, but has the potential to improve these models.

Alternatively, the prior p(θ) may also be learned on datasets
similar to the task at hand [25].

H. Rejected Samples

We see that several works reject difficult samples to improve
accuracy. In medical diagnosis systems the assumption is that
these difficult samples may be offered to a diagnostician, so
that there quality of diagnosis may not be compromised by
mistakes in the Neural Network. However, it is unclear what
the resulting diagnostic performance of the system combining
the doctor and the Neural Network would be. Both may find
the same samples difficult, or completely different samples.

In Breast Cancer and Tubercolosis screening some theo-
retical work with historical data has been done [92]. Similar
research may be done within the biosignal domain as a step
towards implementing models with Uncertainty Quantification
in the medical biosignal domain.

VII. CONCLUSION

This review finds that Uncertainty Quantification methods
for Neural Networks are increasingly being used in Biosignal
domain, but that there are some hurdles to overcome.

By providing a clarification about how uncertainty measures
relate to aleatoric and epistemic uncertainty, and by providing
an end-to-end guideline on how to add uncertainty quantifi-
cation to a Biosignal classifying Neural Network we aim to
make uncertainty quantification more accessible to researchers
working with EEG, ECG, sEMG and EOG.

Many areas still remain to be explored. Uncertainty Quan-
tification methods should be further studied in situ, where
clinicians may perform specific actions based on predicted
uncertainty. To this end, studies that investigate the perfor-
mance of a (clinical) environment containing an uncertainty-
estimating model are needed.
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Carbonell, et al., “Robust Motor Imagery Tasks Classi-
fication Approach Using Bayesian Neural Network,” en,
Sensors, vol. 23, no. 2, p. 703, Jan. 2023, ISSN: 1424-
8220. DOI: 10 . 3390 / s23020703. [Online]. Available:
https://www.mdpi.com/1424-8220/23/2/703 (visited on
09/20/2023).

[75] X. Huang, J. Yang, L. Li, H. Deng, B. Ni, and Y. Xu,
“Evaluating and boosting uncertainty quantification in
classification,” arXiv preprint arXiv:1909.06030, 2019.

[76] G.-P. Bonneau, H.-C. Hege, C. R. Johnson, et al.,
“Overview and state-of-the-art of uncertainty visualiza-
tion,” Scientific Visualization: Uncertainty, Multifield,
Biomedical, and Scalable Visualization, pp. 3–27, 2014.

[77] K. Potter, P. Rosen, and C. R. Johnson, “From quan-
tification to visualization: A taxonomy of uncertainty
visualization approaches,” IFIP advances in information
and communication technology, vol. 377, p. 226, 2012.

[78] S. Renooij and C. Witteman, “Talking probabilities:
Communicating probabilistic information with words
and numbers,” International Journal of Approximate
Reasoning, vol. 22, no. 3, pp. 169–194, 1999.

[79] R. S. Gill, H.-M. Lee, B. Caldairou, et al., “Multi-
center Validation of a Deep Learning Detection Al-
gorithm for Focal Cortical Dysplasia,” English, Neu-
rology, vol. 97, no. 16, E1571–E1582, Oct. 2021,
Place: Philadelphia Publisher: Lippincott Williams &
Wilkins WOS:000708601400019, ISSN: 0028-3878.
DOI: 10 . 1212 / WNL . 0000000000012698. (visited on
01/16/2023).

[80] Y. Gal, R. Islam, and Z. Ghahramani, “Deep bayesian
active learning with image data,” in International con-
ference on machine learning, PMLR, 2017, pp. 1183–
1192.

[81] R. Ma, H. Zhang, J. Zhang, et al., “Bayesian Uncer-
tainty Modeling for P300-Based Brain-Computer In-
terface,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 31, pp. 2789–2799,
2023, ISSN: 1534-4320, 1558-0210. DOI: 10 . 1109 /
TNSRE . 2023 . 3286688. [Online]. Available: https : / /
ieeexplore . ieee . org / document / 10153625/ (visited on
09/20/2023).

[82] O. Sagi and L. Rokach, “Ensemble learning: A sur-
vey,” Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, vol. 8, no. 4, e1249, 2018.

[83] Y. Zhang and Q. Yang, “A survey on multi-task learn-
ing,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 34, no. 12, pp. 5586–5609, 2021.

[84] N. Brosse, C. Riquelme, A. Martin, S. Gelly, and É.
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