18 research outputs found

    The power of Sherali-Adams relaxations for general-valued CSPs

    Full text link
    We give a precise algebraic characterisation of the power of Sherali-Adams relaxations for solvability of valued constraint satisfaction problems to optimality. The condition is that of bounded width which has already been shown to capture the power of local consistency methods for decision CSPs and the power of semidefinite programming for robust approximation of CSPs. Our characterisation has several algorithmic and complexity consequences. On the algorithmic side, we show that several novel and many known valued constraint languages are tractable via the third level of the Sherali-Adams relaxation. For the known languages, this is a significantly simpler algorithm than the previously obtained ones. On the complexity side, we obtain a dichotomy theorem for valued constraint languages that can express an injective unary function. This implies a simple proof of the dichotomy theorem for conservative valued constraint languages established by Kolmogorov and Zivny [JACM'13], and also a dichotomy theorem for the exact solvability of Minimum-Solution problems. These are generalisations of Minimum-Ones problems to arbitrary finite domains. Our result improves on several previous classifications by Khanna et al. [SICOMP'00], Jonsson et al. [SICOMP'08], and Uppman [ICALP'13].Comment: Full version of an ICALP'15 paper (arXiv:1502.05301

    The Power of the Combined Basic LP and Affine Relaxation for Promise CSPs

    Full text link
    In the field of constraint satisfaction problems (CSP), promise CSPs are an exciting new direction of study. In a promise CSP, each constraint comes in two forms: "strict" and "weak," and in the associated decision problem one must distinguish between being able to satisfy all the strict constraints versus not being able to satisfy all the weak constraints. The most commonly cited example of a promise CSP is the approximate graph coloring problem--which has recently seen exciting progress [BKO19, WZ20] benefiting from a systematic algebraic approach to promise CSPs based on "polymorphisms," operations that map tuples in the strict form of each constraint to tuples in the corresponding weak form. In this work, we present a simple algorithm which in polynomial time solves the decision problem for all promise CSPs that admit infinitely many symmetric polymorphisms, which are invariant under arbitrary coordinate permutations. This generalizes previous work of the first two authors [BG19]. We also extend this algorithm to a more general class of block-symmetric polymorphisms. As a corollary, this single algorithm solves all polynomial-time tractable Boolean CSPs simultaneously. These results give a new perspective on Schaefer's classic dichotomy theorem and shed further light on how symmetries of polymorphisms enable algorithms. Finally, we show that block symmetric polymorphisms are not only sufficient but also necessary for this algorithm to work, thus establishing its precise powerComment: 17 pages, to appear in SICOM

    The Combined Basic LP and Affine IP Relaxation for Promise VCSPs on Infinite Domains

    Get PDF
    Convex relaxations have been instrumental in solvability of constraint satisfaction problems (CSPs), as well as in the three different generalisations of CSPs: valued CSPs, infinite-domain CSPs, and most recently promise CSPs. In this work, we extend an existing tractability result to the three generalisations of CSPs combined: We give a sufficient condition for the combined basic linear programming and affine integer programming relaxation for exact solvability of promise valued CSPs over infinite-domains. This extends a result of Brakensiek and Guruswami [SODA\u2720] for promise (non-valued) CSPs (on finite domains)

    A Galois Connection for Weighted (Relational) Clones of Infinite Size

    Full text link
    A Galois connection between clones and relational clones on a fixed finite domain is one of the cornerstones of the so-called algebraic approach to the computational complexity of non-uniform Constraint Satisfaction Problems (CSPs). Cohen et al. established a Galois connection between finitely-generated weighted clones and finitely-generated weighted relational clones [SICOMP'13], and asked whether this connection holds in general. We answer this question in the affirmative for weighted (relational) clones with real weights and show that the complexity of the corresponding valued CSPs is preserved

    New Dependencies of Hierarchies in Polynomial Optimization

    Full text link
    We compare four key hierarchies for solving Constrained Polynomial Optimization Problems (CPOP): Sum of Squares (SOS), Sum of Diagonally Dominant Polynomials (SDSOS), Sum of Nonnegative Circuits (SONC), and the Sherali Adams (SA) hierarchies. We prove a collection of dependencies among these hierarchies both for general CPOPs and for optimization problems on the Boolean hypercube. Key results include for the general case that the SONC and SOS hierarchy are polynomially incomparable, while SDSOS is contained in SONC. A direct consequence is the non-existence of a Putinar-like Positivstellensatz for SDSOS. On the Boolean hypercube, we show as a main result that Schm\"udgen-like versions of the hierarchies SDSOS*, SONC*, and SA* are polynomially equivalent. Moreover, we show that SA* is contained in any Schm\"udgen-like hierarchy that provides a O(n) degree bound.Comment: 26 pages, 4 figure

    Binarisation for Valued Constraint Satisfaction Problems

    Get PDF
    We study methods for transforming valued constraint satisfaction problems (VCSPs) to binary VCSPs. First, we show that the standard dual encoding preserves many aspects of the algebraic properties that capture the computational complexity of VCSPs. Second, we extend the reduction of CSPs to binary CSPs described by Bul´ın et al. [Log. Methods Comput. Sci., 11 (2015)] to VCSPs. This reduction establishes that VCSPs over a fixed valued constraint language are polynomial-time equivalent to minimum-cost homomorphism problems over a fixed digraph

    The combined basic LP and affine IP relaxation for promise VCSPs on infinite domains

    Full text link
    Convex relaxations have been instrumental in solvability of constraint satisfaction problems (CSPs), as well as in the three different generalisations of CSPs: valued CSPs, infinite-domain CSPs, and most recently promise CSPs. In this work, we extend an existing tractability result to the three generalisations of CSPs combined: We give a sufficient condition for the combined basic linear programming and affine integer programming relaxation for exact solvability of promise valued CSPs over infinite-domains. This extends a result of Brakensiek and Guruswami [SODA'20] for promise (non-valued) CSPs (on finite domains).Comment: Full version of an MFCS'20 pape

    1-in-3 vs. not-all-equal: dichotomy of a broken promise

    Get PDF
    The 1-in-3 and the Not-All-Equal satisfiability problems for Boolean CNF formulas are two well-known NP-hard problems. In contrast, the promise 1-in-3 vs. Not-All-Equal problem can be solved in polynomial time. In the present work, we investigate this constraint satisfaction problem in a regime where the promise is weakened from either side by a rainbow-free structure, and establish a complexity dichotomy for the resulting class of computational problems

    From Weak to Strong LP Gaps for All CSPs

    Get PDF
    We study the approximability of constraint satisfaction problems (CSPs) by linear programming (LP) relaxations. We show that for every CSP, the approximation obtained by a basic LP relaxation, is no weaker than the approximation obtained using relaxations given by Omega(log(n)/log(log(n))) levels of the Sherali-Adams hierarchy on instances of size n. It was proved by Chan et al. [FOCS 2013] (and recently strengthened by Kothari et al. [STOC 2017]) that for CSPs, any polynomial size LP extended formulation is no stronger than relaxations obtained by a super-constant levels of the Sherali-Adams hierarchy. Combining this with our result also implies that any polynomial size LP extended formulation is no stronger than simply the basic LP, which can be thought of as the base level of the Sherali-Adams hierarchy. This essentially gives a dichotomy result for approximation of CSPs by polynomial size LP extended formulations. Using our techniques, we also simplify and strengthen the result by Khot et al. [STOC 2014] on (strong) approximation resistance for LPs. They provided a necessary and sufficient condition under which Omega(loglog n) levels of the Sherali-Adams hierarchy cannot achieve an approximation better than a random assignment. We simplify their proof and strengthen the bound to Omega(log(n)/log(log(n))) levels
    corecore