204 research outputs found

    Online makespan scheduling with job migration on uniform machines

    Get PDF
    In the classic minimum makespan scheduling problem, we are given an input sequence of n jobs with sizes. A scheduling algorithm has to assign the jobs to m parallel machines. The objective is to minimize the makespan, which is the time it takes until all jobs are processed. In this paper, we consider online scheduling algorithms without preemption. However, we allow the online algorithm to reassign up to k jobs to different machines in the final assignment. For m identical machines, Albers and Hellwig (Algorithmica, 2017) give tight bounds on the competitive ratio in this model. The precise ratio depends on, and increases with, m. It lies between 4/3 and ~~ 1.4659. They show that k = O(m) is sufficient to achieve this bound and no k = o(n) can result in a better bound. We study m uniform machines, i.e., machines with different speeds, and show that this setting is strictly harder. For sufficiently large m, there is a delta = Theta(1) such that, for m machines with only two different machine speeds, no online algorithm can achieve a competitive ratio of less than 1.4659 + delta with k = o(n). We present a new algorithm for the uniform machine setting. Depending on the speeds of the machines, our scheduling algorithm achieves a competitive ratio that lies between 4/3 and ~~ 1.7992 with k = O(m). We also show that k = Omega(m) is necessary to achieve a competitive ratio below 2. Our algorithm is based on a subtle imbalance with respect to the completion times of the machines, complemented by a bicriteria approximation algorithm that minimizes the makespan and maximizes the average completion time for certain sets of machines

    Resource Speed Optimization for Two-Stage Flow-Shop Scheduling

    Get PDF
    Multiple resource co-scheduling algorithms and pipelined execution models are becoming increasingly popular, as they better capture the heterogeneous nature of modern architectures. The problem of scheduling tasks composed of multiple stages tied to different resources goes under the name of “flow-shop scheduling”. This problem, studied since the ’50s to optimize production plants, is known to be NP-hard in the general case. In this paper, we consider a specific instance of the flow-shop task model that captures the behavior of a two-resource (DMA-CPU) system. In this setting, we study the problem of selecting the optimal operating speed of either resource with the goal of minimizing power consumption while meeting schedulability constraints. We derive an algorithm that finds an exact solution to the problem in polynomial time, hence it is suitable for online operation even in the presence of variable real-time workload.CNS-1035736CNS-1219064CNS-1302563Ope

    Online Makespan Minimization with Parallel Schedules

    Full text link
    In online makespan minimization a sequence of jobs σ=J1,...,Jn\sigma = J_1,..., J_n has to be scheduled on mm identical parallel machines so as to minimize the maximum completion time of any job. We investigate the problem with an essentially new model of resource augmentation. Here, an online algorithm is allowed to build several schedules in parallel while processing σ\sigma. At the end of the scheduling process the best schedule is selected. This model can be viewed as providing an online algorithm with extra space, which is invested to maintain multiple solutions. The setting is of particular interest in parallel processing environments where each processor can maintain a single or a small set of solutions. We develop a (4/3+\eps)-competitive algorithm, for any 0<\eps\leq 1, that uses a number of 1/\eps^{O(\log (1/\eps))} schedules. We also give a (1+\eps)-competitive algorithm, for any 0<\eps\leq 1, that builds a polynomial number of (m/\eps)^{O(\log (1/\eps) / \eps)} schedules. This value depends on mm but is independent of the input σ\sigma. The performance guarantees are nearly best possible. We show that any algorithm that achieves a competitiveness smaller than 4/3 must construct Ω(m)\Omega(m) schedules. Our algorithms make use of novel guessing schemes that (1) predict the optimum makespan of a job sequence σ\sigma to within a factor of 1+\eps and (2) guess the job processing times and their frequencies in σ\sigma. In (2) we have to sparsify the universe of all guesses so as to reduce the number of schedules to a constant. The competitive ratios achieved using parallel schedules are considerably smaller than those in the standard problem without resource augmentation

    08071 Abstracts Collection -- Scheduling

    Get PDF
    From 10.02. to 15.02., the Dagstuhl Seminar 08071 ``Scheduling\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    On-Line Load Balancing with Task Buffer

    Get PDF
    On-line load balancing is one of the most important problems for applications with resource allocation. It aims to assign tasks to suitable machines and balance the load among all of the machines, where the tasks need to be assigned to a machine upon arrival. In practice, tasks are not always required to be assigned to machines immediately. In this paper, we propose a novel on-line load balancing model with task buffer, where the buffer can temporarily store tasks as many as possible. Three algorithms, namely LPTCP1_α, LPTCP2_α, and LPTCP3_ÎČ, are proposed based on the Longest Processing Time (LPT) algorithm and a variety of planarization algorithms. The planarization algorithms are proposed for reducing the difference among each element in a set. Experimental results show that our proposed algorithms can effectively solve the on-line load balancing problem and have good performance in large scale experiments

    Offline and online variants of the Traveling Salesman Problem

    Get PDF
    In this thesis, we study several well-motivated variants of the Traveling Salesman Problem (TSP). First, we consider makespan minimization for vehicle scheduling problems on trees with release and handling times. 2-approximation algorithms were known for several variants of the single vehicle problem on a path. A 3/2-approximation algorithm was known for the single vehicle problem on a path where there is a fixed starting point and the vehicle must return to the starting point upon completion. Karuno, Nagamochi and Ibaraki give a 2-approximation algorithm for the single vehicle problem on trees. We develop a Polynomial Time Approximation Scheme (PTAS) for the single vehicle scheduling problem on trees which have a constant number of leaves. This PTAS can be easily adapted to accommodate various starting/ending constraints. We then extended this to a PTAS for the multiple vehicle problem where vehicles operate in disjoint subtrees. We also present competitive online algorithms for some single vehicle scheduling problems. Secondly, we study a class of problems called the Online Packet TSP Class (OP-TSP-CLASS). It is based on the online TSP with a packet of requests known and available for scheduling at any given time. We provide a 5/3 lower bound on any online algorithm for problems in OP-TSP-CLASS. We extend this result to the related k-reordering problem for which a 3/2 lower bound was known. We develop a Îș+1-competitive algorithm for problems in OP-TSP-CLASS, where a Îș-approximation algorithm is known for the offline version of that problem. We use this result to develop an offline m(Îș+1)-approximation algorithm for the Precedence-Constrained TSP (PCTSP) by segmenting the n requests into m packets. Its running time is mf(n/m) given a Îș-approximation algorithm for the offline version whose running time is f(n)

    Reducing thread divergence in a GPU-accelerated branch-and-bound algorithm

    Get PDF
    International audienceIn this paper, we address the design and implementation of GPU-accelerated Branch-and-Bound algorithms (B&B) for solving Flow-shop scheduling optimization problems (FSP). Such applications are CPU-time consuming and highly irregular. On the other hand, GPUs are massively multi-threaded accelerators using the SIMD model at execution. A major issue which arises when executing on GPU a B&B applied to FSP is thread or branch divergence. Such divergence is caused by the lower bound function of FSP which contains many irregular loops and conditional instructions. Our challenge is therefore to revisit the design and implementation of B&B applied to FSP dealing with thread divergence. Extensive experiments of the proposed approach have been carried out on well-known FSP benchmarks using an Nvidia Tesla C2050 GPU card. Compared to a CPU-based execution, accelerations up to ×77.46 are achieved for large problem instances

    Restricted Adaptivity in Stochastic Scheduling

    Get PDF
    We consider the stochastic scheduling problem of minimizing the expected makespan on m parallel identical machines. While the (adaptive) list scheduling policy achieves an approximation ratio of 2, any (non-adaptive) fixed assignment policy has performance guarantee ?((log m)/(log log m)). Although the performance of the latter class of policies are worse, there are applications in which non-adaptive policies are desired. In this work, we introduce the two classes of ?-delay and ?-shift policies whose degree of adaptivity can be controlled by a parameter. We present a policy - belonging to both classes - which is an ?(log log m)-approximation for reasonably bounded parameters. In other words, an exponential improvement on the performance of any fixed assignment policy can be achieved when allowing a small degree of adaptivity. Moreover, we provide a matching lower bound for any ?-delay and ?-shift policy when both parameters, respectively, are in the order of the expected makespan of an optimal non-anticipatory policy
    • 

    corecore